Science.gov

Sample records for genome-wide renal gene

  1. Genome-Wide Association Study to Identify Genes Related to Renal Mercury Concentrations in Mice

    PubMed Central

    Alkaissi, Hammoudi; Ekstrand, Jimmy; Jawad, Aksa; Nielsen, Jesper Bo; Havarinasab, Said; Soderkvist, Peter; Hultman, Per

    2016-01-01

    Background: Following human mercury (Hg) exposure, the metal accumulates in considerable concentrations in kidney, liver, and brain. Although the toxicokinetics of Hg have been studied extensively, factors responsible for interindividual variation in humans are largely unknown. Differences in accumulation of renal Hg between inbred mouse strains suggest a genetic interstrain variation regulating retention or/and excretion of Hg. A.SW, DBA/2 and BALB/C mouse strains accumulate higher amounts of Hg than B10.S. Objectives: We aimed to find candidate genes associated with regulation of renal Hg concentrations. Methods: A.SW, B10.S and their F1 and F2 offspring were exposed for 6 weeks to 2.0 mg Hg/L drinking water. Genotyping with microsatellites was conducted on 84 F2 mice for genome-wide scanning with ion pair reverse-phase high-performance liquid chromatography (IP RP HPLC). Quantitative trait loci (QTL) were established. Denaturing HPLC was used to detect single nucleotide polymorphisms for haplotyping and fine mapping in 184 and 32 F2 mice, respectively. Candidate genes (Pprc1, Btrc and Nfkb2) verified by fine mapping and QTL were further investigated by real-time polymerase chain reaction. Genes enhanced by Pprc1 (Nrf1 and Nrf2) were included for gene expression analysis. Results: Renal Hg concentrations differed significantly between A.SW and B10.S mice and between males and females within each strain. QTL analysis showed a peak logarithm of odds ratio score 5.78 on chromosome 19 (p = 0.002). Haplotype and fine mapping associated the Hg accumulation with Pprc1, which encodes PGC-1-related coactivator (PRC), a coactivator for proteins involved in detoxification. Pprc1 and two genes coactivated by Pprc1 (Nrf1 and Nrf2) had significantly lower gene expression in the A.SW strain than in the B10.S strain. Conclusions: This study supports Pprc1 as a key regulator for renal Hg excretion. Citation: Alkaissi H, Ekstrand J, Jawad A, Nielsen JB, Havarinasab S, Soderkvist P

  2. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    SciTech Connect

    Ueda, Kohei; Fujiki, Katsunori; Shirahige, Katsuhiko; Gomez-Sanchez, Celso E.; Fujita, Toshiro; Nangaku, Masaomi; Nagase, Miki

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  3. Gene Fusion: A Genome Wide Survey

    NASA Technical Reports Server (NTRS)

    Liang, Ping; Riley, Monica

    2001-01-01

    As a well known fact, organisms form larger and complex multimodular (composite or chimeric) and mostly multi-functional proteins through gene fusion of two or more individual genes which have independent evolution histories and functions. We call each of these components a module. The existence of multimodular proteins may improves the efficiency in gene regulation and in cellular functions, and thus may give the host organism advantages in adaptation to environments. Analysis of all gene fusions in present-day organisms should allow us to examine the patterns of gene fusion in context with cellular functions, to trace back the evolution processes from the ancient smaller and uni-functional proteins to the present-day larger and complex multi-functional proteins, and to estimate the minimal number of ancestor proteins that existed in the last common ancestor for all life on earth. Although many multimodular proteins have been experimentally known, identification of gene fusion events systematically at genome scale had not been possible until recently when large number of completed genome sequences have been becoming available. In addition, technical difficulties for such analysis also exist due to the complexity of this biological and evolutionary process. We report from this study a new strategy to computationally identify multimodular proteins using completed genome sequences and the results surveyed from 22 organisms with the data from over 40 organisms to be presented during the meeting. Additional information is contained in the original extended abstract.

  4. Genome-Wide Identification of KANADI1 Target Genes

    PubMed Central

    Ott, Felix; Weigel, Detlef; Bowman, John L.; Heisler, Marcus G.; Wenkel, Stephan

    2013-01-01

    Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown. PMID:24155946

  5. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    PubMed

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes.

  6. Genome-Wide Association of CKD Progression: The Chronic Renal Insufficiency Cohort Study.

    PubMed

    Parsa, Afshin; Kanetsky, Peter A; Xiao, Rui; Gupta, Jayanta; Mitra, Nandita; Limou, Sophie; Xie, Dawei; Xu, Huichun; Anderson, Amanda Hyre; Ojo, Akinlolu; Kusek, John W; Lora, Claudia M; Hamm, L Lee; He, Jiang; Sandholm, Niina; Jeff, Janina; Raj, Dominic E; Böger, Carsten A; Bottinger, Erwin; Salimi, Shabnam; Parekh, Rulan S; Adler, Sharon G; Langefeld, Carl D; Bowden, Donald W; Groop, Per-Henrik; Forsblom, Carol; Freedman, Barry I; Lipkowitz, Michael; Fox, Caroline S; Winkler, Cheryl A; Feldman, Harold I

    2017-03-01

    The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10(-6) for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10(-7); replication P=0.039; combined P=7.42×10(-9)). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10(-6)). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10(-4)) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.

  7. A GENOME WIDE ASSOCIATION STUDY FOR DIABETIC NEPHROPATHY GENES IN AFRICAN AMERICANS

    PubMed Central

    McDonough, Caitrin W.; Palmer, Nicholette D.; Hicks, Pamela J.; Roh, Bong H.; An, S. Sandy; Cooke, Jessica N.; Hester, Jessica M.; Wing, Maria R.; Bostrom, Meredith A.; Rudock, Megan E.; Lewis, Joshua P.; Talbert, Matthew E.; Blevins, Rebecca A.; Lu, Lingyi; Ng, Maggie C.Y.; Sale, Michele M.; Divers, Jasmin; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2011-01-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD. PMID:21150874

  8. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  9. snpGeneSets: An R Package for Genome-Wide Study Annotation.

    PubMed

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-12-07

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/.

  10. A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

    PubMed Central

    Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations. PMID:22238593

  11. Genome-wide searches for bipolar disorder genes.

    PubMed

    Alsabban, Shaza; Rivera, Margarita; McGuffin, Peter

    2011-12-01

    Whole-genome linkage and association studies of bipolar disorder are beginning to provide some compelling evidence for the involvement of several chromosomal regions and susceptibility genes in the pathogenesis of bipolar disorder. Developments in genotyping technology and efforts to combine data from different studies have helped in identifying chromosomes 6q16-q25, 13q, and 16p12 as probable susceptibility loci for bipolar disorder and confirmed CACNA1C and ANK3 as susceptibility genes for bipolar disorder. However, a lack of replication is still apparent in the literature. New studies focusing on copy number variants as well as new analytical approaches utilizing pathway analysis offer a new direction in the study of the genetics of bipolar disorder.

  12. Genome-Wide Analysis of Homeobox Gene Family in Legumes: Identification, Gene Duplication and Expression Profiling

    PubMed Central

    Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development. PMID:25745864

  13. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  14. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    PubMed Central

    Winham, Stacey J; Biernacka, Joanna M.

    2013-01-01

    Background Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift towards genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. Methods We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. Results Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychological and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. Conclusions Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry. PMID:23808649

  15. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions.

    PubMed

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian

    2015-06-01

    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  16. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers.

    PubMed

    Tamada, Yoshinori; Imoto, Seiya; Araki, Hiromitsu; Nagasaki, Masao; Print, Cristin; Charnock-Jones, D Stephen; Miyano, Satoru

    2011-01-01

    We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian network structures, existing algorithms cannot be applied to more than a few thousand genes. Our algorithm overcomes this limitation by repeatedly estimating subnetworks in parallel for genes selected by neighbor node sampling. Through numerical simulation, we confirmed that our algorithm outperformed a heuristic algorithm in a shorter time. We applied our algorithm to microarray data from human umbilical vein endothelial cells (HUVECs) treated with siRNAs, to construct a human genome-wide gene network, which we compared to a small gene network estimated for the genes extracted using a traditional bioinformatics method. The results showed that our genome-wide gene network contains many features of the small network, as well as others that could not be captured during the small network estimation. The results also revealed master-regulator genes that are not in the small network but that control many of the genes in the small network. These analyses were impossible to realize without our proposed algorithm.

  17. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.

    PubMed

    Liu, Zhi-Ping

    2015-02-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.

  18. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data

    PubMed Central

    Liu, Zhi-Ping

    2015-01-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented. PMID:25937810

  19. Genome-wide gene-environment interaction analysis for asbestos exposure in lung cancer susceptibility.

    PubMed

    Wei, Sheng; Wang, Li-E; McHugh, Michelle K; Han, Younghun; Xiong, Momiao; Amos, Christopher I; Spitz, Margaret R; Wei, Qingyi Wei

    2012-08-01

    Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene-environment interactions. To determine gene-asbestos interactions in lung cancer risk, we conducted genome-wide gene-environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10(-6), which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10(-5)). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene-asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.

  20. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  1. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians.

    PubMed

    Elbein, S C; Hoffman, M D; Teng, K; Leppert, M F; Hasstedt, S J

    1999-05-01

    Considerable evidence supports a major inherited component of type 2 diabetes. We initially conducted a genome-wide scan with 440 microsatellite markers at 10-cM intervals in 19 multigenerational families of Northern European ancestry with at least two diabetic siblings. Initial two-point analyses of these families directed marker typing of 23 additional families. Subsequently, all available marker data on the total of 42 families were analyzed using both parametric and nonparametric multipoint methods to test for linkage to type 2 diabetes. One locus on chromosome 1q21-1q23 met genome-wide criteria for significant linkage under a model of recessive inheritance with a common diabetes allele (logarithm of odds [LOD] = 4.295). Both pedigree-based nonparametric linkage (NPL) analysis and affected sib pair (MAPMAKER/SIBS) nonparametric methods also showed the highest genome-wide scores at this region, near markers CRP and APOA2, but failed to meet levels of genome-wide significance. The risk of type 2 diabetes to siblings of a diabetic person when compared with the population (lambdaS) was estimated from MAPMAKER/SIBS to be 2.8 in these 42 families. Simulation studies using study data confirmed a genome-wide significance level of P<0.05 (95% CI 0.005-0.0466). However, analysis of 20 similarly ascertained but smaller families failed to confirm this linkage. The LOD score with 50% heterogeneity for all 62 families considered together was only 2.25, with an estimated lambdaS of 1.87. Our data suggest a novel diabetes susceptibility locus near APOA2 on chromosome 1 in a region with many transcribed genes.

  2. Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma.

    PubMed

    Lehmann, Kjong-Van; Kahles, André; Kandoth, Cyriac; Lee, William; Schultz, Nikolaus; Stegle, Oliver; Rätsch, Gunnar

    2015-01-01

    We present a genome-wide analysis of splicing patterns of 282 kidney renal clear cell carcinoma patients in which we integrate data from whole-exome sequencing of tumor and normal samples, RNA-seq and copy number variation. We proposed a scoring mechanism to compare splicing patterns in tumor samples to normal samples in order to rank and detect tumor-specific isoforms that have a potential for new biomarkers. We identified a subset of genes that show introns only observable in tumor but not in normal samples, ENCODE and GEUVADIS samples. In order to improve our understanding of the underlying genetic mechanisms of splicing variation we performed a large-scale association analysis to find links between somatic or germline variants with alternative splicing events. We identified 915 cis- and trans-splicing quantitative trait loci (sQTL) associated with changes in splicing patterns. Some of these sQTL have previously been associated with being susceptibility loci for cancer and other diseases. Our analysis also allowed us to identify the function of several COSMIC variants showing significant association with changes in alternative splicing. This demonstrates the potential significance of variants affecting alternative splicing events and yields insights into the mechanisms related to an array of disease phenotypes.

  3. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.

  4. Technologies for Genome-Wide Identification of Stat5 Regulated Genes

    DTIC Science & Technology

    2003-01-01

    preinfected with adenovirus carrying either wild type or dominant-negative Stat5, were harvested and RNA was isolated as described in the Materials and...maintain tight control of signal transduction pathways, both for rapid induction and cessation of signaling. The protein CIS1 was isolated independently...differential suppression of Stat5 regulated transcripts and large-scale gene chip analysis. As a result of this work, rapid progress in genome-wide

  5. Genome-wide signatures of male-mediated migration shaping the Indian gene pool.

    PubMed

    ArunKumar, GaneshPrasad; Tatarinova, Tatiana V; Duty, Jeff; Rollo, Debra; Syama, Adhikarla; Arun, Varatharajan Santhakumari; Kavitha, Valampuri John; Triska, Petr; Greenspan, Bennett; Wells, R Spencer; Pitchappan, Ramasamy

    2015-09-01

    Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.

  6. Gene-based and pathway-based genome-wide association study of alcohol dependence

    PubMed Central

    ZUO, Lingjun; ZHANG, Clarence K.; SAYWARD, Frederick G.; CHEUNG, Kei-Hoi; WANG, Kesheng; KRYSTAL, John H.; ZHAO, Hongyu; LUO, Xingguang

    2015-01-01

    Background The organization of risk genes within signaling pathways may provide clues about the converging neurobiological effects of risk genes for alcohol dependence. Aim Identify risk genes and risk gene pathways for alcohol dependence. Methods We conducted a pathway-based genome-wide association study (GWAS) of alcohol dependence using a gene-set-rich analytic approach. Approximately one million genetic markers were tested in the discovery sample which included 1409 European-American (EA) alcohol dependent individuals and 1518 EA healthy comparison subjects. An additional 681 African-American (AA) cases and 508 AA healthy subjects served as the replication sample. Results We identified several genome-wide replicable risk genes and risk pathways that were significantly associated with alcohol dependence. After applying the Bonferroni correction for multiple testing, the ‘cellextracellular matrix interactions’ pathway (p<2.0E-4 in EAs) and the PXN gene (which encodes paxillin) (p=3.9E-7 in EAs) within this pathway were the most promising risk factors for alcohol dependence. There were also two nominally replicable pathways enriched in alcohol dependence-related genes in both EAs (0.015≤p≤0.035) and AAs (0.025≤p≤0.050): the ‘Na+/Cl- dependent neurotransmitter transporters’ pathway and the ‘other glycan degradation’ pathway. Conclusion These findings provide new evidence highlighting several genes and biological signaling processes that may be related to the risk for alcohol dependence. PMID:26120261

  7. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages

    PubMed Central

    2012-01-01

    Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319. PMID:22292898

  8. Inference of gene regulatory networks from genome-wide knockout fitness data

    PubMed Central

    Wang, Liming; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2013-01-01

    Motivation: Genome-wide fitness is an emerging type of high-throughput biological data generated for individual organisms by creating libraries of knockouts, subjecting them to broad ranges of environmental conditions, and measuring the resulting clone-specific fitnesses. Since fitness is an organism-scale measure of gene regulatory network behaviour, it may offer certain advantages when insights into such phenotypical and functional features are of primary interest over individual gene expression. Previous works have shown that genome-wide fitness data can be used to uncover novel gene regulatory interactions, when compared with results of more conventional gene expression analysis. Yet, to date, few algorithms have been proposed for systematically using genome-wide mutant fitness data for gene regulatory network inference. Results: In this article, we describe a model and propose an inference algorithm for using fitness data from knockout libraries to identify underlying gene regulatory networks. Unlike most prior methods, the presented approach captures not only structural, but also dynamical and non-linear nature of biomolecular systems involved. A state–space model with non-linear basis is used for dynamically describing gene regulatory networks. Network structure is then elucidated by estimating unknown model parameters. Unscented Kalman filter is used to cope with the non-linearities introduced in the model, which also enables the algorithm to run in on-line mode for practical use. Here, we demonstrate that the algorithm provides satisfying results for both synthetic data as well as empirical measurements of GAL network in yeast Saccharomyces cerevisiae and TyrR–LiuR network in bacteria Shewanella oneidensis. Availability: MATLAB code and datasets are available to download at http://www.duke.edu/∼lw174/Fitness.zip and http://genomics.lbl.gov/supplemental/fitness-bioinf/ Contact: wangx@ee.columbia.edu or mssamoilov@lbl.gov Supplementary information

  9. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  10. Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles

    PubMed Central

    2015-01-01

    Background Despite the large increase of transcriptomic studies that look for gene signatures on diseases, there is still a need for integrative approaches that obtain separation of multiple pathological states providing robust selection of gene markers for each disease subtype and information about the possible links or relations between those genes. Results We present a network-oriented and data-driven bioinformatic approach that searches for association of genes and diseases based on the analysis of genome-wide expression data derived from microarrays or RNA-Seq studies. The approach aims to (i) identify gene sets associated to different pathological states analysed together; (ii) identify a minimum subset within these genes that unequivocally differentiates and classifies the compared disease subtypes; (iii) provide a measurement of the discriminant power of these genes and (iv) identify links between the genes that characterise each of the disease subtypes. This bioinformatic approach is implemented in an R package, named geNetClassifier, available as an open access tool in Bioconductor. To illustrate the performance of the tool, we applied it to two independent datasets: 250 samples from patients with four major leukemia subtypes analysed using expression arrays; another leukemia dataset analysed with RNA-Seq that includes a subtype also present in the previous set. The results show the selection of key deregulated genes recently reported in the literature and assigned to the leukemia subtypes studied. We also show, using these independent datasets, the selection of similar genes in a network built for the same disease subtype. Conclusions The construction of gene networks related to specific disease subtypes that include parameters such as gene-to-gene association, gene disease specificity and gene discriminant power can be very useful to draw gene-disease maps and to unravel the molecular features that characterize specific pathological states. The

  11. A Genome-wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease

    PubMed Central

    Wild, Philipp S; Zeller, Tanja; Schillert, Arne; Szymczak, Silke; Sinning, Christoph R; Deiseroth, Arne; Schnabel, Renate B; Lubos, Edith; Keller, Till; Eleftheriadis, Medea S; Bickel, Christoph; Rupprecht, Hans J; Wilde, Sandra; Rossmann, Heidi; Diemert, Patrick; Cupples, L Adrienne; Perret, Claire; Erdmann, Jeanette; Stark, Klaus; Kleber, Marcus E; Epstein, Stephen E; Voight, Benjamin F; Kuulasmaa, Kari; Li, Mingyao; Schäfer, Arne S; Klopp, Norman; Braund, Peter S; Sager, Hendrik B; Demissie, Serkalem; Proust, Carole; König, Inke R; Wichmann, Heinz-Erich; Reinhard, Wibke; Hoffmann, Michael M; Virtamo, Jarmo; Burnett, Mary Susan; Siscovick, David; Wiklund, Per Gunnar; Qu, Liming; El Mokthari, Nour Eddine; Thompson, John R; Peters, Annette; Smith, Albert V; Yon, Emmanuelle; Baumert, Jens; Hengstenberg, Christian; März, Winfried; Amouyel, Philippe; Devaney, Joseph; Schwartz, Stephen M; Saarela, Olli; Mehta, Nehal N; Rubin, Diana; Silander, Kaisa; Hall, Alistair S; Ferrieres, Jean; Harris, Tamara B; Melander, Olle; Kee, Frank; Hakonarson, Hakon; Schrezenmeir, Juergen; Gudnason, Vilmundur; Elosua, Roberto; Arveiler, Dominique; Evans, Alun; Rader, Daniel J; Illig, Thomas; Schreiber, Stefan; Bis, Joshua C; Altshuler, David; Kavousi, Maryam; Witteman, Jaqueline CM; Uitterlinden, Andre G; Hofman, Albert; Folsom, Aaron R; Barbalic, Maja; Boerwinkle, Eric; Kathiresan, Sekar; Reilly, Muredach P; O'Donnell, Christopher J; Samani, Nilesh J; Schunkert, Heribert; Cambien, Francois; Lackner, Karl J; Tiret, Laurence; Salomaa, Veikko; Munzel, Thomas; Ziegler, Andreas; Blankenberg, Stefan

    2011-01-01

    Background eQTL analyses are important to improve the understanding of genetic association results. Here, we performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). Methods and Results In a genome-wide association analysis of 2,078 CAD cases and 2,953 controls, we identified 950 single nucleotide polymorphisms (SNPs) that were associated with CAD at P<10-3. Subsequent in silico and wet-lab replication stages and a final meta-analysis of 21,428 CAD cases and 38,361 controls revealed a novel association signal at chromosome 10q23.31 within the LIPA (Lysosomal Acid Lipase A) gene (P=3.7×10-8; OR 1.1; 95% CI: 1.07-1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1,494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3×10-96). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4×10-3). Conclusions The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which itself was related to endothelial dysfunction, a precursor of CAD. PMID:21606135

  12. Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses.

    PubMed

    Rhodin, K; Divaris, K; North, K E; Barros, S P; Moss, K; Beck, J D; Offenbacher, S

    2014-09-01

    Recent genome-wide association studies (GWAS) of chronic periodontitis (CP) offer rich data sources for the investigation of candidate genes, functional elements, and pathways. We used GWAS data of CP (n = 4,504) and periodontal pathogen colonization (n = 1,020) from a cohort of adult Americans of European descent participating in the Atherosclerosis Risk in Communities study and employed a MAGENTA approach (i.e., meta-analysis gene set enrichment of variant associations) to obtain gene-centric and gene set association results corrected for gene size, number of single-nucleotide polymorphisms, and local linkage disequilibrium characteristics based on the human genome build 18 (National Center for Biotechnology Information build 36). We used the Gene Ontology, Ingenuity, KEGG, Panther, Reactome, and Biocarta databases for gene set enrichment analyses. Six genes showed evidence of statistically significant association: 4 with severe CP (NIN, p = 1.6 × 10(-7); ABHD12B, p = 3.6 × 10(-7); WHAMM, p = 1.7 × 10(-6); AP3B2, p = 2.2 × 10(-6)) and 2 with high periodontal pathogen colonization (red complex-KCNK1, p = 3.4 × 10(-7); Porphyromonas gingivalis-DAB2IP, p = 1.0 × 10(-6)). Top-ranked genes for moderate CP were HGD (p = 1.4 × 10(-5)), ZNF675 (p = 1.5 × 10(-5)), TNFRSF10C (p = 2.0 × 10(-5)), and EMR1 (p = 2.0 × 10(-5)). Loci containing NIN, EMR1, KCNK1, and DAB2IP had showed suggestive evidence of association in the earlier single-nucleotide polymorphism-based analyses, whereas WHAMM and AP2B2 emerged as novel candidates. The top gene sets included severe CP ("endoplasmic reticulum membrane," "cytochrome P450," "microsome," and "oxidation reduction") and moderate CP ("regulation of gene expression," "zinc ion binding," "BMP signaling pathway," and "ruffle"). Gene-centric analyses offer a promising avenue for efficient interrogation of large-scale GWAS data. These results highlight genes in previously identified loci and new candidate genes and pathways

  13. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  14. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    PubMed Central

    Bendall, Matthew L; Stevens, Sarah LR; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-01-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  15. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  16. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    SciTech Connect

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary A.; Shade, Ashley; Newton, Ryan J.; McMahon, Katherine D.; Malmstrom, Rex R.

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.

  17. Rapid and efficient genome-wide characterization of Xanthomonas TAL effector genes

    PubMed Central

    Yu, Yan-Hua; Lu, Ye; He, Yong-Qiang; Huang, Sheng; Tang, Ji-Liang

    2015-01-01

    Xanthomonas TALE transcriptional activators act as virulence or avirulence factors by activating host disease susceptibility or resistance genes. Their specificity is determined by a tandem repeat domain. Some Xanthomonas pathogens contain 10–30 TALEs per strain. Although TALEs play critical roles in pathogenesis, their studies have so far been limited to a few examples, due to their highly repetitive gene structure and extreme similarity among different members, which constrict sequencing and assembling. To facilitate TALE studies, we developed an efficient and rapid pipeline for genome-wide cloning of tal genes as many as possible from a strain. Here, we report the pipeline and its use to identify all 18 tal genes from a newly isolated strain of the rice pathogen Xathomonas oryzae. Target prediction revealed a number of potential rice targets including several notable genes such as genes encoding SWEET, WRKY, Hen1, and BAK1 proteins, which provide candidates for further experimental functional analysis of the TALEs. PMID:26271455

  18. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    PubMed Central

    Rafnar, Thorunn; Vermeulen, Sita H.; Sulem, Patrick; Thorleifsson, Gudmar; Aben, Katja K.; Witjes, J. Alfred; Grotenhuis, Anne J.; Verhaegh, Gerald W.; Hulsbergen-van de Kaa, Christina A.; Besenbacher, Soren; Gudbjartsson, Daniel; Stacey, Simon N.; Gudmundsson, Julius; Johannsdottir, Hrefna; Bjarnason, Hjordis; Zanon, Carlo; Helgadottir, Hafdis; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Jonsson, Eirikur; Geirsson, Gudmundur; Nikulasson, Sigfus; Petursdottir, Vigdis; Bishop, D. Timothy; Chung-Sak, Sei; Choudhury, Ananya; Elliott, Faye; Barrett, Jennifer H.; Knowles, Margaret A.; de Verdier, Petra J.; Ryk, Charlotta; Lindblom, Annika; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Vineis, Paolo; Polidoro, Silvia; Guarrera, Simonetta; Sacerdote, Carlotta; Panadero, Angeles; Sanz-Velez, José I.; Sanchez, Manuel; Valdivia, Gabriel; Garcia-Prats, Maria D.; Hengstler, Jan G.; Selinski, Silvia; Gerullis, Holger; Ovsiannikov, Daniel; Khezri, Abdolaziz; Aminsharifi, Alireza; Malekzadeh, Mahyar; van den Berg, Leonard H.; Ophoff, Roel A.; Veldink, Jan H.; Zeegers, Maurice P.; Kellen, Eliane; Fostinelli, Jacopo; Andreoli, Daniele; Arici, Cecilia; Porru, Stefano; Buntinx, Frank; Ghaderi, Abbas; Golka, Klaus; Mayordomo, José I.; Matullo, Giuseppe; Kumar, Rajiv; Steineck, Gunnar; Kiltie, Anne E.; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; Kiemeney, Lambertus A.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10−11. SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the ‘urogenous contact hypothesis’ that urine production and voiding frequency modify the risk of UBC. PMID:21750109

  19. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  20. Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species

    PubMed Central

    2013-01-01

    Background Calmodulin (CaM) is a major calcium sensor in all eukaryotes. It binds calcium and modulates the activity of a wide range of downstream proteins in response to calcium signals. However, little is known about the CaM gene family in Solanaceous species, including the economically important species, tomato (Solanum lycopersicum), and the gene silencing model plant, Nicotiana benthamiana. Moreover, the potential function of CaM in plant disease resistance remains largely unclear. Results We performed genome-wide identification of CaM gene families in Solanaceous species. Employing bioinformatics approaches, multiple full-length CaM genes were identified from tomato, N. benthamiana and potato (S. tuberosum) genomes, with tomato having 6 CaM genes, N. benthamiana having 7 CaM genes, and potato having 4 CaM genes. Sequence comparison analyses showed that three tomato genes, SlCaM3/4/5, two potato genes StCaM2/3, and two sets of N. benthamiana genes, NbCaM1/2/3/4 and NbCaM5/6, encode identical CaM proteins, yet the genes contain different intron/exon organization and are located on different chromosomes. Further sequence comparisons and gene structural and phylogenetic analyses reveal that Solanaceous species gained a new group of CaM genes during evolution. These new CaM genes are unusual in that they contain three introns in contrast to only a single intron typical of known CaM genes in plants. The tomato CaM (SlCaM) genes were found to be expressed in all organs. Prediction of cis-acting elements in 5' upstream sequences and expression analyses demonstrated that SlCaM genes have potential to be highly responsive to a variety of biotic and abiotic stimuli. Additionally, silencing of SlCaM2 and SlCaM6 altered expression of a set of signaling and defense-related genes and resulted in significantly lower resistance to Tobacco rattle virus and the oomycete pathogen, Pythium aphanidermatum. Conclusions The CaM gene families in the Solanaceous species tomato, N

  1. Genome-wide evidence for speciation with gene flow in Heliconius butterflies

    PubMed Central

    Martin, Simon H.; Dasmahapatra, Kanchon K.; Nadeau, Nicola J.; Salazar, Camilo; Walters, James R.; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D.

    2013-01-01

    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time. PMID:24045163

  2. Genome-wide p63-regulated gene expression in differentiating epidermal keratinocytes

    PubMed Central

    Oti, Martin; Kouwenhoven, Evelyn N.; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 is a key regulator in epidermal keratinocyte proliferation and differentiation. However, the role of p63 in gene regulation during these processes is not well understood. To investigate this, we recently generated genome-wide profiles of gene expression, p63 binding sites and active regulatory regions with the H3K27ac histone mark (Kouwenhoven et al., 2015). We showed that only a subset of p63 binding sites are active in keratinocytes, and that differentiation-associated gene expression dynamics correlate with the activity of p63 binding sites rather than with their occurrence per se. Here we describe in detail the generation and processing of the ChIP-seq and RNA-seq datasets used in this study. These data sets are deposited in the Gene Expression Omnibus (GEO) repository under the accession number GSE59827. PMID:26484246

  3. Genome-wide identification and expression profiling of ankyrin-repeat gene family in maize.

    PubMed

    Jiang, Haiyang; Wu, Qingqing; Jin, Jing; Sheng, Lei; Yan, Hanwei; Cheng, Beijiu; Zhu, Suwen

    2013-09-01

    Members of the ankyrin repeats (ANK) gene family encode ANK domain that are common in diverse organisms and play important roles in cell growth and development, such as cell-cell signal transduction and cell cycle regulation. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis and rice. However, little is known regarding the ANK genes in the entire maize genome. In this study, we described the identification and structural characterization of 71 ANK genes in maize (ZmANK). Then, comprehensive bioinformatics analyses of ZmANK genes family were performed including phylogenetic, domain and motif analysis, chromosomal localization, intron/exon structural patterns, gene duplications and expression profiling. Domain composition analyses showed that ZmANK genes formed ten subfamilies. Five tandem duplications and 14 segmental duplications were identified in ZmANK genes. Furthermore, we took comparative analysis of the total ANK gene family in Arabidopsis, rice and maize, ZmANKs were more closely paired with OsANKs than with AtANKs. At last, expression profile analyses were performed. Forty-one members of ZmANK genes held EST sequences records. Semi-quantitative expression and microarray data analysis of these 41 ZmANK genes demonstrated that ZmANK genes exhibit a various expression pattern, suggesting that functional diversification of ZmANK genes family. The results will present significant insights to explore ANK genes expression and function in future studies in maize.

  4. Genome-wide network of regulatory genes for construction of a chordate embryo.

    PubMed

    Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori

    2008-04-15

    Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.

  5. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon.

    PubMed

    Wei, Bo; Zhang, Rong-Zhi; Guo, Juan-Juan; Liu, Dan-Mei; Li, Ai-Li; Fan, Ren-Chun; Mao, Long; Zhang, Xiang-Qi

    2014-01-01

    MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKC(c)-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.

  6. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    PubMed

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple.

  7. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    PubMed

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis-acting regulatory elements revealed enrichment of cis-elements involved in circadian control, light response, defense and stress responsiveness

  8. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.)

    PubMed Central

    Deokar, Amit A.; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis-acting regulatory elements revealed enrichment of cis-elements involved in circadian control, light response, defense and stress responsiveness

  9. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

    PubMed

    Skwark, Marcin J; Croucher, Nicholas J; Puranen, Santeri; Chewapreecha, Claire; Pesonen, Maiju; Xu, Ying Ying; Turner, Paul; Harris, Simon R; Beres, Stephen B; Musser, James M; Parkhill, Julian; Bentley, Stephen D; Aurell, Erik; Corander, Jukka

    2017-02-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  10. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

    PubMed Central

    Pesonen, Maiju; Musser, James M.; Bentley, Stephen D.; Aurell, Erik; Corander, Jukka

    2017-01-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  11. Bidirectional promoters of insects: genome-wide comparison, evolutionary implication and influence on gene expression.

    PubMed

    Behura, Susanta K; Severson, David W

    2015-01-30

    Bidirectional promoters are widespread in insect genomes. By analyzing 23 insect genomes we show that the frequency of bidirectional gene pairs varies according to genome compactness and density of genes among the species. The density of bidirectional genes expected based on number of genes per megabase of genome explains the observed density suggesting that bidirectional pairing of genes may be due to random event. We identified specific transcription factor binding motifs that are enriched in bidirectional promoters across insect species. Furthermore, we observed that bidirectional promoters may act as transcriptional hotspots in insect genomes where protein coding genes tend to aggregate in significantly biased (p < 0.001) manner compared to unidirectional promoters. Natural selection seems to have an association with the extent of bidirectionality of genes among the species. The rate of non-synonymous-to-synonymous changes (dN/dS) shows a second-order polynomial distribution with bidirectionality between species indicating that bidirectionality is dependent upon evolutionary pressure acting on the genomes. Analysis of genome-wide microarray expression data of multiple insect species suggested that bidirectionality has a similar association with transcriptome variation across species. Furthermore, bidirectional promoters show significant association with correlated expression of the divergent gene pairs depending upon their motif composition. Analysis of gene ontology showed that bidirectional genes tend to have a common association with functions related to "binding" (including ion binding, nucleotide binding and protein binding) across genomes. Such functional constraint of bidirectional genes may explain their widespread persistence in genome of diverse insect species.

  12. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution

    PubMed Central

    Liu, Chang; Wang, Congmao; Wang, George; Becker, Claude; Zaidem, Maricris; Weigel, Detlef

    2016-01-01

    The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5′ and 3′ ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5′ and 3′ ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies. PMID:27225844

  13. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    PubMed

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development.

  14. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress

    PubMed Central

    Li, Sisi; Papale, Ligia A.; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S.

