Sample records for genomes program

  1. 78 FR 18680 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The..., that the Genomic Medicine Program Advisory Committee will meet on April 11, 2013, in Suite 1000 at the... ongoing Million Veteran Program, as well as the clinical Genomic Medicine Service. The emerging...

  2. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  3. 75 FR 26846 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The...) that the Genomic Medicine Program Advisory Committee will meet on May 21, 2010, at the Westin... appropriate ethical oversight and protecting the privacy of Veterans; presentations on genomic medicine...

  4. History of the DOE Human Genome Program

    Science.gov Websites

    History of the DOE Human Genome Program The following history is taken from the U.S. Department of Energy 1991-91 Human Genome Program Report (June 1992). This is an archived item. A brief history of the U.S. Department of Energy (DOE) Human Genome Program will be useful in a discussion of the objectives

  5. Multimedia presentations on the human genome: Implementation and assessment of a teaching program for the introduction to genome science using a poster and animations.

    PubMed

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-11-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from Mendel's peas not only because many students do not understand that plants are organisms, but also because human biology contains important social and health issues. Therefore, we have developed a teaching program for the introduction to genome science, whose subjects are focused on the human genome. This program comprises mixed multimedia presentations: a large poster with illustrations and text on the human genome (a human genome map for every home), and animations on the basics of genome science. We implemented and assessed this program at four high schools. Our results indicate that students felt that they learned about the human genome from the program and some increases in students' understanding were observed with longer exposure to the mixed multimedia presentations. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  6. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, David

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  7. Human genome. 1993 Program report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  8. Post-Genome Era Pedagogy: How a BS Biotechnology Program Benefits the Liberal Arts Institution

    ERIC Educational Resources Information Center

    Eden, Peter

    2005-01-01

    Genomics profoundly affects society, because genome sequence information is widely used in such areas as genetic testing, genomic medicine/vaccine development, and so forth. Therefore, a responsibility to modernize science curricula exists for "post-genome era" educators. At my university, we developed a BS biotechnology program within a…

  9. Mating programs including genomic relationships and dominance effects

    USDA-ARS?s Scientific Manuscript database

    Breed associations, artificial-insemination organizations, and on-farm software providers need new computerized mating programs for genomic selection so that genomic inbreeding could be minimized by comparing genotypes of potential mates. Efficient methods for transferring elements of the genomic re...

  10. The Ethical, Legal, and Social Implications Program of the National Human Genome Research Institute: reflections on an ongoing experiment.

    PubMed

    McEwen, Jean E; Boyer, Joy T; Sun, Kathie Y; Rothenberg, Karen H; Lockhart, Nicole C; Guyer, Mark S

    2014-01-01

    For more than 20 years, the Ethical, Legal, and Social Implications (ELSI) Program of the National Human Genome Research Institute has supported empirical and conceptual research to anticipate and address the ethical, legal, and social implications of genomics. As a component of the agency that funds much of the underlying science, the program has always been an experiment. The ever-expanding number of issues the program addresses and the relatively low level of commitment on the part of other funding agencies to support such research make setting priorities especially challenging. Program-supported studies have had a significant impact on the conduct of genomics research, the implementation of genomic medicine, and broader public policies. The program's influence is likely to grow as ELSI research, genomics research, and policy development activities become increasingly integrated. Achieving the benefits of increased integration while preserving the autonomy, objectivity, and intellectual independence of ELSI investigators presents ongoing challenges and new opportunities.

  11. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    PubMed

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  12. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances

    PubMed Central

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272

  13. 77 FR 58913 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on October 16, 2012, at the American...

  14. 76 FR 24573 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on May 20, 2011, at the St. Regis Hotel...

  15. 78 FR 58612 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Genomic Medicine Program Advisory Committee will meet on October 16, 2013, at the Sheraton...

  16. 75 FR 61861 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on October 22, 2010, at the Embassy...

  17. 77 FR 16898 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on April 17, 2012, at the Sheraton...

  18. Translational Genomics in Low and Middle Income Countries: Opportunities and Challenges

    PubMed Central

    Tekola-Ayele, Fasil; Rotimi, Charles N.

    2015-01-01

    Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low and middle income countries (LMIC) have participated minimally in genomic research for several reasons including lack of coherent national policies, limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomics research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and socio-cultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomics research, we advocate that large-scale genomics research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and socio-cultural uniqueness. These policies should encourage international collaboration and promote link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. PMID:26138992

  19. The collaborative African genomics network training program: A trainee perspective on training the next generation of African scientists

    USDA-ARS?s Scientific Manuscript database

    The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside...

  20. 76 FR 65563 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on November 2, 2011, at the Hamilton Crowne Plaza, 14th and K Streets, NW.,...

  1. Cancer Genomic Resources and Present Needs in the Latin American Region.

    PubMed

    Torres, Ángela; Oliver, Javier; Frecha, Cecilia; Montealegre, Ana Lorena; Quezada-Urbán, Rosalía; Díaz-Velásquez, Clara Estela; Vaca-Paniagua, Felipe; Perdomo, Sandra

    2017-01-01

    In Latin America (LA), cancer is the second leading cause of death, and little is known about the capacities and needs for the development of research in the field of cancer genomics. In order to evaluate the current capacity for and development of cancer genomics in LA, we collected the available information on genomics, including the number of next-generation sequencing (NGS) platforms, the number of cancer research institutions and research groups, publications in the last 10 years, educational programs, and related national cancer control policies. Currently, there are 221 NGS platforms and 118 research groups in LA developing cancer genomics projects. A total of 272 articles in the field of cancer genetics/genomics were published by authors affiliated to Latin American institutions. Educational programs in genomics are scarce, almost exclusive of graduate programs, and only few are concerning cancer. Only 14 countries have national cancer control plans, but all of them consider secondary prevention strategies for early diagnosis, opportune treatment, and decreasing mortality, where genomic analyses could be implemented. Despite recent advances in introducing knowledge about cancer genomics and its application to LA, the region lacks development of integrated genomic research projects, improved use of NGS platforms, implementation of associated educational programs, and health policies that could have an impact on cancer care. © 2017 S. Karger AG, Basel.

  2. The collaborative African genomics network training program: a trainee perspective on training the next generation of African scientists.

    PubMed

    Mlotshwa, Busisiwe C; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W; Hanchard, Neil A; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W

    2017-07-01

    The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.

  3. The collaborative African genomics network training program: a trainee perspective on training the next generation of African scientists

    PubMed Central

    Mlotshwa, Busisiwe C.; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W.; Hanchard, Neil A.; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W.

    2017-01-01

    Purpose: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees’ perspectives on their involvement. Background: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North–South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. Methods: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Conclusion: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North–South and South–South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their “first language.” Genet Med advance online publication 06 April 2017 PMID:28383545

  4. Translational Genomics in Low- and Middle-Income Countries: Opportunities and Challenges.

    PubMed

    Tekola-Ayele, Fasil; Rotimi, Charles N

    2015-01-01

    Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low- and middle-income countries (LMIC) have participated minimally in genomic research for several reasons including the lack of coherent national policies, the limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project, and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomic research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and sociocultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomic research, we advocate that large-scale genomic research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and sociocultural uniqueness. These policies should encourage international collaboration and promote the link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. © 2015 S. Karger AG, Basel.

  5. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  6. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    PubMed Central

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID:25750652

  7. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  8. GenomeVista

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poliakov, Alexander; Couronne, Olivier

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  9. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah

    2018-01-15

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  10. Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.

    PubMed

    Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney

    2004-08-01

    We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America

  11. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects

    PubMed Central

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  12. JGI Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less

  13. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    PubMed

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  14. Mating programs including genomic relationships

    USDA-ARS?s Scientific Manuscript database

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  15. GenomeGraphs: integrated genomic data visualization with R.

    PubMed

    Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine

    2009-01-06

    Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.

  16. Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN

    PubMed Central

    Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.

    2018-01-01

    Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956

  17. Mating programs including genomic relationships and dominance effects

    USDA-ARS?s Scientific Manuscript database

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  18. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology

    PubMed Central

    2013-01-01

    Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets. PMID:23514126

  19. Global Implementation of Genomic Medicine: We Are Not Alone

    PubMed Central

    Manolio, Teri A.; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C.; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L.; Dissanayake, Vajira H. W.; Dunn, Michael; Dzau, Victor J.; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P.; Matthijs, Gert; McLeod, Howard L.; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O’Rourke, P. Pearl; Patrinos, George P.; Rehm, Heidi L.; Relling, Mary V.; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M.; Shuldiner, Alan R.; Sinha, Sukdev; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S.; Wong, John E.L.; Green, Eric D.; Ginsburg, Geoffrey S.

    2016-01-01

    Advances in high-throughput genomic technologies coupled with a growing number of genomic results potentially useful in clinical care have led to ground-breaking genomic medicine implementation programs in various nations. Many of these innovative programs capitalize on unique local capabilities arising from the structure of their health care systems or their cultural or political milieu, as well as from unusual burdens of disease or risk alleles. Many such programs are being conducted in relative isolation and might benefit from sharing of approaches and lessons learned in other nations. The National Human Genome Research Institute recently brought together 25 of these groups from around the world to describe and compare projects, examine the current state of implementation and desired near-term capabilities, and identify opportunities for collaboration to promote the responsible implementation of genomic medicine. The wide variety of nascent programs in diverse settings demonstrates that implementation of genomic medicine is expanding globally in varied and highly innovative ways. Opportunities for collaboration abound in the areas of evidence generation, health information technology, education, workforce development, pharmacogenomics, and policy and regulatory issues. Several international organizations that are already facilitating effective research collaborations should engage to ensure implementation proceeds collaboratively without potentially wasteful duplication. Efforts to coalesce these groups around concrete but compelling signature projects, such as global eradication of genetically-mediated drug reactions or developing a truly global genomic variant data resource across a wide number of ethnicities, would accelerate appropriate implementation of genomics to improve clinical care world-wide. PMID:26041702

  20. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  1. Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize (Zea mays) Root Tips[OPEN

    PubMed Central

    LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.

    2017-01-01

    All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533

  2. Teaching strategies to incorporate genomics education into academic nursing curricula.

    PubMed

    Quevedo Garcia, Sylvia P; Greco, Karen E; Loescher, Lois J

    2011-11-01

    The translation of genomic science into health care has expanded our ability to understand the effects of genomics on human health and disease. As genomic advances continue, nurses are expected to have the knowledge and skills to translate genomic information into improved patient care. This integrative review describes strategies used to teach genomics in academic nursing programs and their facilitators and barriers to inclusion in nursing curricula. The Learning Engagement Model and the Diffusion of Innovations Theory guided the interpretation of findings. CINAHL, Medline, and Web of Science were resources for articles published during the past decade that included strategies for teaching genomics in academic nursing programs. Of 135 articles, 13 met criteria for review. Examples of effective genomics teaching strategies included clinical application through case studies, storytelling, online genomics resources, student self-assessment, guest lecturers, and a genetics focus group. Most strategies were not evaluated for effectiveness. Copyright 2011, SLACK Incorporated.

  3. RSAT 2015: Regulatory Sequence Analysis Tools

    PubMed Central

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A.; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M.; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-01-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632

  4. GenomeVx: simple web-based creation of editable circular chromosome maps.

    PubMed

    Conant, Gavin C; Wolfe, Kenneth H

    2008-03-15

    We describe GenomeVx, a web-based tool for making editable, publication-quality, maps of mitochondrial and chloroplast genomes and of large plasmids. These maps show the location of genes and chromosomal features as well as a position scale. The program takes as input either raw feature positions or GenBank records. In the latter case, features are automatically extracted and colored, an example of which is given. Output is in the Adobe Portable Document Format (PDF) and can be edited by programs such as Adobe Illustrator. GenomeVx is available at http://wolfe.gen.tcd.ie/GenomeVx

  5. Human Genome Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  6. Human Genome Program Report. Part 1, Overview and Progress

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  7. Human genome program report. Part 1, overview and progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  8. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    PubMed

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  9. GenomeDiagram: a python package for the visualization of large-scale genomic data.

    PubMed

    Pritchard, Leighton; White, Jennifer A; Birch, Paul R J; Toth, Ian K

    2006-03-01

    We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.

  10. Dissection of genomic correlation matrices using multivariate factor analysis in dairy and dual-purpose cattle breeds

    USDA-ARS?s Scientific Manuscript database

    SNP effects estimated in genomic selection programs allow for the prediction of direct genomic values (DGV) both at genome-wide and chromosomal level. As a consequence, genome-wide (G_GW) or chromosomal (G_CHR) correlation matrices between genomic predictions for different traits can be calculated. ...

  11. Fungal Genomics for Energy and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  12. Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae)

    PubMed Central

    Liu, Gui-Chun; Dong, Zhi-Wei; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan

    2017-01-01

    Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0. 42 to 1. 31 pg, a 3. 1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution. PMID:29280364

  13. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass.

    PubMed

    Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I

    2018-06-02

    Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.

  14. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  15. Hal: an automated pipeline for phylogenetic analyses of genomic data.

    PubMed

    Robbertse, Barbara; Yoder, Ryan J; Boyd, Alex; Reeves, John; Spatafora, Joseph W

    2011-02-07

    The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.

  16. Fueling the Future with Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less

  17. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  18. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    PubMed Central

    Zhang, Hao; van Diepeningen, Anne D.; van der Lee, Theo A. J.; Waalwijk, Cees; de Hoog, G. Sybren

    2016-01-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID:27308864

  19. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research.

    PubMed

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    2016-06-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).

  20. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  1. CHALLENGES FOR IMPLEMENTING A PTSD PREVENTIVE GENOMIC SEQUENCING PROGRAM IN THE U.S. MILITARY

    PubMed Central

    Lázaro-Muñoz, Gabriel; Juengst, Eric T.

    2015-01-01

    There is growing interest in using the quickly developing field of genomics to contribute to military readiness and effectiveness. Specifically, influential military advisory panels have recommended that the U.S. military apply genomics to help treat, prevent, or minimize the risk for post-traumatic stress disorder (PTSD) among service members. This article highlights some important scientific, legal, and ethical challenges regarding the development and deployment of a preventive genomic sequencing (PGS) program to predict the risk of PTSD among military service members. PMID:26401056

  2. RSAT 2015: Regulatory Sequence Analysis Tools.

    PubMed

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-07-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    PubMed

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  4. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    PubMed

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  5. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  6. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  7. Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less

  8. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

    PubMed

    Thakur, Shalabh; Guttman, David S

    2016-06-30

    Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .

  9. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-04

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens, becomes a tractable and powerful approach in breeding programs.

  10. Screening synteny blocks in pairwise genome comparisons through integer programming.

    PubMed

    Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael

    2011-04-18

    It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota-based screening can eliminate ambiguous synteny blocks and focus on specific genomic evolutionary events, like the divergence of lineages (in cross-species comparisons) and the most recent WGD (in self comparisons). The QUOTA-ALIGN algorithm screens a set of synteny blocks to retain only those compatible with a user specified ploidy relationship between two genomes. These blocks, in turn, may be used for additional downstream analyses such as identifying true orthologous regions in interspecific comparisons. There are two major contributions of QUOTA-ALIGN: 1) reducing the block screening task to a BIP problem, which is novel; 2) providing an efficient software pipeline starting from all-against-all BLAST to the screened synteny blocks with dot plot visualizations. Python codes and full documentations are publicly available http://github.com/tanghaibao/quota-alignment. QUOTA-ALIGN program is also integrated as a major component in SynMap http://genomevolution.com/CoGe/SynMap.pl, offering easier access to thousands of genomes for non-programmers. © 2011 Tang et al; licensee BioMed Central Ltd.

  11. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  12. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  13. pyGeno: A Python package for precision medicine and proteogenomics.

    PubMed

    Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien

    2016-01-01

    pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies.

  14. pyGeno: A Python package for precision medicine and proteogenomics

    PubMed Central

    Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien

    2016-01-01

    pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies. PMID:27785359

  15. Understanding the potential of state-based public health genomics programs to mitigate disparities in access to clinical genetic services.

    PubMed

    Senier, Laura; Tan, Catherine; Smollin, Leandra; Lee, Rachael

    2018-06-12

    State health agencies (SHAs) have developed public health genomics (PHG) programs that play an instrumental role in advancing precision public health, but there is limited research on their approaches. This study examines how PHG programs attempt to mitigate or forestall health disparities and inequities in the utilization of genomic medicine. We compared PHG programs in three states: Connecticut, Michigan, and Utah. We analyzed 85 in-depth interviews with SHA internal and external collaborators and program documents. We employed a qualitative coding process to capture themes relating to health disparities and inequities. Each SHA implemented population-level approaches to identify individuals who carry genetic variants that increase risk of hereditary cancers. However, each SHA developed a unique strategy-which we label public health action repertoires-to reach specific subgroups who faced barriers in accessing genetic services. These strategies varied across states given demographics of the state population, state-level partnerships, and availability of healthcare services. Our findings illustrate the imperative of tailoring PHG programs to local demographic characteristics and existing community resources. Furthermore, our study highlights how integrating genomics into precision public health will require multilevel, multisector collaboration to optimize efficacy and equity.

  16. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome...). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  17. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 21, 2011...

  18. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  19. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  20. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 7...

  1. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) [[Page 61771...

  2. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  3. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  4. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS...

  5. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program No. 93.172, Human Genome Research, National Institutes of...

  6. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  7. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  8. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  9. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  10. Phytozome Comparative Plant Genomics Portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  11. Building Communities: The Community Sequencing Program at JGI (2011 JGI User Meeting)

    ScienceCinema

    Bristow, Jim

    2018-01-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. DOE JGI Deputy Director Jim Bristow gives a presentation on the Community Sequencing Program at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.

  12. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema

    Silver, Pamela

    2018-02-13

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  13. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing

    PubMed Central

    Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao

    2018-01-01

    Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions. PMID:29344267

  14. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing.

    PubMed

    Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao

    2018-01-01

    Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.

  15. Genome Improvement at JGI-HAGSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less

  16. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.

    PubMed

    Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran

    2009-07-10

    A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.

  17. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    PubMed Central

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H.; Lau, Ching C.; Behl, Sanjiv; Man, Tsz-Kwong

    2007-01-01

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License. PMID:19936083

  18. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    PubMed

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  19. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 19...

  20. The development of genomics applied to dairy breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade and can be defined as the use of genomic breeding values (GEBV) in selection programs. The GEBV is the sum of the effects of dense DNA markers across the whole genome, capturing all the quantitative trait loci (QT...

  1. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 16...

  2. Jean C. Zenklusen, M.S., Ph.D., Discusses the NCI Genomics Data Commons at AACR 2014 - TCGA

    Cancer.gov

    At the AACR 2014 meeting, Dr. Jean C. Zenklusen, Director of The Cancer Genome Atlas Program Office, highlights the Genomics Data Commons, a harmonized data repository that will allow simultaneous access and analysis of NCI genomics data, including The Ca

  3. Collaborative Genomics Study Advances Precision Oncology

    Cancer.gov

    A collaborative study conducted by two Office of Cancer Genomics (OCG) initiatives highlights the importance of integrating structural and functional genomics programs to improve cancer therapies, and more specifically, contribute to precision oncology treatments for children.

  4. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  5. The Cancer Genome Atlas (TCGA): The next stage - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA), the NIH research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale, is moving to its next phase.

  6. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  7. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M

    2013-08-01

    In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.

  8. Identification of key ancestors of modern germplasm in a breeding program of maize.

    PubMed

    Technow, F; Schrag, T A; Schipprack, W; Melchinger, A E

    2014-12-01

    Probabilities of gene origin computed from the genomic kinships matrix can accurately identify key ancestors of modern germplasms Identifying the key ancestors of modern plant breeding populations can provide valuable insights into the history of a breeding program and provide reference genomes for next generation whole genome sequencing. In an animal breeding context, a method was developed that employs probabilities of gene origin, computed from the pedigree-based additive kinship matrix, for identifying key ancestors. Because reliable and complete pedigree information is often not available in plant breeding, we replaced the additive kinship matrix with the genomic kinship matrix. As a proof-of-concept, we applied this approach to simulated data sets with known ancestries. The relative contribution of the ancestral lines to later generations could be determined with high accuracy, with and without selection. Our method was subsequently used for identifying the key ancestors of the modern Dent germplasm of the public maize breeding program of the University of Hohenheim. We found that the modern germplasm can be traced back to six or seven key ancestors, with one or two of them having a disproportionately large contribution. These results largely corroborated conjectures based on early records of the breeding program. We conclude that probabilities of gene origin computed from the genomic kinships matrix can be used for identifying key ancestors in breeding programs and estimating the proportion of genes contributed by them.

  9. PanWeb: A web interface for pan-genomic analysis.

    PubMed

    Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J

    2017-01-01

    With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.

  10. i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles.

    PubMed

    Simillion, Cedric; Janssens, Koen; Sterck, Lieven; Van de Peer, Yves

    2008-01-01

    i-ADHoRe is a software tool that combines gene content and gene order information of homologous genomic segments into profiles to detect highly degenerated homology relations within and between genomes. The new version offers, besides a significant increase in performance, several optimizations to the algorithm, most importantly to the profile alignment routine. As a result, the annotations of multiple genomes, or parts thereof, can be fed simultaneously into the program, after which it will report all regions of homology, both within and between genomes. The i-ADHoRe 2.0 package contains the C++ source code for the main program as well as various Perl scripts and a fully documented Perl API to facilitate post-processing. The software runs on any Linux- or -UNIX based platform. The package is freely available for academic users and can be downloaded from http://bioinformatics.psb.ugent.be/

  11. The Saudi Human Genome Program: An oasis in the desert of Arab medicine is providing clues to genetic disease.

    PubMed

    Project Team, Saudi Genome

    2015-01-01

    Oil wells, endless deserts, stifling heat, masses of pilgrims, and wealthy-looking urban areas still dominate the widespread mental image of Saudi Arabia. Currently, this image is being extended to include a recent endeavor that is reserving a global share in the limelight as one of the top ten genomics projects currently underway: the Saudi Human Genome Program (SHGP). With sound funding, dedicated resources, and national determination, the SHGP targets the sequencing of 100,000 human genomes over the next five years to conduct world-class genomics-based biomedical research in the Saudi population. Why this project was conceived and thought to be feasible, what is the ultimate target, and how it operates are the questions we answer in this article.

  12. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Breeding nursery tissue collection for possible genomic analysis

    USDA-ARS?s Scientific Manuscript database

    Phenotyping is considered a major bottleneck in breeding programs. With new genomic technologies, high throughput genotype schemes are constantly being developed. However, every genomic technology requires phenotypic data to inform prediction models generated from the technology. Forage breeders con...

  14. Physician Preparedness for Big Genomic Data: A Review of Genomic Medicine Education Initiatives in the United States.

    PubMed

    Rubanovich, Caryn Kseniya; Cheung, Cynthia; Mandel, Jess; Bloss, Cinnamon S

    2018-05-10

    In the last decade, genomic medicine education initiatives have surfaced across the spectrum of physician training in order to help address a gap in genomic medicine preparedness among physicians. The approaches are diverse and stem from the belief that 21st century physicians must be proficient in genomic medicine applications as they will be leaders in the precision medicine movement. We conducted a review of literature in genomic medicine education and training for medical students, graduate medical education, and practicing physicians with articles published between June 2015 and January 2018 to gain a picture of the current state of genomic medicine education with a focus on the United States. We found evidence of progress in the development of new and innovative educational programs and other resources aimed at increasing physician knowledge and readiness. Three overarching educational approach themes emerged, including immersive and experiential learning; interdisciplinary and interprofessional education; and electronic- and web-based approaches. This review is not exhaustive, nevertheless, it may inform future directions and improvements for genomic medicine education. Important next-steps include: 1) identifying and studying ways to best implement low-cost dissemination of genomic information; 2) emphasizing genomic medicine education program evaluation; and 3) incorporating interprofessional and interdisciplinary initiatives. Genomic medicine education and training will become more and more relevant in the years to come as physicians increasingly interact with genomic and other precision medicine technologies.

  15. A system-level model for the microbial regulatory genome.

    PubMed

    Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S

    2014-07-15

    Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Genotypes are useful for more than genomic evaluation

    USDA-ARS?s Scientific Manuscript database

    New services that provide pedigree discovery, breed composition, mating programs, genomic inbreeding, fertility defects, and inheritance tracking all are possible from low-cost genotyping in addition to genomic evaluation. Genetic markers let breeders select among sibs before their phenotypes became...

  17. Parents' interest in whole-genome sequencing of newborns.

    PubMed

    Goldenberg, Aaron J; Dodson, Daniel S; Davis, Matthew M; Tarini, Beth A

    2014-01-01

    The aim of this study was to assess parents' interest in whole-genome sequencing for newborns. We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician's office. Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state's newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician's office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as "very important" in making a decision to have a newborn's whole genome sequenced. These data may help health departments and children's health-care providers anticipate parents' level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.

  18. Training in Psychiatric Genomics during Residency: A New Challenge

    ERIC Educational Resources Information Center

    Winner, Joel G.; Goebert, Deborah; Matsu, Courtenay; Mrazek, David A.

    2010-01-01

    Objective: The authors ascertained the amount of training in psychiatric genomics that is provided in North American psychiatric residency programs. Methods: A sample of 217 chief residents in psychiatric residency programs in the United States and Canada were identified by e-mail and surveyed to assess their training in psychiatric genetics and…

  19. Simulating a base population in honey bee for molecular genetic studies

    PubMed Central

    2012-01-01

    Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html PMID:22520469

  20. Simulating a base population in honey bee for molecular genetic studies.

    PubMed

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html.

  1. Applying Genomic and Genetic Tools to Understand and Mitigate Damage from Exposure to Toxins

    DTIC Science & Technology

    2013-10-01

    sequences to the human genome . Genome Biol 10, R25 (2009). 26 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand...utilizing the high-throughput technology of mRNA-seq. BODY The goal of our research program (W81XWH-09-1-0715) was to utilize genetic and genomic ...also acquired the achetf222a * * * * * 5 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand and Mitigate

  2. Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

    PubMed Central

    Dubois, Emeline; Bischerour, Julien; Marmignon, Antoine; Mathy, Nathalie; Régnier, Vinciane; Bétermier, Mireille

    2012-01-01

    Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes. PMID:22888464

  3. Genomic Tools in Groundnut Breeding Program: Status and Perspectives

    PubMed Central

    Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.

    2016-01-01

    Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312

  4. Knowledge, attitudes, and values among physicians working with clinical genomics: a survey of medical oncologists.

    PubMed

    Chow-White, Peter; Ha, Dung; Laskin, Janessa

    2017-06-27

    It has been over a decade since the completion of the Human Genome Project (HGP), genomic sequencing technologies have yet to become parts of standard of care in Canada. This study investigates medical oncologists' (MOs) genomic literacy and their experiences based on their participation in a cancer genomics trial in British Columbia, Canada. The authors conducted a survey of MOs from British Columbia, Canada (n = 31, 52.5% response rate), who are actively involved in a clinical genomics trial called Personalized Onco-Genomics (POG). The authors also measured MOs' level of genomic knowledge and attitudes about clinical genomics in cancer medicine. The findings show a low to moderate level of genomic literacy among MOs. MOs located outside the Vancouver area (the major urban center) reported less knowledge about new genetics technologies compared to those located in the major metropolitan area (26.7 vs 73.3%, P < 0.07, Fisher exact test). Forty-two percent of all MOs thought medical training programs do not offer enough genomic training. The majority of the respondents thought genomics will have major impact on drug discovery (67.7%), and treatment selection (58%) in the next 5 years. They also thought the major challenges are cost (61.3%), patient genomic literacy (48.3%), and clinical utility of genomics (42%). The data suggest a high need to increase genomic literacy among MOs and other doctors in medical school training programs and beyond, especially to physicians in regional areas who may need more educational interventions. Initiatives like POG play a critical role in the education of MOs and the integration of big data clinical genomics into cancer care.

  5. Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR

    PubMed Central

    Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter

    2006-01-01

    Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068

  6. Genome-Enabled Molecular Tools for Reductive Dehalogenation

    DTIC Science & Technology

    2011-11-01

    Genome-Enabled Molecular Tools for Reductive Dehalogenation - A Shift in Paradigm for Bioremediation - Alfred M. Spormann Departments of Chemical...Genome-Enabled Molecular Tools for Reductive Dehalogenation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Applications Technical Session No. 3D C-77 GENOME-ENABLED MOLECULAR TOOLS FOR REDUCTIVE DEHALOGENATION PROFESSOR ALFRED SPORMANN Stanford

  7. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in Rainbow Trout: Insights on genotyping methods and genomic prediction models

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic br...

  8. National Plant Genome Initiative

    DTIC Science & Technology

    2004-01-01

    trials have also identified new objectives for vegetable breeding programs, expedited by knowledge and tools from crop genomics and farmer demand...The same tools and resources are being applied to develop improved crops and new breeding strategies, as well. With the sequencing of the rice genome...marker-assisted breeding strategies for wheat • Establishment of a comparative cereal genomics database, Gramene, which uses the complete rice

  9. Whose genome is it, anyway?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, E.

    1996-09-27

    The genome program has issued guidelines to ensure that sequencing is done on DNA from diverse sources who have given informed consent and are anonymous. Most current sources don`t meet those criteria. It may be the first question every nonexpert asks on learning about the Human Genome Project: Whose genome are we studying, anyway? It sounds naive, says one government scientist-so naive, in fact, that {open_quotes}we chuckle as we explain that we aren`t sequencing anyone`s genome in particular; we`re sequencing a representative genome{close_quotes} made up of a mosaic of DNA from a variety of anonymous sources. And Bruce Birren, amore » clone-maker now at the Massachusetts Institute of Technology`s (MIT`s) Whitehead Center for Genome Research says: {open_quotes}We spent many years pooh-poohing the question{close_quotes} of whose genome would be stored in the database. But now that labs have begun working on large stretches of human DNA-aiming to identify all 3 billion base pairs in the genetic code-the question no longer seems to laughable. To the distress of program managers in Bethesda, Maryland, the initial sources of DNA are not as diverse or as anonymous as they had assumed.« less

  10. Brad Ozenberger, Ph.D., Presents the Achievements of The Cancer Genome Atlas During its Early Years - TCGA

    Cancer.gov

    Dr. Brad Ozenberger, former TCGA Program Director for the National Human Genome Research Institute, describes the goals and achievements of TCGA during its pilot phase, which involved the genomic characterization of brain, ovarian, and lung cancers.