    2015-01-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  15. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to

  16. Genome-wide analysis suggests divergent evolution of lipid phosphotases/phosphotransferase genes in plants.

    PubMed

    Wang, Peng; Chen, Zhenxi; Kasimu, Rena; Chen, Yinhua; Zhang, Xiaoxiao; Gai, Jiangtao

    2016-08-01

    Genes of the LPPT (lipid phosphatase/phosphotransferase) family play important roles in lipid phosphorous transfer and triacylglycerol accumulation in plants. To provide overviews of the plant LPPT family and their overall relationships, here we carried out genome-wide identifications and analyses of plant LPPT family members. A total of 643 putative LPPT genes were identified from 48 sequenced plant genomes, among which 205 genes from 14 plants were chosen for further analyses. Plant LPPT genes belonged to three distinctive groups, namely the LPT (lipid phosphotransfease), LPP (lipid phosphatase), and pLPP (plastidic lipid phosphotransfease) groups. Genes of the LPT group could be further partitioned into three groups, two of which were only identified in terrestrial plants. Genes in the LPP and pLPP groups experienced duplications in early stages of plant evolution. Among 17 Zea mays LPPT genes, divergence of temporal-spatial expression patterns was revealed based on microarray data analysis. Peptide sequences of plant LPPT genes harbored different conserved motifs. A test of Branch Model versus One-ratio Model did not support significant selective pressures acting on different groups of LPPT genes, although quite different nonsynonymous evolutionary rates and selective pressures were observed. The complete picture of the plant LPPT family provided here should facilitate further investigations of plant LPPT genes and offer a better understanding of lipid biosynthesis in plants.

  17. Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes

    PubMed Central

    Olson, Claire E.; Roberts, Steven B.

    2014-01-01

    DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing. RNA-Seq analysis was performed to examine the relationship between DNA methylation and transcript expression. Methylation status of over 7.6 million CpG dinucleotides was described with a majority of methylated regions occurring among intragenic regions. Overall, 15% of the CpG dinucleotides were determined to be methylated and the mitochondrial genome lacked DNA methylation. Integrative analysis of DNA methylation and RNA-Seq data revealed a positive association between methylation status, both in gene bodies and putative promoter regions, and expression. This study provides a comprehensive characterization of the distribution of DNA methylation in the oyster male gamete tissue and suggests that DNA methylation is involved in gene regulatory activity. PMID:24987376

  18. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes.

    PubMed

    Baejen, Carlo; Andreani, Jessica; Torkler, Phillipp; Battaglia, Sofia; Schwalb, Bjoern; Lidschreiber, Michael; Maier, Kerstin C; Boltendahl, Andrea; Rus, Petra; Esslinger, Stephanie; Söding, Johannes; Cramer, Patrick

    2017-03-06

    At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.

  19. Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice

    PubMed Central

    Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan

    2016-01-01

    Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This ‘healthy’ gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues. PMID:27727234

  20. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  1. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  2. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  3. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula.

    PubMed

    Shu, Y J; Song, L L; Zhang, J; Liu, Y; Guo, C H

    2015-09-09

    The DNA-binding one zinc finger (Dof) family is a classic plant-specific zinc-finger transcription factor family, which is involved in many important processes, including seed maturation and germination, plant growth and development, and light responses. Investigation of the Medicago truncatula genome revealed 42 putative Dof genes, each of which holds one Dof domain. These genes were classified into four groups based on phylogenetic analysis, which are similar to the groups reported for Arabidopsis and rice. Based on genome duplication analysis, it was found that the MtDof genes were distributed on all chromosomes and had expanded through tandem gene duplication and segmental duplication events. Two main duplication regions were identified, one from tandem duplication and another from segmental duplication. By analyzing high-throughput sequencing data from M. truncatula, we found that most of the MtDof genes showed specific expression patterns in different tissues. According to cis-regulatory element analysis, these MtDof genes are regulated by different cis-acting motifs, which are important for the functional divergence of the MtDof genes in different processes. Thus, using genome-wide identification, evolution, and expression pattern analysis of the Dof genes in M. truncatula, our study provides valuable information for understanding the potential function of the Dof genes in regulating the growth and development of M. truncatula.

  4. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  5. Genome-Wide Screening of Genes Regulated by DNA Methylation in Colon Cancer Development

    PubMed Central

    Galamb, Orsolya; Wichmann, Barna; Sipos, Ferenc; Péterfia, Bálint; Csabai, István; Kovalszky, Ilona; Semsey, Szabolcs; Tulassay, Zsolt; Molnár, Béla

    2012-01-01

    Tumorigenesis is accompanied by changes in the DNA methylation pattern. Our aim was to test a novel approach for identification of transcripts at whole transcript level which are regulated by DNA methylation. Our approach is based on comparison of data obtained from transcriptome profiling of primary human samples and in vitro cell culture models. Epithelial cells were collected by LCM from normal, adenoma, and tumorous colonic samples. Using gene expression analysis, we identified downregulated genes in the tumors compared to normal tissues. In parallel 3000 upregulated genes were determined in HT-29 colon adenocarcinoma cell culture model after DNA demethylation treatment. Of the 2533 transcripts showing reduced expression in the tumorous samples, 154 had increased expression as a result of DNA demethylation treatment. Approximately 2/3 of these genes had decreased expression already in the adenoma samples. Expression of five genes (GCG, NMES-1, LRMP, FAM161B and PTGDR), was validated using RT-PCR. PTGDR showed ambiguous results, therefore it was further studied to verify the extent of DNA methylation and its effect on the protein level. Results confirmed that our approach is suitable for genome-wide screening of genes which are regulated or inactivated by DNA methylation. Activity of these genes possibly interferes with tumor progression, therefore genes identified can be key factors in the formation and in the progression of the disease. PMID:23049694

  6. Genome-wide identification and phylogenetic analysis of the SBP-box gene family in melons.

    PubMed

    Ma, Y; Guo, J W; Bade, R; Men, Z H; Hasi, A

    2014-10-27

    The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants, including green algae, moss, silver birch, snapdragon, Arabidopsis, rice, and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in melon. Using the highly conserved sequence of the Arabidopsis thaliana SBP-box domain protein as a probe of information sequence, the genome-wide protein database of melon was explored to obtain 13 SBP-box protein sequences, which were further divided into 4 groups, based on phylogenetic analysis. A further analysis centered on the melon SBP-box genetic family's phylogenetic evolution, sequence similarities, gene structure, and miR156 target sequence was also conducted. Analysis of all the expression patterns of melon SBP-box family genes showed that the SBP-box genes were detected in 7 kinds of tissue, and fruit had the highest expression level. CmSBP11 tends to present its specific expression in melon fruit and root. CmSBP09 expression was the highest in flower. Overall, the molecular evolution and expression pattern of the melon SBP-box gene family, revealed by these results, suggest its function differentiation that followed gene duplication.

  7. A genome-wide analysis of the expansin genes in Malus × Domestica.

    PubMed

    Zhang, Shizhong; Xu, Ruirui; Gao, Zheng; Chen, Changtian; Jiang, Zesheng; Shu, Huairui

    2014-04-01

    Expansins were first identified as cell wall-loosening proteins; they are involved in regulating cell expansion, fruits softening and many other physiological processes. However, our knowledge about the expansin family members and their evolutionary relationships in fruit trees, such as apple, is limited. In this study, we identified 41 members of the expansin gene family in the genome of apple (Malus × Domestica L. Borkh). Phylogenetic analysis revealed that expansin genes in apple could be divided into four subfamilies according to their gene structures and protein motifs. By phylogenetic analysis of the expansins in five plants (Arabidopsis, rice, poplar, grape and apple), the expansins were divided into 17 subgroups. Our gene duplication analysis revealed that whole-genome and chromosomal-segment duplications contributed to the expansion of Mdexpansins. The microarray and expressed sequence tag (EST) data showed that 34 Mdexpansin genes could be divided into five groups by the EST analysis; they may also play different roles during fruit development. An expression model for MdEXPA16 and MdEXPA20 showed their potential role in developing fruit. Overall, our study provides useful data and novel insights into the functions and regulatory mechanisms of the expansin genes in apple, as well as their evolution and divergence. As the first step towards genome-wide analysis of the expansin genes in apple, our results have established a solid foundation for future studies on the function of the expansin genes in fruit development.

  8. Genome-wide characterization and comparative analysis of the MLO gene family in cotton.

    PubMed

    Wang, Xiaoyan; Ma, Qifeng; Dou, Lingling; Liu, Zhen; Peng, Renhai; Yu, Shuxun

    2016-06-01

    In plants, MLO (Mildew Locus O) gene encodes a plant-specific seven transmembrane (TM) domain protein involved in several cellular processes, including susceptibility to powdery mildew (PM). In this study, a genome-wide characterization of the MLO gene family in G. raimondii L., G. arboreum L. and G. hirsutum L. was performed. In total, 22, 17 and 38 homologous sequences were identified for each species, respectively. Gene organization, including chromosomal location, gene clustering and gene duplication, was investigated. Homologues related to PM susceptibility in upland cotton were inferred by phylogenetic relationships with functionally characterized MLO proteins. To conduct a comparative analysis between MLO candidate genes from G. raimondii L., G. arboreum L. and G. hirsutum L., orthologous relationships and conserved synteny blocks were constructed. The transcriptional variation of 38 GhMLO genes in response to exogenous application of salt, mannitol (Man), abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA) and salicylic acid (SA) was monitored. Further studies should be conducted to elucidate the functions of MLO genes in PM susceptibility and phytohormone signalling pathways.

  9. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize.

    PubMed

    Jiang, Yi; Zeng, Biao; Zhao, Hainan; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-09-01

    Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.

  10. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    PubMed Central

    Bracken, Adrian P.; Dietrich, Nikolaj; Pasini, Diego; Hansen, Klaus H.; Helin, Kristian

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes. PMID:16618801

  11. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  12. Comparison of three summary statistics for ranking genes in genome-wide association studies.

    PubMed

    Freytag, Saskia; Bickeböller, Heike

    2014-05-20

    Problems associated with insufficient power have haunted the analysis of genome-wide association studies and are likely to be the main challenge for the analysis of next-generation sequencing data. Ranking genes according to their strength of association with the investigated phenotype is one solution. To obtain rankings for genes, researchers can draw from a wide range of statistics summarizing the relationships between variants mapped to a gene and the phenotype. Hence, it is of interest to explore the performance of these statistics in the context of rankings. To this end, we conducted a simulation study (limited to genes of equal sizes) of three different summary statistics examining the ability to rank genes in a meaningful order. The weighted sum of squared marginal score test (Pan, 2009), RareCover algorithm (Bahtia et al., 2010) and the elastic net regularization (Zou and Hastie, 2005) were chosen, because they can handle common as well as rare variants. The test based on the score statistic outperformed both other methods in almost all investigated scenarios. It was the only measure to consistently detect genes with interacting causal variants. However, the RareCover algorithm proved better at identifying genes including causal variants with small effect sizes and low minor allele frequency than the weighted sum of squared marginal score test. The performance of the elastic net regularization was unimpressive for all but the simplest scenarios.

  13. A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes[C][W

    PubMed Central

    Morohashi, Kengo; Casas, María Isabel; Ferreyra, Lorena Falcone; Mejía-Guerra, María Katherine; Pourcel, Lucille; Yilmaz, Alper; Feller, Antje; Carvalho, Bruna; Emiliani, Julia; Rodriguez, Eduardo; Pellegrinet, Silvina; McMullen, Michael; Casati, Paula; Grotewold, Erich

    2012-01-01

    Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds. PMID:22822204

  14. Hypothesis-Driven Candidate Genes for Schizophrenia Compared to Genome-Wide Association Results

    PubMed Central

    Collins, Ann L.; Kim, Yunjung; Sklar, Pamela; O’Donovan, Michael C.; Sullivan, Patrick F.

    2014-01-01

    Background Candidate gene studies have been a key approach to the genetics of schizophrenia. Results of these studies have been confusing and no genes have been unequivocally implicated. The hypothesis-driven candidate gene literature can be appraised via comparison with the results of genome-wide association studies (GWAS). Methods We described the characteristics of hypothesis-driven candidate gene studies from SZGene, and used pathway analysis to compare hypothesis-driven candidate genes with GWAS results from the International Schizophrenia Consortium (ISC). Results SZGene contained 732 autosomal genes evaluated in 1,374 studies. These genes had poor statistical power to detect genetic effects typical for human diseases, assessed only 3.7% of genes in the genome, and had low marker densities per gene. Most genes were assessed once or twice (76.9%), providing minimal ability to evaluate consensus across studies. The ISC had power of 89% to detect a genetic effect typical for common human diseases and assessed 79% of known autosomal common genetic variation. Pathway analyses did not reveal enrichment of smaller ISC p-values in hypothesis-driven candidate genes nor did a comprehensive evaluation of meta-hypotheses driving candidate gene selection (schizophrenia as a disease of the synapse or neurodevelopment). The most studied hypothesis-driven candidate genes had no notable ISC results (COMT, DRD3, DRD2, HTR2A, NRG1, BDNF, DTNBP1, and SLC6A4). Conclusions We did not find support for the idea that the hypothesis-driven candidate genes studied in the literature were enriched for common variation involved in the etiology of schizophrenia. Larger samples are required definitively to evaluate this conclusion. PMID:21854684

  15. Genome-wide search for genes affecting the risk for alcohol dependence.

    PubMed

    Reich, T; Edenberg, H J; Goate, A; Williams, J T; Rice, J P; Van Eerdewegh, P; Foroud, T; Hesselbrock, V; Schuckit, M A; Bucholz, K; Porjesz, B; Li, T K; Conneally, P M; Nurnberger, J I; Tischfield, J A; Crowe, R R; Cloninger, C R; Wu, W; Shears, S; Carr, K; Crose, C; Willig, C; Begleiter, H

    1998-05-08

    Alcohol dependence is a leading cause of morbidity and premature death. Several lines of evidence suggest a substantial genetic component to the risk for alcoholism: sibs of alcoholic probands have a 3-8 fold increased risk of also developing alcoholism, and twin heritability estimates of 50-60% are reported by contemporary studies of twins. We report on the results of a six-center collaborative study to identify susceptibility loci for alcohol dependence. A genome-wide screen examined 291 markers in 987 individuals from 105 families. Two-point and multipoint nonparametric linkage analyses were performed to detect susceptibility loci for alcohol dependence. Multipoint methods provided the strongest suggestions of linkage with susceptibility loci for alcohol dependence on chromosomes 1 and 7, and more modest evidence for a locus on chromosome 2. In addition, there was suggestive evidence for a protective locus on chromosome 4 near the alcohol dehydrogenase genes, for which protective effects have been reported in Asian populations.

  16. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  17. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  18. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3

    PubMed Central

    Purdue, Mark P.; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R.; Scelo, Ghislaine; Moore, Lee E.; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A; Gaborieau, Valerie; Jacobs, Kevin B; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Péter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E; Selby, Peter J; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Françoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Ramón Quirós, José; Sanchez, Maria-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Peeters, Petra HM; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Börje; Overvad, Kim; Tjønneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L; Thun, Michael J; Diver, W. Ryan; Gapstur, Susan M; Pharoah, Paul D; Easton, Douglas F; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njølstad, Inger; Tell, Grethe; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H.; Aben, Katja K.H.; van der Marel, Saskia L.; Ye, Yuanqing; Wood, Christopher G.; Pu, Xia; Mazur, Alexander M; Bulygina, Eugenia S; Chekanov, Nikolai N; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Hélène; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F.; Skryabin, Konstantin G; McKay, James D; Rothman, Nathaniel; Chanock, Stephen J.; Lathrop, Mark; Brennan, Paul

    2011-01-01

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 cases and 8,505 controls of European background from 11 studies, and followed up 6 SNPs in three replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and 11q13.3 were associated with RCC susceptibility below genome-wide significance. Two correlated variants (r2 = 0.99 in controls), rs11894252 (P = 1.8×10−8) and rs7579899 (P = 2.3×10−9), map to EPAS1 on 2p21, which encodes hypoxia-inducible- factor-2 alpha, a transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13, contains no characterized genes (P = 7.8×10−14). In addition, we observed a promising association on 12q24.31 for rs4765623 which maps to the scavenger receptor class B, member 1 (SCARB1) gene (P = 2.6×10−8). Our study reports novel genomic regions associated with RCC risk that may lead to new etiological insights. PMID:21131975

  19. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3.

    PubMed

    Purdue, Mark P; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R; Scelo, Ghislaine; Moore, Lee E; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A; Gaborieau, Valerie; Jacobs, Kevin B; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Péter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S; Davis, Faith G; Schwartz, Kendra L; Banks, Rosamonde E; Selby, Peter J; Harnden, Patricia; Berg, Christine D; Hsing, Ann W; Grubb, Robert L; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Françoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J; Quirós, José Ramón; Sanchez, Maria-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Börje; Overvad, Kim; Tjønneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L; Thun, Michael J; Diver, W Ryan; Gapstur, Susan M; Pharoah, Paul D; Easton, Douglas F; Albanes, Demetrius; Weinstein, Stephanie J; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njølstad, Inger; Tell, Grethe S; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H; Aben, Katja K H; van der Marel, Saskia L; Ye, Yuanqing; Wood, Christopher G; Pu, Xia; Mazur, Alexander M; Boulygina, Eugenia S; Chekanov, Nikolai N; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Hélène; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F; Skryabin, Konstantin G; McKay, James D; Rothman, Nathaniel; Chanock, Stephen J; Lathrop, Mark; Brennan, Paul

    2011-01-01

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and 11q13.3 were associated with RCC susceptibility below genome-wide significance. Two correlated variants (r² = 0.99 in controls), rs11894252 (P = 1.8 × 10⁻⁸) and rs7579899 (P = 2.3 × 10⁻⁹), map to EPAS1 on 2p21, which encodes hypoxia-inducible-factor-2 alpha, a transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13.3, contains no characterized genes (P = 7.8 × 10⁻¹⁴). In addition, we observed a promising association on 12q24.31 for rs4765623, which maps to SCARB1, the scavenger receptor class B, member 1 gene (P = 2.6 × 10⁻⁸). Our study reports previously unidentified genomic regions associated with RCC risk that may lead to new etiological insights.

  20. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis

    PubMed Central

    Wang, Pengfei; Song, Hui; Li, Changsheng; Li, Pengcheng; Li, Aiqin; Guan, Hongshan; Hou, Lei; Wang, Xingjun

    2017-01-01

    Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance. PMID:28220134

  1. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis).

    PubMed

    Sun, Huayu; Li, Lichao; Lou, Yongfeng; Zhao, Hansheng; Gao, Zhimin

    2016-05-01

    Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.

  2. Genome-wide analysis of SAUR gene family in Solanaceae species.

    PubMed

    Wu, Jian; Liu, Songyu; He, Yanjun; Guan, Xiaoyan; Zhu, Xiangfei; Cheng, Lin; Wang, Jie; Lu, Gang

    2012-11-01

    The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.

  3. Genome-wide gene expression profiling of SCID mice with T-cell-mediated Colitis.

    PubMed

    Brudzewsky, D; Pedersen, A E; Claesson, M H; Gad, M; Kristensen, N N; Lage, K; Jensen, T; Tommerup, N; Larsen, L A; Knudsen, S; Tümer, Z

    2009-05-01

    Inflammatory bowel disease (IBD) is a multifactorial disorder with an unknown aetiology. The aim of this study is to employ a murine model of IBD to identify pathways and genes, which may play a key role in the pathogenesis of IBD and could be important for discovery of new disease markers in human disease. Here, we have investigated severe combined immunodeficient (SCID) mice, which upon adoptive transfer with concanavalin A-activated CD4(+) T cells develop inflammation of the colon with predominance in rectum. Mice with increasing level of inflammation was studied. RNA from rectum of transplanted and non-transplanted SCID mice was investigated by a genome-wide gene expression analysis using the Affymetrix mouse expression array 430A (MOE430A) including 22,626 probe sets. A significant change in gene expression (P = 0.00001) is observed in 152 of the genes between the non-transplanted control mice and colitis mice, and among these genes there is an overrepresentation of genes involved in inflammatory processes. Some of the most significant genes showing higher expression encode S100A proteins and chemokines involved in trafficking of leucocytes in inflammatory areas. Classification by gene clustering based on the genes with the significantly altered gene expression corresponds to two different levels of inflammation as established by the histological scoring of the inflamed rectum. These data demonstrate that this SCID T-cell transfer model is a useful animal model for human IBD and can be used for suggesting candidate genes involved in the pathogenesis and for identifying new molecular markers of chronic inflammation in human IBD.

  4. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    PubMed Central

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  5. Genome-wide analysis of chimpanzee genes with premature termination codons

    PubMed Central

    Wetterbom, Anna; Gyllensten, Ulf; Cavelier, Lucia; Bergström, Tomas F

    2009-01-01

    Background Premature termination codons (PTCs) cause mRNA degradation or a truncated protein and thereby contribute to the transcriptome and proteome divergence between species. Here we present the first genome-wide study of PTCs in the chimpanzee. By comparing the human and chimpanzee genome sequences we identify and characterize genes with PTCs, in order to understand the contribution of these mutations to the transcriptome diversity between the species. Results We have studied a total of 13,487 human-chimpanzee gene pairs and found that ~8% were affected by PTCs in the chimpanzee. A majority (764/1,109) of PTCs were caused by insertions or deletions and the remaining part was caused by substitutions. The distribution of PTC genes varied between chromosomes, with Y having the highest proportion. Furthermore, the density of PTC genes varied on a megabasepair scale within chromosomes and we found the density to be correlated both with indel divergence and proximity to the telomere. Within genes, PTCs were more common close to the 5' and 3' ends of the amino acid sequence. Gene Ontology classification revealed that olfactory receptor genes were over represented among the PTC genes. Conclusion Our results showed that the density of PTC genes fluctuated across the genome depending on the local genomic context. PTCs were preferentially located in the terminal parts of the transcript, which generally have a lower frequency of functional domains, indicating that selection was operating against PTCs at sites central to protein function. The enrichment of GO terms associated with olfaction suggests that PTCs may have influenced the difference in the repertoire of olfactory genes between humans and chimpanzees. In summary, 8% of the chimpanzee genes were affected by PTCs and this type of variation is likely to have an important effect on the transcript and proteomic divergence between humans and chimpanzees. PMID:19178713

  6. Genome-Wide Identification, Characterization and Expression Profiling of ADF Family Genes in Solanum lycopersicum L.

    PubMed Central

    Khatun, Khadiza; Robin, Arif Hasan Khan; Park, Jong-In; Kim, Chang Kil; Lim, Ki-Byung; Kim, Min-Bae; Lee, Do-Jin; Nou, Ill Sup; Chung, Mi-Young

    2016-01-01

    The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA), jasmonic acid (JA) and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses. PMID:27690110

  7. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  8. Genome-Wide Identification, Characterization and Expression Profiling of ADF Family Genes in Solanum lycopersicum L.

    PubMed

    Khatun, Khadiza; Robin, Arif Hasan Khan; Park, Jong-In; Kim, Chang Kil; Lim, Ki-Byung; Kim, Min-Bae; Lee, Do-Jin; Nou, Ill Sup; Chung, Mi-Young

    2016-09-29

    The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA), jasmonic acid (JA) and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses.

  9. Gene tree discordance of wild and cultivated Asian rice deciphered by genome-wide sequence comparison.

    PubMed

    Yang, Ching-chia; Sakai, Hiroaki; Numa, Hisataka; Itoh, Takeshi

    2011-05-15

    Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.

  10. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors.

    PubMed

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform ( http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.

  11. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    PubMed Central

    Viñuela, Ana; Snoek, L. Basten; Riksen, Joost A.G.; Kammenga, Jan E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory loci (eQTL) in a population of developing and aging C. elegans recombinant inbred worms. We found almost 900 genes with an eQTL, of which almost half were found to have a genotype-by-age effect (gxaeQTL). The total number of eQTL decreased with age, whereas the variation in expression increased. In developing worms, the number of genes with increased expression variation (1282) was similar to the ones with decreased expression variation (1328). In aging worms, the number of genes with increased variation (1772) was nearly five times higher than the number of genes with a decreased expression variation (373). The number of cis-acting eQTL in juveniles decreased by almost 50% in old worms, whereas the number of trans-acting loci decreased by ∼27%, indicating that cis-regulation becomes relatively less frequent than trans-regulation in aging worms. Of the 373 genes with decreased expression level variation in aging worms, ∼39% had an eQTL compared with ∼14% in developing worms. gxaeQTL were found for ∼21% of these genes in aging worms compared with only ∼6% in developing worms. We highlight three examples of linkages: in young worms (pgp-6), in old worms (daf-16), and throughout life (lips-16). Our findings demonstrate that eQTL patterns are strongly affected by age, and suggest that gene network integrity declines with age. PMID:20488933

  12. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora.

    PubMed

    Wang, Dongping; Qi, Mingsheng; Calla, Bernarda; Korban, Schuyler S; Clough, Steven J; Cock, Peter J A; Sundin, George W; Toth, Ian; Zhao, Youfu

    2012-01-01

    The exopolysaccharide amylovoran is one of the major pathogenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also found that the hybrid sensor kinase RcsC differentially regulates amylovoran production in vitro and in vivo. To further understand how the Rcs system regulates E. amylovora virulence gene expression, we conducted genome-wide microarray analyses to determine the regulons of RcsB and RcsC in liquid medium and on immature pear fruit. Array analyses identified a total of 648 genes differentially regulated by RcsCB in vitro and in vivo. Consistent with our previous findings, RcsB acts as a positive regulator in both conditions, while RcsC positively controls expression of amylovoran biosynthetic genes in vivo but negatively controls expression in vitro. Besides amylovoran biosynthesis and regulatory genes, cell-wall and cell-envelope (membrane) as well as regulatory genes were identified as the major components of the RcsBC regulon, including many novel genes. We have also demonstrated that transcripts of rcsA, rcsC, and rcsD genes but not the rcsB gene were up-regulated when bacterial cells were grown in minimal medium or following infection of pear fruits compared with those grown in Luria Bertani medium. Furthermore, using the genome of E. amylovora ATCC 49946, a hidden Markov model predicted 60 genes with a candidate RcsB binding site in the intergenic region, 28 of which were identified in the microarray assay. Based on these findings as well as previous reported data, a working model has been proposed to illustrate how the Rcs phosphorelay system regulates virulence gene expression in E. amylovora.

  13. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors

    PubMed Central

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    ABSTRACT Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development. PMID:26786290

  14. Genome-Wide Association Implicates Candidate Genes Conferring Resistance to Maize Rough Dwarf Disease in Maize.

    PubMed

    Chen, Gengshen; Wang, Xiaoming; Hao, Junjie; Yan, Jianbing; Ding, Junqiang

    2015-01-01

    Maize rough dwarf disease (MRDD) is a destructive viral disease in China, which results in 20-30% of the maize yield losses in affected areas and even as high as 100% in severely infected fields. Understanding the genetic basis of resistance will provide important insights for maize breeding program. In this study, a diverse maize population comprising of 527 inbred lines was evaluated in four environments and a genome-wide association study (GWAS) was undertaken with over 556000 SNP markers. Fifteen candidate genes associated with MRDD resistance were identified, including ten genes with annotated protein encoding functions. The homologous of nine candidate genes were predicted to relate to plant defense in different species based on published results. Significant correlation (R2 = 0.79) between the MRDD severity and the number of resistance alleles was observed. Consequently, we have broadened the resistant germplasm to MRDD and identified a number of resistance alleles by GWAS. The results in present study also imply the candidate genes in defense pathway play an important role in resistance to MRDD in maize.

  15. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.

  16. Meta-regression of gene-environment interaction in genome-wide association studies.

    PubMed

    Xu, Xiaoxiao; Shi, Gang; Nehorai, Arye

    2013-12-01

    Genome-wide association studies (GWAS) have created heightened interest in understanding the effects of gene-environment interaction on complex human diseases or traits. Applying methods for analyzing such interaction can help uncover novel genes and identify environmental hazards that influence only certain genetically susceptible groups. However, the number of interaction analysis methods is still limited, so there is a need to develop more efficient and powerful methods. In this paper, we propose two novel meta-analysis methods of studying gene-environment interaction, based on meta-regression of estimated genetic effects on the environmental factor. The two methods can perform joint analysis of a single nucleotide polymorphism's (SNP) main and interaction effects, or analyze only the effect of the interaction. They can readily estimate any linear or non-linear interactions by simply modifying the gene-environment regression function. Thus, they are efficient methods to be applied to different scenarios. We use numerical examples to demonstrate the performance of our methods. We also compare them with two other methods commonly used in current GWAS, i.e., meta-analysis of SNP main effects (MAIN) and joint meta-analysis of SNP main and interaction effects (JMA). The results show that our methods are more powerful than MAIN when the interaction effect exists, and are comparable to JMAin the linear or quadratic interaction cases. In the numerical examples, we also investigate how the number of the divided groups and the sample size of the studies affect the performance of our methods.

  17. A genome-wide screen identifies genes that affect somatic homolog pairing in Drosophila.

    PubMed

    Bateman, Jack R; Larschan, Erica; D'Souza, Ryan; Marshall, Lauren S; Dempsey, Kyle E; Johnson, Justine E; Mellone, Barbara G; Kuroda, Mitzi I

    2012-07-01

    In Drosophila and other Dipterans, homologous chromosomes are in close contact in virtually all nuclei, a phenomenon known as somatic homolog pairing. Although homolog pairing has been recognized for over a century, relatively little is known about its regulation. We performed a genome-wide RNAi-based screen that monitored the X-specific localization of the male-specific lethal (MSL) complex, and we identified 59 candidate genes whose knockdown via RNAi causes a change in the pattern of MSL staining that is consistent with a disruption of X-chromosomal homolog pairing. Using DNA fluorescent in situ hybridization (FISH), we confirmed that knockdown of 17 of these genes has a dramatic effect on pairing of the 359 bp repeat at the base of the X. Furthermore, dsRNAs targeting Pr-set7, which encodes an H4K20 methyltransferase, cause a modest disruption in somatic homolog pairing. Consistent with our results in cultured cells, a classical mutation in one of the strongest candidate genes, pebble (pbl), causes a decrease in somatic homolog pairing in developing embryos. Interestingly, many of the genes identified by our screen have known roles in diverse cell-cycle events, suggesting an important link between somatic homolog pairing and the choreography of chromosomes during the cell cycle.

  18. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.

    PubMed

    de Lange, Katrina M; Moutsianas, Loukas; Lee, James C; Lamb, Christopher A; Luo, Yang; Kennedy, Nicholas A; Jostins, Luke; Rice, Daniel L; Gutierrez-Achury, Javier; Ji, Sun-Gou; Heap, Graham; Nimmo, Elaine R; Edwards, Cathryn; Henderson, Paul; Mowat, Craig; Sanderson, Jeremy; Satsangi, Jack; Simmons, Alison; Wilson, David C; Tremelling, Mark; Hart, Ailsa; Mathew, Christopher G; Newman, William G; Parkes, Miles; Lees, Charlie W; Uhlig, Holm; Hawkey, Chris; Prescott, Natalie J; Ahmad, Tariq; Mansfield, John C; Anderson, Carl A; Barrett, Jeffrey C

    2017-02-01

    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 and ITGB8) and at previously implicated loci (ITGAL and ICAM1). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2, and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.

  19. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    PubMed Central

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  20. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

    PubMed Central

    Tomoyasu, Yoshinori; Miller, Sherry C; Tomita, Shuichiro; Schoppmeier, Michael; Grossmann, Daniela; Bucher, Gregor

    2008-01-01

    Background RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches. PMID:18201385

  1. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    PubMed

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  2. Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever.

    PubMed

    Andersen, Kristian G; Shylakhter, Ilya; Tabrizi, Shervin; Grossman, Sharon R; Happi, Christian T; Sabeti, Pardis C

    2012-03-19

    Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit.

  3. Genome-wide identification and comparison of legume MLO gene family.

    PubMed

    Rispail, Nicolas; Rubiales, Diego

    2016-09-06

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species.

  4. Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis

    PubMed Central

    Akama, Satoru; Shimizu-Inatsugi, Rie; Shimizu, Kentaro K.; Sese, Jun

    2014-01-01

    Genome duplication with hybridization, or allopolyploidization, occurs commonly in plants, and is considered to be a strong force for generating new species. However, genome-wide quantification of homeolog expression ratios was technically hindered because of the high homology between homeologous gene pairs. To quantify the homeolog expression ratio using RNA-seq obtained from polyploids, a new method named HomeoRoq was developed, in which the genomic origin of sequencing reads was estimated using mismatches between the read and each parental genome. To verify this method, we first assembled the two diploid parental genomes of Arabidopsis halleri subsp. gemmifera and Arabidopsis lyrata subsp. petraea (Arabidopsis petraea subsp. umbrosa), then generated a synthetic allotetraploid, mimicking the natural allopolyploid Arabidopsis kamchatica. The quantified ratios corresponded well to those obtained by Pyrosequencing. We found that the ratios of homeologs before and after cold stress treatment were highly correlated (r = 0.870). This highlights the presence of nonstochastic polyploid gene regulation despite previous research identifying stochastic variation in expression. Moreover, our new statistical test incorporating overdispersion identified 226 homeologs (1.11% of 20 369 expressed homeologs) with significant ratio changes, many of which were related to stress responses. HomeoRoq would contribute to the study of the genes responsible for polyploid-specific environmental responses. PMID:24423873

  5. Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis.

    PubMed

    Trivedi, Dipesh Kumar; Gill, Sarvajeet Singh; Yadav, Sandep; Tuteja, Narendra

    2013-02-01

    Plant cells and tissues remain always on risk under abiotic and biotic stresses due to increased production of reactive oxygen species (ROS). Plants protect themselves against ROS induced oxidative damage by the upregulation of antioxidant machinery. Out of many components of antioxidant machinery, glutathione reductase (GR, EC 1.6.4.2) and glutathione (GSH, γ-Glu-Cys-Gly) play important role in the protection of cell against oxidative damage. In stress condition, the GR helps in maintaining the reduced glutathione pool for strengthening the antioxidative processes in plants. Present study investigates genome wide analysis of GR from rice and Arabidopsis. We were able to identify 3 rice GR genes (LOC_Os02 g56850, LOC_Os03 g06740, LOC_Os10 g28000) and 2 Arabidopsis GR genes (AT3G54660, AT3G24170) from their respective genomes on the basis of their annotation as well as the presence of pyridine nucleotide-disulphide oxidoreductases class-I active site. The evolutionary relationship of the GR genes from rice and Arabidopsis genomes was analyzed using the multiple sequence alignment and phylogenetic tree. This revealed evolutionary conserved pyridine nucleotide-disulphide oxidoreductases class-I active site among the GR protein in rice and Arabidopsis. This study should make an important contribution to our better understanding of the GR under normal and stress condition in plants.