  11. IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform.

    PubMed

    Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo

    2017-12-01

    Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.

  12. Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT)

    PubMed Central

    Plugge, Caroline M.; Henstra, Anne M.; Worm, Petra; Swarts, Daan C.; Paulitsch-Fuchs, Astrid H.; Scholten, Johannes C.M.; Lykidis, Athanasios; Lapidus, Alla L.; Goltsman, Eugene; Kim, Edwin; McDonald, Erin; Rohlin, Lars; Crable, Bryan R.; Gunsalus, Robert P.; Stams, Alfons J.M.; McInerney, Michael J.

    2012-01-01

    Syntrophobacter fumaroxidans strain MPOBT is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project. PMID:23450070

  13. G2S: a web-service for annotating genomic variants on 3D protein structures.

    PubMed

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-06-01

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.

  14. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation.

    PubMed

    Lugli, Gabriele Andrea; Milani, Christian; Mancabelli, Leonardo; van Sinderen, Douwe; Ventura, Marco

    2016-04-01

    Genome annotation is one of the key actions that must be undertaken in order to decipher the genetic blueprint of organisms. Thus, a correct and reliable annotation is essential in rendering genomic data valuable. Here, we describe a bioinformatics pipeline based on freely available software programs coordinated by a multithreaded script named MEGAnnotator (Multithreaded Enhanced prokaryotic Genome Annotator). This pipeline allows the generation of multiple annotated formats fulfilling the NCBI guidelines for assembled microbial genome submission, based on DNA shotgun sequencing reads, and minimizes manual intervention, while also reducing waiting times between software program executions and improving final quality of both assembly and annotation outputs. MEGAnnotator provides an efficient way to pre-arrange the assembly and annotation work required to process NGS genome sequence data. The script improves the final quality of microbial genome annotation by reducing ambiguous annotations. Moreover, the MEGAnnotator platform allows the user to perform a partial annotation of pre-assembled genomes and includes an option to accomplish metagenomic data set assemblies. MEGAnnotator platform will be useful for microbiologists interested in genome analyses of bacteria as well as those investigating the complexity of microbial communities that do not possess the necessary skills to prepare their own bioinformatics pipeline. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Sociocultural Tailoring of a Healthy Lifestyle Intervention to Reduce Cardiovascular Disease and Type 2 Diabetes Risk Among Latinos

    PubMed Central

    Martinez, Maria C.; Rayens, Mary Kay; Gokun, Yevgeniya; Meininger, Janet C.

    2013-01-01

    Background Suboptimal lifestyle factors in combination with genetic susceptibility contribute to cardiovascular disease and type 2 diabetes risk among Latinos. We describe a community–academic collaboration that developed and explored the feasibility of implementing a socioculturally tailored, healthy lifestyle intervention integrating genomics and family history education to reduce risk of cardiovascular disease and type 2 diabetes among Latinos. Community Context The community-based participatory research was conducted with communities in Kentucky, which has a rapidly growing Latino population. This growth underscores the need for socioculturally appropriate health resources. Methods Su Corazon, Su Vida (Your Heart, Your Life) is a Spanish-language, healthy lifestyle educational program to reduce cardiovascular disease and type 2 diabetes risk among Latinos. Twenty natural leaders from an urban Latino community in Kentucky participated in sociocultural tailoring of the program and development of a genomics and family history module. The tailored program was presented to 22 participants to explore implementation feasibility and assess appropriateness for community use. Preintervention and postintervention assessments of genomic knowledge and lifestyle behaviors and qualitative postintervention evaluations were conducted. Outcomes Postintervention improvements in health-promoting lifestyle choices and genomic knowledge specific to cardiovascular disease and type 2 diabetes suggested that the program may be effective in reducing risk. Feedback indicated the program was socioculturally acceptable and responsive to community needs. Interpretation These findings indicated that a tailored healthy lifestyle program integrating genomics and family history education was socioculturally appropriate and may feasibly be implemented to reduce cardiovascular disease and type 2 diabetes risk in a Latino community with limited health care resources. The project highlights contributions of community-based processes in tailoring interventions that are appropriate for community contexts. PMID:24286274

  16. Sociocultural tailoring of a healthy lifestyle intervention to reduce cardiovascular disease and type 2 diabetes risk among Latinos.

    PubMed

    Mudd-Martin, Gia; Martinez, Maria C; Rayens, Mary Kay; Gokun, Yevgeniya; Meininger, Janet C

    2013-11-27

    Suboptimal lifestyle factors in combination with genetic susceptibility contribute to cardiovascular disease and type 2 diabetes risk among Latinos. We describe a community-academic collaboration that developed and explored the feasibility of implementing a socioculturally tailored, healthy lifestyle intervention integrating genomics and family history education to reduce risk of cardiovascular disease and type 2 diabetes among Latinos. The community-based participatory research was conducted with communities in Kentucky, which has a rapidly growing Latino population. This growth underscores the need for socioculturally appropriate health resources. Su Corazon, Su Vida (Your Heart, Your Life) is a Spanish-language, healthy lifestyle educational program to reduce cardiovascular disease and type 2 diabetes risk among Latinos. Twenty natural leaders from an urban Latino community in Kentucky participated in sociocultural tailoring of the program and development of a genomics and family history module. The tailored program was presented to 22 participants to explore implementation feasibility and assess appropriateness for community use. Preintervention and postintervention assessments of genomic knowledge and lifestyle behaviors and qualitative postintervention evaluations were conducted. Postintervention improvements in health-promoting lifestyle choices and genomic knowledge specific to cardiovascular disease and type 2 diabetes suggested that the program may be effective in reducing risk. Feedback indicated the program was socioculturally acceptable and responsive to community needs. These findings indicated that a tailored healthy lifestyle program integrating genomics and family history education was socioculturally appropriate and may feasibly be implemented to reduce cardiovascular disease and type 2 diabetes risk in a Latino community with limited health care resources. The project highlights contributions of community-based processes in tailoring interventions that are appropriate for community contexts.

  17. Data Release: DNA barcodes of plant species collected for the Global Genome Initiative for Gardens Program, National Museum of Natural History, Smithsonian Institution

    PubMed Central

    Zúñiga, Jose D.; Gostel, Morgan R.; Mulcahy, Daniel G.; Barker, Katharine; Asia Hill; Sedaghatpour, Maryam; Vo, Samantha Q.; Funk, Vicki A.; Coddington, Jonathan A.

    2017-01-01

    Abstract The Global Genome Initiative has sequenced and released 1961 DNA barcodes for genetic samples obtained as part of the Global Genome Initiative for Gardens Program. The dataset includes barcodes for 29 plant families and 309 genera that did not have sequences flagged as barcodes in GenBank and sequences from officially recognized barcoding genetic markers meet the data standard of the Consortium for the Barcode of Life. The genetic samples were deposited in the Smithsonian Institution’s National Museum of Natural History Biorepository and their records were made public through the Global Genome Biodiversity Network’s portal. The DNA barcodes are now available on GenBank. PMID:29118648

  18. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  19. Can genomics boost productivity of orphan crops?

    USDA-ARS?s Scientific Manuscript database

    Advances in genomics over the past 20 years have enhanced the precision and efficiency of breeding programs in many temperate cereal crops. One of the first applications of genomics-assisted breeding has been the introgression of loci for resistance to biotic stresses or major quantitative trait loc...

  20. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  1. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with..., discussion, and evaluation of individual intramural programs and projects conducted by the National Human...

  2. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with..., discussion, and evaluation of individual intramural programs and projects conducted by the National Human...

  3. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Conference Call). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human..., Human Genome Research, National Institutes of Health, HHS) Dated: October 16, 2012. David Clary, Program...

  4. Genome-wide investigation of genetic changes during modern breeding of Brassica napus.

    PubMed

    Wang, Nian; Li, Feng; Chen, Biyun; Xu, Kun; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Gao, Guizhen; Bancroft, Ian; Meng, Jingling; King, Graham J; Wu, Xiaoming

    2014-08-01

    Considerable genome variation had been incorporated within rapeseed breeding programs over past decades. In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6-10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.

  5. Looking for Trouble: Preventive Genomic Sequencing in the General Population and the Role of Patient Choice

    PubMed Central

    Lázaro-Muñoz, Gabriel; Conley, John M.; Davis, Arlene M.; Van Riper, Marcia; Walker, Rebecca L.; Juengst, Eric T.

    2015-01-01

    Advances in genomics have led to calls for developing population-based preventive genomic sequencing (PGS) programs with the goal of identifying genetic health risks in adults without known risk factors. One critical issue for minimizing the harms and maximizing the benefits of PGS is determining the kind and degree of control individuals should have over the generation, use, and handling of their genomic information. In this article we examine whether PGS programs should offer individuals the opportunity to selectively opt-out of the sequencing or analysis of specific genomic conditions (the menu approach) or whether PGS should be implemented using an all-or-nothing panel approach. We conclude that any responsible scale up of PGS will require a menu approach that may seem impractical to some, but which draws its justification from a rich mix of normative, legal, and practical considerations. PMID:26147254

  6. Deep ancestry of programmed genome rearrangement in lampreys.

    PubMed

    Timoshevskiy, Vladimir A; Lampman, Ralph T; Hess, Jon E; Porter, Laurie L; Smith, Jeramiah J

    2017-09-01

    In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Patient-Centered Precision Health In A Learning Health Care System: Geisinger's Genomic Medicine Experience.

    PubMed

    Williams, Marc S; Buchanan, Adam H; Davis, F Daniel; Faucett, W Andrew; Hallquist, Miranda L G; Leader, Joseph B; Martin, Christa L; McCormick, Cara Z; Meyer, Michelle N; Murray, Michael F; Rahm, Alanna K; Schwartz, Marci L B; Sturm, Amy C; Wagner, Jennifer K; Williams, Janet L; Willard, Huntington F; Ledbetter, David H

    2018-05-01

    Health care delivery is increasingly influenced by the emerging concepts of precision health and the learning health care system. Although not synonymous with precision health, genomics is a key enabler of individualized care. Delivering patient-centered, genomics-informed care based on individual-level data in the current national landscape of health care delivery is a daunting challenge. Problems to overcome include data generation, analysis, storage, and transfer; knowledge management and representation for patients and providers at the point of care; process management; and outcomes definition, collection, and analysis. Development, testing, and implementation of a genomics-informed program requires multidisciplinary collaboration and building the concepts of precision health into a multilevel implementation framework. Using the principles of a learning health care system provides a promising solution. This article describes the implementation of population-based genomic medicine in an integrated learning health care system-a working example of a precision health program.

  8. Repetitive elements dynamics in cell identity programming, maintenance and disease.

    PubMed

    Bodega, Beatrice; Orlando, Valerio

    2014-12-01

    The days of 'junk DNA' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than 'parasites', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation. Copyright © 2014. Published by Elsevier Ltd.

  9. Whats, hows and whys of programmed DNA elimination in Tetrahymena

    PubMed Central

    Noto, Tomoko

    2017-01-01

    Programmed genome rearrangements in ciliates provide fascinating examples of flexible epigenetic genome regulations and important insights into the interaction between transposable elements (TEs) and host genomes. DNA elimination in Tetrahymena thermophila removes approximately 12 000 internal eliminated sequences (IESs), which correspond to one-third of the genome, when the somatic macronucleus (MAC) differentiates from the germline micronucleus (MIC). More than half of the IESs, many of which show high similarity to TEs, are targeted for elimination in cis by the small RNA-mediated genome comparison of the MIC to the MAC. Other IESs are targeted for elimination in trans by the same small RNAs through repetitive sequences. Furthermore, the small RNA–heterochromatin feedback loop ensures robust DNA elimination. Here, we review an updated picture of the DNA elimination mechanism, discuss the physiological and evolutionary roles of DNA elimination, and outline the key questions that remain unanswered. PMID:29021213

  10. Assembling networks of microbial genomes using linear programming.

    PubMed

    Holloway, Catherine; Beiko, Robert G

    2010-11-20

    Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

  11. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Conference Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome...- 402-8837, [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  12. Human genome program report. Part 2, 1996 research abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  13. Human Genome Program Report. Part 2, 1996 Research Abstracts

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  14. G-Quadruplexes in DNA Replication: A Problem or a Necessity?

    PubMed

    Valton, Anne-Laure; Prioleau, Marie-Noëlle

    2016-11-01

    DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  16. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  17. Integration and visualization of systems biology data in context of the genome

    PubMed Central

    2010-01-01

    Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854

  18. Development and evaluation of a genomics training program for community health workers in Texas.

    PubMed

    Chen, Lei-Shih; Zhao, Shixi; Stelzig, Donaji; Dhar, Shweta U; Eble, Tanya; Yeh, Yu-Chen; Kwok, Oi-Man

    2018-01-04

    PurposeGenomics services have the potential to reduce incidence and mortality of diseases by providing individualized, family health history (FHH)-based prevention strategies to clients. These services may benefit from the involvement of community health workers (CHWs) in the provision of FHH-based genomics education and services, as CHWs are frontline public health workers and lay health educators, who share similar ethnicities, languages, socioeconomic statuses, and life experiences with the communities they serve. We developed, implemented, and evaluated the FHH-based genomics training program for CHWs.MethodsThis theory- and evidence-based FHH-focused genomics curriculum was developed by an interdisciplinary team. Full-day workshops in English and Spanish were delivered to 145 Texas CHWs (91.6% were Hispanic/black). Preworkshop, postworkshop, and 3-month follow-up data were collected.ResultsCHWs significantly improved their attitudes, intention, self-efficacy, and knowledge regarding adopting FHH-based genomics into their practice after the workshops. At 3-month follow-up, these scores remained higher, and there was a significant increase in CHWs' genomics practices.ConclusionThis FHH-based genomics training successfully educated Texas CHWs, and the outcomes were promising. Dissemination of training to CHWs in and outside of Texas is needed to promote better access to and delivery of personalized genomics services for the lay and underserved communities.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.236.

  19. Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine: A Scientific Statement From the American Heart Association.