  6. Genome-wide identification and comparison of legume MLO gene family

    PubMed Central

    Rispail, Nicolas; Rubiales, Diego

    2016-01-01

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species. PMID:27596925

  7. Genome-wide gene-environment interactions on quantitative traits using family data.

    PubMed

    Sitlani, Colleen M; Dupuis, Josée; Rice, Kenneth M; Sun, Fangui; Pitsillides, Achilleas N; Cupples, L Adrienne; Psaty, Bruce M

    2016-07-01

    Gene-environment interactions may provide a mechanism for targeting interventions to those individuals who would gain the most benefit from them. Searching for interactions agnostically on a genome-wide scale requires large sample sizes, often achieved through collaboration among multiple studies in a consortium. Family studies can contribute to consortia, but to do so they must account for correlation within families by using specialized analytic methods. In this paper, we investigate the performance of methods that account for within-family correlation, in the context of gene-environment interactions with binary exposures and quantitative outcomes. We simulate both cross-sectional and longitudinal measurements, and analyze the simulated data taking family structure into account, via generalized estimating equations (GEE) and linear mixed-effects models. With sufficient exposure prevalence and correct model specification, all methods perform well. However, when models are misspecified, mixed modeling approaches have seriously inflated type I error rates. GEE methods with robust variance estimates are less sensitive to model misspecification; however, when exposures are infrequent, GEE methods require modifications to preserve type I error rate. We illustrate the practical use of these methods by evaluating gene-drug interactions on fasting glucose levels in data from the Framingham Heart Study, a cohort that includes related individuals.

  8. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis.

    PubMed

    Guo, Mei; Rupe, Mary A; Yang, Xiaofeng; Crasta, Oswald; Zinselmeier, Christopher; Smith, Oscar S; Bowen, Ben

    2006-09-01

    Heterosis, or hybrid vigor, has been widely exploited in plant breeding for many decades, but the molecular mechanisms underlying the phenomenon remain unknown. In this study, we applied genome-wide transcript profiling to gain a global picture of the ways in which a large proportion of genes are expressed in the immature ear tissues of a series of 16 maize hybrids that vary in their degree of heterosis. Key observations include: (1) the proportion of allelic additively expressed genes is positively associated with hybrid yield and heterosis; (2) the proportion of genes that exhibit a bias towards the expression level of the paternal parent is negatively correlated with hybrid yield and heterosis; and (3) there is no correlation between the over- or under-expression of specific genes in maize hybrids with either yield or heterosis. The relationship of the expression patterns with hybrid performance is substantiated by analysis of a genetically improved modern hybrid (Pioneer hybrid 3394) versus a less improved older hybrid (Pioneer hybrid 3306) grown at different levels of plant density stress. The proportion of allelic additively expressed genes is positively associated with the modern high yielding hybrid, heterosis and high yielding environments, whereas the converse is true for the paternally biased gene expression. The dynamic changes of gene expression in hybrids responding to genotype and environment may result from differential regulation of the two parental alleles. Our findings suggest that differential allele regulation may play an important role in hybrid yield or heterosis, and provide a new insight to the molecular understanding of the underlying mechanisms of heterosis.

  9. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  10. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.

  11. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution

  12. Genome-wide identification and analysis of the SGR gene family in Cucumis melo L.

    PubMed

    Bade, R G; Bao, M L; Jin, W Y; Ma, Y; Niu, Y D; Hasi, A

    2016-10-17

    Chlorophyll (CHL) is present in many plant organs, and its metabolism is strongly regulated throughout plant development. Understanding the fate of CHL in senescent leaves or during fruit ripening is a complex process. The stay-green (SGR) protein has been shown to affect CHL degradation. In this study, we used the conserved sequences of STAY-GREEN domain protein (NP_567673) in Arabidopsis thaliana as a probe to search SGR family genes in the genome-wide melon protein database. Four candidate SGR family genes were identified in melon (Cucumis melo L. Hetao). The phylogenetic evolution, gene structure, and conserved motifs were subsequently analyzed. In order to verify the function of CmSGR genes in CHL degradation, CmSGR1 and CmSGR2 were transiently overexpressed and silenced using different plasmids in melon. Overexpression of CmSGR1 or CmSGR2 induced leaf yellowing or fruit ripening, while silencing of CmSGR1 or CmSGR2 via RNA interference delayed CHL breakdown during fruit ripening or leaf senescence compared with the wild type. Next, the expression profile was analyzed, and we found that CmSGR genes were expressed ubiquitously. Moreover, CmSGR1 and CmSGR2 were upregulated, and promoted fruit ripening. CmSGR3 and CmSGR4 were more highly expressed in leaves, cotyledon, and stem compared with CmSGR1 or CmSGR2. Thus, we conclude that CmSGR genes are crucial for fruit ripening and leaf senescence. CmSGR protein structure and function were further clarified to provide a theoretical foundation and valuable information for improved performance of melon.

  13. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions.

  14. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea

    PubMed Central

    Upadhyaya, Hari D.; Bajaj, Deepak; Narnoliya, Laxmi; Das, Shouvik; Kumar, Vinod; Gowda, C. L. L.; Sharma, Shivali; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    Identification of potential genes/alleles governing complex seed-protein content (SPC) is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150–200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10–20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 × ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (>four fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with a high level of contrasting SPC (21–22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most

  15. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus.

    PubMed

    Yu, Youjian; Liang, Ying; Lv, Meiling; Wu, Jian; Lu, Gang; Cao, Jiashu

    2014-01-01

    Polygalacturonase (PG, EC3.2.1.15), one of the hydrolytic enzymes associated with the modification of pectin network in plant cell wall, has an important role in various cell-separation processes that are essential for plant development. PGs are encoded by a large gene family in plants. However, information on this gene family in plant development remains limited. In the present study, 53 and 62 putative members of the PG gene family in cucumber and watermelon genomes, respectively, were identified by genome-wide search to explore the composition, structure, and evolution of the PG family in Cucurbitaceae crops. The results showed that tandem duplication could be an important factor that contributes to the expansion of the PG genes in the two crops. The phylogenetic and evolutionary analyses suggested that PGs could be classified into seven clades, and that the exon/intron structures and intron phases were conserved within but divergent between clades. At least 24 ancestral PGs were detected in the common ancestor of Arabidopsis and Cucumis sativus. Expression profile analysis by quantitative real-time polymerase chain reaction demonstrated that most CsPGs exhibit specific or high expression pattern in one of the organs/tissues. The 16 CsPGs associated with fruit development could be divided into three subsets based on their specific expression patterns and the cis-elements of fruit-specific, endosperm/seed-specific, and ethylene-responsive exhibited in their promoter regions. Our comparative analysis provided some basic information on the PG gene family, which would be valuable for further functional analysis of the PG genes during plant development.

  16. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

  17. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus.

    PubMed

    Yuan, Jing; Tao, Wenjing; Cheng, Yunying; Huang, Baofeng; Wang, Deshou

    2014-08-01

    The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.

  18. Genome-wide association study identifies PERLD1 as asthma candidate gene

    PubMed Central

    2011-01-01

    Background Recent genome-wide association studies (GWAS) for asthma have been successful in identifying novel associations which have been well replicated. The aim of this study is to identify the genetic variants that influence predisposition towards asthma in an ethnic Chinese population in Singapore using a GWAS approach. Methods A two-stage GWAS was performed in case samples with allergic asthma, and in control samples without asthma and atopy. In the discovery stage, 490 case and 490 control samples were analysed by pooled genotyping. Significant associations from the first stage were evaluated in a replication cohort of 521 case and 524 control samples in the second stage. The same 980 samples used in the discovery phase were also individually genotyped for purposes of a combined analysis. An additional 1445 non-asthmatic atopic control samples were also genotyped. Results 19 promising SNPs which passed our genome-wide P value threshold of 5.52 × 10-8 were individually genotyped. In the combined analysis of 1011 case and 1014 control samples, SNP rs2941504 in PERLD1 on chromosome 17q12 was found to be significantly associated with asthma at the genotypic level (P = 1.48 × 10-6, ORAG = 0.526 (0.369-0.700), ORAA = 0.480 (0.361-0.639)) and at the allelic level (P = 9.56 × 10-6, OR = 0.745 (0.654-0.848)). These findings were found to be replicated in 3 other asthma GWAS studies, thus validating our own results. Analysis against the atopy control samples suggested that the SNP was associated with allergic asthma and not to either the asthma or allergy components. Genotyping of additional SNPs in 100 kb flanking rs2941504 further confirmed that the association was indeed to PERLD1. PERLD1 is involved in the modification of the glycosylphosphatidylinositol anchors for cell surface markers such as CD48 and CD59 which are known to play multiple roles in T-cell activation and proliferation. Conclusions These findings reveal the association of a PERLD1 as a novel

  19. Genome-wide association study identifies candidate genes for male fertility traits in humans.

    PubMed

    Kosova, Gülüm; Scott, Nicole M; Niederberger, Craig; Prins, Gail S; Ober, Carole

    2012-06-08

    Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10(-4) for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values < 0.05 and seven with p values < 0.01 in the validation study. On the basis of 5,000 permutations of our data, the probabilities of observing this many or more small p values were 0.0014 and 5.6 × 10(-4), respectively. Among the nine associated loci, outstanding candidates for male fertility genes include USP8, an essential deubiquitinating enzyme that has a role in acrosome assembly; UBD and EPSTI1, which have potential roles in innate immunity; and LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population.

  20. Genome-wide Association Study Identifies Candidate Genes for Male Fertility Traits in Humans

    PubMed Central

    Kosova, Gülüm; Scott, Nicole M.; Niederberger, Craig; Prins, Gail S.; Ober, Carole

    2012-01-01

    Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10−4 for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values < 0.05 and seven with p values < 0.01 in the validation study. On the basis of 5,000 permutations of our data, the probabilities of observing this many or more small p values were 0.0014 and 5.6 × 10−4, respectively. Among the nine associated loci, outstanding candidates for male fertility genes include USP8, an essential deubiquitinating enzyme that has a role in acrosome assembly; UBD and EPSTI1, which have potential roles in innate immunity; and LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population. PMID:22633400

  1. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to

  2. Poor replication of candidate genes for major depressive disorder using genome-wide association data.

    PubMed

    Bosker, F J; Hartman, C A; Nolte, I M; Prins, B P; Terpstra, P; Posthuma, D; van Veen, T; Willemsen, G; DeRijk, R H; de Geus, E J; Hoogendijk, W J; Sullivan, P F; Penninx, B W; Boomsma, D I; Snieder, H; Nolen, W A

    2011-05-01

    Data from the Genetic Association Information Network (GAIN) genome-wide association study (GWAS) in major depressive disorder (MDD) were used to explore previously reported candidate gene and single-nucleotide polymorphism (SNP) associations in MDD. A systematic literature search of candidate genes associated with MDD in case-control studies was performed before the results of the GAIN MDD study became available. Measured and imputed candidate SNPs and genes were tested in the GAIN MDD study encompassing 1738 cases and 1802 controls. Imputation was used to increase the number of SNPs from the GWAS and to improve coverage of SNPs in the candidate genes selected. Tests were carried out for individual SNPs and the entire gene using different statistical approaches, with permutation analysis as the final arbiter. In all, 78 papers reporting on 57 genes were identified, from which 92 SNPs could be mapped. In the GAIN MDD study, two SNPs were associated with MDD: C5orf20 (rs12520799; P=0.038; odds ratio (OR) AT=1.10, 95% CI 0.95-1.29; OR TT=1.21, 95% confidence interval (CI) 1.01-1.47) and NPY (rs16139; P=0.034; OR C allele=0.73, 95% CI 0.55-0.97), constituting a direct replication of previously identified SNPs. At the gene level, TNF (rs76917; OR T=1.35, 95% CI 1.13-1.63; P=0.0034) was identified as the only gene for which the association with MDD remained significant after correction for multiple testing. For SLC6A2 (norepinephrine transporter (NET)) significantly more SNPs (19 out of 100; P=0.039) than expected were associated while accounting for the linkage disequilibrium (LD) structure. Thus, we found support for involvement in MDD for only four genes. However, given the number of candidate SNPs and genes that were tested, even these significant may well be false positives. The poor replication may point to publication bias and false-positive findings in previous candidate gene studies, and may also be related to heterogeneity of the MDD phenotype as well as

  3. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior

  4. Recent advances in globin research using genome-wide association studies and gene editing

    PubMed Central

    Orkin, Stuart H.

    2015-01-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies led to identification of three loci (BCL11A, HBS1L-Myb, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing. PMID:26866328

  5. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    SciTech Connect

    Thomassen, Mads . E-mail: mads.thomassen@ouh.fyns-amt.dk; Skov, Vibe; Eiriksdottir, Freyja; Tan, Qihua; Jochumsen, Kirsten; Fritzner, Niels; Brusgaard, Klaus; Dahlgaard, Jesper; Kruse, Torben A.

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips was three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.

  6. Recent advances in globin research using genome-wide association studies and gene editing.

    PubMed

    Orkin, Stuart H

    2016-03-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing.

  7. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes.

    PubMed

    Sharma, Swarkar; Gao, Xiaochong; Londono, Douglas; Devroy, Shonn E; Mauldin, Kristen N; Frankel, Jessica T; Brandon, January M; Zhang, Dongping; Li, Quan-Zhen; Dobbs, Matthew B; Gurnett, Christina A; Grant, Struan F A; Hakonarson, Hakon; Dormans, John P; Herring, John A; Gordon, Derek; Wise, Carol A

    2011-04-01

    Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10(-8) for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case-control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29-1.73, P = 2.58 × 10(-8)), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease.

  8. Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: Prediction and validation

    PubMed Central

    2011-01-01

    Background HIP1 Protein Interactor (HIPPI) is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS), present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator. Results We carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p < 0.05) while 457 genes were down-regulated. Several transcription factors including CBP, REST, C/EBP beta were altered by HIPPI in this study. HIPPI also interacted with P53 in the protein level. This interaction occurred exclusively in the nuclear compartment and was absent in cells where HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntington's disease (HD) patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in

  9. Maternal obesity influences hepatic gene expression and genome-wide DNA methylation in offspring liver at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring from obese rat dams gain greater body weight and fat mass when fed HFD. Here we examine hepatic gene expression related to systemic energy expenditure and alterations in genome-wide DNA methylation. Maternal obesity was produced in rats prior to conception via overfeeding of diets. At PND2...

  10. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  11. PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PICARA is an analytical pipeline designed to systematically summarize observed SNP/trait associations identified by genome wide association studies (GWAS) and to identify candidate genes involved in the regulation of complex trait variation. The pipeline provides probabilistic inference about a prio...

  12. Genome-wide linkage analysis and physical mapping of the rippling muscle disease gene

    SciTech Connect

    Stephan, D.A.; Buist, N.R.M.; Bhaskar, A.C.

    1994-09-01

    Rippling muscle disease (RMD) is an inherited disorder of skeletal muscle in which mechanical stimuli provoke electrically silent contractions. The patient`s symptoms are muscle cramps, pain, and stiffness, particularly during or following exercise. Clinical signs are balling of muscle following percussion, and a characteristic lateral rolling movement of muscle occurring after contraction followed by stretching. We report a new 44-member pedigree segregating RMD as an autosomal dominant trait. A genome-wide genetic linkage study in this family, using a novel approach of testing closely spaced highly polymorphic markers in affected individuals, localized the responsible gene to the distal end of the long arm of chromosome 1 with a maximum multi-point lod score of 3.56 ({theta}=0). In this family, RMD is localized to a 6 cM region near D1S235. Physical mapping of the linked region yielded several positive YAC clones, one of which spans the entire 6 cM distance. Several candidate genes not present in the YAC contig, but in the region of 1q4, have been excluded as causative by either linkage analysis of intragenic microsatellite repeats (alpha-actinin, angiotensinogen) or by SSCP of exons (skeletal muscle alpha-actinin). We studied two previously reported German families for linkage to the same locus and this same area did not co-segregate with the disease, a finding that shows that different genetic defects can cause a similar clinical phenotype (genetic heterogeneity). An understanding of the defect in contraction control within the muscle fibers in this disease may lead to a better understanding of muscle force transduction, intracellular calcium homeostasis, or both.

  13. Using the Gene Ontology to Scan Multi-Level Gene Sets for Associations in Genome Wide Association Studies

    PubMed Central

    Schaid, Daniel J.; Sinnwell, Jason P.; Jenkins, Gregory D.; McDonnell, Shannon K.; Ingle, James N.; Kubo, Michiaki; Goss, Paul E.; Costantino, Joseph P.; Wickerham, D. Lawrence; Weinshilboum, Richard M.

    2011-01-01

    Gene-set analyses have been widely used in gene expression studies, and some of the developed methods have been extended to genome wide association studies (GWAS). Yet, complications due to linkage disequilibrium (LD) among single nucleotide polymorphisms (SNPs), and variable numbers of SNPs per gene and genes per gene-set, have plagued current approaches, often leading to ad hoc “fixes”. To overcome some of the current limitations, we developed a general approach to scan GWAS SNP data for both gene-level and gene-set analyses, building on score statistics for generalized linear models, and taking advantage of the directed acyclic graph structure of the gene ontology when creating gene-sets. However, other types of gene-set structures can be used, such as the popular Kyoto Encyclopedia of Genes and Genomes (KEGG). Our approach combines SNPs into genes, and genes into gene-sets, but assures that positive and negative effects of genes on a trait do not cancel. To control for multiple testing of many gene-sets, we use an efficient computational strategy that accounts for LD and provides accurate step-down adjusted p-values for each gene-set. Application of our methods to two different GWAS provide guidance on the potential strengths and weaknesses of our proposed gene-set analyses. PMID:22161999

  14. Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene

    PubMed Central

    Himes, Blanca E.; Hunninghake, Gary M.; Baurley, James W.; Rafaels, Nicholas M.; Sleiman, Patrick; Strachan, David P.; Wilk, Jemma B.; Willis-Owen, Saffron A.G.; Klanderman, Barbara; Lasky-Su, Jessica; Lazarus, Ross; Murphy, Amy J.; Soto-Quiros, Manuel E.; Avila, Lydiana; Beaty, Terri; Mathias, Rasika A.; Ruczinski, Ingo; Barnes, Kathleen C.; Celedón, Juan C.; Cookson, William O.C.; Gauderman, W. James; Gilliland, Frank D.; Hakonarson, Hakon; Lange, Christoph; Moffatt, Miriam F.; O'Connor, George T.; Raby, Benjamin A.; Silverman, Edwin K.; Weiss, Scott T.

    2009-01-01

    Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 × 10−07 for rs1588265 and 9.7 × 10−07 for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 × 10−04 for rs1588265 and 9.2 × 10−04 for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications. PMID:19426955

  15. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.).

    PubMed

    Ariani, Andrea; Gepts, Paul

    2015-10-01

    Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.

  16. Genome-Wide Transcriptional Analysis of Genes Associated with Acute Desiccation Stress in Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; Vardo-Zalik, Anne; Boparai, Rajni; Yan, Guiyun

    2011-01-01

    Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions

  17. Genome-wide association study of maize identifies genes affecting leaf architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. maize yield has increased eightfold in the past 80 years with half of the improvement attributed to genetics. Changes in maize leaf angle and size provided a basis for more efficient light capture as plant densities increased. Through a genome wide association study (GWAS) of the maize nested a...

  18. A genome-wide regulatory framework identifies maize Pericarp Color1 (P1) controlled genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues. Using genome-wide expression analyses (RNA-Seq) in pericarps and silks of plants with contrasting P1 alleles combin...

  19. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  20. Genome-wide Census and Expression Profiling of Chicken Neuropeptide and Prohormone Convertase Genes

    PubMed Central

    Delfino, K. R.; Southey, B. R.; Sweedler, J. V.; Rodriguez-Zas, S. L.

    2009-01-01

    Neuropeptides regulate cell-cell signaling and influence many biological processes in vertebrates, including development, growth, and reproduction. The complex processing of neuropeptides from prohormone proteins by prohormone convertases, combined with the evolutionary distance between the chicken and mammalian species that have experienced extensive neuropeptide research, has led to the empirical confirmation of only 18 chicken prohormone proteins. To expand our knowledge of the neuropeptide and prohormone convertase gene complement, we performed an exhaustive survey of the chicken genomic, EST, and proteomic databases using a list of 95 neuropeptide and 7 prohormone convertase genes known in other species. Analysis of the EST resources and 22 microarray studies offered a comprehensive portrait of gene expression across multiple conditions. Five neuropeptide genes (apelin, cocaine-and amphetamine-regulated transcript protein, insulin-like 5, neuropeptide S, and neuropeptide B) previously unknown in chicken were identified and 62 genes were confirmed. Although most neuropeptide gene families known in human are present in chicken, there are several gene not present in the chicken. Conversely, several chicken neuropeptide genes are absent from mammalian species, including C-RF amide, c-type natriuretic peptide 1 precursor, and renal natriuretic peptide. The prohormone convertases, with one exception, were found in the chicken genome. Bioinformatic models used to predict prohormone cleavages confirm that the processing of prohormone proteins into neuropeptides is similar between species. Neuropeptide genes are most frequently expressed in the brain and head, followed by the ovary and small intestine. Microarray analyses revealed that the expression of adrenomedullin, chromogranin-A, augurin, neuromedin-U, platelet-derived growth factor A and D, proenkephalin, relaxin-3, prepronociceptin, and insulin-like growth factor I was most susceptible (P-value < 0.001) to

  1. A genome-wide function of THSC/TREX-2 at active genes prevents transcription–replication collisions

    PubMed Central

    Santos-Pereira, José M.; García-Rubio, María L.; González-Aguilera, Cristina; Luna, Rosa; Aguilera, Andrés

    2014-01-01

    The THSC/TREX-2 complex of Saccharomyces cerevisiae mediates the anchoring of transcribed genes to the nuclear pore, linking transcription elongation with mRNA export and genome stability, as shown for specific reporters. However, it is still unknown whether the function of TREX-2 is global and the reason for its relevant role in genome integrity. Here, by studying two TREX-2 representative subunits, Thp1 and Sac3, we show that TREX-2 has a genome-wide role in gene expression. Both proteins show similar distributions along the genome, with a gradient disposition at active genes that increases towards the 3′ end. Thp1 and Sac3 have a relevant impact on the expression of long, G+C-rich and highly transcribed genes. Interestingly, replication impairment detected by the genome-wide accumulation of the replicative Rrm3 helicase is increased preferentially at highly expressed genes in the thp1Δ and sac3Δ mutants analyzed. Therefore, our work provides evidence of a function of TREX-2 at the genome-wide level and suggests a role for TREX-2 in preventing transcription–replication conflicts, as a source of genome instability derived from a defective messenger ribonucleoprotein particle (mRNP) biogenesis. PMID:25294824

  2. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep

    PubMed Central

    Mousel, Michelle R.; Reynolds, James O.; White, Stephen N.

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection. PMID:26098909

  3. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep.

    PubMed

    Mousel, Michelle R; Reynolds, James O; White, Stephen N

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10(-5)) were identified including markers in or near PIK3CB (P = 2.22x10(-6); additive model), KCNB1 (P = 2.93x10(-6); dominance model), ZC3H12C (P = 3.25x10(-6); genotypic model), JPH1 (P = 4.68x20(-6); genotypic model), and MYO3B (P = 5.74x10(-6); recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.

  4. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow.

    PubMed

    Egan, Scott P; Ragland, Gregory J; Assour, Lauren; Powell, Thomas H Q; Hood, Glen R; Emrich, Scott; Nosil, Patrik; Feder, Jeffrey L

    2015-08-01

    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence.

  5. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    SciTech Connect

    McKown, Athena; Klapste, Jaroslav; Guy, Robert; Geraldes, Armando; Porth, Ilga; Hannemann, Jan; Friedmann, Michael; Muchero, Wellington; Tuskan, Gerald A; Ehlting, Juergen; Cronk, Quentin; El-Kassaby, Yousry; Mansfield, Shawn; Douglas, Carl

    2014-01-01

    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  6. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets.

    PubMed

    Zou, C; Fu, Y; Li, C; Liu, H; Li, G; Li, J; Zhang, H; Wu, Y; Li, C

    2016-08-01

    Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer.

  7. Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene

    PubMed Central

    van Ingen, Gijs; Li, Jin; Goedegebure, André; Pandey, Rahul; Li, Yun Rose; March, Michael E.; Jaddoe, Vincent W. V.; Bakay, Marina; Mentch, Frank D.; Thomas, Kelly; Wei, Zhi; Chang, Xiao; Hain, Heather S.; Uitterlinden, André G.; Moll, Henriette A.; van Duijn, Cornelia M.; Rivadeneira, Fernando; Raat, Hein; Baatenburg de Jong, Robert J.; Sleiman, Patrick M.; van der Schroeff, Marc P.; Hakonarson, Hakon

    2016-01-01

    Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 × 10−09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10−06), and further show it is an eQTL for FNDC1 (P=9.3 × 10−05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM. PMID:27677580

  8. Genome-Wide Association Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle

    PubMed Central

    Xu, Lingyang; Chen, Yan; Zhang, Lupei; Gao, Huijiang; Zhu, Bo; Niu, Hong; Zhang, Wengang; Xia, Jiangwei; Gao, Xue; Li, Junya

    2016-01-01

    Carcass traits of beef cattle have been genetically improved to increase yield of high quality meat. Genome-wide association study (GWAS) is a powerful method to identify genetic variants associated with carcass traits. For the 770K genotyped SNPs from 1141 Chinese Simmental cattle, we used the compressed mixed linear model (CMLM) to perform a genome-wide association study for knuckle, biceps and shank of beef carcass traits. Seventeen significantly associated SNPs were found, which are located on BTA6, BTA14 and BTA15. Interestingly, one pleiotropic quantitative trait nucleotide (QTN), named BovineHD1400007259 (p < 10−8) within the well-known gene region PLAG1-CHCHD7 on BTA14, was found to govern variation of the knuckle, biceps and shank traits. The QTN accounted for 8.6% of phenotypic variance for biceps. In addition, 16 more SNPs distributed on BTA14 were detected as being associated with the carcass traits. PMID:27997562

  9. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families.

    PubMed

    Gao, Hanxiang; Li, Lin; Rao, Shaoqi; Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G; Chen, Qiuyun; Topol, Eric J; Wang, Qing K

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of "missing heritability". Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18-4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.

  10. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis).

    PubMed

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process.

  11. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  12. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  13. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.

    PubMed

    Sathyanarayanan, Sriram; Zheng, Xiangzhong; Kumar, Shailesh; Chen, Chun-Hong; Chen, Dechun; Hay, Bruce; Sehgal, Amita

    2008-06-01

    Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

  14. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology.

    PubMed

    Matarin, Mar; Salih, Dervis A; Yasvoina, Marina; Cummings, Damian M; Guelfi, Sebastian; Liu, Wenfei; Nahaboo Solim, Muzammil A; Moens, Thomas G; Paublete, Rocio Moreno; Ali, Shabinah S; Perona, Marina; Desai, Roshni; Smith, Kenneth J; Latcham, Judy; Fulleylove, Michael; Richardson, Jill C; Hardy, John; Edwards, Frances A

    2015-02-03

    We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of "amyloid" transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and "TAU" transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  15. Genome-Wide Gene Expression Profiling of Fertilization Competent Mycelium in Opposite Mating Types in the Heterothallic Fungus Podospora anserina

    PubMed Central

    Coppin, Evelyne; Imbeaud, Sandrine; Grognet, Pierre; Delacroix, Hervé; Debuchy, Robert

    2011-01-01

    Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus

  16. Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

    PubMed

    Tao, P; Guo, W L; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-10-05

    Small heat shock proteins (sHSPs) are essential for the plant's normal development and stress responses, especially the heat stress response. The information regarding sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis) is sparse, hence we performed a genome-wide analysis to identify sHSP genes in this species. We identified 26 non-redundant sHSP genes distributed on all chromosomes, except chromosome A7, with one additional sHSP gene identified from an expressed sequence tag library. Chinese cabbage was found to contain more sHSP genes than Arabidopsis. The 27 sHSP genes were classified into 11 subfamilies. We identified 22 groups of sHSP syntenic orthologous genes between Chinese cabbage and Arabidopsis. In addition, eight groups of paralogous genes were uncovered in Chinese cabbage. Protein structures of the 27 Chinese cabbage sHSPs were modeled using Phyre2, which revealed that all of them contain several conserved β strands across different subfamilies. In general, gene structure was conserved within each subfamily between Chinese cabbage and Arabidopsis, except for peroxisome sHSP. Analysis of promoter motifs showed that most sHSP genes contain heat shock elements or variants. We also found that biased gene loss has occurred during the evolution of the sHSP subfamily in Chinese cabbage. Expression analysis indicated that the greatest transcript abundance of most Chinese cabbage sHSP genes was found in siliques and early cotyledon embryos. Thus, genome-wide identification and characterization of sHSP genes is a first and important step in the investigation of sHSPs in Chinese cabbage.

  17. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  18. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes.

    PubMed

    Beck, Dominik; Thoms, Julie A I; Perera, Dilmi; Schütte, Judith; Unnikrishnan, Ashwin; Knezevic, Kathy; Kinston, Sarah J; Wilson, Nicola K; O'Brien, Tracey A; Göttgens, Berthold; Wong, Jason W H; Pimanda, John E

    2013-10-03

    Genome-wide combinatorial binding patterns for key transcription factors (TFs) have not been reported for primary human hematopoietic stem and progenitor cells (HSPCs), and have constrained analysis of the global architecture of molecular circuits controlling these cells. Here we provide high-resolution genome-wide binding maps for a heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34(+) HSPCs, together with quantitative RNA and microRNA expression profiles. We catalog binding of TFs at coding genes and microRNA promoters, and report that combinatorial binding of all 7 TFs is favored and associated with differential expression of genes and microRNA in HSPCs. We also uncover a previously unrecognized association between FLI1 and RUNX1 pairing in HSPCs, we establish a correlation between the density of histone modifications that mark active enhancers and the number of overlapping TFs at a peak, we demonstrate bivalent histone marks at promoters of heptad target genes in CD34(+) cells that are poised for later expression, and we identify complex relationships between specific microRNAs and coding genes regulated by the heptad. Taken together, these data reveal the power of integrating multifactor sequencing of chromatin immunoprecipitates with coding and noncoding gene expression to identify regulatory circuits controlling cell identity.

  19. Gene set analyses of genome-wide association studies on 49 quantitative traits measured in a single genetic epidemiology dataset.

    PubMed

    Kim, Jihye; Kwon, Ji-Sun; Kim, Sangsoo

    2013-09-01

    Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait (pcorr < 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.

  20. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  1. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance

    PubMed Central

    Saand, Mumtaz A.; Xu, You-Ping; Li, Wen; Wang, Ji-Peng; Cai, Xin-Zhong

    2015-01-01

    The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca2+ signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca2+ signaling. PMID:25999969

  2. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  3. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress

    PubMed Central

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  4. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species.

    PubMed

    Singh, Sangeeta; Chand, Suresh; Singh, N K; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species.

  5. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    PubMed

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  6. Genome-Wide Linkage Scan Identifies Two Novel Genetic Loci for Coronary Artery Disease: In GeneQuest Families

    PubMed Central

    Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G.; Chen, Qiuyun; Topol, Eric J.; Wang, Qing K.

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD. PMID:25485937

  7. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel E.; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  8. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  9. Gene-environment interaction effects on lung function- a genome-wide association study within the Framingham heart study

    PubMed Central

    2013-01-01

    Background Previous studies in occupational exposure and lung function have focused only on the main effect of occupational exposure or genetics on lung function. Some disease-susceptible genes may be missed due to their low marginal effects, despite potential involvement in the disease process through interactions with the environment. Through comprehensive genome-wide gene-environment interaction studies, we can uncover these susceptibility genes. Our objective in this study was to explore gene by occupational exposure interaction effects on lung function using both the individual SNPs approach and the genetic network approach. Methods The study population comprised the Offspring Cohort and the Third Generation from the Framingham Heart Study. We used forced expiratory volume in one second (FEV1) and ratio of FEV1 to forced vital capacity (FVC) as outcomes. Occupational exposures were classified using a population-specific job exposure matrix. We performed genome-wide gene-environment interaction analysis, using the Affymetrix 550 K mapping array for genotyping. A linear regression-based generalized estimating equation was applied to account for within-family relatedness. Network analysis was conducted using results from single-nucleotide polymorphism (SNP)-level analyses and from gene expression study results. Results There were 4,785 participants in total. SNP-level analysis and network analysis identified SNP rs9931086 (Pinteraction =1.16 × 10-7) in gene SLC38A8, which may significantly modify the effects of occupational exposure on FEV1. Genes identified from the network analysis included CTLA-4, HDAC, and PPAR-alpha. Conclusions Our study implies that SNP rs9931086 in SLC38A8 and genes CTLA-4, HDAC, and PPAR-alpha, which are related to inflammatory processes, may modify the effect of occupational exposure on lung function. PMID:24289273

  10. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia.

    PubMed

    Law, Philip J; Berndt, Sonja I; Speedy, Helen E; Camp, Nicola J; Sava, Georgina P; Skibola, Christine F; Holroyd, Amy; Joseph, Vijai; Sunter, Nicola J; Nieters, Alexandra; Bea, Silvia; Monnereau, Alain; Martin-Garcia, David; Goldin, Lynn R; Clot, Guillem; Teras, Lauren R; Quintela, Inés; Birmann, Brenda M; Jayne, Sandrine; Cozen, Wendy; Majid, Aneela; Smedby, Karin E; Lan, Qing; Dearden, Claire; Brooks-Wilson, Angela R; Hall, Andrew G; Purdue, Mark P; Mainou-Fowler, Tryfonia; Vajdic, Claire M; Jackson, Graham H; Cocco, Pierluigi; Marr, Helen; Zhang, Yawei; Zheng, Tongzhang; Giles, Graham G; Lawrence, Charles; Call, Timothy G; Liebow, Mark; Melbye, Mads; Glimelius, Bengt; Mansouri, Larry; Glenn, Martha; Curtin, Karen; Diver, W Ryan; Link, Brian K; Conde, Lucia; Bracci, Paige M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Albanes, Demetrius; Weinstein, Stephanie; Wang, Zhaoming; Caporaso, Neil E; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Vermeulen, Roel C H; Southey, Melissa C; Milne, Roger L; Clavel, Jacqueline; Topka, Sabine; Spinelli, John J; Kraft, Peter; Ennas, Maria Grazia; Summerfield, Geoffrey; Ferri, Giovanni M; Harris, Robert J; Miligi, Lucia; Pettitt, Andrew R; North, Kari E; Allsup, David J; Fraumeni, Joseph F; Bailey, James R; Offit, Kenneth; Pratt, Guy; Hjalgrim, Henrik; Pepper, Chris; Chanock, Stephen J; Fegan, Chris; Rosenquist, Richard; de Sanjose, Silvia; Carracedo, Angel; Dyer, Martin J S; Catovsky, Daniel; Campo, Elias; Cerhan, James R; Allan, James M; Rothman, Nathanial; Houlston, Richard; Slager, Susan

    2017-02-06

    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10(-13)), 1q42.13 (rs41271473, P=1.06 × 10(-10)), 4q24 (rs71597109, P=1.37 × 10(-10)), 4q35.1 (rs57214277, P=3.69 × 10(-8)), 6p21.31 (rs3800461, P=1.97 × 10(-8)), 11q23.2 (rs61904987, P=2.64 × 10(-11)), 18q21.1 (rs1036935, P=3.27 × 10(-8)), 19p13.3 (rs7254272, P=4.67 × 10(-8)) and 22q13.33 (rs140522, P=2.70 × 10(-9)). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.

  11. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

    PubMed Central

    Law, Philip J.; Berndt, Sonja I.; Speedy, Helen E.; Camp, Nicola J.; Sava, Georgina P.; Skibola, Christine F.; Holroyd, Amy; Joseph, Vijai; Sunter, Nicola J.; Nieters, Alexandra; Bea, Silvia; Monnereau, Alain; Martin-Garcia, David; Goldin, Lynn R.; Clot, Guillem; Teras, Lauren R.; Quintela, Inés; Birmann, Brenda M.; Jayne, Sandrine; Cozen, Wendy; Majid, Aneela; Smedby, Karin E.; Lan, Qing; Dearden, Claire; Brooks-Wilson, Angela R.; Hall, Andrew G.; Purdue, Mark P.; Mainou-Fowler, Tryfonia; Vajdic, Claire M.; Jackson, Graham H.; Cocco, Pierluigi; Marr, Helen; Zhang, Yawei; Zheng, Tongzhang; Giles, Graham G.; Lawrence, Charles; Call, Timothy G.; Liebow, Mark; Melbye, Mads; Glimelius, Bengt; Mansouri, Larry; Glenn, Martha; Curtin, Karen; Diver, W Ryan; Link, Brian K.; Conde, Lucia; Bracci, Paige M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Albanes, Demetrius; Weinstein, Stephanie; Wang, Zhaoming; Caporaso, Neil E.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Vermeulen, Roel C. H.; Southey, Melissa C.; Milne, Roger L.; Clavel, Jacqueline; Topka, Sabine; Spinelli, John J.; Kraft, Peter; Ennas, Maria Grazia; Summerfield, Geoffrey; Ferri, Giovanni M.; Harris, Robert J.; Miligi, Lucia; Pettitt, Andrew R.; North, Kari E.; Allsup, David J.; Fraumeni, Joseph F.; Bailey, James R.; Offit, Kenneth; Pratt, Guy; Hjalgrim, Henrik; Pepper, Chris; Chanock, Stephen J.; Fegan, Chris; Rosenquist, Richard; de Sanjose, Silvia; Carracedo, Angel; Dyer, Martin J. S.; Catovsky, Daniel; Campo, Elias; Cerhan, James R.; Allan, James M.; Rothman, Nathanial; Houlston, Richard; Slager, Susan

    2017-01-01

    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response. PMID:28165464

  12. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote

    PubMed Central

    Schübeler, Dirk; MacAlpine, David M.; Scalzo, David; Wirbelauer, Christiane; Kooperberg, Charles; van Leeuwen, Fred; Gottschling, Daniel E.; O'Neill, Laura P.; Turner, Bryan M.; Delrow, Jeffrey; Bell, Stephen P.; Groudine, Mark

    2004-01-01

    The covalent modification of nucleosomal histones has emerged as a major determinant of chromatin structure and gene activity. To understand the interplay between various histone modifications, including acetylation and methylation, we performed a genome-wide chromatin structure analysis in a higher eukaryote. We found a binary pattern of histone modifications among euchromatic genes, with active genes being hyperacetylated for H3 and H4 and hypermethylated at Lys 4 and Lys 79 of H3, and inactive genes being hypomethylated and deacetylated at the same residues. Furthermore, the degree of modification correlates with the level of transcription, and modifications are largely restricted to transcribed regions, suggesting that their regulation is tightly linked to polymerase activity. PMID:15175259

  13. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper.

  14. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.)

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  15. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  16. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

    PubMed

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  17. Identification of Immune Related LRR-Containing Genes in Maize (Zea mays L.) by Genome-Wide Sequence Analysis

    PubMed Central

    Song, Wei; Wang, Baoqiang; Li, Xinghua; Wei, Jianfen; Chen, Ling; Zhang, Dongmin; Zhang, Wenying; Li, Ronggai

    2015-01-01

    A large number of immune receptors consist of nucleotide binding site-leucine rich repeat (NBS-LRR) proteins and leucine rich repeat-receptor-like kinases (LRR-RLK) that play a crucial role in plant disease resistance. Although many NBS-LRR genes have been previously identified in Zea mays, there are no reports on identifying NBS-LRR genes encoded in the N-terminal Toll/interleukin-1 receptor (TIR) motif and identifying genome-wide LRR-RLK genes. In the present study, 151 NBS-LRR genes and 226 LRR-RLK genes were identified after performing bioinformatics analysis of the entire maize genome. Of these identified genes, 64 NBS-LRR genes and four TIR-NBS-LRR genes were identified for the first time. The NBS-LRR genes are unevenly distributed on each chromosome with gene clusters located at the distal end of each chromosome, while LRR-RLK genes have a random chromosomal distribution with more paired genes. Additionally, six LRR-RLK/RLPs including FLS2, PSY1R, PSKR1, BIR1, SERK3, and Cf5 were characterized in Zea mays for the first time. Their predicted amino acid sequences have similar protein structures with their respective homologues in other plants, indicating that these maize LRR-RLK/RLPs have the same functions as their homologues act as immune receptors. The identified gene sequences would assist in the study of their functions in maize. PMID:26609518

  18. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.

  19. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women

    PubMed Central

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer. PMID:26680018

  20. The Effects of Sequence Variation on Genome-wide NRF2 Binding—New Target Genes and Regulatory SNPs

    PubMed Central

    Kuosmanen, Suvi M.; Viitala, Sari; Laitinen, Tuomo; Peräkylä, Mikael; Pölönen, Petri; Kansanen, Emilia; Leinonen, Hanna; Raju, Suresh; Wienecke-Baldacchino, Anke; Närvänen, Ale; Poso, Antti; Heinäniemi, Merja; Heikkinen, Sami; Levonen, Anna-Liisa

    2016-01-01

    Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126–3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity. PMID:26826707

  1. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.

    PubMed

    Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar

    2016-03-01

    Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.

  2. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies.

    PubMed

    Melamed, Nir; Choufani, Sanaa; Wilkins-Haug, Louise E; Koren, Gideon; Weksberg, Rosanna

    2015-01-01

    Data linking assisted reproductive technologies (ART) with aberrant DNA methylation is limited and inconclusive. In addition, most studies to date have analyzed only a small number of CpG sites and focused on methylation changes in placentas, while data on cord blood are scarce. Our aim was to compare DNA methylation in cord blood samples from ART (N = 10) and control pregnancies (N = 8) using a genome-wide approach with the Illumina® Infinium Human Methylation27 array, which interrogates 27,578 CpG sites. A total of 733 (2.7%) of the CpG sites were significantly differentially methylated between the 2 groups (P < 0.05), with an overall relative hypomethylation in the ART group (P < 0.001). Differences in DNA methylation were more pronounced for CpG sites in certain types of genomic locations and were related to baseline methylation levels and distance from CpG islands and transcription start sites. ART was associated with significantly higher variation in DNA methylation, suggesting that differences in DNA methylation between cases and controls may result from stochastic (or random) genome-wide changes in DNA methylation in ART pregnancies. We identified 24 candidate genes with 2 or more CpG sites that were significantly different between the IVF and control groups. The current study provides support for the hypothesis that ART or associated subfertility may be associated with genome-wide changes in DNA methylation, and these changes appear to be, at least in part, due to epigenetic instability in ART pregnancies. Further studies are required in order to determine the extent to which such ART-related epigenetic instability may have phenotypic consequences.

  3. Genome-Wide Study of Gene Variants Associated with Differential Cardiovascular Event Reduction by Pravastatin Therapy

    PubMed Central

    Louie, Judy Z.; Rowland, Charles M.; Catanese, Joseph J.; Iakoubova, Olga A.; Kirchgessner, Todd G.; Westendorp, Rudi G. J.; de Craen, Anton J. M.; Slagboom, P. Eline; Buckley, Brendan M.; Stott, David J.; Sattar, Naveed; Devlin, James J.; Packard, Christopher J.; Ford, Ian; Sacks, Frank M.; Jukema, J. Wouter

    2012-01-01

    Statin therapy reduces the risk of coronary heart disease (CHD), however, the person-to-person variability in response to statin therapy is not well understood. We have investigated the effect of genetic variation on the reduction of CHD events by pravastatin. First, we conducted a genome-wide association study of 682 CHD cases from the Cholesterol and Recurrent Events (CARE) trial and 383 CHD cases from the West of Scotland Coronary Prevention Study (WOSCOPS), two randomized, placebo-controlled studies of pravastatin. In a combined case-only analysis, 79 single nucleotide polymorphisms (SNPs) were associated with differential CHD event reduction by pravastatin according to genotype (P<0.0001), and these SNPs were analyzed in a second stage that included cases as well as non-cases from CARE and WOSCOPS and patients from the PROspective Study of Pravastatin in the Elderly at Risk/PHArmacogenomic study of Statins in the Elderly at risk for cardiovascular disease (PROSPER/PHASE), a randomized placebo controlled study of pravastatin in the elderly. We found that one of these SNPs (rs13279522) was associated with differential CHD event reduction by pravastatin therapy in all 3 studies: P = 0.002 in CARE, P = 0.01 in WOSCOPS, P = 0.002 in PROSPER/PHASE. In a combined analysis of CARE, WOSCOPS, and PROSPER/PHASE, the hazard ratio for CHD when comparing pravastatin with placebo decreased by a factor of 0.63 (95% CI: 0.52 to 0.75) for each extra copy of the minor allele (P = 4.8×10−7). This SNP is located in DnaJ homolog subfamily C member 5B (DNAJC5B) and merits investigation in additional randomized studies of pravastatin and other statins. PMID:22666496

  4. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  5. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum.

    PubMed

    Chooi, Yit-Heng; Muria-Gonzalez, Mariano Jordi; Solomon, Peter S

    2014-07-03

    The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules.

  6. The correlation coefficient of GC content of the genome-wide genes is positively correlated with animal evolutionary relationships.

    PubMed

    Du, Hongli; Hu, Haofu; Meng, Yuhuan; Zheng, Weihao; Ling, Fei; Wang, Jufang; Zhang, Xiquan; Nie, Qinghua; Wang, Xiaoning

    2010-09-24

    In this study, we present a new method for evaluating animal evolutionary relationships. We used the GC% levels of genome-wide genes to determine the correlation between the GC% content and evolutionary relationship. The correlation coefficients of the GC% content of the orthologous genes of the paired animal species were calculated for a total of 21 species, and the evolutionary branching dates of these 21 species were derived from fossil records. The correlation coefficient of the GC% content of the orthologous genes of the species pair under study served as an indicator of their evolutionary relationship. Moreover, there was a decreasing linear relationship between the correlation coefficient and evolutionary branching date (R(2)=0.930).

  7. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum

    PubMed Central

    Chooi, Yit-Heng; Muria-Gonzalez, Mariano Jordi; Solomon, Peter S.

    2014-01-01

    The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules. PMID:25379341

  8. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-19

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

  9. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder

    PubMed Central

    Forstner, A J; Hofmann, A; Maaser, A; Sumer, S; Khudayberdiev, S; Mühleisen, T W; Leber, M; Schulze, T G; Strohmaier, J; Degenhardt, F; Treutlein, J; Mattheisen, M; Schumacher, J; Breuer, R; Meier, S; Herms, S; Hoffmann, P; Lacour, A; Witt, S H; Reif, A; Müller-Myhsok, B; Lucae, S; Maier, W; Schwarz, M; Vedder, H; Kammerer-Ciernioch, J; Pfennig, A; Bauer, M; Hautzinger, M; Moebus, S; Priebe, L; Sivalingam, S; Verhaert, A; Schulz, H; Czerski, P M; Hauser, J; Lissowska, J; Szeszenia-Dabrowska, N; Brennan, P; McKay, J D; Wright, A; Mitchell, P B; Fullerton, J M; Schofield, P R; Montgomery, G W; Medland, S E; Gordon, S D; Martin, N G; Krasnov, V; Chuchalin, A; Babadjanova, G; Pantelejeva, G; Abramova, L I; Tiganov, A S; Polonikov, A; Khusnutdinova, E; Alda, M; Cruceanu, C; Rouleau, G A; Turecki, G; Laprise, C; Rivas, F; Mayoral, F; Kogevinas, M; Grigoroiu-Serbanescu, M; Propping, P; Becker, T; Rietschel, M; Cichon, S; Schratt, G; Nöthen, M M

    2015-01-01

    Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD. PMID:26556287

  10. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder.

    PubMed

    Forstner, A J; Hofmann, A; Maaser, A; Sumer, S; Khudayberdiev, S; Mühleisen, T W; Leber, M; Schulze, T G; Strohmaier, J; Degenhardt, F; Treutlein, J; Mattheisen, M; Schumacher, J; Breuer, R; Meier, S; Herms, S; Hoffmann, P; Lacour, A; Witt, S H; Reif, A; Müller-Myhsok, B; Lucae, S; Maier, W; Schwarz, M; Vedder, H; Kammerer-Ciernioch, J; Pfennig, A; Bauer, M; Hautzinger, M; Moebus, S; Priebe, L; Sivalingam, S; Verhaert, A; Schulz, H; Czerski, P M; Hauser, J; Lissowska, J; Szeszenia-Dabrowska, N; Brennan, P; McKay, J D; Wright, A; Mitchell, P B; Fullerton, J M; Schofield, P R; Montgomery, G W; Medland, S E; Gordon, S D; Martin, N G; Krasnov, V; Chuchalin, A; Babadjanova, G; Pantelejeva, G; Abramova, L I; Tiganov, A S; Polonikov, A; Khusnutdinova, E; Alda, M; Cruceanu, C; Rouleau, G A; Turecki, G; Laprise, C; Rivas, F; Mayoral, F; Kogevinas, M; Grigoroiu-Serbanescu, M; Propping, P; Becker, T; Rietschel, M; Cichon, S; Schratt, G; Nöthen, M M

    2015-11-10

    Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD.

  11. Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Tao, Peng; Zhong, Xinmin; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Guo, Weiling; Huang, Xiaoyun

    2014-12-01

    Aquaporins (AQPs) are members of a superfamily of integral membrane proteins and play a significant role in the transportation of small molecules across membranes. However, currently little is known about the AQP genes in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, a genome-wide analysis was carried out to identify the AQP genes in Chinese cabbage. In total, 53 non-redundant AQP genes were identified that were located on all of the 10 chromosomes. The number of AQP genes in Chinese cabbage was greater than in Arabidopsis. They were classified into four subfamilies, including PIP, TIP, NIP, and SIP. Thirty-three groups of AQP orthologous genes were identified between Chinese cabbage and Arabidopsis, but orthologs corresponding to AtNIP1;1 and AtPIP2;8 were not detected. Seventeen groups of paralogous genes were identified in Chinese cabbage. Three-dimensional models of the AQPs of Chinese cabbage were constructed using Phyre2, and ar/R selectivity filters were analyzed comparatively between Chinese cabbage and Arabidopsis. Generally, gene structure was conserved within each subfamily, especially in the SIP subfamily. Intron loss events have occurred during the evolution of the PIP, TIP, and NIP subfamilies. The expression of AQP genes in Chinese cabbage was analyzed in different organs. Most AQP genes were downregulated in response to salt stress. This work shows that the AQP genes of Chinese cabbage have undergone triplication and subsequent biased gene loss.

  12. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein.

    PubMed

    Li, Cong; Sun, Dongxiao; Zhang, Shengli; Wang, Sheng; Wu, Xiaoping; Zhang, Qin; Liu, Lin; Li, Yanhua; Qiao, Lv

    2014-01-01

    Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle.

  13. A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi.

    PubMed

    Li, Qingtian; Liu, Jia; Tan, Dunxian; Allan, Andrew C; Jiang, Yuzhuang; Xu, Xuefeng; Han, Zhenhai; Kong, Jin

    2013-10-18

    In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.

  14. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    PubMed

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD.

  15. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies.

    PubMed

    Hayes, M Geoffrey; Urbanek, Margrit; Hivert, Marie-France; Armstrong, Loren L; Morrison, Jean; Guo, Cong; Lowe, Lynn P; Scheftner, Douglas A; Pluzhnikov, Anna; Levine, David M; McHugh, Caitlin P; Ackerman, Christine M; Bouchard, Luigi; Brisson, Diane; Layden, Brian T; Mirel, Daniel; Doheny, Kimberly F; Leya, Marysa V; Lown-Hecht, Rachel N; Dyer, Alan R; Metzger, Boyd E; Reddy, Timothy E; Cox, Nancy J; Lowe, William L

    2013-09-01

    Maternal metabolism during pregnancy impacts the developing fetus, affecting offspring birth weight and adiposity. This has important implications for metabolic health later in life (e.g., offspring of mothers with pre-existing or gestational diabetes mellitus have an increased risk of metabolic disorders in childhood). To identify genetic loci associated with measures of maternal metabolism obtained during an oral glucose tolerance test at ∼28 weeks' gestation, we performed a genome-wide association study of 4,437 pregnant mothers of European (n = 1,367), Thai (n = 1,178), Afro-Caribbean (n = 1,075), and Hispanic (n = 817) ancestry, along with replication of top signals in three additional European ancestry cohorts. In addition to identifying associations with genes previously implicated with measures of glucose metabolism in nonpregnant populations, we identified two novel genome-wide significant associations: 2-h plasma glucose and HKDC1, and fasting C-peptide and BACE2. These results suggest that the genetic architecture underlying glucose metabolism may differ, in part, in pregnancy.

  16. A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila.

    PubMed

    Allebrandt, K V; Amin, N; Müller-Myhsok, B; Esko, T; Teder-Laving, M; Azevedo, R V D M; Hayward, C; van Mill, J; Vogelzangs, N; Green, E W; Melville, S A; Lichtner, P; Wichmann, H-E; Oostra, B A; Janssens, A C J W; Campbell, H; Wilson, J F; Hicks, A A; Pramstaller, P P; Dogas, Z; Rudan, I; Merrow, M; Penninx, B; Kyriacou, C P; Metspalu, A; van Duijn, C M; Meitinger, T; Roenneberg, T

    2013-01-01

    Humans sleep approximately a third of their lifetime. The observation that individuals with either long or short sleep duration show associations with metabolic syndrome and psychiatric disorders suggests that the length of sleep is adaptive. Although sleep duration can be influenced by photoperiod (season) and phase of entrainment (chronotype), human familial sleep disorders indicate that there is a strong genetic modulation of sleep. Therefore, we conducted high-density genome-wide association studies for sleep duration in seven European populations (N=4251). We identified an intronic variant (rs11046205; P=3.99 × 10(-8)) in the ABCC9 gene that explains ≈5% of the variation in sleep duration. An influence of season and chronotype on sleep duration was solely observed in the replication sample (N=5949). Meta-analysis of the associations found in a subgroup of the replication sample, chosen for season of entry and chronotype, together with the discovery results showed genome-wide significance. RNA interference knockdown experiments of the conserved ABCC9 homologue in Drosophila neurons renders flies sleepless during the first 3 h of the night. ABCC9 encodes an ATP-sensitive potassium channel subunit (SUR2), serving as a sensor of intracellular energy metabolism.

  17. A comparison in association and linkage genome-wide scans for alcoholism susceptibility genes using single-nucleotide polymorphisms.

    PubMed

    Chiu, Yen-Feng; Liu, Su-Yun; Tsai, Ya-Yu

    2005-12-30

    We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P

  18. Genome-wide selection of superior reference genes for expression studies in Ganoderma lucidum.

    PubMed

    Xu, Zhichao; Xu, Jiang; Ji, Aijia; Zhu, Yingjie; Zhang, Xin; Hu, Yuanlei; Song, Jingyuan; Chen, Shilin

    2015-12-15

    Quantitative real-time polymerase chain reaction (qRT-PCR) is widely used for the accurate analysis of gene expression. However, high homology among gene families might result in unsuitability of reference genes, which leads to the inaccuracy of qRT-PCR analysis. The release of the Ganoderma lucidum genome has triggered numerous studies to be done on the homology among gene families with the purpose of selecting reliable reference genes. Based on the G. lucdum genome and transcriptome database, 38 candidate reference genes including 28 novel genes were systematically selected and evaluated for qRT-PCR normalization. The result indicated that commonly used polyubiquitin (PUB), beta-actin (BAT), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were unsuitable reference genes because of the high sequence similarity and low primer specificity. According to the evaluation of RefFinder, cyclophilin 5 (CYP5) was ranked as the most stable reference gene for 27 tested samples under all experimental conditions and eighteen mycelial samples. Based on sequence analysis and expression analysis, our study suggested that gene characteristic, primer specificity of high homologous genes, allele-specificity expression of candidate genes and under-evaluation of reference genes influenced the accuracy and sensitivity of qRT-PCR analysis. This investigation not only revealed potential factors influencing the unsuitability of reference genes but also selected the superior reference genes from more candidate genes and testing samples than those used in the previous study. Furthermore, our study established a model for reference gene analysis by using the genomic sequence.

  19. The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling.

    PubMed

    Huang, Jianyan; Zhao, Xiaobo; Yu, Huihui; Ouyang, Yidan; Wang, Lei; Zhang, Qifa

    2009-10-01

    Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice.

  20. Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene.

    PubMed

    Bellazi, L; Mornet, E; Meurice, G; Pata-Merci, N; De Mazancourt, P; Dieudonné, M-N

    2011-10-01

    During pregnancy, placental growth allows the adaptation of the feto-maternal unit to fetal requirements. Placental alkaline phosphatase (PLAP) is a phosphomonoesterase produced increasingly until term by the placenta and also ectopically in some tumors. To precise the role of this enzyme in the placenta, we analyzed the genome wide expression profile of HTR-8/Svneo trophoblastic cells after overexpression of the alkaline phosphatase gene (ALPP). We showed that ALPP overexpression mainly altered expression of genes implicated in cellular growth and proliferation. These results were confirmed by the study of cellular effects in HTR-8/Svneo cells overexpressing ALPP and in HTR-8/Svneo cells in which ALPP expression was suppressed by siRNA. We showed that PLAP exerts a positive effect on DNA replication and acts as a proliferative factor in trophoblastic cells.

  1. Genome-Wide Gene-Sodium Interaction Analyses on Blood Pressure: The Genetic Epidemiology Network of Salt-Sensitivity Study.

    PubMed

    Li, Changwei; He, Jiang; Chen, Jing; Zhao, Jinying; Gu, Dongfeng; Hixson, James E; Rao, Dabeeru C; Jaquish, Cashell E; Gu, Charles C; Chen, Jichun; Huang, Jianfeng; Chen, Shufeng; Kelly, Tanika N

    2016-08-01

    We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single-marker-based (1 and 2 df joint tests) and gene-based tests among 1876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of 3 urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random zero sphygmomanometer. A total of 2.05 million single-nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10(-4)) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Single-nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10(-9)). The 2 df tests additionally identified associations for CLGN rs2567241 (P=3.90×10(-12)) and LOC105369882 rs11104632 (P=4.51×10(-8)) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10(-22)) and mean arterial pressure (P=2.86×10(-15)). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10(-7)), C2orf80 (P<1.00×10(-12)), EPHA6 (P=2.88×10(-7)), SCOC-AS1 (P=4.35×10(-14)), SCOC (P=6.46×10(-11)), CLGN (P=3.68×10(-13)), MGAT4D (P=4.73×10(-11)), ARHGAP42 (P≤1.00×10(-12)), CASP4 (P=1.31×10(-8)), and LINC01478 (P=6.75×10(-10)) that were associated with at least 1 BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of single-nucleotide polymorphism and gene-based interactions with sodium.

  2. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    SciTech Connect

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J; Tuskan, Gerald A

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  3. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Song, Xiao-Ming; Liu, Tong-Kun; Duan, Wei-Ke; Ma, Qing-Hua; Ren, Jun; Wang, Zhen; Li, Ying; Hou, Xi-Lin

    2014-01-01

    The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage.

  4. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L.

    PubMed Central

    Zhu, Bin; Shao, Yujiao; Pan, Qi; Ge, Xianhong; Li, Zaiyun

    2015-01-01

    Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome. PMID:26442076

  5. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa.

    PubMed

    McKown, Athena D; Klápště, Jaroslav; Guy, Robert D; Geraldes, Armando; Porth, Ilga; Hannemann, Jan; Friedmann, Michael; Muchero, Wellington; Tuskan, Gerald A; Ehlting, Jürgen; Cronk, Quentin C B; El-Kassaby, Yousry A; Mansfield, Shawn D; Douglas, Carl J

    2014-07-01

    In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34 K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29,355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7×10(-6)). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.

  6. Genome-wide search for genetic modulators in gene regulatory pathways: weighted window-based peak identification algorithm.

    PubMed

    Lee, Eunjee; Kim, Kyunga; Park, Taesung

    2011-06-01

    Genome-wide gene expression and genotype data have been integratively analyzed in expression quantitative trait loci (eQTL) studies to elucidate the genetics of gene transcription. Most eQTL analyses have focused on identifying polymorphic genetic variants that influence the expression levels of individual genes, and such analyses may have limitations in explaining gene regulatory pathways that are likely to involve multiple genes and their genetic and/or non-genetic modulators. We have developed a novel two-step method for identifying potential genetic modulators of transcription processes for multiple genes in a biological pathway. We proposed a new weighted window-based peak identification algorithm to improve the detection of genetic modulators for individual genes and employed a Poisson-based test to search for master genetic modulators of multiple genes. Here, we have illustrated this two-step approach by analyzing the gene expression data in the Centre d'Etude du Polymorphisme Humain (CEPH) lymphoblast cells and single nucleotide polymorphism chip data.

  7. A genome-wide survey reveals abundant rice blast R-genes in resistant cultivars

    PubMed Central

    Tan, Shengjun; Zhong, Yan; Wang, Ling; Gu, Longjiang; Chen, Jian-Qun; Pan, Qinghua; Bergelson, Joy; Tian, Dacheng

    2015-01-01

    Summary Plant resistance genes (R-genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R-genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R-genes having been defeated by former pests, or do plants harbor a rich diversity of functional R-genes whose composite behavior is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from 5 resistant rice cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R-genes, with most R-genes deriving from multi-copy clades containing especially diversified loci. Each R-gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R-genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R-genes also validates a highly efficient cloning and screening strategy. PMID:26248689

  8. A genome-wide survey reveals abundant rice blast R genes in resistant cultivars.

    PubMed

    Zhang, Xiaohui; Yang, Sihai; Wang, Jiao; Jia, Yanxiao; Huang, Ju; Tan, Shengjun; Zhong, Yan; Wang, Ling; Gu, Longjiang; Chen, Jian-Qun; Pan, Qinghua; Bergelson, Joy; Tian, Dacheng

    2015-10-01

    Plant resistance genes (R genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R genes having been defeated by former pests, or do plants harbor a rich diversity of functional R genes, the composite behavior of which is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from five resistant Oryza sativa (rice) cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R genes, with most R genes deriving from multi-copy clades containing especially diversified loci. Each R gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R genes also validates a highly efficient cloning and screening strategy.

  9. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  10. Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Feng, Jingyan; Xu, Jian; Mahboob, Shahid; Al-Ghanim, Khalid; Li, Xuejun

    2016-01-01

    Background Aquaporins (Aqps) are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. Among vertebrate species, Aqps are highly conserved in both gene structure and amino acid sequence. These proteins are vital for maintaining water homeostasis in living organisms, especially for aquatic animals such as teleost fish. Studies on teleost Aqps are mainly limited to several model species with diploid genomes. Common carp, which has a tetraploidized genome, is one of the most common aquaculture species being adapted to a wide range of aquatic environments. The complete common carp genome has recently been released, providing us the possibility for gene evolution of aqp gene family after whole genome duplication. Results In this study, we identified a total of 37 aqp genes from common carp genome. Phylogenetic analysis revealed that most of aqps are highly conserved. Comparative analysis was performed across five typical vertebrate genomes. We found that almost all of the aqp genes in common carp were duplicated in the evolution of the gene family. We postulated that the expansion of the aqp gene family in common carp was the result of an additional whole genome duplication event and that the aqp gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Expression patterns were assessed in various tissues, including brain, heart, spleen, liver, intestine, gill, muscle, and skin, which demonstrated the comprehensive expression profiles of aqp genes in the tetraploidized genome. Significant gene expression divergences have been observed, revealing substantial expression divergences or functional divergences in those duplicated aqp genes post the latest WGD event. Conclusions To some extent, the gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp aqp gene family

  11. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  12. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    PubMed

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  13. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes.

  14. Comparative Genome-Wide Analysis of the Malate Dehydrogenase Gene Families in Cotton

    PubMed Central

    Imran, Muhammad; Tang, Kai; Liu, Jin-Yuan

    2016-01-01

    Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development. PMID:27829020

  15. Genome wide identification of recessive cancer genes by combinatorial mutation analysis.

    PubMed

    Volinia, Stefano; Mascellani, Nicoletta; Marchesini, Jlenia; Veronese, Angelo; Ormondroyd, Elizabeth; Alder, Hansjuerg; Palatini, Jeff; Negrini, Massimo; Croce, Carlo M

    2008-01-01

    We devised a novel procedure to identify human cancer genes acting in a recessive manner. Our strategy was to combine the contributions of the different types of genetic alterations to loss of function: amino-acid substitutions, frame-shifts, gene deletions. We studied over 20,000 genes in 3 Gigabases of coding sequences and 700 array comparative genomic hybridizations. Recessive genes were scored according to nucleotide mismatches under positive selective pressure, frame-shifts and genomic deletions in cancer. Four different tests were combined together yielding a cancer recessive p-value for each studied gene. One hundred and fifty four candidate recessive cancer genes (p-value < 1.5 x 10(-7), FDR = 0.39) were identified. Strikingly, the prototypical cancer recessive genes TP53, PTEN and CDKN2A all ranked in the top 0.5% genes. The functions significantly affected by cancer mutations are exactly overlapping those of known cancer genes, with the critical exception for the absence of tyrosine kinases, as expected for a recessive gene-set.

  16. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus.

    PubMed

    Zhang, Xiao Meng; Yu, Hong Jun; Sun, Chao; Deng, Jie; Zhang, Xue; Liu, Peng; Li, Yun Yun; Li, Qiang; Jiang, Wei Jie

    2017-04-01

    The NAC (standing for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF] and cup-shaped cotyledon [CUC]) proteins pertain to one of the plant-specific transcription factor families that play important roles in plant development, abiotic stress resistance and signalling transduction. In the present study, the genomic features of the NAC genes in cucumber were analysed in depth using in silico tools. To reveal a tissue-specific, abiotic stress and hormone-responsive expression profile of CsNAC genes, RT-qPCR was performed under different treatments. Phylogenetic analyses and genome-wide annotation indicated that 82 high-confidence CsNAC genes were clustered into 13 sub-groups with uneven distribution in the cucumber genome. Furthermore, the CsNAC genes exhibited different tissue-specific expression patterns in 10 tissues under normal growth conditions, while 13 (16%) and 28 (34%) genes displayed preferential expression in roots and flowers, respectively. Moreover, CsNAC genes were more sensitive to salinity than other stresses; however, their responses were relatively rapid and transient to nutrition deprivation. Several CsNAC genes, including CsNAC35, which is an orthologue of the known stress-responsive Arabidopsis RD26, were identified as highly responsive to abiotic stresses and hormones. Overall, our findings revealed the genomic landscape and expression profiling of the CsNAC genes in response to multiple stresses and hormones, offering clues for further function analyses and molecular breeding.

  17. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    PubMed

    Pai, Athma A; Bell, Jordana T; Marioni, John C; Pritchard, Jonathan K; Gilad, Yoav

    2011-02-01

    The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  18. Genome-wide identification and divergent transcriptional expression of StAR-related lipid transfer (START) genes in teleosts.

    PubMed

    Teng, Huajing; Cai, Wanshi; Zeng, Kun; Mao, Fengbiao; You, Mingcong; Wang, Tao; Zhao, Fangqing; Sun, Zhongsheng

    2013-04-25

    The lipid transfer reactions and the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) genes have a major role in lipid metabolism. However, START genes and their physiological functions in teleost fishes are relatively unknown. Through genome-wide screening, we identified and annotated 91 START genes in 5 teleost species. Although START domain-containing proteins are augmented in teleost genomes relative to tetrapod genomes, a similar number of genes are shared between them. Asymmetry of paralogous gene loss within the teleost START family and an extra copy of some START genes in teleosts resulting from fish-specific genome duplication have been demonstrated. A distinct transcriptional expression pattern within members of some START groups under different developmental stages suggests divergent functions within the same group in the developmental process. In addition, an asymmetric molecular evolution rate deviating from the neutral expectation has been observed in 7 of 14 teleost fish extra-duplicated pairs. The present study provides valuable information for increasing our understanding of the evolution and gene expression divergence under developmental stages of the START gene family in teleost fishes.

  19. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa).

    PubMed

    Zuo, Ran; Hu, Ruibo; Chai, Guohua; Xu, Meiling; Qi, Guang; Kong, Yingzhen; Zhou, Gongke

    2013-03-01

    Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.

  20. Genome-wide identification of lineage-specific genes within Caenorhabditis elegans.

    PubMed

    Zhou, Kun; Huang, Beibei; Zou, Ming; Lu, Dandan; He, Shunping; Wang, Guoxiu

    2015-10-01

    With the rapid growth of sequencing technology, a number of genomes and transcriptomes of various species have been sequenced, contributing to the study of lineage-specific genes (LSGs). We identified two sets of LSGs using BLAST: one included Caenorhabditis elegans species-specific genes (1423, SSGs), and the other consisted of Caenorhabditis genus-specific genes (4539, GSGs). The subsequent characterization and analysis of the SSGs and GSGs showed that they have significant differences in evolution and that most LSGs were generated by gene duplication and integration of transposable elements (TEs). We then performed temporal expression profiling and protein function prediction and observed that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are over-represented, suggesting that these specific genes may be related to the Caenorhabditis nematodes' special ability to survive in severe and extreme environments.

  1. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity.

  2. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    PubMed

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses.

  3. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    PubMed

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.

  4. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut.