    PubMed

    Musunuru, Kiran; Arora, Pankaj; Cooke, John P; Ferguson, Jane F; Hershberger, Ray E; Hickey, Kathleen T; Lee, Jin-Moo; Lima, João A C; Loscalzo, Joseph; Pereira, Naveen L; Russell, Mark W; Shah, Svati H; Sheikh, Farah; Wang, Thomas J; MacRae, Calum A

    2018-06-01

    The completion of the Human Genome Project has unleashed a wealth of human genomics information, but it remains unclear how best to implement this information for the benefit of patients. The standard approach of biomedical research, with researchers pursuing advances in knowledge in the laboratory and, separately, clinicians translating research findings into the clinic as much as decades later, will need to give way to new interdisciplinary models for research in genomic medicine. These models should include scientists and clinicians actively working as teams to study patients and populations recruited in clinical settings and communities to make genomics discoveries-through the combined efforts of data scientists, clinical researchers, epidemiologists, and basic scientists-and to rapidly apply these discoveries in the clinic for the prediction, prevention, diagnosis, prognosis, and treatment of cardiovascular diseases and stroke. The highly publicized US Precision Medicine Initiative, also known as All of Us, is a large-scale program funded by the US National Institutes of Health that will energize these efforts, but several ongoing studies such as the UK Biobank Initiative; the Million Veteran Program; the Electronic Medical Records and Genomics Network; the Kaiser Permanente Research Program on Genes, Environment and Health; and the DiscovEHR collaboration are already providing exemplary models of this kind of interdisciplinary work. In this statement, we outline the opportunities and challenges in broadly implementing new interdisciplinary models in academic medical centers and community settings and bringing the promise of genomics to fruition. © 2018 American Heart Association, Inc.

  20. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

    PubMed

    Tørresen, Ole K; Star, Bastiaan; Jentoft, Sissel; Reinar, William B; Grove, Harald; Miller, Jason R; Walenz, Brian P; Knight, James; Ekholm, Jenny M; Peluso, Paul; Edvardsen, Rolf B; Tooming-Klunderud, Ave; Skage, Morten; Lien, Sigbjørn; Jakobsen, Kjetill S; Nederbragt, Alexander J

    2017-01-18

    The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.

  1. Whole genome sequencing of a begomovirus-resistant tomato inbred reveals introgressions from wild Solanum species

    USDA-ARS?s Scientific Manuscript database

    The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...

  2. Accessing the SEED genome databases via Web services API: tools for programmers.

    PubMed

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-06-14

    The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  3. Multimedia Presentations on the Human Genome: Implementation and Assessment of a Teaching Program for the Introduction to Genome Science Using a Poster and Animations

    ERIC Educational Resources Information Center

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-01-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from…

  4. Perennial plants for biofuel production: bridging genomics and field research.

    PubMed

    Alves, Alexandre Alonso; Laviola, Bruno G; Formighieri, Eduardo F; Carels, Nicolas

    2015-04-01

    Development of dedicated perennial crops has been indicated as a strategic action to meet the growing demand for biofuels. Breeding of perennial crops,however, is often time- and resource-consuming. As genomics offers a platform from which to learn more about the relationships of genes and phenotypes,its operational use in the context of breeding programs through strategies such as genomic selection promises to foster the development of perennial crops dedicated to biodiesel production by increasing the efficiency of breeding programs and by shortening the length of the breeding cycles. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. GénoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics

    PubMed Central

    Samson, Delphine; Legeai, Fabrice; Karsenty, Emmanuelle; Reboux, Sébastien; Veyrieras, Jean-Baptiste; Just, Jeremy; Barillot, Emmanuel

    2003-01-01

    Génoplante is a partnership program between public French institutes (INRA, CIRAD, IRD and CNRS) and private companies (Biogemma, Bayer CropScience and Bioplante) that aims at developing genome analysis programs for crop species (corn, wheat, rapeseed, sunflower and pea) and model plants (Arabidopsis and rice). The outputs of these programs form a wealth of information (genomic sequence, transcriptome, proteome, allelic variability, mapping and synteny, and mutation data) and tools (databases, interfaces, analysis software), that are being integrated and made public at the public bioinformatics resource centre of Génoplante: GénoPlante-Info (GPI). This continuous flood of data and tools is regularly updated and will grow continuously during the coming two years. Access to the GPI databases and tools is available at http://genoplante-info.infobiogen.fr/. PMID:12519976

  6. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34

    DOE PAGES

    Anderson, Iain J.; DasSarma, Priya; Lucas, Susan; ...

    2016-09-10

    Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  7. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain J.; DasSarma, Priya; Lucas, Susan

    Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  8. Recognition of Protein-coding Genes Based on Z-curve Algorithms

    PubMed Central

    -Biao Guo, Feng; Lin, Yan; -Ling Chen, Ling

    2014-01-01

    Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation. PMID:24822027

  9. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  10. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.

    PubMed

    Anwar, Tamanna; Khan, Asad U

    2006-02-20

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.

  11. Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

    DOE R&D Accomplishments Database

    DeLisi, Charles (Associate Director, Health and Environmental Research, DOE Office of Energy Research)

    1986-05-06

    In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, Director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, DeLisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.

  12. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

    PubMed

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.

  13. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  14. Human Genome Research: Decoding DNA

    Science.gov Websites

    instructions for making all the protein molecules for all the different kinds of cells of the human body dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with DeLisi played a pivotal role in proposing and initiating the Human Genome Program in 1986. The U.S

  15. An Innovative Plant Genomics and Gene Annotation Program for High School, Community College, and University Faculty

    ERIC Educational Resources Information Center

    Hacisalihoglu, Gokhan; Hilgert, Uwe; Nash, E. Bruce; Micklos, David A.

    2008-01-01

    Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day…

  16. Entering the Public Health Genomics Era: Why Must Health Educators Develop Genomic Competencies?

    ERIC Educational Resources Information Center

    Chen, Lei-Shih; Goodson, Patricia

    2007-01-01

    Although the completion of the Human Genome Project will offer new insight into diseases and help develop efficient, personalized treatment or prevention programs, it will also raise new and non-trivial public health issues. Many of these issues fall under the professional purview of public health workers. As members of the public health…

  17. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  18. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    PubMed

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  19. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data

    PubMed Central

    2014-01-01

    Background Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. Methods In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. Results The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. Conclusions SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. Availability and implementation SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/. PMID:24607237

  20. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative has been jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  1. Genomic Encyclopedia of Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supportedmore » by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  2. CMG-biotools, a free workbench for basic comparative microbial genomics.

    PubMed

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.

  3. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.

    PubMed

    Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D

    2016-03-01

    Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.

  4. FrameD: A flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences.

    PubMed

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-07-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms.

  5. Programming biological operating systems: genome design, assembly and activation.

    PubMed

    Gibson, Daniel G

    2014-05-01

    The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.

  6. Development of Structural Neurobiology and Genomics Programs in the Neurogenetic Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Brian E., M.D.

    The purpose of the DOE equipment-only grant was to purchase instrumentation in support of structural biology and genomics core facilities in the Zilkha Neurogenetic Institute (ZNI). The ZNI, a new laboratory facility (125,000 GSF) and a center of excellence at the Keck School of Medicine of USC, was opened in 2003. The goal of the ZNI is to recruit upwards of 30 new faculty investigators engaged in interdisciplinary research programs that will add breadth and depth to existing school strengths in neuroscience, epidemiology and genetics. Many of these faculty, and other faculty researchers at the Keck School will access structuralmore » biology and genomics facilities developed in the ZNI.« less

  7. A survey of application: genomics and genetic programming, a new frontier.

    PubMed

    Khan, Mohammad Wahab; Alam, Mansaf

    2012-08-01

    The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mark Jensen | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Mark Jensen, senior principal scientist, Research Programs Administration, is the scientific lead for the Genomic Data Commons (GDC), which he describes as “NCI’s main resource for collecting and distributing cancer genomics data.” Before joini

  9. Nuclear envelope and genome interactions in cell fate

    PubMed Central

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  10. Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads

    PubMed Central

    2013-01-01

    Background Brachiaria ruziziensis is one of the most important forage species planted in the tropics. The application of genomic tools to aid the selection of superior genotypes can provide support to B. ruziziensis breeding programs. However, there is a complete lack of information about the B. ruziziensis genome. Also, the availability of genomic tools, such as molecular markers, to support B. ruziziensis breeding programs is rather limited. Recently, next-generation sequencing technologies have been applied to generate sequence data for the identification of microsatellite regions and primer design. In this study, we present a first validated set of SSR markers for Brachiaria ruziziensis, selected from a de novo partial genome assembly of single-end Illumina reads. Results A total of 85,567 perfect microsatellite loci were detected in contigs with a minimum 10X coverage. We selected a set of 500 microsatellite loci identified in contigs with minimum 100X coverage for primer design and synthesis, and tested a subset of 269 primer pairs, 198 of which were polymorphic on 11 representative B. ruziziensis accessions. Descriptive statistics for these primer pairs are presented, as well as estimates of marker transferability to other relevant brachiaria species. Finally, a set of 11 multiplex panels containing the 30 most informative markers was validated and proposed for B. ruziziensis genetic analysis. Conclusions We show that the detection and development of microsatellite markers from genome assembled Illumina single-end DNA sequences is highly efficient. The developed markers are readily suitable for genetic analysis and marker assisted selection of Brachiaria ruziziensis. The use of this approach for microsatellite marker development is promising for species with limited genomic information, whose breeding programs would benefit from the use of genomic tools. To our knowledge, this is the first set of microsatellite markers developed for this important species. PMID:23324172

  11. The 3D genome in transcriptional regulation and pluripotency.

    PubMed

    Gorkin, David U; Leung, Danny; Ren, Bing

    2014-06-05

    It can be convenient to think of the genome as simply a string of nucleotides, the linear order of which encodes an organism's genetic blueprint. However, the genome does not exist as a linear entity within cells where this blueprint is actually utilized. Inside the nucleus, the genome is organized in three-dimensional (3D) space, and lineage-specific transcriptional programs that direct stem cell fate are implemented in this native 3D context. Here, we review principles of 3D genome organization in mammalian cells. We focus on the emerging relationship between genome organization and lineage-specific transcriptional regulation, which we argue are inextricably linked. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. MycoCosm, an Integrated Fungal Genomics Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/monthmore » or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.« less

  13. Closing the gap between knowledge and clinical application: challenges for genomic translation.

    PubMed

    Burke, Wylie; Korngiebel, Diane M

    2015-01-01

    Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.

  14. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  15. Long terminal repeat retrotransposons of Oryza sativa

    PubMed Central

    McCarthy, Eugene M; Liu, Jingdong; Lizhi, Gao; McDonald, John F

    2002-01-01

    Background Long terminal repeat (LTR) retrotransposons constitute a major fraction of the genomes of higher plants. For example, retrotransposons comprise more than 50% of the maize genome and more than 90% of the wheat genome. LTR retrotransposons are believed to have contributed significantly to the evolution of genome structure and function. The genome sequencing of selected experimental and agriculturally important species is providing an unprecedented opportunity to view the patterns of variation existing among the entire complement of retrotransposons in complete genomes. Results Using a new data-mining program, LTR_STRUC, (LTR retrotransposon structure program), we have mined the GenBank rice (Oryza sativa) database as well as the more extensive (259 Mb) Monsanto rice dataset for LTR retrotransposons. Almost two-thirds (37) of the 59 families identified consist of copia-like elements, but gypsy-like elements outnumber copia-like elements by a ratio of approximately 2:1. At least 17% of the rice genome consists of LTR retrotransposons. In addition to the ubiquitous gypsy- and copia-like classes of LTR retrotransposons, the rice genome contains at least two novel families of unusually small, non-coding (non-autonomous) LTR retrotransposons. Conclusions Each of the major clades of rice LTR retrotransposons is more closely related to elements present in other species than to the other clades of rice elements, suggesting that horizontal transfer may have occurred over the evolutionary history of rice LTR retrotransposons. Like LTR retrotransposons in other species with relatively small genomes, many rice LTR retrotransposons are relatively young, indicating a high rate of turnover. PMID:12372141

  16. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses.

    PubMed

    Talukder, Shyamal K; Saha, Malay C

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  17. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Akgöl, Batuhan; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2017-02-01

    Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.

  18. RSAT 2018: regulatory sequence analysis tools 20th anniversary.

    PubMed

    Nguyen, Nga Thi Thuy; Contreras-Moreira, Bruno; Castro-Mondragon, Jaime A; Santana-Garcia, Walter; Ossio, Raul; Robles-Espinoza, Carla Daniela; Bahin, Mathieu; Collombet, Samuel; Vincens, Pierre; Thieffry, Denis; van Helden, Jacques; Medina-Rivera, Alejandra; Thomas-Chollier, Morgane

    2018-05-02

    RSAT (Regulatory Sequence Analysis Tools) is a suite of modular tools for the detection and the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, including from genome-wide datasets like ChIP-seq/ATAC-seq, (ii) motif scanning, (iii) motif analysis (quality assessment, comparisons and clustering), (iv) analysis of regulatory variations, (v) comparative genomics. Six public servers jointly support 10 000 genomes from all kingdoms. Six novel or refactored programs have been added since the 2015 NAR Web Software Issue, including updated programs to analyse regulatory variants (retrieve-variation-seq, variation-scan, convert-variations), along with tools to extract sequences from a list of coordinates (retrieve-seq-bed), to select motifs from motif collections (retrieve-matrix), and to extract orthologs based on Ensembl Compara (get-orthologs-compara). Three use cases illustrate the integration of new and refactored tools to the suite. This Anniversary update gives a 20-year perspective on the software suite. RSAT is well-documented and available through Web sites, SOAP/WSDL (Simple Object Access Protocol/Web Services Description Language) web services, virtual machines and stand-alone programs at http://www.rsat.eu/.

  19. Defining Linkages between the GSC and NSF's LTER Program: How the Ecological Metadata Language (EML) Relates to GCDML and Other Outcomes

    Treesearch

    Inigo San Gil; Wade Sheldon; Tom Schmidt; Mark Servilla; Raul Aguilar; Corinna Gries; Tanya Gray; Dawn Field; James Cole; Jerry Yun Pan; Giri Palanisamy; Donald Henshaw; Margaret O' Brien; Linda Kinkel; Kathrine McMahon; Renzo Kottmann; Linda Amaral-Zettler; John Hobbie; Philip Goldstein; Robert P. Guralnick; James Brunt; William K. Michener

    2008-01-01

    The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML)....

  20. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Lemarié, S; Fugeray-Scarbel, A; Elsen, J M

    2016-06-01

    Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants. The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains. For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS, different scenarios were considered, differing by the information used to select males (genomic only, genomic+own performance, genomic+offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were found to be superior to classic selection only if genomic information was combined with their own meat phenotypes (GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more advantageous than classic selection, provided that GS is already initiated (i.e. the initial reference population is available). Optimizing decisional variables of the classic selection scheme could be of greater benefit than including genomic information in optimized designs.