  5. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  6. Genome-Wide Comparative Analysis of Flowering-Related Genes in Arabidopsis, Wheat, and Barley

    PubMed Central

    Peng, Fred Y.; Hu, Zhiqiu; Yang, Rong-Cai

    2015-01-01

    Early flowering is an important trait influencing grain yield and quality in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in short-season cropping regions. However, due to large and complex genomes of these species, direct identification of flowering genes and their molecular characterization remain challenging. Here, we used a bioinformatic approach to predict flowering-related genes in wheat and barley from 190 known Arabidopsis (Arabidopsis thaliana (L.) Heynh.) flowering genes. We identified 900 and 275 putative orthologs in wheat and barley, respectively. The annotated flowering-related genes were clustered into 144 orthologous groups with one-to-one, one-to-many, many-to-one, and many-to-many orthology relationships. Our approach was further validated by domain and phylogenetic analyses of flowering-related proteins and comparative analysis of publicly available microarray data sets for in silico expression profiling of flowering-related genes in 13 different developmental stages of wheat and barley. These further analyses showed that orthologous gene pairs in three critical flowering gene families (PEBP, MADS, and BBX) exhibited similar expression patterns among 13 developmental stages in wheat and barley, suggesting similar functions among the orthologous genes with sequence and expression similarities. The predicted candidate flowering genes can be confirmed and incorporated into molecular breeding for early flowering wheat and barley in short-season cropping regions. PMID:26435710

  7. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus.

    PubMed

    Zhou, S J; Jing, Z; Shi, J L

    2013-12-11

    Mildew resistance locus o (MLO) is a plant-specific seven-transmembrane (TM) gene family. Several studies have revealed that certain members of the MLO gene family mediate powdery mildew susceptibility in three plant species, namely, Arabidopsis, barley, and tomato. The sequenced cucumber genome provides an opportunity to conduct a comprehensive overview of the MLO gene family. Fourteen genes (designated CsMLO01 through CsMLO14) have been identified within the Cucumis sativus genome by using an in silico cloning method with the MLO amino acid sequences of Arabidopsis thaliana and rice as probes. Sequence alignment revealed that numerous features of the gene family, such as TMs, a calmodulin-binding domain, peptide domains I and II, and 30 important amino acid residues for MLO function, are well conserved. Phylogenetic analysis of the MLO genes from cucumber and other plant species reveals seven different clades (I through VII). Three of these clades comprised MLO genes from A. thaliana, rice, maize, and cucumber, suggesting that these genes may have evolved after the divergence of monocots and dicots. In silico mapping showed that these CsMLOs were located on chromosomes 1, 2, 3, 4, 5, and 6 without any obvious clustering, except CsMLO01. To our knowledge, this paper is the first comprehensive report on MLO genes in C. sativus. These findings will facilitate the functional characterization of the MLOs related to powdery mildew susceptibility and assist in the development of disease resistance in cucumber.

  8. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.

    PubMed

    Zhang, Xin; Zong, Jie; Liu, Jianhua; Yin, Jinyuan; Zhang, Dabing

    2010-11-01

    WUSCHEL-related homeobox (WOX) genes form a large gene family specifically expressed in plants. They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate. Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants. In the present study, we identified 11 and 21 WOXs from sorghum (Sorghum bicolor) and maize (Zea mays), respectively. The 72 WOX genes from rice (Oryza sativa), sorghum, maize, Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains. Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain. We observed the variation of duplication events among the nine sub-groups between monocots and eudicots, for instance, more gene duplication events of WOXs within subgroup A for monocots, while, less for dicots in this subgroup. Furthermore, we observed the conserved intron/exon structural patterns of WOX genes in rice, sorghum and Arabidopsis. In addition, WUS (Wuschel)-box and EAR (the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants. Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants. This work provides insights into the evolution of the WOX gene family and is useful for future research.

  9. Genome-wide analysis for identification of salt-responsive genes in common wheat.

    PubMed

    Kawaura, Kanako; Mochida, Keiichi; Ogihara, Yasunari

    2008-08-01

    To identify salt-responsive genes in wheat, global expression analysis of transcripts was carried out using oligo-DNA microarrays. Microarrays have been designed from approximately 32,000 unique wheat genes classified from a large number of expressed sequence tags (ESTs). Two-week-old seedlings of wheat were treated with 150 mM NaCl for 1, 6, and 24 h, and their roots and shoots were separately subjected to analyses. Consequently, 5,996 genes showed changes in expression of more than twofold and were classified into 12 groups according to correlations in expression patterns. These salt-responsive genes were assigned functions using the Gene Ontology (GO). Genes assigned to transcription factor, transcription-regulator activity, and DNA-binding functions were preferentially classified into early response groups. On the other hand, those assigned transferase and transporter activity were classified into late response groups. These data suggest that multiple signal transduction pathways in response to salinity exist in wheat. Transcription factors (TFs) which have been reported as participants in salt-tolerant pathway changed their expression levels in response to salt treatment. Among them, only a few TFs show high sequence homologies to genes in rice. These investigations suggest that salt-responsive genes identified by this study are candidates for salt-stress tolerance uniquely in wheat.

  10. Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice.

    PubMed

    Itoh, Jun-Ichi; Sato, Yutaka; Sato, Yutaka; Hibara, Ken-Ichiro; Shimizu-Sato, Sae; Kobayashi, Hiromi; Takehisa, Hinako; Sanguinet, Karen A; Namiki, Nobukazu; Nagamura, Yoshiaki

    2016-04-01

    Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.

  11. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data.

    PubMed

    He, Quanze; He, Quanyuan; Liu, Xiaohui; Wei, Youheng; Shen, Suqin; Hu, Xiaohui; Li, Qiao; Peng, Xiangwen; Wang, Lin; Yu, Long

    2014-01-01

    Identifying cancer driver genes and exploring their functions are essential and the most urgent need in basic cancer research. Developing efficient methods to differentiate between driver and passenger somatic mutations revealed from large-scale cancer genome sequencing data is critical to cancer driver gene discovery. Here, we compared distinct features of SNP with SNV data in detail and found that the weighted ratio of SNV to SNP (termed as WVPR) is an excellent indicator for cancer driver genes. The power of WVPR was validated by accurate predictions of known drivers. We ranked most of human genes by WVPR and did functional analyses on the list. The results demonstrate that driver genes are usually highly enriched in chromatin organization related genes/pathways. And some protein complexes, such as histone acetyltransferase, histone methyltransferase, telomerase, centrosome, sin3 and U12-type spliceosomal complexes, are hot spots of driver mutations. Furthermore, this study identified many new potential driver genes (e.g. NTRK3 and ZIC4) and pathways including oxidative phosphorylation pathway, which were not deemed by previous methods. Taken together, our study not only developed a method to identify cancer driver genes/pathways but also provided new insights into molecular mechanisms of cancer development.

  12. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    ERIC Educational Resources Information Center

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  13. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN

    PubMed Central

    Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas

    2017-01-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535

  14. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    PubMed Central

    Lopez-Valverde, Francisco J.; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W.; Kotchoni, Simeon O.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling. PMID:27755582

  15. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    PubMed

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression.

  16. Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility.

    PubMed

    Lu, Xuemei; Shapiro, Joshua A; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I

    2010-08-01

    Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible.

  17. The catalase gene family in cucumber: genome-wide identification and organization

    PubMed Central

    Hu, Lifang; Yang, Yingui; Jiang, Lunwei; Liu, Shiqiang

    2016-01-01

    Abstract Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments. PMID:27560990

  18. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  19. Genome-wide experimental determination of barriers to horizontal gene transfer

    SciTech Connect

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  20. Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy

    PubMed Central

    Rincon, Melvin Y; Sarcar, Shilpita; Danso-Abeam, Dina; Keyaerts, Marleen; Matrai, Janka; Samara-Kuko, Ermira; Acosta-Sanchez, Abel; Athanasopoulos, Takis; Dickson, George; Lahoutte, Tony; De Bleser, Pieter; VandenDriessche, Thierry; Chuah, Marinee K

    2015-01-01

    Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a “molecular signature” associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy. PMID:25195597

  1. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy.

    PubMed

    Rincon, Melvin Y; Sarcar, Shilpita; Danso-Abeam, Dina; Keyaerts, Marleen; Matrai, Janka; Samara-Kuko, Ermira; Acosta-Sanchez, Abel; Athanasopoulos, Takis; Dickson, George; Lahoutte, Tony; De Bleser, Pieter; VandenDriessche, Thierry; Chuah, Marinee K

    2015-01-01

    Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.

  2. Genome-Wide Methylation and Gene Expression Changes in Newborn Rats following Maternal Protein Restriction and Reversal by Folic Acid

    PubMed Central

    Stupka, Elia; Clark, Adrian J. L.; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures. PMID:24391732

  3. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape.

    PubMed

    Xu, Yanshuai; Gao, Zhihong; Tao, Jianmin; Jiang, Weihua; Zhang, Shijie; Wang, Qiunan; Qu, Shenchun

    2016-01-01

    Early ripening in grape (Vitis vinifera L.) is a crucial agronomic trait. The fruits of the grape line 'Summer Black' (SBBM), which contains a bud mutation, can be harvested approximately one week earlier than the 'Summer Black' (SBC)control. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs) and 81,223 structure variations (SVs) in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS), SVs or frame-shift mutations (F) were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response.

  4. Genome-Wide Analysis of the Expansin Gene Superfamily Reveals Grapevine-Specific Structural and Functional Characteristics

    PubMed Central

    Tornielli, Giovanni Battista; Fasoli, Marianna; Venturini, Luca; Pezzotti, Mario; Zenoni, Sara

    2013-01-01

    Background Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP) comprises four distinct families: expansin A (EXPA), expansin B (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB). There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera) genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. Methodology/Principal Findings We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon–intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa), compared to those from Arabidopsis thaliana and rice (Oryza sativa). We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. Conclusion Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the functional

  5. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli

    PubMed Central

    Côté, Jean-Philippe; French, Shawn; Gehrke, Sebastian S.; MacNair, Craig R.; Mangat, Chand S.; Bharat, Amrita

    2016-01-01

    ABSTRACT Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo. To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli. Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. PMID:27879333

  6. Genome-wide identification and characterization of Fox genes in the silkworm, Bombyx mori.

    PubMed

    Song, JiangBo; Li, ZhiQuan; Tong, XiaoLing; Chen, Cong; Chen, Min; Meng, Gang; Chen, Peng; Li, ChunLin; Xin, YaQun; Gai, TingTing; Dai, FangYin; Lu, Cheng

    2015-09-01

    The forkhead box (Fox) transcription factor family has a characteristic of forkhead domain, a winged DNA-binding domain. The Fox genes have been classified into 23 subfamilies, designated FoxA to FoxS, of which the FoxR and FoxS subfamilies are specific to vertebrates. In this review, using whole-genome scanning, we identified 17 distinct Fox genes distributed on 13 chromosomes of the silkworm, Bombyx mori. A phylogenetic tree showed that the silkworm Fox genes could be classified into 13 subfamilies. The FoxK subfamily is specifically absent from the silkworm, although it is present in other lepidopteran insects, including Danaus plexippus and Heliconius melpomene. Microarray data revealed that the Fox genes have distinct expression patterns in the tissues on day 3 of the 5th instar larva. A Gene Ontology analysis suggested that the Fox genes have roles in cellular components, molecular functions, and biological processes, except in pore complex biogenesis. An analysis of the selective pressure on the proteins indicated that most of the amino acid sites in the Fox proteins are undergoing strong purifying selection. Here, we summarize the general characteristics of the Fox genes in the silkworm, which should support further functional studies of the silkworm Fox proteins.

  7. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  8. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes.

    PubMed

    Oksenberg, N; Haliburton, G D E; Eckalbar, W L; Oren, I; Nishizaki, S; Murphy, K; Pollard, K S; Birnbaum, R Y; Ahituv, N

    2014-09-02

    The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.

  9. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    PubMed

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-12-29

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut.

  10. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Mishra, Surajit K.; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K.; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  11. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    PubMed

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  12. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.

  13. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis).

    PubMed

    Ma, Bi; Luo, Yiwei; Jia, Ling; Qi, Xiwu; Zeng, Qiwei; Xiang, Zhonghuai; He, Ningjia

    2014-09-01

    Cytochrome P450s play critical roles in the biosynthesis of physiologically important compounds in plants. These compounds often act as defense toxins to prevent herbivory. In the present study, a total of 174 P450 genes of mulberry (Morus notabilis C.K.Schn) were identified based on bioinformatics analyses. These mulberry P450 genes were divided into nine clans and 47 families and were found to be expressed in a tissue-preferential manner. These genes were compared to the P450 genes in Arabidopsis thaliana. Families CYP80, CYP92, CYP728, CYP733, CYP736, and CYP749 were found to exist in mulberry, and they may play important roles in the biosynthesis of mulberry secondary metabolites. Analyses of the functional and metabolic pathways of these genes indicated that mulberry P450 genes may participate in the metabolism of lipids, other secondary metabolites, xenobiotics, amino acids, cofactors, vitamins, terpenoids, and polyketides. These results provide a foundation for understanding of the structures and biological functions of mulberry P450 genes.

  14. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  15. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  16. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  17. Genome-Wide Identification, Localization, and Expression Analysis of Proanthocyanidin-Associated Genes in Brassica

    PubMed Central

    Liu, Xianjun; Lu, Ying; Yan, Mingli; Sun, Donghong; Hu, Xuefang; Liu, Shuyan; Chen, Sheyuan; Guan, Chunyun; Liu, Zhongsong

    2016-01-01

    Proanthocyanidins (PA) is a type of prominent flavonoid compound deposited in seed coats which controls the pigmentation in all Brassica species. Annotation of Brassica juncea genome survey sequences showed 72 PA genes; however, a functional description of these genes, especially how their interactions regulate seed pigmentation, remains elusive. In the present study, we designed 19 primer pairs to screen a bacterial artificial chromosome (BAC) library of B. juncea. A total of 284 BAC clones were identified and sequenced. Alignment of the sequences confirmed that 55 genes were cloned, with every Arabidopsis PA gene having 2–7 homologs in B. juncea. BLAST analysis using the recently released B. rapa or B. napus genome database identified 31 and 58 homologous genes, respectively. Mapping and phylogenetic analysis indicated that 30 B. juncea PA genes are located in the A-genome chromosomes except A04, whereas the remaining 25 genes are mapped to the B-genome chromosomes except B05 and B07. RNA-seq data and Fragments Per Kilobase of a transcript per Million mapped reads (FPKM) analysis showed that most of the PA genes were expressed in the seed coat of B. juncea and B. napus, and that BjuTT3, BjuTT18, BjuANR, BjuTT4-2, BjuTT4-3, BjuTT19-1, and BjuTT19-3 are transcriptionally regulated, and not expressed or downregulated in yellow-seeded testa. Importantly, our study facilitates in better understanding of the molecular mechanism underlying Brassica PA profiles and accumulation, as well as in further characterization of PA genes. PMID:28018375

  18. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution

    PubMed Central

    Gu, Yongzhe; Xing, Shilai; He, Chaoying

    2016-01-01

    Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant–pathogen interactions in in silico expression and protein–protein interaction network analyses. Most of these LLGs’ orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity. PMID:26868598

  19. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage.

  20. Genome-Wide Identification, Localization, and Expression Analysis of Proanthocyanidin-Associated Genes in Brassica.

    PubMed

    Liu, Xianjun; Lu, Ying; Yan, Mingli; Sun, Donghong; Hu, Xuefang; Liu, Shuyan; Chen, Sheyuan; Guan, Chunyun; Liu, Zhongsong

    2016-01-01

    Proanthocyanidins (PA) is a type of prominent flavonoid compound deposited in seed coats which controls the pigmentation in all Brassica species. Annotation of Brassica juncea genome survey sequences showed 72 PA genes; however, a functional description of these genes, especially how their interactions regulate seed pigmentation, remains elusive. In the present study, we designed 19 primer pairs to screen a bacterial artificial chromosome (BAC) library of B. juncea. A total of 284 BAC clones were identified and sequenced. Alignment of the sequences confirmed that 55 genes were cloned, with every Arabidopsis PA gene having 2-7 homologs in B. juncea. BLAST analysis using the recently released B. rapa or B. napus genome database identified 31 and 58 homologous genes, respectively. Mapping and phylogenetic analysis indicated that 30 B. juncea PA genes are located in the A-genome chromosomes except A04, whereas the remaining 25 genes are mapped to the B-genome chromosomes except B05 and B07. RNA-seq data and Fragments Per Kilobase of a transcript per Million mapped reads (FPKM) analysis showed that most of the PA genes were expressed in the seed coat of B. juncea and B. napus, and that BjuTT3, BjuTT18, BjuANR, BjuTT4-2, BjuTT4-3, BjuTT19-1, and BjuTT19-3 are transcriptionally regulated, and not expressed or downregulated in yellow-seeded testa. Importantly, our study facilitates in better understanding of the molecular mechanism underlying Brassica PA profiles and accumulation, as well as in further characterization of PA genes.

  1. A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene.

    PubMed

    Neely, G Gregory; Hess, Andreas; Costigan, Michael; Keene, Alex C; Goulas, Spyros; Langeslag, Michiel; Griffin, Robert S; Belfer, Inna; Dai, Feng; Smith, Shad B; Diatchenko, Luda; Gupta, Vaijayanti; Xia, Cui-Ping; Amann, Sabina; Kreitz, Silke; Heindl-Erdmann, Cornelia; Wolz, Susanne; Ly, Cindy V; Arora, Suchir; Sarangi, Rinku; Dan, Debasis; Novatchkova, Maria; Rosenzweig, Mark; Gibson, Dustin G; Truong, Darwin; Schramek, Daniel; Zoranovic, Tamara; Cronin, Shane J F; Angjeli, Belinda; Brune, Kay; Dietzl, Georg; Maixner, William; Meixner, Arabella; Thomas, Winston; Pospisilik, J Andrew; Alenius, Mattias; Kress, Michaela; Subramaniam, Sai; Garrity, Paul A; Bellen, Hugo J; Woolf, Clifford J; Penninger, Josef M

    2010-11-12

    Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.

  2. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  3. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  4. Genome-Wide Analysis of the NADK Gene Family in Plants

    PubMed Central

    Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming

    2014-01-01

    Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity

  5. Genome-wide unmasking of epigenetically silenced genes in lung adenocarcinoma from smokers and never smokers

    PubMed Central

    Yingling, Christin M.; Liu, Yushi; Tellez, Carmen S.; Van Neste, Leander; Baylin, Stephen S.; Belinsky, Steven A.

    2014-01-01

    Lung cancer in never smokers (NS) shows striking demographic, clinicopathological and molecular distinctions from the disease in smokers (S). Studies on selected genetic and epigenetic alterations in lung cancer identified that the frequency and profile of some abnormalities significantly differ by smoking status. This study compared the transcriptome of lung adenocarcinoma cell lines derived from S (n = 3) and NS (n = 3) each treated with vehicle (control), histone deacetylation inhibitor (trichostatin A) or DNA methylation inhibitor (5-aza-2′-deoxycytidine). Among 122 genes reexpressed following 5-aza-2′-deoxycytidine but not trichostatin A treatment in two or more cell lines (including 32 genes in S-only and 12 NS-only), methylation was validated for 80% (98/122 genes). After methylation analysis of 20 normal tissue samples and 14 additional non–small cell lung cancer cell lines (total 20), 39 genes frequently methylated in normal (>20%, 4/20) and 21 genes rarely methylated in non–small cell lung cancer (≤10%, 2/20) were excluded. The prevalence for methylation of the remaining 38 genes in lung adenocarcinomas from S (n = 97) and NS (n = 75) ranged from 8–89% and significantly differs between S and NS for CPEB1, CST6, EMILIN2, LAYN and MARVELD3 (P < 0.05). Furthermore, methylation of EMILIN2, ROBO3 and IGDCC4 was more prevalent in advanced (Stage II–IV, n = 61) than early (Stage I, n = 110) tumors. Knockdown of MARVELD3, one of the novel epigenetically silenced genes, by small interfering RNA significantly reduced anchorage-independent growth of lung cancer cells (P < 0.001). Collectively, this study has identified multiple, novel, epigenetically silenced genes in lung cancer and provides invaluable resources for the development of diagnostic and prognostic biomarkers. PMID:24398667

  6. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation

    PubMed Central

    Kaneko, Masayuki; Iwase, Ikuko; Yamasaki, Yuki; Takai, Tomoko; Wu, Yan; Kanemoto, Soshi; Matsuhisa, Koji; Asada, Rie; Okuma, Yasunobu; Watanabe, Takeshi; Imaizumi, Kazunori; Nomura, Yausyuki

    2016-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s. PMID:27485036

  7. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    SciTech Connect

    Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A; Lindroth, richard L; Yuan, Yinan

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  8. Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor

    PubMed Central

    Li, Shanshan; Wang, Weishan; Li, Xiao; Fan, Keqiang; Yang, Keqian

    2015-01-01

    The lack of reliable reference genes (RGs) in the genus Streptomyces hampers effort to obtain the precise data of transcript levels. To address this issue, we aimed to identify reliable RGs in the model organism Streptomyces coelicolor. A pool of potential RGs containing 1,471 genes was first identified by determining the intersection of genes with stable transcript levels from four time-series transcriptome microarray datasets of S. coelicolor M145 cultivated in different conditions. Then, following a strict rational selection scheme including homology analysis, disturbance analysis, function analysis and transcript abundance analysis, 13 candidates were selected from the 1,471 genes. Based on real-time quantitative reverse transcription PCR assays, SCO0710, SCO6185, SCO1544, SCO3183 and SCO4758 were identified as the top five genes with the most stable transcript levels among the 13 candidates. Further analyses showed these five genes also maintained stable transcript levels in different S. coelicolor strains, as well as in Streptomyces avermitilis MA-4680 and Streptomyces clavuligerus NRRL 3585, suggesting they could fulfill the requirements of accurate data normalization in streptomycetes. Moreover, the systematic strategy employed in this work could be used for reference in other microorganism to select reliable RGs. PMID:26527303

  9. Genome-wide identification, evolution and expression analysis of RING finger protein genes in Brassica rapa

    PubMed Central

    Alam, Intikhab; Yang, Yan-Qing; Wang, Yong; Zhu, Mei-Lan; Wang, Heng-Bo; Chalhoub, Boulos; Lu, Yun-Hai

    2017-01-01

    More and more RING finger genes were found to be implicated in various important biological processes. In the present study, a total of 731 RING domains in 715 predicted proteins were identified in Brassica rapa genome (AA, 2n = 20), which were further divided into eight types: RING-H2 (371), RING-HCa (215), RING-HCb (47), RING-v (44), RING-C2 (38), RING-D (10), RING-S/T (5) and RING-G (1). The 715 RING finger proteins were further classified into 51 groups according to the presence of additional domains. 700 RING finger protein genes were mapped to the 10 chromosomes of B. rapa with a range of 47 to 111 genes for each chromosome. 667 RING finger protein genes were expressed in at least one of the six tissues examined, indicating their involvement in various physiological and developmental processes in B. rapa. Hierarchical clustering analysis of RNA-seq data divided them into seven major groups, one of which includes 231 members preferentially expressed in leaf, and constitutes then a panel of gene candidates for studying the genetic and molecular mechanisms of leafy head traits in Brassica crops. Our results lay the foundation for further studies on the classification, evolution and putative functions of RING finger protein genes in Brassica species. PMID:28094809

  10. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    PubMed

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  11. Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma.

    PubMed

    Lee, Won Jae; Škalamera, Dubravka; Dahmer-Heath, Mareike; Shakhbazov, Konstanin; Ranall, Max V; Fox, Carly; Lambie, Duncan; Stevenson, Alexander J; Yaswen, Paul; Gonda, Thomas J; Gabrielli, Brian

    2017-03-01

    Malignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes. Genes known to bypass p16-induced senescence arrest, including the human papilloma virus 18 E7 gene ( HPV18E7), and genes such as the p16-binding CDK6 with expected functions, as well as panel of novel genes, were identified, including high-mobility group box (HMGB) proteins. A number of these were further validated in two other models of p16-induced senescence. Tissue immunohistochemistry demonstrated higher levels of CDK6 in primary melanomas compared with normal skin and nevi. Reduction of CDK6 levels drove melanoma cells expressing functional p16 into senescence, demonstrating its contribution to bypass senescence.

  12. Genome-wide discovery of Pax7 target genes during development.

    PubMed

    White, Robert B; Ziman, Melanie R

    2008-03-14

    Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.

  13. A genome-wide screen for identifying all regulators of a target gene

    PubMed Central

    Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Izard, Jérôme; Ropers, Delphine; de Jong, Hidde; Geiselmann, Johannes

    2013-01-01

    We have developed a new screening methodology for identifying all genes that control the expression of a target gene through genetic or metabolic interactions. The screen combines mutant libraries with luciferase reporter constructs, whose expression can be monitored in vivo and over time in different environmental conditions. We apply the method to identify the genes that control the expression of the gene acs, encoding the acetyl coenzyme A synthetase, in Escherichia coli. We confirm most of the known genetic regulators, including CRP–cAMP, IHF and components of the phosphotransferase system. In addition, we identify new regulatory interactions, many of which involve metabolic intermediates or metabolic sensing, such as the genes pgi, pfkA, sucB and lpdA, encoding enzymes in glycolysis and the TCA cycle. Some of these novel interactions were validated by quantitative reverse transcriptase-polymerase chain reaction. More generally, we observe that a large number of mutants directly or indirectly influence acs expression, an effect confirmed for a second promoter, sdhC. The method is applicable to any promoter fused to a luminescent reporter gene in combination with a deletion mutant library. PMID:23892289

  14. Genome-wide linkage and association analysis identifies major gene loci for guttural pouch tympany in Arabian and German warmblood horses.

    PubMed

    Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2012-01-01

    Equine guttural pouch tympany (GPT) is a hereditary condition affecting foals in their first months of life. Complex segregation analyses in Arabian and German warmblood horses showed the involvement of a major gene as very likely. Genome-wide linkage and association analyses including a high density marker set of single nucleotide polymorphisms (SNPs) were performed to map the genomic region harbouring the potential major gene for GPT. A total of 85 Arabian and 373 German warmblood horses were genotyped on the Illumina equine SNP50 beadchip. Non-parametric multipoint linkage analyses showed genome-wide significance on horse chromosomes (ECA) 3 for German warmblood at 16-26 Mb and 34-55 Mb and for Arabian on ECA15 at 64-65 Mb. Genome-wide association analyses confirmed the linked regions for both breeds. In Arabian, genome-wide association was detected at 64 Mb within the region with the highest linkage peak on ECA15. For German warmblood, signals for genome-wide association were close to the peak region of linkage at 52 Mb on ECA3. The odds ratio for the SNP with the highest genome-wide association was 0.12 for the Arabian. In conclusion, the refinement of the regions with the Illumina equine SNP50 beadchip is an important step to unravel the responsible mutations for GPT.

  15. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  16. Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription.

    PubMed

    Marza, Esther; Taouji, Saïd; Barroso, Kim; Raymond, Anne-Aurélie; Guignard, Léo; Bonneu, Marc; Pallares-Lupon, Néstor; Dupuy, Jean-William; Fernandez-Zapico, Martin E; Rosenbaum, Jean; Palladino, Francesca; Dupuy, Denis; Chevet, Eric

    2015-03-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.

  17. A genome-wide screen to identify genes controlling the rate of entry into mitosis in fission yeast.

    PubMed

    Moris, Naomi; Shrivastava, Jaya; Jeffery, Linda; Li, Juan-Juan; Hayles, Jacqueline; Nurse, Paul

    2016-11-16

    We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8-10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.

  18. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption

    PubMed Central

    Pirastu, Nicola; Kooyman, Maarten; Robino, Antonietta; van der Spek, Ashley; Navarini, Luciano; Amin, Najaf; Karssen, Lennart C.; Van Duijn, Cornelia M; Gasparini, Paolo

    2016-01-01

    Coffee is one of the most consumed beverages world-wide and one of the primary sources of caffeine intake. Given its important health and economic impact, the underlying genetics of its consumption has been widely studied. Despite these efforts, much has still to be uncovered. In particular, the use of non-additive genetic models may uncover new information about the genetic variants driving coffee consumption. We have conducted a genome-wide association study in two Italian populations using additive, recessive and dominant models for analysis. This has uncovered a significant association in the PDSS2 gene under the recessive model that has been replicated in an independent cohort from the Netherlands (ERF). The identified gene has been shown to negatively regulate the expression of the caffeine metabolism genes and can thus be linked to coffee consumption. Further bioinformatics analysis of eQTL and histone marks from Roadmap data has evidenced a possible role of the identified SNPs in regulating PDSS2 gene expression through enhancers present in its intron. Our results highlight a novel gene which regulates coffee consumption by regulating the expression of the genes linked to caffeine metabolism. Further studies will be needed to clarify the biological mechanism which links PDSS2 and coffee consumption. PMID:27561104

  19. A genome-wide microarray highlights the antiinflammatory genes targeted by oolong tea theasinensin A in macrophages.

    PubMed

    Chen, Jihua; Qin, Si; Xiao, Jiping; Tanigawa, Shunsuke; Uto, Takuhiro; Hashimoto, Fumio; Fujii, Makoto; Hou, De-Xing

    2011-01-01

    Theasinensin A is one of the oolong tea theasinensins, which differ from green tea catechins and black tea theaflavins. In a previous study, we found that theasinesin A had a potential effect on antiinflammation since theasinensin A suppressed LPS-induced COX2 and PGE(2) production. To clarify the molecular mechanisms, we investigated the gene expression profiling in macrophage-like cells treated with theasinensin A through a genome-wide DNA microarray in the present study. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in LPS-activated RAW264 cells, 259 gene signals of which were attenuated by theasinensin A treatment (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 471 gene signals were restored by theasinensin A treatment (≥2-fold). These genes were further categorized as "defense, inflammatory response, cytokines activities, and receptor activities," and some of them were confirmed by real-time polymerase chain reaction. Furthermore, pathways analysis revealed that theasinensin A regulated the relevant expression networks of chemokines, interleukins, and interferons to exert its antiinflammatory effects.

  20. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    PubMed Central

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  1. Genetic factors in nonsmokers with age-related macular degeneration revealed through genome-wide gene-environment interaction analysis.

    PubMed

    Naj, Adam C; Scott, William K; Courtenay, Monique D; Cade, William H; Schwartz, Stephen G; Kovach, Jaclyn L; Agarwal, Anita; Wang, Gaofeng; Haines, Jonathan L; Pericak-Vance, Margaret A

    2013-05-01

    Relatively little is known about the interaction between genes and environment in the complex etiology of age-related macular degeneration (AMD). This study aimed to identify novel factors associated with AMD by analyzing gene-smoking interactions in a genome-wide association study of 1207 AMD cases and 686 controls of Caucasian background with genotype data on 668,238 single nucleotide polymorphisms (SNPs) after quality control. Participants' history of smoking at least 100 cigarettes lifetime was determined by a self-administered questionnaire. SNP associations modeled the effect of the minor allele additively on AMD using logistic regression, with adjustment for age, sex, and ever/never smoking. Joint effects of SNPs and smoking were examined comparing a null model containing only age, sex, and smoking against an extended model including genotypic and interaction terms. Genome-wide significant main effects were detected at three known AMD loci: CFH (P = 7.51×10(-30) ), ARMS2 (P = 1.94×10(-23) ), and RDBP/CFB/C2 (P = 4.37×10(-10) ), while joint effects analysis revealed three genomic regions with P < 10(-5) . Analyses stratified by smoking found genetic associations largely restricted to nonsmokers, with one notable exception: the chromosome 18q22.1 intergenic SNP rs17073641 (between SERPINB8 and CDH7), more strongly associated in nonsmokers (OR = 0.57, P = 2.73 × 10(-5) ), with an inverse association among smokers (OR = 1.42, P = 0.00228), suggesting that smoking modifies the effect of some genetic polymorphisms on AMD risk.

  2. The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis.

    PubMed

    Li, Jun; Gao, Guizhen; Zhang, Tianyao; Wu, Xiaoming

    2013-02-01

    Phytocyanins (PCs) are a plant-specific family of small copper-containing electron transfer proteins. PCs may bind with a single copper atom to function as electron transporters in various biological systems, such as copper trafficking and plant photosynthesis. Evidence indicates that PCs may also be involved in plant developmental processes and stress responses. Many PCs possess arabinogalactan protein-like regions and are therefore termed chimeric arabinogalactan proteins (CAGPs). Previously, 38 and 62 PC genes have been identified in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), respectively. The recent release of the Chinese cabbage genome (B. rapa ssp. Pekinensis line Chiifu-401-42) enabled us to perform a genome-wide identification and analysis. In this study we identified 84 putative PC genes in the B. rapa genome. All of the Brassica rapa phytocyanins (BrPCs) described here could be divided, based on motif constitution, into the following three main subclasses: 52 early nodulin-like proteins (ENODLs), 16 uclacyanin-like proteins (UCLs), and 11 stellacyanin-like proteins (SCLs). A structural analysis predicted that 71 BrPCs contained N-terminal secretion signals and 45 BrPCs may be glycosylphosphatidylinositol-anchored to the plasma membrane. Glycosylation prediction revealed that 48 BrPCs were CAGPs with putative arabinogalactan glycomodules, and 57 BrPCs had N-glycosylation sites. Additionally, gene duplication analysis demonstrated that almost all of the duplicated BrPC genes shared the same conserved collinear blocks and that segmental duplications play an important role in the diversification of this gene family. Surprisingly, all BrUCL genes were duplicated except for BrUCL16. Expression analyses indicated that BrENODL22/27 and BrSCL8/9 were highly expressed in reproductive organs; BrUCL6/16 was strongly expressed in roots and even more strongly expressed in stems. The genome-wide identification, classification and expression analysis of

  3. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Yanbing, Gu; Zhirui, Ji; Fumei, Chi; Zhuang, Qiao; Chengnan, Xu; Junxiang, Zhang; Zongshan, Zhou; Qinglong, Dong

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  4. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression

    PubMed Central

    Lamitina, Todd; Huang, Chunyi George; Strange, Kevin

    2006-01-01

    The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (Pgpdh-1::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using Pgpdh-1::GFP expression as a phenotype, we screened ≈16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function. PMID:16880390

  5. Genome-wide identification, phylogeny, and expression of fibroblast growth genes in common carp.

    PubMed

    Jiang, Likun; Zhang, Songhao; Dong, Chuanju; Chen, Baohua; Feng, Jingyan; Peng, Wenzhu; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-03-10

    Fibroblast growth factors (FGFs) are a large family of polypeptide growth factors, which are found in organisms ranging from nematodes to humans. In vertebrates, a number of FGFs have been shown to play important roles in developing embryos and adult organisms. Among the vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. However, studies on teleost FGFs are mainly limited to model species, hence we investigated FGFs in the common carp genome. We identified 35 FGFs in the common carp genome. Phylogenetic analysis revealed that most of the FGFs are highly conserved, though recent gene duplication and gene losses do exist. By examining the copy number of FGFs in several vertebrate genomes, we found that eight FGFs in common carp have undergone gene duplications, including FGF6a, FGF6b, FGF7, FGF8b, FGF10a, FGF11b, FGF13a, and FGF18b. The expression patterns of all FGFs were examined in various tissues, including the blood, brain, gill, heart, intestine, muscle, skin, spleen and kidney, showing that most of the FGFs were ubiquitously expressed, indicating their critical role in common carp. To some extent, examination of gene families with detailed phylogenetic or orthology analysis verified the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. Gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp FGF gene family provides an important genomic resource for future biochemical, physiological, and phylogenetic studies on FGFs in teleosts.

  6. Genome-wide gene order distances support clustering the gram-positive bacteria

    PubMed Central

    House, Christopher H.; Pellegrini, Matteo; Fitz-Gibbon, Sorel T.

    2015-01-01

    Initially using 143 genomes, we developed a method for calculating the pair-wise distance between prokaryotic genomes using a Monte Carlo method to estimate the conservation of gene order. The method was based on repeatedly selecting five or six non-adjacent random orthologs from each of two genomes and determining if the chosen orthologs were in the same order. The raw distances were then corrected for gene order convergence using an adaptation of the Jukes-Cantor model, as well as using the common distance correction D′ = −ln(1-D). First, we compared the distances found via the order of six orthologs to distances found based on ortholog gene content and small subunit rRNA sequences. The Jukes-Cantor gene order distances are reasonably well correlated with the divergence of rRNA (R2 = 0.24), especially at rRNA Jukes-Cantor distances of less than 0.2 (R2 = 0.52). Gene content is only weakly correlated with rRNA divergence (R2 = 0.04) over all distances, however, it is especially strongly correlated at rRNA Jukes-Cantor distances of less than 0.1 (R2 = 0.67). This initial work suggests that gene order may be useful in conjunction with other methods to help understand the relatedness of genomes. Using the gene order distances in 143 genomes, the relations of prokaryotes were studied using neighbor joining and agreement subtrees. We then repeated our study of the relations of prokaryotes using gene order in 172 complete genomes better representing a wider-diversity of prokaryotes. Consistently, our trees show the Actinobacteria as a sister group to the bulk of the Firmicutes. In fact, the robustness of gene order support was found to be considerably greater for uniting these two phyla than for uniting any of the proteobacterial classes together. The results are supportive of the idea that Actinobacteria and Firmicutes are closely related, which in turn implies a single origin for the gram-positive cell. PMID:25653643

  7. Genome-wide assessment of differential effector gene use in embryogenesis.

    PubMed

    Barsi, Julius C; Tu, Qiang; Calestani, Cristina; Davidson, Eric H

    2015-11-15

    Six different populations of cells were isolated by fluorescence-activated cell sorting from disaggregated late blastula- and gastrula-stage sea urchin embryos according to the regulatory states expressed in these cells, as reported by recombineered bacterial artificial chromosomes producing fluorochromes. Transcriptomes recovered from these embryonic cell populations revealed striking, early differential expression of large cohorts of effector genes. The six cell populations were presumptive pigment cells, presumptive neurogenic cells, presumptive skeletogenic cells, cells from the stomodeal region of the oral ectoderm, ciliated band cells and cells from the endoderm/ectoderm boundary that will give rise both to hindgut and to border ectoderm. Transcriptome analysis revealed that each of these domains specifically expressed several hundred effector genes at significant levels. Annotation indicated the qualitative individuality of the functional nature of each cell population, even though they were isolated from embryos only 1-2 days old. In no case was more than a tiny fraction of the transcripts enriched in one population also enriched in any other of the six populations studied. As was particularly clear in the cases of the presumptive pigment, neurogenic and skeletogenic cells, all three of which represent precociously differentiating cell types of this embryo, most specifically expressed genes of given cell types are not significantly expressed at all in the other cell types. Thus, at the effector gene level, a dramatic, cell type-specific pattern of differential gene regulation is established well before any significant embryonic morphogenesis has occurred.

  8. DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles.

    PubMed

    Wedd, Laura; Maleszka, Ryszard

    2016-01-01

    In contrast to heavily methylated mammalian genomes, invertebrate genomes are only sparsely methylated in a 'mosaic' fashion with the majority of methylated CpG dinucleotides found across gene bodies. Importantly, this gene body methylation is frequently associated with active transcription, and studies in the honeybee have shown that there are strong links between gene body methylation and alternative splicing. Additional work also highlights that obligatory methylated epialleles influence transcriptional changes in a context-specific manner. Here we discuss the current knowledge in this emerging field and highlight both similarities and differences between DNA methylation systems in mammals and invertebrates. Finally, we argue that the relationship between genetic variation, differential DNA methylation, other epigenetic modifications and the transcriptome must be further explored to fully understand the role of DNA methylation in converting genomic sequences into phenotypes.

  9. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses.

    PubMed

    Orr, N; Back, W; Gu, J; Leegwater, P; Govindarajan, P; Conroy, J; Ducro, B; Van Arendonk, J A M; MacHugh, D E; Ennis, S; Hill, E W; Brama, P A J

    2010-12-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results.

  10. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

    PubMed Central

    Glessner, Joseph T.; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E.; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W.; Bradfield, Jonathan P.; Imielinski, Marcin; Frackelton, Edward C.; Reichert, Jennifer; Crawford, Emily L.; Munson, Jeffrey; Sleiman, Patrick M. A.; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J.; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M.; Rudd, Danielle S.; Zurawiecki, Danielle; McDougle, Christopher J.; Davis, Lea K.; Miller, Judith; Posey, David J.; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M.; Bernier, Raphael; Levy, Susan E.; Schultz, Robert T.; Dawson, Geraldine; Owley, Thomas; McMahon, William M.; Wassink, Thomas H.; Sweeney, John A.; Nurnberger, John I.; Coon, Hilary; Sutcliffe, James S.; Minshew, Nancy J.; Grant, Struan F. A.; Bucan, Maja; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Schellenberg, Gerard D.; Hakonarson, Hakon

    2010-01-01

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1–4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5–9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10−3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10−3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10−6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD. PMID:19404257

  11. Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species

    PubMed Central

    Macharia, Rosaline; Mireji, Paul; Murungi, Edwin; Murilla, Grace; Christoffels, Alan; Aksoy, Serap; Masiga, Daniel

    2016-01-01

    For decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae), vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation. Here, we identified and annotated the major chemosensory gene families in Glossina. We identified a total of 118, 115, 124, and 123 chemosensory genes in Glossina austeni, G. brevipalpis, G. f. fuscipes, G. pallidipes, respectively, relative to 127 reported in G. m. morsitans. Our results show that tsetse fly genomes have fewer chemosensory genes when compared to other dipterans such as Musca domestica (n>393), Drosophila melanogaster (n = 246) and Anopheles gambiae (n>247). We also found that Glossina chemosensory genes are dispersed across distantly located scaffolds in their respective genomes, in contrast to other insects like D. melanogaster whose genes occur in clusters. Further, Glossina appears to be devoid of sugar receptors and to have expanded CO2 associated receptors, potentially reflecting Glossina's obligate hematophagy and the need to detect hosts that may be out of sight. We also identified, in all species, homologs of Ir84a; a Drosophila-specific ionotropic receptor that promotes male courtship suggesting that this is a conserved trait in tsetse flies. Notably, our selection analysis revealed that a total of four gene loci (Gr21a, GluRIIA, Gr28b, and Obp83a) were under positive selection, which confers fitness advantage to species. These findings provide a platform for studies to further define the language of communication of tsetse with their environment, and influence development of novel approaches for control. PMID:26886411

  12. Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis.

    PubMed

    Liu, Hui; Deng, Zhi; Chen, Jiangshu; Wang, Sen; Hao, Lili; Li, Dejun

    2016-08-01

    Metacaspases, a family of cysteine proteases, have been suggested to play important roles in programmed cell death (PCD) during plant development and stress responses. To date, no systematic characterization of this gene family has been reported in rubber tree (Hevea brasiliensis). In the present study, nine metacaspase genes, designated as HbMC1 to HbMC9, were identified from whole-genome sequence of rubber tree. Multiple sequence alignment and phylogenetic analyses suggested that these genes were divided into two types: type I (HbMC1-HBMC7) and type II (HbMC8 and HbMC9). Gene structure analysis demonstrated that type I and type II HbMCs separately contained four and two introns, indicating the conserved exon-intron organization of HbMCs. Quantitative real-time PCR analysis revealed that HbMCs showed distinct expression patterns in different tissues, suggesting the functional diversity of HbMCs in various tissues during development. Most of the HbMCs were regulated by drought, cold, and salt stress, implying their possible functions in regulating abiotic stress-induced cell death. Of the nine HbMCs, HbMC1, HbMC2, HbMC5, and HbMC8 displayed a significantly higher relative transcript accumulation in barks of tapping panel dryness (TPD) trees compared with healthy trees. In addition, the four genes were up-regulated by ethephon (ET) and methyl jasmonate (MeJA), indicating their potential involvement in TPD resulting from ET- or JA-induced PCD. In summary, this work provides valuable information for further functional characterization of HbMC genes in rubber tree.

  13. Genome-Wide Identification of Genes Required for Fitness of Group A Streptococcus in Human Blood

    PubMed Central

    Le Breton, Yoann; Mistry, Pragnesh; Valdes, Kayla M.; Quigley, Jeffrey; Kumar, Nikhil; Tettelin, Hervé

    2013-01-01

    The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes. PMID:23297387

  14. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum)

    PubMed Central

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax. PMID:25072186

  15. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study.

    PubMed

    Liu, Yao-Zhong; Wilson, Scott G; Wang, Liang; Liu, Xiao-Gang; Guo, Yan-Fang; Li, Jian; Yan, Han; Deloukas, Panos; Soranzo, Nicole; Chinappen-Horsley, Usha; Chinnapen-Horsley, Usha; Cervino, Alessandra; Cervino, Alesandra; Williams, Frances M; Xiong, Dong-Hai; Zhang, Yin-Ping; Jin, Tian-Bo; Levy, Shawn; Papasian, Christopher J; Drees, Betty M; Hamilton, James J; Recker, Robert R; Spector, Tim D; Deng, Hong-Wen

    2008-09-08

    Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating approximately 380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72x10(-7). The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62x10(-3) and 2.44x10(-3), respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10(-5) in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only approximately 0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66x10(-3) (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells

  16. Genome wide analysis of the bovine mucin genes and their gastrointestinal transcription profile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mucins are large glycoproteins implicated in protection of all mucosal surfaces. In humans and rodents, the mucin gene family has been well described and previous studies have investigated the distribution and function of mucins in the respiratory, urogenital and gastrointestinal (GI) tracts. In con...

  17. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    PubMed Central

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A.; Marot, Jessica E.; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R.

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  18. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    PubMed

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-08-09

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  19. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  20. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins.

    PubMed

    Sun, Yan-Bo; Zhou, Wei-Ping; Liu, He-Qun; Irwin, David M; Shen, Yong-Yi; Zhang, Ya-Ping

    2013-01-01

    Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment.

  1. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    PubMed

    Ranaware, Pradip B; Mishra, Anamika; Vijayakumar, Periyasamy; Gandhale, Pradeep N; Kumar, Himanshu; Kulkarni, Diwakar D; Raut, Ashwin Ashok

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  2. Genome-Wide Scans for Candidate Genes Involved in the Aquatic Adaptation of Dolphins

    PubMed Central

    Liu, He-Qun; Irwin, David M.; Shen, Yong-Yi; Zhang, Ya-Ping

    2013-01-01

    Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment. PMID:23246795

  3. Gene-based genome-wide association study identified 19p13.3 for lean body mass

    PubMed Central

    Ran, Shu; Zhang, Lei; Liu, Lu; Feng, An-Ping; Pei, Yu-Fang; Zhang, Lei; Han, Ying-Ying; Lin, Yong; Li, Xiao; Kong, Wei-Wen; You, Xin-Yi; Zhao, Wen; Tian, Qing; Shen, Hui; Zhang, Yong-Hong; Deng, Hong-Wen

    2017-01-01

    Lean body mass (LBM) is a complex trait for human health. To identify genomic loci underlying LBM, we performed a gene-based genome-wide association study of lean mass index (LMI) in 1000 unrelated Caucasian subjects, and replicated in 2283 unrelated Caucasians subjects. Gene-based association analyses highlighted the significant associations of three genes UQCR, TCF3 and MBD3 in one single locus 19p13.3 (discovery p = 6.10 × 10−5, 1.65 × 10−4 and 1.10 × 10−4; replication p = 2.21 × 10−3, 1.84 × 10−3 and 6.95 × 10−3; combined p = 2.26 × 10−6, 4.86 × 10−6 and 1.15 × 10−5, respectively). These results, together with the known functional relevance of the three genes to LMI, suggested that the 19p13.3 region containing UQCR, TCF3 and MBD3 genes was a novel locus underlying lean mass variation. PMID:28322352

  4. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor

    PubMed Central

    Kaneko, Izumi; Iwanaga, Shiroh; Kato, Tomomi; Kobayashi, Issei; Yuda, Masao

    2015-01-01

    Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. PMID:26018192

  5. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca).

    PubMed

    Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique

    2016-01-01

    In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm.

  6. Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1.

    PubMed

    Sankar, Savita; Yellajoshyula, Dhananjay; Zhang, Bo; Teets, Bryan; Rockweiler, Nicole; Kroll, Kristen L

    2016-11-24

    Neural cell fate acquisition is mediated by transcription factors expressed in nascent neuroectoderm, including Geminin and members of the Zic transcription factor family. However, regulatory networks through which this occurs are not well defined. Here, we identified Geminin-associated chromatin locations in embryonic stem cells and Geminin- and Zic1-associated locations during neural fate acquisition at a genome-wide level. We determined how Geminin deficiency affected histone acetylation at gene promoters during this process. We integrated these data to demonstrate that Geminin associates with and promotes histone acetylation at neurodevelopmental genes, while Geminin and Zic1 bind a shared gene subset. Geminin- and Zic1-associated genes exhibit embryonic nervous system-enriched expression and encode other regulators of neural development. Both Geminin and Zic1-associated peaks are enriched for Zic1 consensus binding motifs, while Zic1-bound peaks are also enriched for Sox3 motifs, suggesting co-regulatory potential. Accordingly, we found that Geminin and Zic1 could cooperatively activate the expression of several shared targets encoding transcription factors that control neurogenesis, neural plate patterning, and neuronal differentiation. We used these data to construct gene regulatory networks underlying neural fate acquisition. Establishment of this molecular program in nascent neuroectoderm directly links early neural cell fate acquisition with regulatory control of later neurodevelopment.

  7. Genome-wide transcriptome analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2016-05-10

    The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species.

  8. Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1

    PubMed Central

    Sankar, Savita; Yellajoshyula, Dhananjay; Zhang, Bo; Teets, Bryan; Rockweiler, Nicole; Kroll, Kristen L.

    2016-01-01

    Neural cell fate acquisition is mediated by transcription factors expressed in nascent neuroectoderm, including Geminin and members of the Zic transcription factor family. However, regulatory networks through which this occurs are not well defined. Here, we identified Geminin-associated chromatin locations in embryonic stem cells and Geminin- and Zic1-associated locations during neural fate acquisition at a genome-wide level. We determined how Geminin deficiency affected histone acetylation at gene promoters during this process. We integrated these data to demonstrate that Geminin associates with and promotes histone acetylation at neurodevelopmental genes, while Geminin and Zic1 bind a shared gene subset. Geminin- and Zic1-associated genes exhibit embryonic nervous system-enriched expression and encode other regulators of neural development. Both Geminin and Zic1-associated peaks are enriched for Zic1 consensus binding motifs, while Zic1-bound peaks are also enriched for Sox3 motifs, suggesting co-regulatory potential. Accordingly, we found that Geminin and Zic1 could cooperatively activate the expression of several shared targets encoding transcription factors that control neurogenesis, neural plate patterning, and neuronal differentiation. We used these data to construct gene regulatory networks underlying neural fate acquisition. Establishment of this molecular program in nascent neuroectoderm directly links early neural cell fate acquisition with regulatory control of later neurodevelopment. PMID:27881878

  9. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza

    PubMed Central

    Xu, Zhichao; Ji, Aijia; Chen, Shilin

    2016-01-01

    ABSTRACT Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. PMID:27230647

  10. Genome wide screening of candidate genes for improving piglet birth weight using high and low estimated breeding value populations.

    PubMed

    Zhang, Lifan; Zhou, Xiang; Michal, Jennifer J; Ding, Bo; Li, Rui; Jiang, Zhihua

    2014-01-01

    Birth weight is an economically important trait in pig production because it directly impacts piglet growth and survival rate. In the present study, we performed a genome wide survey of candidate genes and pathways associated with individual birth weight (IBW) using the Illumina PorcineSNP60 BeadChip on 24 high (HEBV) and 24 low estimated breeding value (LEBV) animals. These animals were selected from a reference population of 522 individuals produced by three sires and six dam lines, which were crossbreds with multiple breeds. After quality-control, 43,257 SNPs (single nucleotide polymorphisms), including 42,243 autosomal SNPs and 1,014 SNPs on chromosome X, were used in the data analysis. A total of 27 differentially selected regions (DSRs), including 1 on Sus scrofa chromosome 1 (SSC1), 1 on SSC4, 2 on SSC5, 4 on SSC6, 2 on SSC7, 5 on SSC8, 3 on SSC9, 1 on SSC14, 3 on SSC18, and 5 on SSCX, were identified to show the genome wide separations between the HEBV and LEBV groups for IBW in piglets. A DSR with the most number of significant SNPs (including 7 top 0.1% and 31 top 5% SNPs) was located on SSC6, while another DSR with the largest genetic differences in F ST was found on SSC18. These regions harbor known functionally important genes involved in growth and development, such as TNFRSF9 (tumor necrosis factor receptor superfamily member 9), CA6 (carbonic anhydrase VI) and MDFIC (MyoD family inhibitor domain containing). A DSR rich in imprinting genes appeared on SSC9, which included PEG10 (paternally expressed 10), SGCE (sarcoglycan, epsilon), PPP1R9A (protein phosphatase 1, regulatory subunit 9A) and ASB4 (ankyrin repeat and SOCS box containing 4). More importantly, our present study provided evidence to support six quantitative trait loci (QTL) regions for pig birth weight, six QTL regions for average birth weight (ABW) and three QTL regions for litter birth weight (LBW) reported previously by other groups. Furthermore, gene ontology analysis with 183 genes

  11. Genome-wide gene expression profiling to predict resistance to anthracyclines in breast cancer patients

    PubMed Central

    Haibe-Kains, B.; Desmedt, C.; Di Leo, A.; Azambuja, E.; Larsimont, D.; Selleslags, J.; Delaloge, S.; Duhem, C.; Kains, J.P.; Carly, B.; Maerevoet, M.; Vindevoghel, A.; Rouas, G.; Lallemand, F.; Durbecq, V.; Cardoso, F.; Salgado, R.; Rovere, R.; Bontempi, G.; Michiels, S.; Buyse, M.; Nogaret, J.M.; Qi, Y.; Symmans, F.; Pusztai, L.; D'Hondt, V.; Piccart-Gebhart, M.; Sotiriou, C.

    2013-01-01

    Validated biomarkers predictive of response/resistance to anthracyclines in breast cancer are currently lacking. The neoadjuvant Trial of Principle (TOP) study, in which patients with estrogen receptor (ER)–negative tumors were treated with anthracycline (epirubicin) monotherapy, was specifically designed to evaluate the predictive value of topoisomerase II-alpha (TOP2A) and develop a gene expression signature to identify those patients who do not benefit from anthracyclines. Here we describe in details the contents and quality controls for the gene expression and clinical data associated with the study published by Desmedt and colleagues in the Journal of Clinical Oncology in 2011 (Desmedt et al., 2011). We also provide R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset. PMID:26484051

  12. Genome-Wide Sequencing for Prenatal Detection of Fetal Single-Gene Disorders.

    PubMed

    van den Veyver, Ignatia B; Eng, Christine M

    2015-08-07

    New sequencing methods capable of rapidly analyzing the genome at increasing resolution have transformed diagnosis of single-gene or oligogenic genetic disorders in pediatric and adult medicine. Targeted tests, consisting of disease-focused multigene panels and diagnostic exome sequencing to interrogate the sequence of the coding regions of nearly all genes, are now clinically offered when there is suspicion for an undiagnosed genetic disorder or cancer in children and adults. Implementation of diagnostic exome and genome sequencing tests on invasively and noninvasively obtained fetal DNA samples for prenatal genetic diagnosis is also being explored. We predict that they will become more widely integrated into prenatal care in the near future. Providers must prepare for the practical, ethical, and societal dilemmas that accompany the capacity to generate and analyze large amounts of genetic information about the fetus during pregnancy.

  13. Genome-Wide Gene Expression Profiling Reveals Conserved and Novel Molecular Functions of the Stigma in Rice1[W

    PubMed Central

    Li, Meina; Xu, Wenying; Yang, Wenqiang; Kong, Zhaosheng; Xue, Yongbiao

    2007-01-01

    In angiosperms, the stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about the genes that regulate these processes in rice (Oryza sativa). Here, we generate rice stigma-specific or -preferential gene expression profiles through comparing genome-wide expression patterns of hand-dissected, unpollinated stigma at anthesis with seven tissues, including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds 5 d after pollination, 10-d-old embryo, 10-d-old endosperm, and suspension-cultured cells by using both 57 K Affymetrix rice whole-genome array and 10 K rice cDNA microarray. A high reproducibility of the microarray results was detected between the two different technology platforms. In total, we identified 548 genes to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-time quantitative reverse transcription-polymerase chain reaction analysis of 34 selected genes all confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene Ontology analysis shows that several auxin-signaling components, transcription, and stress-related genes are significantly overrepresented in the rice stigma gene set. Interestingly, most of them also share several cis-regulatory elements with known stress-responsive genes, supporting the notion of an overlap of genetic programs regulating pollination and stress/defense responses. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis (Arabidopsis thaliana). Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis. PMID:17556504

  14. Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization.

    PubMed

    Liu, Shengrui; Khan, Muhammad Rehman Gul; Li, Yongping; Zhang, Jinzhi; Hu, Chungen

    2014-10-01

    The CCCH-type zinc finger proteins comprise a large gene family of regulatory proteins and are widely distributed in eukaryotic organisms. The CCCH proteins have been implicated in multiple biological processes and environmental responses in plants. Little information is available, however, about CCCH genes in plants, especially in woody plants such as citrus. The release of the whole-genome sequence of citrus allowed us to perform a genome-wide analysis of CCCH genes and to compare the identified proteins with their orthologs in model plants. In this study, 62 CCCH genes and a total of 132 CCCH motifs were identified, and a comprehensive analysis including the chromosomal locations, phylogenetic relationships, functional annotations, gene structures and conserved motifs was performed. Distribution mapping revealed that 54 of the 62 CCCH genes are unevenly dispersed on the nine citrus chromosomes. Based on phylogenetic analysis and gene structural features, we constructed 5 subfamilies of 62 CCCH members and integrative subfamilies from citrus, Arabidopsis, and rice, respectively. Importantly, large numbers of SNPs and InDels in 26 CCCH genes were identified from Poncirus trifoliata and Fortunella japonica using whole-genome deep re-sequencing. Furthermore, citrus CCCH genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various stress conditions. Our comprehensive analysis of CleC3Hs is a valuable resource that further elucidates the roles of CCCH family members in plant growth and development. In addition, variants and comparative genomics analyses deepen our understanding of the evolution of the CCCH gene family and will contribute to further genetics and genomics studies of citrus and other plant species.

  15. Pathway-Based Analysis of a Melanoma Genome-Wide Association Study: Analysis of Genes Related to Tumour-Immunosuppression

    PubMed Central

    Schoof, Nils; Iles, Mark M.; Bishop, D. Timothy; Newton-Bishop, Julia A.; Barrett, Jennifer H.; consortium, GenoMEL

    2011-01-01

    Systemic immunosuppression is a risk factor for melanoma, and sunburn-induced immunosuppression is thought to be causal. Genes in immunosuppression pathways are therefore candidate melanoma-susceptibility genes. If variants within these genes individually have a small effect on disease risk, the association may be undetected in genome-wide association (GWA) studies due to low power to reach a high significance level. Pathway-based approaches have been suggested as a method of incorporating a priori knowledge into the analysis of GWA studies. In this study, the association of 1113 single nucleotide polymorphisms (SNPs) in 43 genes (39 genomic regions) related to immunosuppression have been analysed using a gene-set approach in 1539 melanoma cases and 3917 controls from the GenoMEL consortium GWA study. The association between melanoma susceptibility and the whole set of tumour-immunosuppression genes, and also predefined functional subgroups of genes, was considered. The analysis was based on a measure formed by summing the evidence from the most significant SNP in each gene, and significance was evaluated empirically by case-control label permutation. An association was found between melanoma and the complete set of genes (pemp = 0.002), as well as the subgroups related to the generation of tolerogenic dendritic cells (pemp = 0.006) and secretion of suppressive factors (pemp = 0.0004), thus providing preliminary evidence of involvement of tumour-immunosuppression gene polymorphisms in melanoma susceptibility. The analysis was repeated on a second phase of the GenoMEL study, which showed no evidence of an association. As one of the first attempts to replicate a pathway-level association, our results suggest that low power and heterogeneity may present challenges. PMID:22216283

  16. Genome-Wide Identification of Klebsiella pneumoniae Fitness Genes during Lung Infection

    PubMed Central

    Breen, Paul; Deornellas, Valerie; Mu, Qiao; Zhao, Lili; Wu, Weisheng; Cavalcoli, James D.; Mobley, Harry L. T.

    2015-01-01

    ABSTRACT Klebsiella pneumoniae is an urgent public health threat because of resistance to carbapenems, antibiotics of last resort against Gram-negative bacterial infections. Despite the fact that K. pneumoniae is a leading cause of pneumonia in hospitalized patients, the bacterial factors required to cause disease are poorly understood. Insertion site sequencing combines transposon mutagenesis with high-throughput sequencing to simultaneously screen thousands of insertion mutants for fitness defects during infection. Using the recently sequenced K. pneumoniae strain KPPR1 in a well-established mouse model of pneumonia, insertion site sequencing was performed on a pool of >25,000 transposon mutants. The relative fitness requirement of each gene was ranked based on the ratio of lung to inoculum read counts and concordance between insertions in the same gene. This analysis revealed over 300 mutants with at least a 2-fold fitness defect and 69 with defects ranging from 10- to >2,000-fold. Construction of 6 isogenic mutants for use in competitive infections with the wild type confirmed their requirement for lung fitness. Critical fitness genes included those for the synthesis of branched-chain and aromatic amino acids that are essential in mice and humans, the transcriptional elongation factor RfaH, and the copper efflux pump CopA. The majority of fitness genes were conserved among reference strains representative of diverse pathotypes. These results indicate that regulation of outer membrane components and synthesis of amino acids that are essential to its host are critical for K. pneumoniae fitness in the lung. PMID:26060277

  17. Genome-wide Gene Expression Profiling of Acute Metal Exposures in Male Zebrafish

    DTIC Science & Technology

    2014-10-23

    Zebrafish Whole organism Nickel Chromium Cobalt Toxicogenomics To capture global responses to metal poisoning and mechanistic insights into metal...nickel, chromium , cobalt, toxicogenomics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 3 19a...fold changedata stood as is. Exposure to chromium , cobalt, or nickel significantly altered the expression of 696, 461, and 287 genes respectively (Fig. 2

  18. Genome-wide differential gene expression profiles in broiler chickens with gangrenous dermatitis.

    PubMed

    Kim, Duk Kyung; Lillehoj, Hyun S; Lee, Kyung Woo; Jang, Seung Ik; Neumann, Anthony P; Siragusa, Gregory R; Lillehoj, Erik P; Hong, Yeong Ho

    2012-12-01

    Gangrenous dermatitis (GD) is a disease of poultry characterized by necrosis of the skin and severe cellulitis of the subcutaneous tissues caused by infection with Clostridium septicum (CS) and/or Clostridium perfringens (CP) type A. While GD causes significant morbidity, mortality, and economic loss to the poultry industry, the fundamental mechanisms underlying this host-pathogen interaction are relatively unknown. This study used comparative global gene expression microarray analysis of GD-affected and clinically healthy chickens from a recent GD outbreak to glean insights into the molecular and cellular changes associated with this disease process. Histopathologic and immunohistochemical analyses confirmed extensive muscle damage and prominent leukocyte infiltration in the skin of GD-affected birds but not in healthy controls. The levels of mRNAs in the skin and underlying muscle corresponding to 952 microarray elements were altered in GD-afflicted birds compared with healthy controls, with 468 being increased and 484 decreased. From these, a subset of 386 genes was identified and used for biologic function and pathway analyses. The biologic functions that were most significantly associated with the differentially expressed genes were "inflammatory response" and "cellular growth and proliferation" classified under the categories of "disease and disorders" and "molecular and cellular functions," respectively. The biologic pathway that was most significantly associated with the differentially expressed genes was the nuclear factor-erythroid 2-related factor 2 (NRF2)-mediated oxidative stress pathway. Finally, in vitro infection of chicken macrophages with CS or CP modified the levels of mRNAs encoding interferon (IFN)-alpha, IFN-gamma, interleukin (IL)-1beta, IL-6, IL-12p40, tumor necrosis factor superfamily 15 (downregulated), IL-8, and IL-10 (upregulated), thus confirming the suppressive effect of GD on the chicken immune system.

  19. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta

    PubMed Central

    He, Yan; Cao, Xiaolong; Li, Kai; Hu, Yingxia; Chen, Yun-ru; Blissard, Gary; Kanost, Michael R.; Jiang, Haobo

    2015-01-01

    Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner. PMID:25662101

  20. Genome-wide discovery of cis-elements in promoter sequences using gene expression.

    PubMed

    Troukhan, Maxim; Tatarinova, Tatiana; Bouck, John; Flavell, Richard B; Alexandrov, Nickolai N

    2009-04-01

    The availability of complete or nearly complete genome sequences, a large number of 5' expressed sequence tags, and significant public expression data allow for a more accurate identification of cis-elements regulating gene expression. We have implemented a global approach that takes advantage of available expression data, genomic sequences, and transcript information to predict cis-elements associated with specific expression patterns. The key components of our approach are: (1) precise identification of transcription start sites, (2) specific locations of cis-elements relative to the transcription start site, and (3) assessment of statistical significance for all sequence motifs. By applying our method to promoters of Arabidopsis thaliana and Mus musculus, we have identified motifs that affect gene expression under specific environmental conditions or in certain tissues. We also found that the presence of the TATA box is associated with increased variability of gene expression. Strong correlation between our results and experimentally determined motifs shows that the method is capable of predicting new functionally important cis-elements in promoter sequences.

  1. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies.

    PubMed

    Xu, Chunming; Bai, Yan; Lin, Xiuyun; Zhao, Na; Hu, Lanjuan; Gong, Zhiyun; Wendel, Jonathan F; Liu, Bao

    2014-05-01

    Hybridization and polyploidization are prominent processes in plant evolution. Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed "transcriptomic shock." To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) of 11,608 genes using RNA-seq-based transcriptome profiling in reciprocal hybrids and tetraploids constructed from subspecies japonica and indica of Asian rice (Oryza sativa L.). The diploid hybrids and their derived allopolyploids differ dramatically in morphology, despite having the same suite of genes and genic proportions. Allelic and homoeolog-specific transcripts were unequivocally diagnosed in the hybrids and tetraploids based on parent-specific SNPs. Compared with the in silico hybrid (parental mix), the range of progenitor expression divergence was significantly reduced in both reciprocally generated F1 hybrids, presumably due to the ameliorating effects of a common trans environment on divergent cis-factors. In contrast, parental expression differences were greatly elaborated at the polyploid level, which we propose is a consequence of stoichiometric disruptions associated with the numerous chromosomal packaging and volumetric changes accompanying nascent polyploidy. We speculate that the emergent property of "whole genome doubling" has repercussions that reverberate throughout the transcriptome and downstream, ultimately generating altered phenotypes. This perspective may yield insight into the nature of adaptation and the origin of evolutionary novelty accompanying polyploidy.

  2. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis

    PubMed Central

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-01-01

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation. PMID:27748458

  3. Genome-wide identification of neuronal activity-regulated genes in Drosophila

    PubMed Central

    Chen, Xiao; Rahman, Reazur; Guo, Fang; Rosbash, Michael

    2016-01-01

    Activity-regulated genes (ARGs) are important for neuronal functions like long-term memory and are well-characterized in mammals but poorly studied in other model organisms like Drosophila. Here we stimulated fly neurons with different paradigms and identified ARGs using high-throughput sequencing from brains as well as from sorted neurons: they included a narrow set of circadian neurons as well as dopaminergic neurons. Surprisingly, many ARGs are specific to the stimulation paradigm and very specific to neuron type. In addition and unlike mammalian immediate early genes (IEGs), fly ARGs do not have short gene lengths and are less enriched for transcription factor function. Chromatin assays using ATAC-sequencing show that the transcription start sites (TSS) of ARGs do not change with neural firing but are already accessible prior to stimulation. Lastly based on binding site enrichment in ARGs, we identified transcription factor mediators of firing and created neuronal activity reporters. DOI: http://dx.doi.org/10.7554/eLife.19942.001 PMID:27936378

  4. Genome-wide identification and expression analysis of WNK kinase gene family in rice.

    PubMed

    Manuka, Rakesh; Saddhe, Ankush Ashok; Kumar, Kundan

    2015-12-01

    Eukaryotic protein kinases represent one of the largest gene families involved in diverse regulatory functions. WNK (With No Lysine) kinases are members of ser/thr protein kinase family, which lack conserved catalytic lysine (K) residue at protein kinase subdomain II and is replaced by either asparagine, serine or glycine residues. They are involved in regulation of flowering time, circadian rhythms and abiotic stresses in Arabidopsis thaliana. In the present study, we have identified 9 members of WNK in rice, showed resemblance to Arabidopsis and human WNK and clustered into five main clades phylogenetically. The predicted genes structure, bonafide conserved signature motif and domains strongly support their identity, as members of WNK kinase family. We have analyzed their chromosomal distribution, physio-chemical properties, subcellular localizations and cis-elements in the promoter regions in silico. Further, transcript analysis of OsWNK by qRT-PCR revealed their differential regulation in tissue specific and abiotic stresses libraries. In conclusion, the identification of nine OsWNK and transcript level expression pattern under abiotic stress using qRT-PCR in rice will significantly contribute towards the understanding of WNK genes in monocots and thus provide a set up for functional genomics studies of WNK protein kinases.