  1. Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software

    PubMed Central

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D.; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z.; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J.; Chia, Burton K. H.; Denis, Bertrand; Froula, Jeff L.; Wang, Zhong; Egan, Robert; Kang, Dongwan Don; Cook, Jeffrey J.; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W.; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z.; Cuevas, Daniel A.; Edwards, Robert A.; Saha, Surya; Piro, Vitor C.; Renard, Bernhard Y.; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C.; Woyke, Tanja; Vorholt, Julia A.; Schulze-Lefert, Paul; Rubin, Edward M.; Darling, Aaron E.; Rattei, Thomas; McHardy, Alice C.

    2018-01-01

    In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions. PMID:28967888

  2. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats

    PubMed Central

    Anwar, Tamanna; Khan, Asad U

    2006-01-01

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. Availability This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com PMID:17597863

  3. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons

    PubMed Central

    2011-01-01

    Background Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. Results BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. Conclusions There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/. PMID:21824423

  4. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.

    PubMed

    Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A

    2011-08-08

    Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.

  5. Playing with heart and soul…and genomes: sports implications and applications of personal genomics.

    PubMed

    Wagner, Jennifer K

    2013-01-01

    Whether the integration of genetic/omic technologies in sports contexts will facilitate player success, promote player safety, or spur genetic discrimination depends largely upon the game rules established by those currently designing genomic sports medicine programs. The integration has already begun, but there is not yet a playbook for best practices. Thus far discussions have focused largely on whether the integration would occur and how to prevent the integration from occurring, rather than how it could occur in such a way that maximizes benefits, minimizes risks, and avoids the exacerbation of racial disparities. Previous empirical research has identified members of the personal genomics industry offering sports-related DNA tests, and previous legal research has explored the impact of collective bargaining in professional sports as it relates to the employment protections of the Genetic Information Nondiscrimination Act (GINA). Building upon that research and upon participant observations with specific sports-related DNA tests purchased from four direct-to-consumer companies in 2011 and broader personal genomics (PGx) services, this anthropological, legal, and ethical (ALE) discussion highlights fundamental issues that must be addressed by those developing personal genomic sports medicine programs, either independently or through collaborations with commercial providers. For example, the vulnerability of student-athletes creates a number of issues that require careful, deliberate consideration. More broadly, however, this ALE discussion highlights potential sports-related implications (that ultimately might mitigate or, conversely, exacerbate racial disparities among athletes) of whole exome/genome sequencing conducted by biomedical researchers and clinicians for non-sports purposes. For example, the possibility that exome/genome sequencing of individuals who are considered to be non-patients, asymptomatic, normal, etc. will reveal the presence of variants of unknown significance in any one of the genes associated with hypertrophic cardiomyopathy (HCM), long QT syndrome (LQTS), Marfan's syndrome, and other conditions is not inconsequential, and how this information is reported, interpreted, and used may ultimately prevent the individual from participation in competitive sports. Due to the distribution of genetic diversity that reflects our evolutionary and demographic history (including the discernible effects of restricted gene flow and genetic drift associated with cultural constructs of race) and in recognition of previous policies for "leveling" the playing field in competitive sports based on "natural" athletic abilities, preliminary recommendations are provided to discourage genetic segregation of sports and to develop best practice guidelines for genomic sports medicine programs that will facilitate player success, promote player safety, and avoid genetic discrimination within and beyond the program.

  6. Playing with heart and soul…and genomes: sports implications and applications of personal genomics

    PubMed Central

    2013-01-01

    Whether the integration of genetic/omic technologies in sports contexts will facilitate player success, promote player safety, or spur genetic discrimination depends largely upon the game rules established by those currently designing genomic sports medicine programs. The integration has already begun, but there is not yet a playbook for best practices. Thus far discussions have focused largely on whether the integration would occur and how to prevent the integration from occurring, rather than how it could occur in such a way that maximizes benefits, minimizes risks, and avoids the exacerbation of racial disparities. Previous empirical research has identified members of the personal genomics industry offering sports-related DNA tests, and previous legal research has explored the impact of collective bargaining in professional sports as it relates to the employment protections of the Genetic Information Nondiscrimination Act (GINA). Building upon that research and upon participant observations with specific sports-related DNA tests purchased from four direct-to-consumer companies in 2011 and broader personal genomics (PGx) services, this anthropological, legal, and ethical (ALE) discussion highlights fundamental issues that must be addressed by those developing personal genomic sports medicine programs, either independently or through collaborations with commercial providers. For example, the vulnerability of student-athletes creates a number of issues that require careful, deliberate consideration. More broadly, however, this ALE discussion highlights potential sports-related implications (that ultimately might mitigate or, conversely, exacerbate racial disparities among athletes) of whole exome/genome sequencing conducted by biomedical researchers and clinicians for non-sports purposes. For example, the possibility that exome/genome sequencing of individuals who are considered to be non-patients, asymptomatic, normal, etc. will reveal the presence of variants of unknown significance in any one of the genes associated with hypertrophic cardiomyopathy (HCM), long QT syndrome (LQTS), Marfan’s syndrome, and other conditions is not inconsequential, and how this information is reported, interpreted, and used may ultimately prevent the individual from participation in competitive sports. Due to the distribution of genetic diversity that reflects our evolutionary and demographic history (including the discernible effects of restricted gene flow and genetic drift associated with cultural constructs of race) and in recognition of previous policies for “leveling” the playing field in competitive sports based on “natural” athletic abilities, preliminary recommendations are provided to discourage genetic segregation of sports and to develop best practice guidelines for genomic sports medicine programs that will facilitate player success, promote player safety, and avoid genetic discrimination within and beyond the program. PMID:23940833

  7. “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids”

    PubMed Central

    2013-01-01

    Background Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213–217, 2012), little sequence data is available for the corresponding B-genome. To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety ‘Pisang Klutuk Wulung’ (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. Results The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. Conclusions We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs. PMID:24094114

  8. Genomics of pear and other Rosaceae fruit trees

    PubMed Central

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399

  9. Genomics of pear and other Rosaceae fruit trees.

    PubMed

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry.

  10. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    PubMed Central

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071

  11. Methods of Genomic Competency Integration in Practice

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.; Caskey, Sarah; Culp, Stacey; Weiner, Marsha; Badzek, Laurie

    2015-01-01

    Purpose Genomics is increasingly relevant to health care, necessitating support for nurses to incorporate genomic competencies into practice. The primary aim of this project was to develop, implement, and evaluate a year-long genomic education intervention that trained, supported, and supervised institutional administrator and educator champion dyads to increase nursing capacity to integrate genomics through assessments of program satisfaction and institutional achieved outcomes. Design Longitudinal study of 23 Magnet Recognition Program® Hospitals (21 intervention, 2 controls) participating in a 1-year new competency integration effort aimed at increasing genomic nursing competency and overcoming barriers to genomics integration in practice. Methods Champion dyads underwent genomic training consisting of one in-person kick-off training meeting followed by monthly education webinars. Champion dyads designed institution-specific action plans detailing objectives, methods or strategies used to engage and educate nursing staff, timeline for implementation, and outcomes achieved. Action plans focused on a minimum of seven genomic priority areas: champion dyad personal development; practice assessment; policy content assessment; staff knowledge needs assessment; staff development; plans for integration; and anticipated obstacles and challenges. Action plans were updated quarterly, outlining progress made as well as inclusion of new methods or strategies. Progress was validated through virtual site visits with the champion dyads and chief nursing officers. Descriptive data were collected on all strategies or methods utilized, and timeline for achievement. Descriptive data were analyzed using content analysis. Findings The complexity of the competency content and the uniqueness of social systems and infrastructure resulted in a significant variation of champion dyad interventions. Conclusions Nursing champions can facilitate change in genomic nursing capacity through varied strategies but require substantial training in order to design and implement interventions. Clinical Relevance Genomics is critical to the practice of all nurses. There is a great opportunity and interest to address genomic knowledge deficits in the practicing nurse workforce as a strategy to improve patient outcomes. Exemplars of champion dyad interventions designed to increase nursing capacity focus on improving education, policy, and healthcare services. PMID:25808828

  12. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.

    PubMed

    Granleese, Tom; Clark, Samuel A; Swan, Andrew A; van der Werf, Julius H J

    2015-09-14

    Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs. Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection. All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively. Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.

  13. Dairy cattle genomics evaluation program update

    USDA-ARS?s Scientific Manuscript database

    Implementation of genomic evaluation has caused profound changes in dairy cattle breeding. All young bulls bought by major artificial-insemination organizations now are selected based on these evaluation. Evaluation reliability can reach ~75% for yield traits, which is adequate for marketing semen o...

  14. Building international genomics collaboration for global health security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  15. GenomeHubs: simple containerized setup of a custom Ensembl database and web server for any species

    PubMed Central

    Kumar, Sujai; Stevens, Lewis; Blaxter, Mark

    2017-01-01

    Abstract As the generation and use of genomic datasets is becoming increasingly common in all areas of biology, the need for resources to collate, analyse and present data from one or more genome projects is becoming more pressing. The Ensembl platform is a powerful tool to make genome data and cross-species analyses easily accessible through a web interface and a comprehensive application programming interface. Here we introduce GenomeHubs, which provide a containerized environment to facilitate the setup and hosting of custom Ensembl genome browsers. This simplifies mirroring of existing content and import of new genomic data into the Ensembl database schema. GenomeHubs also provide a set of analysis containers to decorate imported genomes with results of standard analyses and functional annotations and support export to flat files, including EMBL format for submission of assemblies and annotations to International Nucleotide Sequence Database Collaboration. Database URL: http://GenomeHubs.org PMID:28605774

  16. Building international genomics collaboration for global health security

    DOE PAGES

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  17. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium.

    PubMed

    Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C

    2013-10-01

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.

  18. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  19. Innovations in Undergraduate Science Education: Going Viral.

    PubMed

    Hatfull, Graham F

    2015-08-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-year undergraduate students to discovery-based research experiences. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    PubMed

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.

  1. Progress and Potential

    PubMed Central

    Haspel, Richard L.; Olsen, Randall J.; Berry, Anna; Hill, Charles E.; Pfeifer, John D.; Schrijver, Iris; Kaul, Karen L.

    2014-01-01

    Context Genomic medicine is revolutionizing patient care. Physicians in areas as diverse as oncology, obstetrics, and infectious disease have begun using next-generation sequencing assays as standard diagnostic tools. Objective To review the role of pathologists in genomic testing as well as current educational programs and future training needs in genomic pathology. Data Sources Published literature as well as personal experience based on committee membership and genomic pathology curricular design. Conclusion Pathologists, as the directors of the clinical laboratories, must be prepared to integrate genomic testing into their practice. The pathology community has made significant progress in genomics-related education. A continued coordinated and proactive effort will ensure a future vital role for pathologists in the evolving health care system and also the best possible patient care. PMID:24678680

  2. The Paris-Sud yeast structural genomics pilot-project: from structure to function.

    PubMed

    Quevillon-Cheruel, Sophie; Liger, Dominique; Leulliot, Nicolas; Graille, Marc; Poupon, Anne; Li de La Sierra-Gallay, Inès; Zhou, Cong-Zhao; Collinet, Bruno; Janin, Joël; Van Tilbeurgh, Herman

    2004-01-01

    We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.

  3. swga: a primer design toolkit for selective whole genome amplification.

    PubMed

    Clarke, Erik L; Sundararaman, Sesh A; Seifert, Stephanie N; Bushman, Frederic D; Hahn, Beatrice H; Brisson, Dustin

    2017-07-15

    Population genomic analyses are often hindered by difficulties in obtaining sufficient numbers of genomes for analysis by DNA sequencing. Selective whole-genome amplification (SWGA) provides an efficient approach to amplify microbial genomes from complex backgrounds for sequence acquisition. However, the process of designing sets of primers for this method has many degrees of freedom and would benefit from an automated process to evaluate the vast number of potential primer sets. Here, we present swga , a program that identifies primer sets for SWGA and evaluates them for efficiency and selectivity. We used swga to design and test primer sets for the selective amplification of Wolbachia pipientis genomic DNA from infected Drosophila melanogaster and Mycobacterium tuberculosis from human blood. We identify primer sets that successfully amplify each against their backgrounds and describe a general method for using swga for arbitrary targets. In addition, we describe characteristics of primer sets that correlate with successful amplification, and present guidelines for implementation of SWGA to detect new targets. Source code and documentation are freely available on https://www.github.com/eclarke/swga . The program is implemented in Python and C and licensed under the GNU Public License. ecl@mail.med.upenn.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  4. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    PubMed Central

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear. PMID:23641189

  5. Genomics in Public Health: Perspective from the Office of Public Health Genomics at the Centers for Disease Control and Prevention (CDC)

    PubMed Central

    Fisk Green, Ridgely; Dotson, W. David; Bowen, Scott; Kolor, Katherine; Khoury, Muin J.

    2015-01-01

    The national effort to use genomic knowledge to save lives is gaining momentum, as illustrated by the inclusion of genomics in key public health initiatives, including Healthy People 2020, and the recent launch of the precision medicine initiative. The Office of Public Health Genomics (OPHG) at the Centers for Disease Control and Prevention (CDC) partners with state public health departments and others to advance the translation of genome-based discoveries into disease prevention and population health. To do this, OPHG has adopted an “identify, inform, and integrate” model: identify evidence-based genomic applications ready for implementation, inform stakeholders about these applications, and integrate these applications into public health at the local, state, and national level. This paper addresses current and future work at OPHG for integrating genomics into public health programs. PMID:26636032

  6. Genomics in Public Health: Perspective from the Office of Public Health Genomics at the Centers for Disease Control and Prevention (CDC).

    PubMed

    Green, Ridgely Fisk; Dotson, W David; Bowen, Scott; Kolor, Katherine; Khoury, Muin J

    2015-01-01

    The national effort to use genomic knowledge to save lives is gaining momentum, as illustrated by the inclusion of genomics in key public health initiatives, including Healthy People 2020, and the recent launch of the precision medicine initiative. The Office of Public Health Genomics (OPHG) at the Centers for Disease Control and Prevention (CDC) partners with state public health departments and others to advance the translation of genome-based discoveries into disease prevention and population health. To do this, OPHG has adopted an "identify, inform, and integrate" model: identify evidence-based genomic applications ready for implementation, inform stakeholders about these applications, and integrate these applications into public health at the local, state, and national level. This paper addresses current and future work at OPHG for integrating genomics into public health programs.

  7. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed.

    PubMed

    Schiavo, G; Galimberti, G; Calò, D G; Samorè, A B; Bertolini, F; Russo, V; Gallo, M; Buttazzoni, L; Fontanesi, L

    2016-04-01

    In this study, we investigated at the genome-wide level if 20 years of artificial directional selection based on boar genetic evaluation obtained with a classical BLUP animal model shaped the genome of the Italian Large White pig breed. The most influential boars of this breed (n = 192), born from 1992 (the beginning of the selection program of this breed) to 2012, with an estimated breeding value reliability of >0.85, were genotyped with the Illumina Porcine SNP60 BeadChip. After grouping the boars in eight classes according to their year of birth, filtered single nucleotide polymorphisms (SNPs) were used to evaluate the effects of time on genotype frequency changes using multinomial logistic regression models. Of these markers, 493 had a PBonferroni  < 0.10. However, there was an increasing number of SNPs with a decreasing level of allele frequency changes over time, representing a continuous profile across the genome. The largest proportion of the 493 SNPs was on porcine chromosome (SSC) 7, SSC2, SSC8 and SSC18 for a total of 204 haploblocks. Functional annotations of genomic regions, including the 493 shifted SNPs, reported a few Gene Ontology terms that might underly the biological processes that contributed to increase performances of the pigs over the 20 years of the selection program. The obtained results indicated that the genome of the Italian Large White pigs was shaped by a directional selection program derived by the application of methodologies assuming the infinitesimal model that captured a continuous trend of allele frequency changes in the boar population. © 2015 Stichting International Foundation for Animal Genetics.

  8. Dinucleotide controlled null models for comparative RNA gene prediction.

    PubMed

    Gesell, Tanja; Washietl, Stefan

    2008-05-27

    Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz is available as open source C code that can be compiled for every major platform and downloaded here: http://sourceforge.net/projects/sissiz.

  9. CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics

    PubMed Central

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086

  10. Fast scaffolding with small independent mixed integer programs

    PubMed Central

    Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko

    2011-01-01

    Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153

  11. Postdoctoral Fellows | Center for Cancer Research

    Cancer.gov

    The Oncogenomics section of the Genetics Branch is a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of utilizing genomics to develop novel immunotherapies for cancer. Our group is applying high throughput applied genomics methods including single cell RNAseq, single cell TCR sequencing, DNA sequencing, CRISPR/Cas9, bioinformatics combined with T cell based therapeutics to identify and develop novel immunotherapeutics for human cancer. We work with other investigators within the intramural program as well as industrial and pharmaceutical partners to rapidly translate our findings to the clinic. The program takes advantage of the uniqueness of the National Cancer Institute, (NCI), Center for Cancer Research (CCR) intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience. Additional information can be found on Dr. Khan’s profile page: https://ccr.cancer.gov/Genetics-Branch/javed-khan

  12. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  13. Efficient Breeding by Genomic Mating.

    PubMed

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  14. Optimization of Swine Breeding Programs Using Genomic Selection with ZPLAN+

    PubMed Central

    Lopez, B. M.; Kang, H. S.; Kim, T. H.; Viterbo, V. S.; Kim, H. S.; Na, C. S.; Seo, K. S.

    2016-01-01

    The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit. PMID:26954222

  15. BigQ: a NoSQL based framework to handle genomic variants in i2b2.

    PubMed

    Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo

    2015-12-29

    Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.

  16. SWPhylo - A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees.

    PubMed

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.

  17. SWPhylo – A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees

    PubMed Central

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354

  18. GPFrontend and GPGraphics: graphical analysis tools for genetic association studies.

    PubMed

    Uebe, Steffen; Pasutto, Francesca; Krumbiegel, Mandy; Schanze, Denny; Ekici, Arif B; Reis, André

    2010-09-21

    Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot. Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool. Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.

  19. Amount of Genetics Education is Low Among Didactic Programs in Dietetics.

    PubMed

    Beretich, Kaitlan; Pope, Janet; Erickson, Dawn; Kennedy, Angela

    2017-01-01

    Nutritional genomics is a growing area of research. Research has shown registered dietitian nutritionists (RDNs) have limited knowledge of genetics. Limited research is available regarding how didactic programs in dietetics (DPDs) meet the genetics knowledge requirement of the Accreditation Council for Education in Nutrition and Dietetics (ACEND®). The purpose of this study was to determine the extent to which the study of nutritional genomics is incorporated into undergraduate DPDs in response to the Academy of Nutrition and Dietetics position statement on nutritional genomics. The sample included 62 DPD directors in the U.S. Most programs (63.9%) reported the ACEND genetics knowledge requirement was being met by integrating genetic information into the current curriculum. However, 88.7% of programs reported devoting only 1-10 clock hours to genetics education. While 60.3% of directors surveyed reported they were confident in their program's ability to teach information related to genetics, only 6 directors reported having specialized training in genetics. The overall amount of clock hours devoted to genetics education is low. DPD directors, faculty, and instructors are not adequately trained to provide this education to students enrolled in DPDs. Therefore, the primary recommendation of this study is the development of a standardized curriculum for genetics education in DPDs.

  20. Avian Disease and Oncology Laboratory (ADOL) research update

    USDA-ARS?s Scientific Manuscript database

    GENOMICS To meet the growing demands of consumers, the poultry industry will need to continue to improve methods of selection in breeding programs for production and associated traits. One possible solution is genome-wide marker-assisted selection (GWMAS). In brief, evenly-spaced genetic markers s...

  1. Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

  2. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  3. Placental transcriptome co-expression analysis reveals conserved regulatory program across gestation

    USDA-ARS?s Scientific Manuscript database

    Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organization of the placental transcriptome through a systematic a...

  4. Nursing genetics and genomics: The International Society of Nurses in Genetics (ISONG) survey.

    PubMed

    Hickey, Kathleen T; Taylor, Jacquelyn Y; Barr, Taura L; Hauser, Nicole R; Jia, Haomiao; Riga, Teresa C; Katapodi, Maria

    2018-04-01

    The International Society of Nursing in Genetics (ISONG) fosters scientific and professional development in the discovery, interpretation, and application of genomic information in nursing research, education, and clinical practice. Assess genomic-related activities of ISONG members in research, education and practice, and competencies to serve as global leaders in genomics. Cross-sectional survey (21-items) assessing genomic-related training, knowledge, and practice. An email invitation included a link to the anonymous online survey. All ISONG members (n = 350 globally) were invited to partake. Descriptive statistics and Wilcoxon Rank Sum Test for between-group comparisons. Respondents (n = 231, 66%), were mostly Caucasian, female, with a master's degree or higher. Approximately 70% wanted to incorporate genomics in research, teaching, and practice. More than half reported high genomic competency, and over 95% reported that genomics is relevant the next 5 years. Findings provide a foundation for developing additional educational programs for an international nursing workforce in genomics. Copyright © 2018. Published by Elsevier Ltd.

  5. The COG database: a tool for genome-scale analysis of protein functions and evolution

    PubMed Central

    Tatusov, Roman L.; Galperin, Michael Y.; Natale, Darren A.; Koonin, Eugene V.

    2000-01-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes. PMID:10592175

  6. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Cancer.gov

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

  7. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    PubMed

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  8. An assessment of time involved in pre-test case review and counseling for a whole genome sequencing clinical research program.

    PubMed

    Williams, Janet L; Faucett, W Andrew; Smith-Packard, Bethanny; Wagner, Monisa; Williams, Marc S

    2014-08-01

    Whole genome sequencing (WGS) is being used for evaluation of individuals with undiagnosed disease of suspected genetic origin. Implementing WGS into clinical practice will place an increased burden upon care teams with regard to pre-test patient education and counseling about results. To quantitate the time needed for appropriate pre-test evaluation of participants in WGS testing, we documented the time spent by our clinical research group on various activities related to program preparation, participant screening, and consent prior to WGS. Participants were children or young adults with autism, intellectual or developmental disability, and/or congenital anomalies, who have remained undiagnosed despite previous evaluation, and their biologic parents. Results showed that significant time was spent in securing allocation of clinical research space to counsel participants and families, and in acquisition and review of participant's medical records. Pre-enrollment chart review identified two individuals with existing diagnoses resulting in savings of $30,000 for the genome sequencing alone, as well as saving hours of personnel time for genome interpretation and communication of WGS results. New WGS programs should plan for costs associated with additional pre-test administrative planning and patient evaluation time that will be required to provide high quality care.

  9. SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments

    PubMed Central

    Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic

    2001-01-01

    Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202

  10. GAPIT: genome association and prediction integrated tool.

    PubMed

    Lipka, Alexander E; Tian, Feng; Wang, Qishan; Peiffer, Jason; Li, Meng; Bradbury, Peter J; Gore, Michael A; Buckler, Edward S; Zhang, Zhiwu

    2012-09-15

    Software programs that conduct genome-wide association studies and genomic prediction and selection need to use methodologies that maximize statistical power, provide high prediction accuracy and run in a computationally efficient manner. We developed an R package called Genome Association and Prediction Integrated Tool (GAPIT) that implements advanced statistical methods including the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and selection. The GAPIT package can handle large datasets in excess of 10 000 individuals and 1 million single-nucleotide polymorphisms with minimal computational time, while providing user-friendly access and concise tables and graphs to interpret results. http://www.maizegenetics.net/GAPIT. zhiwu.zhang@cornell.edu Supplementary data are available at Bioinformatics online.

  11. Programming cells by multiplex genome engineering and accelerated evolution.

    PubMed

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  12. Application of selection index calculations to determine selection strategies in genomic breeding programs.

    PubMed

    König, S; Swalve, H H

    2009-10-01

    The availability of genomic estimated breeding values (GEBV) allows for possible modifications to existing dairy cattle breeding programs. Selection index calculations including genomic and phenotypic observations as index sources were used to determine the optimal number of offspring per genotyped sire with a focus on functional traits and the design of cooperator herds, and to evaluate the importance of a central station test for genotyped bull dams. Evaluation criteria to compare different breeding strategies were correlations between index and aggregate genotype (r(TI)), and the relative selection response percentage (RSR) of an index without single nucleotide polymorphism information in relation to a single nucleotide polymorphism-based index. The number of required daughter records per sire to achieve a predefined r(TI) strongly depends on the accuracy of GEBV (r(mg)) and the heritability of the trait. For a desired r(TI) of 0.8, h(2) = 0.10, and r(mg) = 0.5, at least 57 additional daughters have to be included in the genetic evaluation. Daughter records of genotyped sires are not necessary for optimal scenarios where r(mg) is greater than or equal to r(TI). There still is a substantial need for phenotypic daughter records, especially for low-heritability functional traits and r(mg) < 0.7. Phenotypic records from genotyped potential bull dams have no relevance for increasing r(TI), even with a low value for r(mg) of 0.5. Hence, genomic breeding programs should focus on recording functional traits within progeny groups, preferably in cooperator herds. For low-heritability traits and with r(mg) > 0.7, the RSR of conventional breeding programs was only 10% of RSR from genomic breeding strategies. As shown in scenarios including 2 traits in the index as well as in the aggregate genotype, the availability of highly accurate GEBV for production traits and low-accuracy GEBV for functional traits increased the risk of widening the gap between selection responses in production and functionality. Counteractions are possible, such as via higher economic weights for low-heritability functional traits. Finally, an alternative selection strategy considering only 2 pathways of selection for genotyped male calves and for cow dams was evaluated. This strategy is competitive with a 4-pathway genomic breeding program if the fraction of selected male calves for the artificial insemination program is below 1% and if selection is focused on functionality, thus pointing to substantial insufficiencies caused by low reliabilities of breeding values for cows for such traits in conventional bull dam selection schemes.

  13. Implementation of Quality Management in Core Service Laboratories

    PubMed Central

    Creavalle, T.; Haque, K.; Raley, C.; Subleski, M.; Smith, M.W.; Hicks, B.

    2010-01-01

    CF-28 The Genetics and Genomics group of the Advanced Technology Program of SAIC-Frederick exists to bring innovative genomic expertise, tools and analysis to NCI and the scientific community. The Sequencing Facility (SF) provides next generation short read (Illumina) sequencing capacity to investigators using a streamlined production approach. The Laboratory of Molecular Technology (LMT) offers a wide range of genomics core services including microarray expression analysis, miRNA analysis, array comparative genome hybridization, long read (Roche) next generation sequencing, quantitative real time PCR, transgenic genotyping, Sanger sequencing, and clinical mutation detection services to investigators from across the NIH. As the technology supporting this genomic research becomes more complex, the need for basic quality processes within all aspects of the core service groups becomes critical. The Quality Management group works alongside members of these labs to establish or improve processes supporting operations control (equipment, reagent and materials management), process improvement (reengineering/optimization, automation, acceptance criteria for new technologies and tech transfer), and quality assurance and customer support (controlled documentation/SOPs, training, service deficiencies and continual improvement efforts). Implementation and expansion of quality programs within unregulated environments demonstrates SAIC-Frederick's dedication to providing the highest quality products and services to the NIH community.

  14. Sequencing the Genome of the Heirloom Watermelon Cultivar Charleston Gray

    USDA-ARS?s Scientific Manuscript database

    The genome of the watermelon cultivar Charleston Gray, a major heirloom which has been used in breeding programs of many watermelon cultivars, was sequenced. Our strategy involved a hybrid approach using the Illumina and 454/Titanium next-generation sequencing technologies. For Illumina, shotgun g...

  15. Comparison of genomic-enhanced EPD systems using an external phenotypic database

    USDA-ARS?s Scientific Manuscript database

    The American Angus Association (AAA) is currently evaluating two methods to incorporate genomic information into their genetic evaluation program: 1) multi-trait incorporation of an externally produced molecular breeding value as an indicator trait (MT) and 2) single-step evaluation with an unweight...

  16. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.

    PubMed

    Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver

    2008-07-01

    DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

  17. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  18. Complete genome sequence of Staphylothermus hellenicus P8T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  19. Complete genome sequence of Thioalkalivibrio sp. K90mix

    PubMed Central

    Muyzer, Gerard; Sorokin, Dimitry Y.; Mavromatis, Konstantinos; Lapidus, Alla; Foster, Brian; Sun, Hui; Ivanova, Natalia; Pati, Amrita; D'haeseleer, Patrik; Woyke, Tanja; Kyrpides, Nikos C.

    2011-01-01

    Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic, natronophilic sulfur-oxidizing bacterium (SOxB) belonging to the family Ectothiorhodospiraceae within the Gammaproteobacteria. The strain was isolated from a mixture of sediment samples obtained from different soda lakes located in the Kulunda Steppe (Altai, Russia) based on its extreme potassium carbonate tolerance as an enrichment method. Here we report the complete genome sequence of strain K90mix and its annotation. The genome was sequenced within the Joint Genome Institute Community Sequencing Program, because of its relevance to the sustainable removal of sulfide from wastewater and gas streams. PMID:22675584

  20. Assembly of cucumber (Cucumis sativus L.) somaclones

    NASA Astrophysics Data System (ADS)

    Skarzyńska, Agnieszka; Kuśmirek, Wiktor; Pawełkowicz, Magdalena; PlÄ der, Wojciech; Nowak, Robert M.

    2017-08-01

    The development of next generation sequencing opens the possibility of using sequencing in various plant studies, such as finding structural changes and small polymorphisms between species and within them. Most analyzes rely on genomic sequences and it is crucial to use well-assembled genomes of high quality and completeness. Herein we compare commonly available programs for genomic assembling and newly developed software - dnaasm. Assemblies were tested on cucumber (Cucumis sativus L.) lines obtained by in vitro regeneration (somaclones), showing different phenotypes. Obtained results shows that dnaasm assembler is a good tool for short read assembly, which allows obtaining genomes of high quality and completeness.