  5. Genome-Wide Identification and Characterization of MicroRNAs and Target Genes in Lonicera japonica

    PubMed Central

    Wu, Gang; Fu, Chunhua; Long, Yan; Xiang, Jun; Gan, Jianping; Zhou, Yanhong; Yu, Longjiang; Li, Maoteng

    2016-01-01

    MiRNAs function in post-transcriptional regulation of gene expression and play very important roles in plant development. Lonicera japonica is one of the important medicinal plants in China. However, few studies on the discovery of conserved and novel miRNAs from L. japonica were reported. In this study, we employed deep sequencing technology to identify miRNAs in leaf and flower tissues of L. japonica. A total of 22.97 million clean reads from flower and leaf tissues were obtained, which generated 146 conserved miRNAs distributed in 20 families and 110 novel miRNAs. Accordingly, 72 differentially expressed miRNAs (P≤0.001) between leaves and flowers and their potential target genes were identified and validated. The qRT-PCR validation showed that majority of the differentially expressed miRNAs showed significant tissue-specific expression in L. japonica. Furthermore, the miRNA-mRNA and mRNA-mRNA regulatory networks were constructed using Cytoscape software. Taken together, this study identified a large number of miRNAs and target genes in L. japonica, which not only provides the first global miRNA expression profiles, but also sheds light on functional genomics research on L. japonica in the future. PMID:27711182

  6. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder

    PubMed Central

    Song, J; Bergen, S E; Di Florio, A; Karlsson, R; Charney, A; Ruderfer, D M; Stahl, E A; Chambert, K D; Moran, J L; Gordon-Smith, K; Forty, L; Green, E K; Jones, I; Jones, L; Scolnick, E M; Sklar, P; Smoller, J W; Lichtenstein, P; Hultman, C; Craddock, N; Landén, M; Smoller, Jordan W; Perlis, Roy H; Lee, Phil Hyoun; Castro, Victor M; Hoffnagle, Alison G; Sklar, Pamela; Stahl, Eli A; Purcell, Shaun M; Ruderfer, Douglas M; Charney, Alexander W; Roussos, Panos; Michele Pato, Carlos Pato; Medeiros, Helen; Sobel, Janet; Craddock, Nick; Jones, Ian; Forty, Liz; Florio, Arianna Di; Green, Elaine; Jones, Lisa; Gordon-Smith, Katherine; Landen, Mikael; Hultman, Christina; Jureus, Anders; Bergen, Sarah; McCarroll, Steven; Moran, Jennifer; Smoller, Jordan W; Chambert, Kimberly; Belliveau, Richard A

    2016-01-01

    Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. Patients with BD and controls were recruited from Sweden and the United Kingdom. GWAS were performed on 2698 patients with subjectively defined (self-reported) lithium response and 1176 patients with objectively defined (clinically documented) lithium response. We next conducted GWAS comparing lithium responders with healthy controls (1639 subjective responders and 8899 controls; 323 objective responders and 6684 controls). Meta-analyses of Swedish and UK results revealed no significant associations with lithium response within the bipolar subjects. However, when comparing lithium-responsive patients with controls, two imputed markers attained genome-wide significant associations, among which one was validated in confirmatory genotyping (rs116323614, P=2.74 × 10−8). It is an intronic single-nucleotide polymorphism (SNP) on chromosome 2q31.2 in the gene SEC14 and spectrin domains 1 (SESTD1), which encodes a protein involved in regulation of phospholipids. Phospholipids have been strongly implicated as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by common variants (‘SNP heritability') as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be furthered by focusing on this subtype of BD. PMID:26503763

  7. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder.

    PubMed

    Song, J; Bergen, S E; Di Florio, A; Karlsson, R; Charney, A; Ruderfer, D M; Stahl, E A; Chambert, K D; Moran, J L; Gordon-Smith, K; Forty, L; Green, E K; Jones, I; Jones, L; Scolnick, E M; Sklar, P; Smoller, J W; Lichtenstein, P; Hultman, C; Craddock, N; Landén, M; Smoller, Jordan W; Perlis, Roy H; Lee, Phil Hyoun; Castro, Victor M; Hoffnagle, Alison G; Sklar, Pamela; Stahl, Eli A; Purcell, Shaun M; Ruderfer, Douglas M; Charney, Alexander W; Roussos, Panos; Michele Pato, Carlos Pato; Medeiros, Helen; Sobel, Janet; Craddock, Nick; Jones, Ian; Forty, Liz; Florio, Arianna Di; Green, Elaine; Jones, Lisa; Gordon-Smith, Katherine; Landen, Mikael; Hultman, Christina; Jureus, Anders; Bergen, Sarah; McCarroll, Steven; Moran, Jennifer; Smoller, Jordan W; Chambert, Kimberly; Belliveau, Richard A

    2016-09-01

    Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. Patients with BD and controls were recruited from Sweden and the United Kingdom. GWAS were performed on 2698 patients with subjectively defined (self-reported) lithium response and 1176 patients with objectively defined (clinically documented) lithium response. We next conducted GWAS comparing lithium responders with healthy controls (1639 subjective responders and 8899 controls; 323 objective responders and 6684 controls). Meta-analyses of Swedish and UK results revealed no significant associations with lithium response within the bipolar subjects. However, when comparing lithium-responsive patients with controls, two imputed markers attained genome-wide significant associations, among which one was validated in confirmatory genotyping (rs116323614, P=2.74 × 10(-8)). It is an intronic single-nucleotide polymorphism (SNP) on chromosome 2q31.2 in the gene SEC14 and spectrin domains 1 (SESTD1), which encodes a protein involved in regulation of phospholipids. Phospholipids have been strongly implicated as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by common variants ('SNP heritability') as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be furthered by focusing on this subtype of BD.

  8. Genome-wide identification, evolution of chromobox family genes and their expression in Nile tilapia.

    PubMed

    Liu, Xing-Yong; Zhang, Xian-Bo; Li, Ming-Hui; Zheng, Shu-Qing; Liu, Zhi-Long; Cheng, Yun-Ying; Wang, De-Shou

    2017-01-01

    Chromobox (Cbx) family proteins are transcriptional repressors that involved in epigenetic and developmental processes. In this study, comprehensive analyses of Cbxs were performed using available genome databases from representative animal species. The Cbx family were originated from one Polycomb (Pc) gene like the yeast Pc, which duplicated into two and gave rise to the Pc and the Heterochromatin protein 1 (Hp1) identified in invertebrates from protozoon to lancelet. Rapid expansion of Cbx family members was observed in vertebrates as ~8 (5 Pc and 3 Hp1) were identified in spotted gar, coelacanth and tetrapods. Further expansion of the members to ~14 (9 Pc and 5 Hp1) was observed in teleosts due to the third round genome duplication (3R). Based on transcriptome data from eight adult tilapia tissues, most of the Cbxs were found to be dominantly expressed in the brain, testis, ovary and heart. Analyses of the gonadal transcriptome data from four developmental stages revealed that all Cbxs were expressed in both ovary and testis except Cbx7b, with significant increase of the total and average RPKM from 5 to 90dah (days after hatching). By in situ hybridization, the three most highly and sexual dimorphically expressed Cbx genes in gonads, Cbx1b, Cbx3a and Cbx5, were found to be expressed in phase I and II oocytes of the ovary, and in secondary spermatocytes (Cbx1b and Cbx3a) and spermatids (Cbx5) of the testis. Our results revealed the evolution of Cbx genes and indicated a potential role of Cbxs in epigenetic regulation of gametogenesis.

  9. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.

    PubMed

    Chen, Lihong; Hu, Wei; Tan, Shenglong; Wang, Min; Ma, Zhanbing; Zhou, Shiyi; Deng, Xiaomin; Zhang, Yang; Huang, Chao; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.

  10. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    PubMed

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare.

  11. Genome wide transcriptome profiling of Fusarium oxysporum f sp. ciceris conidial germination reveals new insights into infection-related genes

    PubMed Central

    Sharma, Mamta; Sengupta, Anindita; Ghosh, Raju; Agarwal, Gaurav; Tarafdar, Avijit; Nagavardhini, A; Pande, Suresh; Varshney, Rajeev K

    2016-01-01

    Vascular wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10–15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients. Infection is initiated by conidia that invade the host tissue often by penetration of intact epidermal cells. Here, we report the characterization of the transcriptome of Foc sequenced using Illumina Hiseq technology during its conidial germination at different time points. Genome-wide expression profiling revealed that genes linked to fungal development are transcribed in successive ways. Analysis showed that Foc have large sets of germination-related genes and families of genes encoding secreted effectors, cell wall/pectin-degrading enzymes, metabolism related enzymes, transporters and peptidases. We found that metabolism related enzymes are up-regulated at early time point whereas most transporters and secondary metabolites important for tissue colonization and pathogenicity are up-regulated later as evident from the qRT-PCR. The study demonstrated that early conidial germination in Foc is accompanied by rapid shifts in gene expression that prepare the fungus for germ tube outgrowth, host cell invasion and pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction. PMID:27853284

  12. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    PubMed

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  13. Gene-based meta-analysis of genome-wide association studies implicates new loci involved in obesity.

    PubMed

    Hägg, Sara; Ganna, Andrea; Van Der Laan, Sander W; Esko, Tonu; Pers, Tune H; Locke, Adam E; Berndt, Sonja I; Justice, Anne E; Kahali, Bratati; Siemelink, Marten A; Pasterkamp, Gerard; Strachan, David P; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Hirschhorn, Joel N; Pawitan, Yudi; Ingelsson, Erik

    2015-12-01

    To date, genome-wide association studies (GWASs) have identified >100 loci with single variants associated with body mass index (BMI). This approach may miss loci with high allelic heterogeneity; therefore, the aim of the present study was to use gene-based meta-analysis to identify regions with high allelic heterogeneity to discover additional obesity susceptibility loci. We included GWAS data from 123 865 individuals of European descent from 46 cohorts in Stage 1 and Metabochip data from additional 103 046 individuals from 43 cohorts in Stage 2, all within the Genetic Investigation of ANthropometric Traits (GIANT) consortium. Each cohort was tested for association between ∼2.4 million (Stage 1) or ∼200 000 (Stage 2) imputed or genotyped single variants and BMI, and summary statistics were subsequently meta-analyzed in 17 941 genes. We used the 'VErsatile Gene-based Association Study' (VEGAS) approach to assign variants to genes and to calculate gene-based P-values based on simulations. The VEGAS method was applied to each cohort separately before a gene-based meta-analysis was performed. In Stage 1, two known (FTO and TMEM18) and six novel (PEX2, MTFR2, SSFA2, IARS2, CEP295 and TXNDC12) loci were associated with BMI (P < 2.8 × 10(-6) for 17 941 gene tests). We confirmed all loci, and six of them were gene-wide significant in Stage 2 alone. We provide biological support for the loci by pathway, expression and methylation analyses. Our results indicate that gene-based meta-analysis of GWAS provides a useful strategy to find loci of interest that were not identified in standard single-marker analyses due to high allelic heterogeneity.

  14. Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein

    PubMed Central

    Li, Cong; Sun, Dongxiao; Zhang, Shengli; Wang, Sheng; Wu, Xiaoping; Zhang, Qin; Liu, Lin; Li, Yanhua; Qiao, Lv

    2014-01-01

    Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle. PMID:24858810

  15. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    PubMed Central

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  16. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe.

    PubMed

    Kennedy, Patrick J; Vashisht, Ajay A; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Hayles, Jacqueline; Russell, Paul

    2008-11-01

    Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.

  17. Genome-wide data substantiate Holocene gene flow from India to Australia

    PubMed Central

    Pugach, Irina; Delfin, Frederick; Gunnarsdóttir, Ellen; Kayser, Manfred; Stoneking, Mark

    2013-01-01

    The Australian continent holds some of the earliest archaeological evidence for the expansion of modern humans out of Africa, with initial occupation at least 40,000 y ago. It is commonly assumed that Australia remained largely isolated following initial colonization, but the genetic history of Australians has not been explored in detail to address this issue. Here, we analyze large-scale genotyping data from aboriginal Australians, New Guineans, island Southeast Asians and Indians. We find an ancient association between Australia, New Guinea, and the Mamanwa (a Negrito group from the Philippines), with divergence times for these groups estimated at 36,000 y ago, and supporting the view that these populations represent the descendants of an early “southern route” migration out of Africa, whereas other populations in the region arrived later by a separate dispersal. We also detect a signal indicative of substantial gene flow between the Indian populations and Australia well before European contact, contrary to the prevailing view that there was no contact between Australia and the rest of the world. We estimate this gene flow to have occurred during the Holocene, 4,230 y ago. This is also approximately when changes in tool technology, food processing, and the dingo appear in the Australian archaeological record, suggesting that these may be related to the migration from India. PMID:23319617

  18. Genome-wide data substantiate Holocene gene flow from India to Australia.

    PubMed

    Pugach, Irina; Delfin, Frederick; Gunnarsdóttir, Ellen; Kayser, Manfred; Stoneking, Mark

    2013-01-29

    The Australian continent holds some of the earliest archaeological evidence for the expansion of modern humans out of Africa, with initial occupation at least 40,000 y ago. It is commonly assumed that Australia remained largely isolated following initial colonization, but the genetic history of Australians has not been explored in detail to address this issue. Here, we analyze large-scale genotyping data from aboriginal Australians, New Guineans, island Southeast Asians and Indians. We find an ancient association between Australia, New Guinea, and the Mamanwa (a Negrito group from the Philippines), with divergence times for these groups estimated at 36,000 y ago, and supporting the view that these populations represent the descendants of an early "southern route" migration out of Africa, whereas other populations in the region arrived later by a separate dispersal. We also detect a signal indicative of substantial gene flow between the Indian populations and Australia well before European contact, contrary to the prevailing view that there was no contact between Australia and the rest of the world. We estimate this gene flow to have occurred during the Holocene, 4,230 y ago. This is also approximately when changes in tool technology, food processing, and the dingo appear in the Australian archaeological record, suggesting that these may be related to the migration from India.

  19. Genome-wide and gene-specific epigenomic platforms for hepatocellular carcinoma biomarker development trials.

    PubMed

    Michailidi, Christina; Soudry, Ethan; Brait, Mariana; Maldonado, Leonel; Jaffe, Andrew; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Perez, Jimena; Kim, Myoung Sook; Zhong, Xiaoli; Yang, Quiang; Valle, Blanca; Meltzer, Stephen J; Torbenson, Michael; Esteller, Manel; Sidransky, David; Guerrero-Preston, Rafael

    2014-01-01

    The majority of the epigenomic reports in hepatocellular carcinoma have focused on identifying novel differentially methylated drivers or passengers of the oncogenic process. Few reports have considered the technologies in place for clinical translation of newly identified biomarkers. The aim of this study was to identify epigenomic technologies that need only a small number of samples to discriminate HCC from non-HCC tissue, a basic requirement for biomarker development trials. To assess that potential, we used quantitative Methylation Specific PCR, oligonucleotide tiling arrays, and Methylation BeadChip assays. Concurrent global DNA hypomethylation, gene-specific hypermethylation, and chromatin alterations were observed as a hallmark of HCC. A global loss of promoter methylation was observed in HCC with the Illumina BeadChip assays and the Nimblegen oligonucleotide arrays. HCC samples had lower median methylation peak scores and a reduced number of significant promoter-wide methylated probes. Promoter hypermethylation of RASSF1A, SSBP2, and B4GALT1 quantified by qMSP had a sensitivity ranging from 38% to 52%, a specificity of 100%, and an AUC from 0.58 to 0.75. A panel combining these genes with HCC risk factors had a sensitivity of 87%, a specificity of 100%, and an AUC of 0.91.

  20. Genome-Wide and Gene-Specific Epigenomic Platforms for Hepatocellular Carcinoma Biomarker Development Trials

    PubMed Central

    Michailidi, Christina; Jaffe, Andrew; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Perez, Jimena; Kim, Myoung Sook; Zhong, Xiaoli; Yang, Quiang; Valle, Blanca; Meltzer, Stephen J.; Torbenson, Michael; Esteller, Manel; Sidransky, David; Guerrero-Preston, Rafael

    2014-01-01

    The majority of the epigenomic reports in hepatocellular carcinoma have focused on identifying novel differentially methylated drivers or passengers of the oncogenic process. Few reports have considered the technologies in place for clinical translation of newly identified biomarkers. The aim of this study was to identify epigenomic technologies that need only a small number of samples to discriminate HCC from non-HCC tissue, a basic requirement for biomarker development trials. To assess that potential, we used quantitative Methylation Specific PCR, oligonucleotide tiling arrays, and Methylation BeadChip assays. Concurrent global DNA hypomethylation, gene-specific hypermethylation, and chromatin alterations were observed as a hallmark of HCC. A global loss of promoter methylation was observed in HCC with the Illumina BeadChip assays and the Nimblegen oligonucleotide arrays. HCC samples had lower median methylation peak scores and a reduced number of significant promoter-wide methylated probes. Promoter hypermethylation of RASSF1A, SSBP2, and B4GALT1 quantified by qMSP had a sensitivity ranging from 38% to 52%, a specificity of 100%, and an AUC from 0.58 to 0.75. A panel combining these genes with HCC risk factors had a sensitivity of 87%, a specificity of 100%, and an AUC of 0.91. PMID:24829571

  1. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris

    PubMed Central

    Lin, Yu-Fu; Chen, You-Yi; Hsiao, Yu-Yun; Shen, Ching-Yu; Hsu, Jui-Ling; Yeh, Chuan-Ming; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2016-01-01

    TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris. Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein–protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division. PMID:27543606

  2. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris.

    PubMed

    Lin, Yu-Fu; Chen, You-Yi; Hsiao, Yu-Yun; Shen, Ching-Yu; Hsu, Jui-Ling; Yeh, Chuan-Ming; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2016-09-01

    TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein-protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division.

  3. A genome-wide search for genes predisposing to manic-depression, assuming autosomal dominant inheritance

    SciTech Connect

    Coon, H.; Jensen, S.; Hoff, M.; Holik, J.; Plaetke, R.; Reimherr, F.; Wender, P.; Leppert, M.; Byerley, W. )

    1993-06-01

    Manic-depressive illness (MDI), also known as [open quotes]bipolar affective disorder[close quotes], is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, the authors ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping at 5 cM from the disease gene, the pedigree sample has >97% power to detect a dominant allele under genetic homogeneity and has >73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores <[minus]2.0 at [theta] = .05, and 4 DNA marker loci yielded lod scores >1 (chromosome 5 -- D5S39, D5S43, and D5S62; chromosome 11 -- D11S85). Of the markers giving lod scores >1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, the linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk. 72 refs., 2 tabs.

  4. Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review.

    PubMed

    Speakman, John R

    2013-01-01

    Genome-wide association studies (GWAS) have identified a total of about 40 single nucleotide polymorphisms (SNPs) that show significant linkage to body mass index, a widely utilised surrogate measure of adiposity. However, only 8 of these associations have been confirmed by follow-up GWAS using more sophisticated measures of adiposity (computed tomography). Among these 8, there is a SNP close to the gene FTO which has been the subject of considerable work to diagnose its function. The remaining 7 SNPs are adjacent to, or within, the genes NEGR1, TMEM18, ETV5, FLJ35779, LINGO2, SH2B1 and GIPR, most of which are less well studied than FTO, particularly in the context of obesity. This article reviews the available data on the functions of these genes, including information gleaned from studies in humans and animal models. At present, we have virtually no information on the putative mechanism associating the genes FLJ35779 and LINGO2 to obesity. All of these genes are expressed in the brain, and for 2 of them (SH2B1 and GIPR), a direct link to the appetite regulation system is known. SH2B1 is an enhancer of intracellular signalling in the JAK-STAT pathway, and GIPR is the receptor for an appetite-linked hormone (GIP) produced by the alimentary tract. NEGR1, ETV5 and SH2B1 all have suggested roles in neurite outgrowth, and hence SNPs adjacent to these genes may affect development of the energy balance circuitry. Although the genes have central patterns of gene expression, implying a central neuronal connection to energy balance, for at least 4 of them (NEGR1, TMEM18, SH2B1 and GIPR), there are also significant peripheral functions related to adipose tissue biology. These functions may contribute to their effects on the obese phenotype.

  5. Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model

    PubMed Central

    Feinbaum, Rhonda L.; Urbach, Jonathan M.; Liberati, Nicole T.; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M.

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes. PMID:22911607

  6. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton.

    PubMed

    Zhao, Ge; Song, Yun; Wang, Caixiang; Butt, Hamama Islam; Wang, Qianhua; Zhang, Chaojun; Yang, Zuoren; Liu, Zhao; Chen, Eryong; Zhang, Xueyan; Li, Fuguang

    2016-12-01

    Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H2O2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.

  7. Integrated Analysis of Genome-Wide Copy Number Alterations and Gene Expression Profiling of Lung Cancer in Xuanwei, China

    PubMed Central

    Zhang, Yanliang; Xue, Qiuyue; Pan, Guoqing; Meng, Qing H.; Tuo, Xiaoyu; Cai, Xuemei; Chen, Zhenghui; Li, Ya; Huang, Tao; Duan, Xincen; Duan, Yong

    2017-01-01

    Objectives Lung cancer in Xuanwei (LCXW), China, is known throughout the world for its distinctive characteristics, but little is known about its pathogenesis. The purpose of this study was to screen potential novel “driver genes” in LCXW. Methods Genome-wide DNA copy number alterations (CNAs) were detected by array-based comparative genomic hybridization and differentially expressed genes (DEGs) by gene expression microarrays in 8 paired LCXW and non-cancerous lung tissues. Candidate driver genes were screened by integrated analysis of CNAs and DEGs. The candidate genes were further validated by real-time quantitative polymerase chain reaction. Results Large numbers of CNAs and DEGs were detected, respectively. Some of the most frequently occurring CNAs included gains at 5p15.33-p15.32, 5p15.1-p14.3, and 5p14.3-p14.2 and losses at 11q24.3, 21q21.1, 21q22.12-q22.13, and 21q22.2. Integrated analysis of CNAs and DEGs identified 24 candidate genes with frequent copy number gains and concordant upregulation, which were considered potential oncogenes, including CREB3L4, TRIP13, and CCNE2. In addition, the analysis identified 19 candidate genes with a negative association between copy number change and expression change, considered potential tumor suppressor genes, including AHRR, NKD2, and KLF10. One of the most studied oncogenes, MYC, may not play a carcinogenic role in LCXW. Conclusions This integrated analysis of CNAs and DEGs identified several potential novel LCXW-related genes, laying an important foundation for further research on the pathogenesis of LCXW and identification of novel biomarkers or therapeutic targets. PMID:28056099

  8. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    PubMed

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  9. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses

    PubMed Central

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  10. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion

    PubMed Central

    Barbosa-Morais, Nuno L.; Carmo-Fonseca, Maria; Aparício, Samuel

    2006-01-01

    Although more than 200 human spliceosomal and splicing-associated proteins are known, the evolution of the splicing machinery has not been studied extensively. The recent near-complete sequencing and annotation of distant vertebrate and chordate genomes provides the opportunity for an exhaustive comparative analysis of splicing factors across eukaryotes. We describe here our semiautomated computational pipeline to identify and annotate splicing factors in representative species of eukaryotes. We focused on protein families whose role in splicing is confirmed by experimental evidence. We visually inspected 1894 proteins and manually curated 224 of them. Our analysis shows a general conservation of the core spliceosomal proteins across the eukaryotic lineage, contrasting with selective expansions of protein families known to play a role in the regulation of splicing, most notably of SR proteins in metazoans and of heterogeneous nuclear ribonucleoproteins (hnRNP) in vertebrates. We also observed vertebrate-specific expansion of the CLK and SRPK kinases (which phosphorylate SR proteins), and the CUG-BP/CELF family of splicing regulators. Furthermore, we report several intronless genes amongst splicing proteins in mammals, suggesting that retrotransposition contributed to the complexity of the mammalian splicing apparatus. PMID:16344558

  11. Genome-Wide Analyses of Metal Responsive Genes in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel; Fretham, Stephanie; Martinez-Finley, Ebany; Chakraborty, Sudipta; Avila, Daiana; Chen, Pan; Aschner, Michael

    2012-01-01

    Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost, and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression, and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced. PMID:22514555

  12. Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus

    PubMed Central

    Lu, Kun; Peng, Liu; Zhang, Chao; Lu, Junhua; Yang, Bo; Xiao, Zhongchun; Liang, Ying; Xu, Xingfu; Qu, Cunmin; Zhang, Kai; Liu, Liezhao; Zhu, Qinlong; Fu, Minglian; Yuan, Xiaoyan; Li, Jiana

    2017-01-01

    Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP), seed number per pod (SPP), thousand seed weight, main inflorescence yield (MIY), and branch yield], using data from 520 diverse B. napus accessions from two different yield environments. In total, we detected 128 significant single nucleotide polymorphisms (SNPs), 93 of which were revealed as novel by integrative analysis. A combination of GWAS and transcriptome sequencing on 21 haplotype blocks from samples pooled by four extremely high-yielding or low-yielding accessions revealed the differential expression of 14 crucial candiate genes (such as Bna.MYB83, Bna.SPL5, and Bna.ROP3) associated with multiple traits or containing multiple SNPs associated with the same trait. Functional annotation and expression pattern analyses further demonstrated that these 14 candiate genes might be important in developmental processes and biomass accumulation, thus affecting the yield establishment of B. napus. These results provide valuable information for understanding the genetic mechanisms underlying the establishment of high yield in B. napus, and lay the foundation for developing high-yielding B. napus varieties. PMID:28261256

  13. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms.

    PubMed

    Le-Niculescu, H; Patel, S D; Bhat, M; Kuczenski, R; Faraone, S V; Tsuang, M T; McMahon, F J; Schork, N J; Nurnberger, J I; Niculescu, A B

    2009-03-05

    Given the mounting convergent evidence implicating many more genes in complex disorders such as bipolar disorder than the small number identified unambiguously by the first-generation Genome-Wide Association studies (GWAS) to date, there is a strong need for improvements in methodology. One strategy is to include in the next generation GWAS larger numbers of subjects, and/or to pool independent studies into meta-analyses. We propose and provide proof of principle for the use of a complementary approach, convergent functional genomics (CFG), as a way of mining the existing GWAS datasets for signals that are there already, but did not reach significance using a genetics-only approach. With the CFG approach, the integration of genetics with genomics, of human and animal model data, and of multiple independent lines of evidence converging on the same genes offers a way of extracting signal from noise and prioritizing candidates. In essence our analysis is the most comprehensive integration of genetics and functional genomics to date in the field of bipolar disorder, yielding a series of novel (such as Klf12, Aldh1a1, A2bp1, Ak3l1, Rorb, Rora) and previously known (such as Bdnf, Arntl, Gsk3b, Disc1, Nrg1, Htr2a) candidate genes, blood biomarkers, as well as a comprehensive identification of pathways and mechanisms. These become prime targets for hypothesis driven follow-up studies, new drug development and personalized medicine approaches.

  14. A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene.

    PubMed

    Gregersen, Noomi; Dahl, Hans A; Buttenschøn, Henriette N; Nyegaard, Mette; Hedemand, Anne; Als, Thomas D; Wang, August G; Joensen, Sofus; Woldbye, David Pd; Koefoed, Pernille; Kristensen, Ann S; Kruse, Torben A; Børglum, Anders D; Mors, Ole

    2012-01-01

    Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors. Despite a significant hereditary component, genetic studies have only been modestly successful in identifying genes of importance for the development of PD. In this study, we conducted a genome-wide scan using microsatellite markers and PD patients and control individuals from the isolated population of the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant association with PD in an extended Faroese case-control sample. However, analyses of a larger independent Danish case-control sample yielded no substantial significant association. This suggests that the possible risk alleles associated in the isolated population are not those involved in the development of PD in a larger outbred population.

  15. Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death.

    PubMed

    Pandyra, Aleksandra A; Mullen, Peter J; Goard, Carolyn A; Ericson, Elke; Sharma, Piyush; Kalkat, Manpreet; Yu, Rosemary; Pong, Janice T; Brown, Kevin R; Hart, Traver; Gebbia, Marinella; Lang, Karl S; Giaever, Guri; Nislow, Corey; Moffat, Jason; Penn, Linda Z

    2015-09-29

    The mevalonate (MVA) pathway is often dysregulated or overexpressed in many cancers suggesting tumor dependency on this classic metabolic pathway. Statins, which target the rate-limiting enzyme of this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), are promising agents currently being evaluated in clinical trials for anti-cancer efficacy. To uncover novel targets that potentiate statin-induced apoptosis when knocked down, we carried out a pooled genome-wide short hairpin RNA (shRNA) screen. Genes of the MVA pathway were amongst the top-scoring targets, including sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and geranylgeranyl diphosphate synthase 1 (GGPS1). Each gene was independently validated and shown to significantly sensitize A549 cells to statin-induced apoptosis when knocked down. SREBP2 knockdown in lung and breast cancer cells completely abrogated the fluvastatin-induced upregulation of sterol-responsive genes HMGCR and HMGCS1. Knockdown of SREBP2 alone did not affect three-dimensional growth of lung and breast cancer cells, yet in combination with fluvastatin cell growth was disrupted. Taken together, these results show that directly targeting multiple levels of the MVA pathway, including blocking the sterol-feedback loop initiated by statin treatment, is an effective and targetable anti-tumor strategy.

  16. Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death

    PubMed Central

    Pandyra, Aleksandra A.; Mullen, Peter J.; Goard, Carolyn A.; Ericson, Elke; Sharma, Piyush; Kalkat, Manpreet; Yu, Rosemary; Pong, Janice T.; Brown, Kevin R.; Hart, Traver; Gebbia, Marinella; Lang, Karl S.; Giaever, Guri; Nislow, Corey; Moffat, Jason; Penn, Linda Z.

    2015-01-01

    The mevalonate (MVA) pathway is often dysregulated or overexpressed in many cancers suggesting tumor dependency on this classic metabolic pathway. Statins, which target the rate-limiting enzyme of this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), are promising agents currently being evaluated in clinical trials for anti-cancer efficacy. To uncover novel targets that potentiate statin-induced apoptosis when knocked down, we carried out a pooled genome-wide short hairpin RNA (shRNA) screen. Genes of the MVA pathway were amongst the top-scoring targets, including sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and geranylgeranyl diphosphate synthase 1 (GGPS1). Each gene was independently validated and shown to significantly sensitize A549 cells to statin-induced apoptosis when knocked down. SREBP2 knockdown in lung and breast cancer cells completely abrogated the fluvastatin-induced upregulation of sterol-responsive genes HMGCR and HMGCS1. Knockdown of SREBP2 alone did not affect three-dimensional growth of lung and breast cancer cells, yet in combination with fluvastatin cell growth was disrupted. Taken together, these results show that directly targeting multiple levels of the MVA pathway, including blocking the sterol-feedback loop initiated by statin treatment, is an effective and targetable anti-tumor strategy. PMID:26353928

  17. Genome Wide Association Analysis of a Founder Population Identified TAF3 as a Gene for MCHC in Humans

    PubMed Central

    Pistis, Giorgio; Okonkwo, Shawntel U.; Traglia, Michela; Sala, Cinzia; Shin, So-Youn; Masciullo, Corrado; Buetti, Iwan; Massacane, Roberto; Mangino, Massimo; Thein, Swee-Lay; Spector, Timothy D.; Ganesh, Santhi; Pirastu, Nicola; Gasparini, Paolo; Soranzo, Nicole; Camaschella, Clara; Hart, Daniel; Green, Michael R.; Toniolo, Daniela

    2013-01-01

    The red blood cell related traits are highly heritable but their genetics are poorly defined. Only 5–10% of the total observed variance is explained by the genetic loci found to date, suggesting that additional loci should be searched using approaches alternative to large meta analysis. GWAS (Genome Wide Association Study) for red blood cell traits in a founder population cohort from Northern Italy identified a new locus for mean corpuscular hemoglobin concentration (MCHC) in the TAF3 gene. The association was replicated in two cohorts (rs1887582, P = 4.25E–09). TAF3 encodes a transcription cofactor that participates in core promoter recognition complex, and is involved in zebrafish and mouse erythropoiesis. We show here that TAF3 is required for transcription of the SPTA1 gene, encoding alpha spectrin, one of the proteins that link the plasma membrane to the actin cytoskeleton. Mutations in SPTA1 are responsible for hereditary spherocytosis, a monogenic disorder of MCHC, as well as for the normal MCHC level. Based on our results, we propose that TAF3 is required for normal erythropoiesis in human and that it might have a role in controlling the ratio between hemoglobin (Hb) and cell volume and in the dynamics of RBC maturation in healthy individuals. Finally, TAF3 represents a potential candidate or a modifier gene for disorders of red cell membrane. PMID:23935956

  18. A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae

    PubMed Central

    Zhao, Lei; Yang, Qian; Zheng, Ju; Zhu, Xuefeng; Hao, Xinxin; Song, Jia; Lebacq, Tom; Franssens, Vanessa; Winderickx, Joris; Nystrom, Thomas; Liu, Beidong

    2016-01-01

    Synphilin-1 is a major component of Parkinson’s disease (PD) inclusion bodies implicated in PD pathogenesis. However, the machinery controlling synphilin-1 inclusion formation remains unclear. Here, we investigated synphilin-1 inclusion formation using a systematic genome-wide, high-content imaging based screening approach (HCI) in the yeast Saccharomyces cerevisiae. By combining with a secondary screening for mutants showing significant changes on fluorescence signal intensity, we filtered out hits that significantly decreased the expression level of synphilin-1. We found 133 yeast genes that didn’t affect synphilin-1 expression but that were required for the formation of synphilin-1 inclusions. Functional enrichment and physical interaction network analysis revealed these genes to encode for functions involved in cytoskeleton organization, histone modification, sister chromatid segregation, glycolipid biosynthetic process, DNA repair and replication. All hits were confirmed by conventional microscopy. Complementation assays were performed with a selected group of mutants, results indicated that the observed phenotypic changes in synphilin-1 inclusion formation were directly caused by the loss of corresponding genes of the deletion mutants. Further growth assays of these mutants showed a significant synthetic sick effect upon synphilin-1 expression, which supports the hypothesis that matured inclusions represent an end stage of several events meant to protect cells against the synphilin-1 cytotoxicity. PMID:27440388

  19. Identification of Candidate Genes for Reactivity in Guzerat (Bos indicus) Cattle: A Genome-Wide Association Study

    PubMed Central

    Fonseca, Pablo Augusto de Souza; Pires, Maria de Fátima Ávila; Ventura, Ricardo Vieira; Rosse, Izinara da Cruz.; Bruneli, Frank Angelo Tomita; Machado, Marco Antonio; Carvalho, Maria Raquel Santos

    2017-01-01

    Temperament is fundamental to animal production due to its direct influence on the animal-herdsman relationship. When compared to calm animals, the aggressive, anxious or fearful ones exhibit less weight gain, lower reproductive efficiency, decreased milk production and higher herd maintenance costs, all of which contribute to reduced profits. However, temperament is a trait that is complex and difficult to assess. Recently, a new quantitative system, REATEST®, for assessing reactivity, a phenotype of temperament, was developed. Herein, we describe the results of a Genome-wide association study for reactivity, assessed using REATEST® with a sample of 754 females from five dual-purpose (milk and meat production) Guzerat (Bos indicus) herds. Genotyping was performed using a 50k SNP chip and a two-step mixed model approach (Grammar-Gamma) with a one-by-one marker regression was used to identify QTLs. QTLs for reactivity were identified on chromosomes BTA1, BTA5, BTA14, and BTA25. Five intronic and two intergenic markers were significantly associated with reactivity. POU1F1, DRD3, VWA3A, ZBTB20, EPHA6, SNRPF and NTN4 were identified as candidate genes. Previous QTL reports for temperament traits, covering areas surrounding the SNPs/genes identified here, further corroborate these associations. The seven genes identified in the present study explain 20.5% of reactivity variance and give a better understanding of temperament biology. PMID:28125592

  20. A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease

    PubMed Central

    Hao, Jingcan; Wang, Wenyu; Wen, Yan; Xiao, Xiao; He, Awen; Guo, Xiong; Yang, Tielin; Liu, Xiaogang; Shen, Hui; Chen, Xiangding; Tian, Qing; Deng, Hong-Wen; Zhang, Feng

    2016-01-01

    Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study (BGWAS) of the KBD using joint deformities and body height as study phenotypes, totally involving 2,417 study subjects. Articular cartilage specimens from 8 subjects were collected for immunohistochemistry. In the BGWAS, ADAM12 gene achieved the most significant association (rs1278300 p-value = 9.25 × 10−9) with the KBD. Replication study observed significant association signal at rs1278300 (p-value = 0.007) and rs1710287 (p-value = 0.002) of ADAM12 after Bonferroni correction. Immunohistochemistry revealed significantly decreased expression level of ADAM12 protein in the KBD articular cartilage (average positive chondrocyte rate = 47.59 ± 7.79%) compared to healthy articular cartilage (average positive chondrocyte rate = 64.73 ± 5.05%). Our results suggest that ADAM12 gene is a novel susceptibility gene underlying both joint destruction and growth retardation of the KBD. PMID:27545300

  1. A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease.

    PubMed

    Hao, Jingcan; Wang, Wenyu; Wen, Yan; Xiao, Xiao; He, Awen; Guo, Xiong; Yang, Tielin; Liu, Xiaogang; Shen, Hui; Chen, Xiangding; Tian, Qing; Deng, Hong-Wen; Zhang, Feng

    2016-08-22

    Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study (BGWAS) of the KBD using joint deformities and body height as study phenotypes, totally involving 2,417 study subjects. Articular cartilage specimens from 8 subjects were collected for immunohistochemistry. In the BGWAS, ADAM12 gene achieved the most significant association (rs1278300 p-value = 9.25 × 10(-9)) with the KBD. Replication study observed significant association signal at rs1278300 (p-value = 0.007) and rs1710287 (p-value = 0.002) of ADAM12 after Bonferroni correction. Immunohistochemistry revealed significantly decreased expression level of ADAM12 protein in the KBD articular cartilage (average positive chondrocyte rate = 47.59 ± 7.79%) compared to healthy articular cartilage (average positive chondrocyte rate = 64.73 ± 5.05%). Our results suggest that ADAM12 gene is a novel susceptibility gene underlying both joint destruction and growth retardation of the KBD.

  2. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape

    PubMed Central

    Tao, Jianmin; Jiang, Weihua; Zhang, Shijie; Wang, Qiunan; Qu, Shenchun

    2016-01-01

    Early ripening in grape (Vitis vinifera L.) is a crucial agronomic trait. The fruits of the grape line ‘Summer Black’ (SBBM), which contains a bud mutation, can be harvested approximately one week earlier than the ‘Summer Black’ (SBC)control. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs) and 81,223 structure variations (SVs) in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS), SVs or frame-shift mutations (F) were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response. PMID:26840449

  3. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells

    PubMed Central

    Akhade, Vijay Suresh; Arun, Gayatri; Donakonda, Sainitin; Satyanarayana Rao, Manchanahalli R

    2014-01-01

    Mrhl RNA is a nuclear lncRNA encoded in the mouse genome and negatively regulates Wnt signaling in spermatogonial cells through p68/Ddx5 RNA helicase. Mrhl RNA is present in the chromatin fraction of mouse spermatogonial Gc1-Spg cells and genome wide chromatin occupancy of mrhl RNA by ChOP (Chromatin oligo affinity precipitation) technique identified 1370 statistically significant genomic loci. Among these, genes at 37 genomic loci also showed altered expression pattern upon mrhl RNA down regulation which are referred to as GRPAM (Genes Regulated by Physical Association of Mrhl RNA). p68 interacted with mrhl RNA in chromatin at these GRPAM loci. p68 silencing drastically reduced mrhl RNA occupancy at 27 GRPAM loci and also perturbed the expression of GRPAM suggesting a role for p68 mediated mrhl RNA occupancy in regulating GRPAM expression. Wnt3a ligand treatment of Gc1-Spg cells down regulated mrhl RNA expression and also perturbed expression of these 27 GRPAM genes that included genes regulating Wnt signaling pathway and spermatogenesis, one of them being Sox8, a developmentally important transcription factor. We also identified interacting proteins of mrhl RNA associated chromatin fraction which included Pc4, a chromatin organizer protein and hnRNP A/B and hnRNP A2/B1 which have been shown to be associated with lincRNA-Cox2 function in gene regulation. Our findings in the Gc1-Spg cell line also correlate with the results from analysis of mouse testicular tissue which further highlights the in vivo physiological significance of mrhl RNA in the context of gene regulation during mammalian spermatogenesis. PMID:25584904

  4. Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137

    PubMed Central

    Warburton, Alix; Breen, Gerome; Rujescu, Dan; Bubb, Vivien J.; Quinn, John P.

    2015-01-01

    MIR137 has been identified as a candidate gene for schizophrenia from genome-wide association studies via association with an intronic single nucleotide polymorphism (SNP), rs1625579. The location of the SNP suggests one mechanism in which transcriptional or posttranscriptional regulation of miR-137 expression could underlie schizophrenia. We identified and validated a novel promoter of the MIR137 gene adjacent to miR-137 itself which can direct the expression of distinct mRNA isoforms encoding miR-137. Analysis of both endogenous gene expression and reporter gene assays determined that this internal promoter is regulated by repressor element-1 silencing transcription factor (REST), which has previously been associated with pathways linked to schizophrenia. Distinct isoforms of REST mediate differential expression at this locus, suggesting the relative levels of these isoforms are important for miR-137 expression profiles. The internal promoter contains a variable number tandem repeat (VNTR) domain adjacent to the pre-miR-137 sequence. The reporter gene activity directed by this promoter was modified by the genotype of the VNTR. Differential expression was also observed in response to cocaine, which is known to regulate the REST pathway in SH-SY5Y cells. Our data support the hypothesis that a “gene × environment” interaction could modify the level of miR-137 expression via this internal promoter and that the genotype of the VNTR could modulate transcriptional responses. We demonstrate that this promoter region is not in disequilibrium with rs1625579 and therefore would supply a distinct pathway to potentially alter miR-137 levels in response to environmental cues. PMID:25154622

  5. Genome-Wide Gene Expression Profile Analyses Identify CTTN as a Potential Prognostic Marker in Esophageal Cancer

    PubMed Central

    He, Wei; Wang, Jin; Jia, Yongxu; Sun, Yan; Tang, Senwei; Fu, Li; Qin, Yanru

    2014-01-01

    Aim Esophageal squamous cell carcinoma (ESCC) is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. Methods We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal tissues by cDNA microarrays representing 47,000 transcripts and variants. Candidate genes were then validated by semi quantitative reverse transcription-PCR (RT-PCR), tissue microarrays (TMAs) and immunohistochemistry (IHC) staining. Results Using an arbitrary cutoff line of signal log ratio of ≥1.5 or ≤−1.5, we observed 549 up-regulated genes and 766 down-regulated genes in ESCCs compared with normal esophageal tissues. The functions of 302 differentially expressed genes were associated with cell metabolism, cell adhesion and immune response. Several candidate deregulated genes including four overexpressed (CTTN, DMRT2, MCM10 and SCYA26) and two underexpressed (HMGCS2 and SORBS2) were subsequently verified, which can be served as biomarkers for ESCC. Moreover, overexpression of cortactin (CTTN) was observed in 126/198 (63.6%) of ESCC cases and was significantly associated with lymph node metastasis (P = 0.000), pathologic stage (P = 0.000) and poor survival (P<0.001) of ESCC patients. Furthermore, a significant correlation between CTTN overexpression and shorter disease-specific survival rate was found in different subgroups of ESCC patient stratified by the pathologic stage (P<0.05). Conclusion Our data provide valuable information for establishing molecules as candidates for prognostic and/or as therapeutic targets. PMID:24551190

  6. Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean

    PubMed Central

    Kavas, Musa; Kizildogan, Aslihan; Gökdemir, Gökhan; Baloglu, Mehmet Cengiz

    2015-01-01

    Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean. PMID:27152109

  7. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    PubMed

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J B; Kruijer, Willem; Voorrips, Roeland E; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  8. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping

    PubMed Central

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J. B.; Kruijer, Willem; Voorrips, Roeland E.; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects. PMID:26699853

  9. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    PubMed

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Tatsuke, Tsuneyuki; Zhu, Li; Xu, Jian; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2012-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  10. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development

    PubMed Central

    Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal

    2016-01-01

    The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939

  11. A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains

    PubMed Central

    Suzuki, Masato; Shibayama, Keigo; Yahara, Koji

    2016-01-01

    Carbapenems are a class of last-resort antibiotics; thus, the increase in bacterial carbapenem-resistance is a serious public health threat. Acinetobacter baumannii is one of the microorganisms that can acquire carbapenem-resistance; it causes severe nosocomial infection, and is notoriously difficult to control in hospitals. Recently, a machine-learning approach was first used to analyze the genome sequences of hundreds of susceptible and resistant A. baumannii strains, including those carrying commonly acquired resistant mechanisms, to build a classifier that can predict strain resistance. A complementary approach is to explore novel genetic elements that could be associated with the antimicrobial resistance of strains, independent of known mechanisms. Therefore, we carefully selected A. baumannii strains, spanning various genotypes, from public genome databases, and conducted the first genome-wide association study (GWAS) of carbapenem resistance. We employed a recently developed method, capable of identifying any kind of genetic variation and accounting for bacterial population structure, and evaluated its effectiveness. Our study identified a surface adhesin gene that had been horizontally transferred to an ancestral branch of A. baumannii, as well as a specific region of that gene that appeared to accumulate multiple individual variations across the different branches of carbapenem-resistant A. baumannii strains. PMID:27892531

  12. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    PubMed

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia.

  13. Maternal Experience with Predation Risk Influences Genome-Wide Embryonic Gene Expression in Threespined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Mommer, Brett C.; Bell, Alison M.

    2014-01-01

    There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects. PMID:24887438

  14. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis.

    PubMed

    Guo, Yan; Tan, Li-Jun; Lei, Shu-Feng; Yang, Tie-Lin; Chen, Xiang-Ding; Zhang, Feng; Chen, Yuan; Pan, Feng; Yan, Han; Liu, Xiaogang; Tian, Qing; Zhang, Zhi-Xin; Zhou, Qi; Qiu, Chuan; Dong, Shan-Shan; Xu, Xiang-Hong; Guo, Yan-Fang; Zhu, Xue-Zhen; Liu, Shan-Lin; Wang, Xiang-Li; Li, Xi; Luo, Yi; Zhang, Li-Shu; Li, Meng; Wang, Jin-Tang; Wen, Ting; Drees, Betty; Hamilton, James; Papasian, Christopher J; Recker, Robert R; Song, Xiao-Ping; Cheng, Jing; Deng, Hong-Wen

    2010-01-08

    Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08x10(-9), odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39x10(-6)), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.

  15. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles

    PubMed Central

    Wang, Quan; Yu, Hui; Zhao, Zhongming; Jia, Peilin

    2015-01-01

    Summary: We previously developed dmGWAS to search for dense modules in a human protein–protein interaction (PPI) network; it has since become a popular tool for network-assisted analysis of genome-wide association studies (GWAS). dmGWAS weights nodes by using GWAS signals. Here, we introduce an upgraded algorithm, EW_dmGWAS, to boost GWAS signals in a node- and edge-weighted PPI network. In EW_dmGWAS, we utilize condition-specific gene expression profiles for edge weights. Specifically, differential gene co-expression is used to infer the edge weights. We applied EW_dmGWAS to two diseases and compared it with other relevant methods. The results suggest that EW_dmGWAS is more powerful in detecting disease-associated signals. Availability and implementation: The algorithm of EW_dmGWAS is implemented in the R package dmGWAS_3.0 and is available at http://bioinfo.mc.vanderbilt.edu/dmGWAS. Contact: zhongming.zhao@vanderbilt.edu or peilin.jia@vanderbilt.edu Supplementary information: Supplementary materials are available at Bioinformatics online. PMID:25805723

  16. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight

    PubMed Central

    2014-01-01

    Background Spaceflight environment have been shown to generate reactive oxygen species (ROS) and induce oxidative stress in plants, but little is known about the gene expression of the ROS gene network in plants grown in long-term spaceflight. The molecular response and adaptation to the spaceflight environment of Mizuna plants harvested after 27 days of cultivation onboard the International Space Station (ISS) were measured using genome-wide mRNA expression analysis (mRNA-Seq). Results Total reads of transcripts from the Mizuna grown in the ISS as well as on the ground by mRNA-Seq showed 8,258 and 14,170 transcripts up-regulated and down-regulated, respectively, in the space-grown Mizuna when compared with those from the ground-grown Mizuna. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. RbohD and RbohF genes were up-regulated preferentially in NADPH oxidase genes, which produce ROS. Conclusions This large-scale transcriptome analysis revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna. Among transcripts altered in expression by space conditions, some were common genes response to abiotic and biotic stress. Furthermore, certain genes were exclusively up-regulated in Mizuna grown on the ISS. Surprisingly, Mizuna grew in space normally, as well as on the ground, demonstrating that plants can acclimate to long-term exposure in the spaceflight environment by reprogramming the expression of the ROS gene network. PMID:24393219

  17. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.

    PubMed

    Salvadó, Zoel; Ramos-Alonso, Lucía; Tronchoni, Jordi; Penacho, Vanessa; García-Ríos, Estéfani; Morales, Pilar; Gonzalez, Ramon; Guillamón, José Manuel

    2016-11-07

    Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.

  18. Large number of replacement polymorphisms in rapidly evolving genes of Drosophila. Implications for genome-wide surveys of DNA polymorphism.

    PubMed Central

    Schmid, K J; Nigro, L; Aquadro, C F; Tautz, D

    1999-01-01

    We present a survey of nucleotide polymorphism of three novel, rapidly evolving genes in populations of Drosophila melanogaster and D. simulans. Levels of silent polymorphism are comparable to other loci, but the number of replacement polymorphisms is higher than that in most other genes surveyed in D. melanogaster and D. simulans. Tests of neutrality fail to reject neutral evolution with one exception. This concerns a gene located in a region of high recombination rate in D. simulans and in a region of low recombination rate in D. melanogaster, due to an inversion. In the latter case it shows a very low number of polymorphisms, presumably due to selective sweeps in the region. Patterns of nucleotide polymorphism suggest that most substitutions are neutral or nearly neutral and that weak (positive and purifying) selection plays a significant role in the evolution of these genes. At all three loci, purifying selection of slightly deleterious replacement mutations appears to be more efficient in D. simulans than in D. melanogaster, presumably due to different effective population sizes. Our analysis suggests that current knowledge about genome-wide patterns of nucleotide polymorphism is far from complete with respect to the types and range of nucleotide substitutions and that further analysis of differences between local populations will be required to understand the forces more completely. We note that rapidly diverging and nearly neutrally evolving genes cannot be expected only in the genome of Drosophila, but are likely to occur in large numbers also in other organisms and that their function and evolution are little understood so far. PMID:10581279

  19. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    SciTech Connect

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; Gore, Michael A.; Dyer, John M.

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level

  20. META-GSA: Combining Findings from Gene-Set Analyses across Several Genome-Wide Association Studies

    PubMed Central

    Rosenberger, Albert; Friedrichs, Stefanie; Amos, Christopher I.; Brennan, Paul; Fehringer, Gordon; Heinrich, Joachim; Hung, Rayjean J.; Muley, Thomas; Müller-Nurasyid, Martina; Risch, Angela; Bickeböller, Heike

    2015-01-01

    Introduction Gene-set analysis (GSA) methods are used as complementary approaches to genome-wide association studies (GWASs). The single marker association estimates of a predefined set of genes are either contrasted with those of all remaining genes or with a null non-associated background. To pool the p-values from several GSAs, it is important to take into account the concordance of the observed patterns resulting from single marker association point estimates across any given gene set. Here we propose an enhanced version of Fisher’s inverse χ2-method META-GSA, however weighting each study to account for imperfect correlation between association patterns. Simulation and Power We investigated the performance of META-GSA by simulating GWASs with 500 cases and 500 controls at 100 diallelic markers in 20 different scenarios, simulating different relative risks between 1 and 1.5 in gene sets of 10 genes. Wilcoxon’s rank sum test was applied as GSA for each study. We found that META-GSA has greater power to discover truly associated gene sets than simple pooling of the p-values, by e.g. 59% versus 37%, when the true relative risk for 5 of 10 genes was assume to be 1.5. Under the null hypothesis of no difference in the true association pattern between the gene set of interest and the set of remaining genes, the results of both approaches are almost uncorrelated. We recommend not relying on p-values alone when combining the results of independent GSAs. Application We applied META-GSA to pool the results of four case-control GWASs of lung cancer risk (Central European Study and Toronto/Lunenfeld-Tanenbaum Research Institute Study; German Lung Cancer Study and MD Anderson Cancer Center Study), which had already been analyzed separately with four different GSA methods (EASE; SLAT, mSUMSTAT and GenGen). This application revealed the pathway GO0015291 “transmembrane transporter activity” as significantly enriched with associated genes (GSA-method: EASE, p = 0

  1. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains

    SciTech Connect

    Lan, Yemin; Rosen, Gail; Hershberg, Ruth

    2016-05-03

    The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that the percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.

  2. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains

    DOE PAGES

    Lan, Yemin; Rosen, Gail; Hershberg, Ruth

    2016-05-03

    The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that themore » percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.« less

  3. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer

    PubMed Central

    Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.

    2012-01-01

    Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087

  4. Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling

    PubMed Central

    Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie

    2008-01-01

    Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127

  5. Genome-Wide Identification, Evolution, and Expression Analysis of the ATP-Binding Cassette Transporter Gene Family in Brassica rapa

    PubMed Central

    Yan, Chao; Duan, Weike; Lyu, Shanwu; Li, Ying; Hou, Xilin

    2017-01-01

    ATP-binding cassette (ABC) proteins can act as transporters of different substrates across biological membranes by hydrolyzing ATP. However, little information is available about ABC transporters in Brassica rapa, an important leafy vegetable. In the present study, we carried out genome-wide identification, characterization and molecular evolution analyses of ABC gene family in B. rapa and 9 other plant species. A total of 179 B. rapa ABC genes (BraABCs) were identified. Among them, 173 BraABCs were identified on 10 chromosomes. Based on phylogenetic analysis and domain organization, the BraABC family could be grouped into eight subfamilies. BraABCs in the same subfamily showed similar motif composition and exon-intron organization. Common and unique cis-elements involved in the transcriptional regulation were also identified in the promoter regions of BraABCs. Tissue-expression analysis of BraABCs demonstrated their diverse spatiotemporal expression profiles. Influences of the whole genome triplication (WGT) on the evolution of BraABCs were studied in detail. BraABCs were preferentially retained compared with their neighboring genes during diploidization after WGT. Synteny analysis identified 76 pairs of syntenic BraABC paralogs among the three subgenomes of B. rapa, and 10 paralog pairs underwent positive selection with ω (= Ka/Ks) ratios greater than 1. Analyses of the expression patterns of syntenic BraABC paralogs pairs across five tissues and under stress treatments revealed their functional conservation, sub-functionalization, neo-functionalization and pseudogenization during evolution. Our study presents a comprehensive overview of the ABC gene family in B. rapa and will be helpful for the further functional study of BraABCs in plant growth, development, and stress responses. PMID:28367152

  6. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper

    PubMed Central

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  7. Impact on schizotypal personality trait of a genome-wide supported psychosis variant of the ZNF804A gene.

    PubMed

    Yasuda, Yuka; Hashimoto, Ryota; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Yamamori, Hidenaga; Okochi, Tomo; Iwase, Masao; Kazui, Hiroaki; Iwata, Nakao; Takeda, Masatoshi

    2011-05-20

    Schizophrenia is a complex disorder with a high heritability. Relatives with schizophrenia have an increased risk not only for schizophrenia but also for schizophrenia spectrum disorders, such as schizotypal personality disorder. A single nucleotide polymorphism (SNP), rs1344706, in the Zinc Finger Protein 804A (ZNF804A) gene, has been implicated in susceptibility to schizophrenia by several genome-wide association studies, follow-up association studies and meta-analyses. This SNP has been shown to affect neuronal connectivities and cognitive abilities. We investigated an association between the ZNF804A genotype of rs1344706 and schizotypal personality traits using the Schizotypal Personality Questionnaire (SPQ) in 176 healthy subjects. We also looked for specific associations among ZNF804A polymorphisms and the three factors of schizotypy-cognitive/perceptual, interpersonal and disorganization-assessed by the SPQ. The total score for the SPQ in carriers of the risk T allele was significantly higher than that in individuals with the G/G genotype (p=0.042). For the three factors derived from the SPQ, carriers with the risk T allele showed a higher disorganization factor (p=0.011), but there were no differences in the cognitive/perceptual or interpersonal factors between genotype groups (p>0.30). These results suggest that the genetic variation in ZNF804A might increase susceptibility not only for schizophrenia but also for schizotypal personality traits in healthy subjects.

  8. A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel

    PubMed Central

    Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.

    2013-01-01

    Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647

  9. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model.

    PubMed

    Wu, Jian; Peng, Zhen; Liu, Songyu; He, Yanjun; Cheng, Lin; Kong, Fuling; Wang, Jie; Lu, Gang

    2012-04-01

    Auxin plays key roles in a wide variety of plant activities, including embryo development, leaf formation, phototropism, fruit development and root initiation and development. Auxin/indoleacetic acid (Aux/IAA) genes, encoding short-lived nuclear proteins, are key regulators in the auxin transduction pathway. But how they work is still unknown. In order to conduct a systematic analysis of this gene family in Solanaceae species, a genome-wide search for the homologues of auxin response genes was carried out. Here, 26 and 27 non redundant AUX/IAAs were identified in tomato and potato, respectively. Using tomato as a model, a comprehensive overview of SlIAA gene family is presented, including the gene structures, phylogeny, chromosome locations, conserved motifs and cis-elements in promoter sequences. A phylogenetic tree generated from alignments of the predicted protein sequences of 31 OsIAAs, 29 AtIAAs, 31 ZmIAAs, and 26 SlIAAs revealed that these IAAs were clustered into three major groups and ten subgroups. Among them, seven subgroups were present in both monocot and dicot species, which indicated that the major functional diversification within the IAA family predated the monocot/dicot divergence. In contrast, group C and some other subgroups seemed to be species-specific. Quantitative real-time PCR (qRT-PCR) analysis showed that 19 of the 26 SlIAA genes could be detected in all tomato organs/tissues, however, seven of them were specifically expressed in some of tomato tissues. The transcript abundance of 17 SlIAA genes were increased within a few hours when the seedlings were treated with exogenous IAA. However, those of other six SlIAAs were decreased. The results of stress treatments showed that most SIIAA family genes responded to at least one of the three stress treatments, however, they exhibited diverse expression levels under different abiotic stress conditions in tomato seedlings. SlIAA20, SlIAA21 and SlIAA22 were not significantly influenced by stress

  10. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D.

    PubMed

    Shtratnikova, Victoria Y; Schelkunov, Mikhail I; Fokina, Victoria V; Pekov, Yury A; Ivashina, Tanya; Donova, Marina V

    2016-08-01

    Actinobacteria comprise diverse groups of bacteria capable of full degradation, or modification of different steroid compounds. Steroid catabolism has been characterized best for the representatives of suborder Corynebacterineae, such as Mycobacteria, Rhodococcus and Gordonia, with high content of mycolic acids in the cell envelope, while it is poorly understood for other steroid-transforming actinobacteria, such as representatives of Nocardioides genus belonging to suborder Propionibacterineae. Nocardioides simplex VKM Ac-2033D is an important biotechnological strain which is known for its ability to introduce ∆(1)-double bond in various 1(2)-saturated 3-ketosteroids, and perform convertion of 3β-hydroxy-5-ene steroids to 3-oxo-4-ene steroids, hydrolysis of acetylated steroids, reduction of carbonyl groups at C-17 and C-20 of androstanes and pregnanes, respectively. The strain is also capable of utilizing cholesterol and phytosterol as carbon and energy sources. In this study, a comprehensive bioinformatics genome-wide screening was carried out to predict genes related to steroid metabolism in this organism, their clustering and possible regulation. The predicted operon structure and number of candidate gene copies paralogs have been estimated. Binding sites of steroid catabolism regulators KstR and KstR2 specified for N. simplex VKM Ac-2033D have been calculated de novo. Most of the candidate genes grouped within three main clusters, one of the predicted clusters having no analogs in other actinobacteria studied so far. The results offer a base for further functional studies, expand the understanding of steroid catabolism by actinobacteria, and will contribute to modifying of metabolic pathways in order to generate effective biocatalysts capable of producing valuable bioactive steroids.

  11. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    PubMed

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  12. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis.

    PubMed

    Del Real, Alvaro; Pérez-Campo, Flor M; Fernández, Agustín F; Sañudo, Carolina; Ibarbia, Carmen G; Pérez-Núñez, María I; Criekinge, Wim Van; Braspenning, Maarten; Alonso, María A; Fraga, Mario F; Riancho, Jose A

    2017-02-01

    Insufficient activity of the bone-forming osteoblasts leads to low bone mass and predisposes to fragility fractures. The functional capacity of human mesenchymal stem cells (hMSCs), the precursors of osteoblasts, may be compromised in elderly individuals, in relation with the epigenetic changes associated with aging. However, the role of hMSCs in the pathogenesis of osteoporosis is still unclear. Therefore, we aimed to characterize the genome-wide methylation and gene expression signatures and the differentiation capacity of hMSCs from patients with hip fractures. We obtained hMSCs from the femoral heads of women undergoing hip replacement due to hip fractures and controls with hip osteoarthritis. DNA methylation was explored with the Infinium 450K bead array. Transcriptome analysis was done by RNA sequencing. The genomic analyses revealed that most differentially methylated loci were situated in genomic regions with enhancer activity, distant from gene bodies and promoters. These regions were associated with differentially expressed genes enriched in pathways related to hMSC growth and osteoblast differentiation. hMSCs from patients with fractures showed enhanced proliferation and upregulation of the osteogenic drivers RUNX2/OSX. Also, they showed some signs of accelerated methylation aging. When cultured in osteogenic medium, hMSCs from patients with fractures showed an impaired differentiation capacity, with reduced alkaline phosphatase activity and poor accumulation of a mineralized matrix. Our results point to 2 areas of potential interest for discovering new therapeutic targets for low bone mass disorders and bone regeneration: the mechanisms stimulating MSCs proliferation after fracture and those impairing their terminal differentiation.

  13. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes

    PubMed Central

    2013-01-01

    Background Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species. Results In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments. Conclusions This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion

  14. Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30

    PubMed Central

    Taylor, John M; Ghorbel, Sofiane; Nicot, Christophe

    2009-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus that is etiologically linked to adult T-cell leukemia (ATL), an aggressive and fatal lymphoproliferative disease. The viral transactivator, Tax, is thought to play an important role during the initial stages of CD4+ T-cell immortalization by HTLV-1. Tax has been shown to activate transcription through CREB/ATF and NF-KB, and to alter numerous signaling pathways. These pleiotropic effects of Tax modify the expression of a wide array of cellular genes. Another viral protein encoded by HTLV-I, p30, has been shown to affect virus replication at the transcriptional and posttranscriptional levels. Little is currently known regarding the effect of p30 on the expression and nuclear export of cellular host mRNA transcripts. Identification of these RNA may reveal new targets and increase our understanding of HTLV-I pathogenesis. In this study, using primary peripheral blood mononuclear cells, we report a genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. Results Using microarray analysis, we analyzed total and cytoplasmic cellular mRNA transcript levels isolated from PBMCs to assess the effect of p30 on cellular RNA transcript expression and their nuclear export. We report p30-dependent transcription resulting in the 2.5 fold up-regulation of 15 genes and the down-regulation of 65 human genes. We further tested nuclear export of cellular mRNA and found that p30 expression also resulted in a 2.5 fold post-transcriptional down-regulation of 90 genes and the up-regulation of 33 genes. Conclusion Overall, our study describes that expression of the HTLV-I protein p30 both positively and negatively alters the expression of cellular transcripts. Our study identifies for the first time the cellular genes for which nuclear export is affected by p30. These results suggest that p30 may possess a more global function with respect to m

  15. A PLSPM-based test statistic for detecting gene-gene co-association in genome-wide association study with case-control design.

    PubMed

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.

  16. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene.

    PubMed

    Guimaraes, Larissa Arrais; Mota, Ana Paula Zotta; Araujo, Ana Claudia Guerra; de Alencar Figueiredo, Lucio Flavio; Pereira, Bruna Medeiros; de Passos Saraiva, Mario Alfredo; Silva, Raquel Bispo; Danchin, Etienne G J; Guimaraes, Patricia Messenberg; Brasileiro, Ana Cristina Miranda

    2017-02-27

    Expansins are plant cell wall-loosening proteins involved in adaptive responses to environmental stimuli and various developmental processes. The first genome-wide analysis of the expansin superfamily in the Arachis genus identified 40 members in A. duranensis and 44 in A. ipaënsis, the wild progenitors of cultivated peanut (A. hypogaea). These expansins were further characterized regarding their subfamily classification, distribution along the genomes, duplication events, molecular structure, and phylogeny. A RNA-seq expression analysis in different Arachis species showed that the majority of these expansins are modulated in response to diverse stresses such as water deficit, root-knot nematode (RKN) infection, and UV exposure, with an expansin-like B gene (AraEXLB8) displaying a highly distinct stress-responsive expression profile. Further analysis of the AraEXLB8 coding sequences showed high conservation across the Arachis genotypes, with eight haplotypes identified. The modulation of AraEXLB8 expression in response to the aforementioned stresses was confirmed by qRT-PCR analysis in distinct Arachis genotypes, whilst in situ hybridization revealed transcripts in different root tissues according to the stress imposed. The overexpression of AraEXLB8 in soybean (Glycine max) composite plants remarkably decreased the number of galls in transformed hairy roots inoculated with RKN. This study improves the current understanding of the molecular evolution, divergence, and gene expression of expansins in Arachis, and provides molecular and functional insights into the role of expansin-like B, the less-studied plant expansin subfamily.

  17. Genome-Wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence

    PubMed Central

    Fackler, Mary Jo; Umbricht, Christopher; Williams, Danielle; Argani, Pedram; Cruz, Leigh-Ann; Merino, Vanessa F.; Teo, Wei Wen; Zhang, Zhe; Huang, Peng; Visvananthan, Kala; Marks, Jeffrey; Ethier, Stephen; Gray, Joe W; Wolff, Antonio C.; Cope, Leslie M.; Sukumar, Saraswati

    2011-01-01

    To better understand the biology of hormone receptor-positive and negative breast cancer and to identify methylated gene markers of disease progression, we performed a genome-wide methylation array analysis on 103 primary invasive breast cancers and 21 normal breast samples using the Illumina Infinium HumanMethylation27 array that queried 27,578 CpG loci. Estrogen and/or progesterone receptor-positive tumors displayed more hypermethylated loci than ER-negative tumors. However, the hypermethylated loci in ER-negative tumors were clustered closer to the transcriptional start site compared to ER-positive tumors. An ER-classifier set of CpG loci was identified, which independently partitioned primary tumors into ER-subtypes. Forty (32 novel, 8 previously known) CpG loci showed differential methylation specific to either ER-positive or ER-negative tumors. Each of the 40 ER-subtype-specific loci was validated in silico using an independent, publicly available methylome dataset from The Cancer Genome Atlas (TCGA). In addition, we identified 100 methylated CpG loci that were significantly associated with disease progression; the majority of these loci were informative particularly in ER-negative breast cancer. Overall, the set was highly enriched in homeobox containing genes. This pilot study demonstrates the robustness of the breast cancer methylome and illustrates its potential to stratify and reveal biological differences between ER-subtypes of breast cancer. Further, it defines candidate ER-specific markers and identifies potential markers predictive of outcome within ER subgroups. PMID:21825015

  18. Leading the way: finding genes for neurologic disease in dogs using genome-wide mRNA sequencing.

    PubMed

    Ostrander, Elaine A; Beale, Holly C

    2012-07-10

    Because of dogs' unique population structure, human-like disease biology, and advantageous genomic features, the canine system has risen dramatically in popularity as a tool for discovering disease alleles that have been difficult to find by studying human families or populations. To date, disease studies in dogs have primarily employed either linkage analysis, leveraging the typically large family size, or genome-wide association, which requires only modest-sized case and control groups in dogs. Both have been successful but, like most techniques, each requires a specific combination of time and money, and there are inherent problems associated with each. Here we revi