  1. Complete genome sequence of Serratia plymuthica strain AS12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Alstrom, Sadhna

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  2. From the Bench to the Clinic Part 1: Martin McIntosh, Ph.D., Introduces His Lab's Immunotherapy Research | Office of Cancer Genomics

    Cancer.gov

    The field of immunotherapy is rapidly advancing and genomics techniques are being incorporated to add a “precision” approach. OCG spoke with two CTD2 investigators from the Fred Hutchinson Cancer Research Center (FHCRC) about new advances in immunotherapy. For the first article of this two-part series, we interviewed Martin McIntosh, Ph.D., member of the Fred Hutchinson Translational Research program and previously Program Head in Computational Biology at FHCRC/University of Washington Comprehensive Cancer Center.

  3. FindGDPs: fast identification of primers for labeling microbial transcriptomes for DNA microarray analysis

    PubMed Central

    Blick, Robert J.; Revel, Andrew T.; Hansen, Eric J.

    2008-01-01

    Summary FindGDPs is a program that uses a greedy algorithm to quickly identify a set of genome-directed primers that specifically anneal to all of the open reading frames in a genome and that do not exhibit full-length complementarity to the members of another user-supplied set of nucleotide sequences. Availability The program code is distributed under the GNU General Public License at http://www8.utsouthwestern.edu/utsw/cda/dept131456/files/159331.html Contact eric.hansen@utsouthwestern.edu PMID:15593406

  4. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    PubMed

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.

  5. A Genome-Wide Breast Cancer Scan in African Americans

    DTIC Science & Technology

    2010-06-01

    SNPs from the African American breast cancer scan to COGs , a European collaborative study which is has designed a SNP array with that will be genotyped...Award Number: W81XWH-08-1-0383 TITLE: A Genome-wide Breast Cancer Scan in African Americans PRINCIPAL INVESTIGATOR: Christopher A...SUBTITLE A Genome-wide Breast Cancer Scan in African Americans 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0383 5c. PROGRAM

  6. Study reveals potentially prognostic gene, metabolism changes in kidney cancers | Center for Cancer Research

    Cancer.gov

    The Cancer Genome Atlas Research Network investigators, including CCR scientists, identified genetic and metabolic pathway changes linked to reduced survival of patients within and across subtypes of renal cell carcinoma (RCC), a type of kidney cancer. The study, published April 5, 2018, in Cell Reports, is part of The Cancer Genome Atlas (TCGA) Program, a joint effort of the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI).

  7. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    DTIC Science & Technology

    2016-02-11

    the White- head Genome Technology Core for sequencing . This work was supported by the UCSF Program for Breakthrough Biomedical Research (funded in...landscape of the yeast genome defined by RNA sequencing . Science 320, 1344–1349. Nedialkova, D.D., and Leidel, S.A. (2015). Optimization of Codon Translation... the CC BY license (http://creativecommons.org/licenses/by/4.0/). SUMMARY Ribosome-footprint profiling provides genome -wide snapshots of translation

  8. Contributing to Tumor Molecular Characterization Projects with a Global Impact | Office of Cancer Genomics

    Cancer.gov

    My name is Nicholas Griner and I am the Scientific Program Manager for the Cancer Genome Characterization Initiative (CGCI) in the Office of Cancer Genomics (OCG). Until recently, I spent most of my scientific career working in a cancer research laboratory. In my postdoctoral training, my research focused on identifying novel pathways that contribute to both prostate and breast cancers and studying proteins within these pathways that may be targeted with cancer drugs.

  9. Investigating Genomic Mechanisms of Treatment Resistance in Castration Resistant Prostate Cancer

    DTIC Science & Technology

    2015-05-01

    and genomically profiled. Figure 3 shows data from a series of cell- line experiments showing that PC3 prostate cancer cells are recoverable and...coursework until the second-half of the grant period. I am enrolled in the UCSF Biomedical Sciences Graduate Program class BMS 255: Genetics : Basic... Genetics and Genomics. This class is set to start in January 2016. Given a large number of clinical, teaching, and research duties I will plan to enroll

  10. Pdsg1 and Pdsg2, Novel Proteins Involved in Developmental Genome Remodelling in Paramecium

    PubMed Central

    Hoehener, Cristina; Singh, Aditi; Swart, Estienne C.; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  11. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  12. Draft Genome Sequence of a Multidrug-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Isolate from a Clinical Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozer, Egon A.; Morris, Andrew R.; Krapp, Fiorella

    We report here the draft genome sequence of a multidrug-resistant clinical isolate ofKlebsiella quasipneumoniaesubsp.similipneumoniae, KP_Z4175. This strain, isolated as part of a hospital infection-control screening program, is resistant to multiple β-lactam antibiotics, aminoglycosides, and trimethoprim-sulfamethoxazole.

  13. Population analysis of 60 worldwide cattle breeds using high-density (700k)SNP genotyping

    USDA-ARS?s Scientific Manuscript database

    Genetic differences associated with speciation, breed formation, or local adaptation can help inform efforts to preserve and to effectively utilize individuals in selection programs as well as assist in accurately identifying genomic region’s importance through genome-wide association studies. To th...

  14. Towards the elucidation of the cytoplasmic diversity of North American Grape Breeding Programs

    USDA-ARS?s Scientific Manuscript database

    Plants have an intriguing tripartite genetic system: Nuclear genome × Mitochondria × Plastids, and their interactions may impact germplasm breeding. In grapevine, the study of cytoplasmic genomes has been limited, and their role with respect to grapevine germplasm diversity has not been elucidated y...

  15. Genomic newborn screening: public health policy considerations and recommendations.

    PubMed

    Friedman, Jan M; Cornel, Martina C; Goldenberg, Aaron J; Lister, Karla J; Sénécal, Karine; Vears, Danya F

    2017-02-21

    The use of genome-wide (whole genome or exome) sequencing for population-based newborn screening presents an opportunity to detect and treat or prevent many more serious early-onset health conditions than is possible today. The Paediatric Task Team of the Global Alliance for Genomics and Health's Regulatory and Ethics Working Group reviewed current understanding and concerns regarding the use of genomic technologies for population-based newborn screening and developed, by consensus, eight recommendations for clinicians, clinical laboratory scientists, and policy makers. Before genome-wide sequencing can be implemented in newborn screening programs, its clinical utility and cost-effectiveness must be demonstrated, and the ability to distinguish disease-causing and benign variants of all genes screened must be established. In addition, each jurisdiction needs to resolve ethical and policy issues regarding the disclosure of incidental or secondary findings to families and ownership, appropriate storage and sharing of genomic data. The best interests of children should be the basis for all decisions regarding the implementation of genomic newborn screening.

  16. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

    PubMed Central

    Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S

    2016-01-01

    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853

  17. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  18. Origins of the Human Genome Project.

    PubMed

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for Caenorhabditis elegans by a collaboration between Washington University and the Medical Research Council laboratory in Cambridge, U.K. This project is now turning to sequencing C. elegans DNA as a logical extension of this work. These are but the first fruits of the genome project. There is much more to come.

  19. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection.

    PubMed

    Haberland, A M; König von Borstel, U; Simianer, H; König, S

    2012-09-01

    Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.

  1. GFinisher: a new strategy to refine and finish bacterial genome assemblies

    NASA Astrophysics Data System (ADS)

    Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.

    2016-10-01

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  2. GFinisher: a new strategy to refine and finish bacterial genome assemblies.

    PubMed

    Guizelini, Dieval; Raittz, Roberto T; Cruz, Leonardo M; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O

    2016-10-10

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  3. Multilevel Research and the Challenges of Implementing Genomic Medicine

    PubMed Central

    Coates, Ralph J.; Fennell, Mary L.; Glasgow, Russell E.; Scheuner, Maren T.; Schully, Sheri D.; Williams, Marc S.; Clauser, Steven B.

    2012-01-01

    Advances in genomics and related fields promise a new era of personalized medicine in the cancer care continuum. Nevertheless, there are fundamental challenges in integrating genomic medicine into cancer practice. We explore how multilevel research can contribute to implementation of genomic medicine. We first review the rapidly developing scientific discoveries in this field and the paucity of current applications that are ready for implementation in clinical and public health programs. We then define a multidisciplinary translational research agenda for successful integration of genomic medicine into policy and practice and consider challenges for successful implementation. We illustrate the agenda using the example of Lynch syndrome testing in newly diagnosed cases of colorectal cancer and cascade testing in relatives. We synthesize existing information in a framework for future multilevel research for integrating genomic medicine into the cancer care continuum. PMID:22623603

  4. Multilevel research and the challenges of implementing genomic medicine.

    PubMed

    Khoury, Muin J; Coates, Ralph J; Fennell, Mary L; Glasgow, Russell E; Scheuner, Maren T; Schully, Sheri D; Williams, Marc S; Clauser, Steven B

    2012-05-01

    Advances in genomics and related fields promise a new era of personalized medicine in the cancer care continuum. Nevertheless, there are fundamental challenges in integrating genomic medicine into cancer practice. We explore how multilevel research can contribute to implementation of genomic medicine. We first review the rapidly developing scientific discoveries in this field and the paucity of current applications that are ready for implementation in clinical and public health programs. We then define a multidisciplinary translational research agenda for successful integration of genomic medicine into policy and practice and consider challenges for successful implementation. We illustrate the agenda using the example of Lynch syndrome testing in newly diagnosed cases of colorectal cancer and cascade testing in relatives. We synthesize existing information in a framework for future multilevel research for integrating genomic medicine into the cancer care continuum.

  5. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  6. Current Priorities for Public Health Practice in Addressing the Role of Human Genomics in Improving Population Health

    PubMed Central

    Khoury, Muin J.; Bowen, Michael S.; Burke, Wylie; Coates, Ralph J.; Dowling, Nicole F.; Evans, James P.; Reyes, Michele; St. Pierre, Jeannette

    2017-01-01

    In spite of accelerating human genome discoveries in a wide variety of diseases of public health significance, the promise of personalized health care and disease prevention based on genomics has lagged behind. In a time of limited resources, public health agencies must continue to focus on implementing programs that can improve health and prevent disease now. Nevertheless, public health has an important and assertive leadership role in addressing the promise and pitfalls of human genomics for population health. Such efforts are needed not only to implement what is known in genomics to improve health but also to reduce potential harm and create the infrastructure needed to derive health benefits in the future. PMID:21406285

  7. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  8. Contributions to Cancer Research: Finding a Niche in Communication | Office of Cancer Genomics

    Cancer.gov

    This past July, I started a journey into the fields of communications and cancer research when I joined the Office of Cancer Genomics (OCG) as a fellow in the National Cancer Institute (NCI) Health Communications Internship Program (HCIP). Cancer genomics and working in an office were new and uncharted territory for me: before I came to OCG, I was finishing a Ph.D. in cell biology at Vanderbilt University in Dr. Matthew Tyska’s laboratory.

  9. Genomic control of patterning

    PubMed Central

    Peter, Isabelle S.; Davidson, Eric H.

    2014-01-01

    The development of multicellular organisms involves the partitioning of the organism into territories of cells of specific structure and function. The information for spatial patterning processes is directly encoded in the genome. The genome determines its own usage depending on stage and position, by means of interactions that constitute gene regulatory networks (GRNs). The GRN driving endomesoderm development in sea urchin embryos illustrates different regulatory strategies by which developmental programs are initiated, orchestrated, stabilized or excluded to define the pattern of specified territories in the developing embryo. PMID:19378258

  10. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  11. Differential Chromosomal Localization of Centromeric Histone CENP-A Contributes to Nematode Programmed DNA Elimination.

    PubMed

    Kang, Yuanyuan; Wang, Jianbin; Neff, Ashley; Kratzer, Stella; Kimura, Hiroshi; Davis, Richard E

    2016-08-30

    The stability of the genome is paramount to organisms. However, diverse eukaryotes carry out programmed DNA elimination in which portions or entire chromsomes are lost in early development or during sex determination. During early development of the parasitic nematode, Ascaris suum, 13% of the genome is eliminated. How different genomic segments are reproducibly retained or discarded is unknown. Here, we show that centromeric histone CENP-A localization plays a key role in this process. We show that Ascaris chromosomes are holocentric during germline mitoses, with CENP-A distributed along their length. Prior to DNA elimination in the four-cell embryo, CENP-A is significantly diminished in chromosome regions that will be lost. This leads to the absence of kinetochores and microtubule attachment sites necessary for chromosome segregation, resulting in loss of these regions upon mitosis. Our data suggest that changes in CENP-A localization specify which portions of chromosomes will be lost during programmed DNA elimination. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    PubMed

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  13. Complete genome sequence of Hirschia baltica type strain (IFAM 1418T)

    PubMed Central

    Chertkov, Olga; Brown, Pamela J.B.; Kysela, David T.; de Pedro, Miguel A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Detter, John C.; Han, Cliff; Larimer, Frank; Chang, Yun-juan; Jeffries, Cynthia D.; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia; Ovchinnikova, Galina; Tindall, Brian J.; Göker, Markus; Klenk, Hans-Peter; Brun, Yves V.

    2011-01-01

    The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008. PMID:22675580

  14. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Kyrpides, Nikos C

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  15. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- andmore » tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions of {approx}40% of the protein and nonprotein-coding genes [FlyBase 5.12 (4)] have been determined from cDNA collections (5, 6), manual curation of gene models (7), gene mutations and comprehensive genome-wide RNA interference screens (8-10), and comparative genomic analyses (11, 12). The Drosophila modENCODE project has generated more than 700 data sets that profile transcripts, histone modifications and physical nucleosome properties, general and specific transcription factors (TFs), and replication programs in cell lines, isolated tissues, and whole organisms across several developmental stages (Fig. 1). Here, we computationally integrate these data sets and report (i) improved and additional genome annotations, including full-length proteincoding genes and peptides as short as 21 amino acids; (ii) noncoding transcripts, including 132 candidate structural RNAs and 1608 nonstructural transcripts; (iii) additional Argonaute (Ago)-associated small RNA genes and pathways, including new microRNAs (miRNAs) encoded within protein-coding exons and endogenous small interfering RNAs (siRNAs) from 3-inch untranslated regions; (iv) chromatin 'states' defined by combinatorial patterns of 18 chromatin marks that are associated with distinct functions and properties; (v) regions of high TF occupancy and replication activity with likely epigenetic regulation; (vi)mixed TF and miRNA regulatory networks with hierarchical structure and enriched feed-forward loops; (vii) coexpression- and co-regulation-based functional annotations for nearly 3000 genes; (viii) stage- and tissue-specific regulators; and (ix) predictive models of gene expression levels and regulator function.« less

  16. The Case for Cyberlearning: Genomics (and Dragons!) in the High School Biology Classroom

    ERIC Educational Resources Information Center

    Southworth, Meghan; Mokros, Jan; Dorsey, Chad; Smith, Randy

    2010-01-01

    GENIQUEST is a cyberlearning computer program that allows students to investigate biological data using a research-based instructional model. In this article, the authors make the case for using cyberlearning to teach students about the rapidly growing fields of genomics and computational biology. (Contains 2 figures and 1 online resource.)

  17. Genome-wide association study for identifying genome loci that affect fillet yield in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Fillet yield (FY, %) is an economically important trait in rainbow trout aquaculture that reflects production efficiency. Despite that, FY has not received much attention in breeding programs because it is costly to measure and difficult to select on, limiting the genetic progress in traditional sel...

  18. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.

    PubMed

    Mao, Hongliang; Wang, Hao

    2017-03-01

    Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. wangh8@fudan.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets

    PubMed Central

    Mao, Hongliang

    2017-01-01

    Abstract Motivation: Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Results: Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. Availability and Implementation: The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan, implemented in PERL and supported on Linux. Contact: wangh8@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062442

  20. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  1. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  2. Mojo Hand, a TALEN design tool for genome editing applications.

    PubMed

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  3. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data.

    PubMed

    Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T

    2013-07-01

    Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.

  4. Identification and analysis of integrons and cassette arrays in bacterial genomes

    PubMed Central

    Touchon, Marie; Néron, Bertrand; Rocha, Eduardo PC

    2016-01-01

    Abstract Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. PMID:27130947

  5. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    PubMed

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of GenomeCAT can be easily extended by further R packages or customized plug-ins to meet future requirements.

  6. Human Genome: DOE Origins

    Science.gov Websites

    Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan Project, the World War II program that produced Technical Report; 1964 Impact of Radiation Biology on Fundamental Insights in Biology; DOE Technical Report

  7. Acceleration of genetic gain in cattle by reduction of generation interval.

    PubMed

    Kasinathan, Poothappillai; Wei, Hong; Xiang, Tianhao; Molina, Jose A; Metzger, John; Broek, Diane; Kasinathan, Sivakanthan; Faber, David C; Allan, Mark F

    2015-03-02

    Genomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born. Here, we present a cost-effective approach that combines GS with reproductive technologies to reduce generation interval by rapidly producing high genetic merit calves.

  8. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Sharon

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  9. Emerging issues in public health genomics

    PubMed Central

    Roberts, J. Scott

    2014-01-01

    This review highlights emerging areas of interest in public health genomics. First, recent advances in newborn screening (NBS) are described, with a focus on practice and policy implications of current and future efforts to expand NBS programs (e.g., via next-generation sequencing). Next, research findings from the rapidly progressing field of epigenetics and epigenomics are detailed, highlighting ways in which our emerging understanding in these areas could guide future intervention and research efforts in public health. We close by considering various ethical, legal and social issues posed by recent developments in public health genomics; these include policies to regulate access to personal genomic information; the need to enhance genetic literacy in both health professionals and the public; and challenges in ensuring that the benefits (and burdens) from genomic discoveries and applications are equitably distributed. Needs for future genomics research that integrates across basic and social sciences are also noted. PMID:25184533

  10. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  11. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.

    PubMed

    Doekes, Harmen P; Veerkamp, Roel F; Bijma, Piter; Hiemstra, Sipke J; Windig, Jack J

    2018-04-11

    In recent decades, Holstein-Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evaluated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele frequency over time. Effective population size estimates for the 1986-2015 period ranged from 69 to 102. Two major breakpoints were observed in genome-wide inbreeding and kinship trends. Around 2000, inbreeding and kinship levels temporarily dropped. From 2010 onwards, they steeply increased, with pedigree-based, ROH-based and marker-based inbreeding rates as high as 1.8, 2.1 and 2.8% per generation, respectively. Accumulation of inbreeding varied substantially across the genome. A considerable fraction of markers showed changes in allele frequency that were greater than expected under pure drift. Putative selected regions harboured many quantitative trait loci (QTL) associated to a wide range of traits. In consecutive 5-year periods, allele frequencies changed more often in the same direction than in opposite directions, except when comparing the 1996-2000 and 2001-2005 periods. Genome-wide and region-specific diversity trends reflect major changes in the Dutch-Flemish HF breeding program. Introduction of OCS and the shift in breeding goal were followed by a drop in inbreeding and kinship and a shift in the direction of changes in allele frequency. After introduction of GS, rates of inbreeding and kinship increased substantially while allele frequencies continued to change in the same direction as before GS. These results provide insight in the effect of breeding practices on genomic diversity and emphasize the need for efficient management of genetic diversity in GS schemes.

  12. A high-density SNP genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource for gene localisation and marker-assisted selection.

    PubMed

    Jones, David B; Jerry, Dean R; Khatkar, Mehar S; Raadsma, Herman W; Zenger, Kyall R

    2013-11-20

    The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny.

  13. Remembrance of things past retrieved from the Paramecium genome.

    PubMed

    Sperling, Linda

    2011-01-01

    Paramecium and other ciliates are the only unicellular eukaryotes that separate germinal and somatic functions. A germline micronucleus transmits the genetic information to sexual progeny, while a somatic macronucleus expresses the genetic information during vegetative growth to determine the phenotype. At each sexual generation, a new macronucleus develops from the zygotic nucleus through programmed rearrangements of the germline genome. Paramecium tetraurelia somatic genome sequencing, reviewed here, has provided insight into the organization and evolution of the genome. A series of at least 3 whole genome duplications was detected in the Paramecium lineage and selective pressures that determine the fate of the gene duplicates analyzed. Variability in the somatic DNA was characterized and could be attributed to the genome rearrangement processes. Since, in Paramecium, alternative genome rearrangement patterns can be inherited across sexual generations by homology-dependent epigenetic mechanisms and can affect phenotype, I discuss the possibility that ciliate nuclear dimorphism buffers genetic variation hidden in the germline. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  14. The genome sequence of the colonial chordate, Botryllus schlosseri

    PubMed Central

    Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R

    2013-01-01

    Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927

  15. Evolution and Diversity of the Human Hepatitis D Virus Genome

    PubMed Central

    Huang, Chi-Ruei; Lo, Szecheng J.

    2010-01-01

    Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work. PMID:20204073

  16. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  17. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  18. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  19. TRACTS: a program to map oligopurine.oligopyrimidine and other binary DNA tracts

    PubMed Central

    Gal, Moshe; Katz, Tzvi; Ovadia, Amir; Yagil, Gad

    2003-01-01

    A program to map the locations and frequencies of DNA tracts composed of only two bases (‘Binary DNA’) is described. The program, TRACTS (URL http://bioportal.weizmann.ac.il/tracts/tracts.html and/or http://bip.weizmann.ac.il/miwbin/servers/tracts) is of interest because long tracts composed of only two bases are highly over-represented in most genomes. In eukaryotes, oligopurine.oligopyrimidine tracts (‘R.Y tracts’) are found in the highest excess. In prokaryotes, W tracts predominate (A,T ‘rich’). A pre-program, ANEX, parses database annotation files of GenBank and EMBL, to produce a convenient one-line list of every gene (exon, intron) in a genome. The main unit lists and analyzes tracts of the three possible binary pairs (R.Y, K.M and S;W). As an example, the results of R.Y tract mapping of mammalian gene p53 is described. PMID:12824393

  20. Building a genome database using an object-oriented approach.

    PubMed

    Barbasiewicz, Anna; Liu, Lin; Lang, B Franz; Burger, Gertraud

    2002-01-01

    GOBASE is a relational database that integrates data associated with mitochondria and chloroplasts. The most important data in GOBASE, i. e., molecular sequences and taxonomic information, are obtained from the public sequence data repository at the National Center for Biotechnology Information (NCBI), and are validated by our experts. Maintaining a curated genomic database comes with a towering labor cost, due to the shear volume of available genomic sequences and the plethora of annotation errors and omissions in records retrieved from public repositories. Here we describe our approach to increase automation of the database population process, thereby reducing manual intervention. As a first step, we used Unified Modeling Language (UML) to construct a list of potential errors. Each case was evaluated independently, and an expert solution was devised, and represented as a diagram. Subsequently, the UML diagrams were used as templates for writing object-oriented automation programs in the Java programming language.

  1. RNA-programmed genome editing in human cells

    PubMed Central

    Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer

    2013-01-01

    Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. DOI: http://dx.doi.org/10.7554/eLife.00471.001 PMID:23386978

  2. [Implementation of Italian guidelines on public health genomics in Italy: a challenging policy of the NHS].

    PubMed

    Boccia, Stefania; Federici, Antonio; Colotto, Marco; Villari, Paolo

    2014-01-01

    Genomics and related fields are becoming increasingly relevant in health care practice. Italy is the first European country that has a structured policy of Public Health Genomics. Nevertheless, what should be the role of genomics in a public health perspective and how public health professionals should engage with advances in genomics' knowledge and technology, is still not entirely clear. A description of the regulatory framework made-up by the Italian government in the last years is provided. In order to implement the national guidelines on Public Health Genomics published in 2013, key issues including the ethical, legal and social aspects within an evidence-based framework should be warranted and are herewith discussed. Genomics and predictive medicine are considered one of the main intervention areas by the National Prevention Plan 2010-2012, and dedicated guidelines were published in 2013. In order to implement such guidelines, we envisage a coordinated effort between stakeholders to guide development in genomic medicine, towards an impact on population health. There is also room to implement knowledge on how genomics can be integrated into health systems in an appropriate and sustainable way. Learning programs are needed to spread knowledge and awareness of genomics technology, in particular on genomic testing for complex diseases.

  3. Genotype by environment interaction and the use of unbalanced historical data for genomic selection in an international wheat breeding program

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, in using datasets that are unbalanced over time and space, there is increasing exposure to particular genoty...

  4. Epigenomic programing: a future way to health?

    PubMed

    Shenderov, Boris A; Midtvedt, Tore

    2014-01-01

    It is now generally accepted that the 'central genome dogma' (i.e. a causal chain going from DNA to RNA to proteins and downstream to biological functions) should be replaced by the 'fluid genome dogma', that is, complex feed-forward and feed-back cycles that interconnect organism and environment by epigenomic programing - and reprograming - throughout life and at all levels, sometimes also down the generations. The epigenomic programing is the net sum of interactions derived from own metabolism and microbiota as well as external factors such as diet, pharmaceuticals, environmental compounds, and so on. It is a growing body of results indicating that many chronic metabolic and degenerative disorders and diseases - often called 'civilization diseases' - are initiated and/or influenced upon by non-optimal epigenomic programing, often taking place early in life. In this context, the first 1,000 days of life - from conception into early infancy - is often called the most important period of life. The following sections present some major mechanisms for epigenomic programing as well as some factors assumed to be of importance. The need for more information about own genome and metagenome, as well as a substantial lack of adequate information regarding dietary and environmental databases are also commented upon. However, the mere fact that we can influence epigenomic health programing opens up the way for prophylactic and therapeutic interventions. The authors underline the importance of creating a 'Human Gut Microbiota and Epigenomic Platform' in order to facilitate interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics as well as in disease epidemiology, prevention and treatment.

  5. A better sequence-read simulator program for metagenomics.

    PubMed

    Johnson, Stephen; Trost, Brett; Long, Jeffrey R; Pittet, Vanessa; Kusalik, Anthony

    2014-01-01

    There are many programs available for generating simulated whole-genome shotgun sequence reads. The data generated by many of these programs follow predefined models, which limits their use to the authors' original intentions. For example, many models assume that read lengths follow a uniform or normal distribution. Other programs generate models from actual sequencing data, but are limited to reads from single-genome studies. To our knowledge, there are no programs that allow a user to generate simulated data following non-parametric read-length distributions and quality profiles based on empirically-derived information from metagenomics sequencing data. We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning approach to generate reads with lengths and quality values that closely match empirically-derived distributions. BEAR can emulate reads from various sequencing platforms, including Illumina, 454, and Ion Torrent. BEAR requires minimal user input, as it automatically determines appropriate parameter settings from user-supplied data. BEAR also uses a unique method for deriving run-specific error rates, and extracts useful statistics from the metagenomic data itself, such as quality-error models. Many existing simulators are specific to a particular sequencing technology; however, BEAR is not restricted in this way. Because of its flexibility, BEAR is particularly useful for emulating the behaviour of technologies like Ion Torrent, for which no dedicated sequencing simulators are currently available. BEAR is also the first metagenomic sequencing simulator program that automates the process of generating abundances, which can be an arduous task. BEAR is useful for evaluating data processing tools in genomics. It has many advantages over existing comparable software, such as generating more realistic reads and being independent of sequencing technology, and has features particularly useful for metagenomics work.

  6. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  7. A RESTful application programming interface for the PubMLST molecular typing and genome databases

    PubMed Central

    Bray, James E.; Maiden, Martin C. J.

    2017-01-01

    Abstract Molecular typing is used to differentiate microorganisms at the subspecies or strain level for epidemiological investigations, infection control, public health and environmental sampling. DNA sequence-based typing methods require authoritative databases that link sequence variants to nomenclature in order to facilitate communication and comparison of identified types in national or global settings. The PubMLST website (https://pubmlst.org/) fulfils this role for over a hundred microorganisms for which it hosts curated molecular sequence typing data, providing sequence and allelic profile definitions for multi-locus sequence typing (MLST) and single-gene typing approaches. In recent years, these have expanded to cover the whole genome with schemes such as core genome MLST (cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity found in hundreds to thousands of genes. These approaches provide a common nomenclature for high-resolution strain characterization and comparison. Molecular typing information is linked to isolate provenance, phenotype, and increasingly genome assemblies, providing a resource for outbreak investigation and research in to population structure, gene association, global epidemiology and vaccine coverage. A Representational State Transfer (REST) Application Programming Interface (API) has been developed for the PubMLST website to make these large quantities of structured molecular typing and whole genome sequence data available for programmatic access by any third party application. The API is an integral component of the Bacterial Isolate Genome Sequence Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all public data within the site. In addition to data browsing, searching and download, the API supports authentication and submission of new data to curator queues. Database URL: http://rest.pubmlst.org/ PMID:29220452

  8. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    PubMed

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  9. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts

    PubMed Central

    2012-01-01

    Background The turbot (Scophthalmus maximus) is a relevant species in European aquaculture. The small turbot genome provides a source for genomics strategies to use in order to understand the genetic basis of productive traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic screening tools allowing to localize quantitative trait loci (QTL) and to identify candidate genes through comparative mapping. This information is the backbone to develop marker-assisted selection (MAS) programs in aquaculture. Expressed sequenced tag (EST) resources have largely increased in turbot, thus supplying numerous type I markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn out to be useful for comparative mapping studies. Results A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups. Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low average intermarker distance (3.7 cM; ~2 Mb). A global 1.6:1 female-to-male recombination frequency (RF) ratio was observed, although largely variable among linkage groups and chromosome regions. Comparative sequence analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from stickleback (54%) to zebrafish (20%). Comparative mapping supported particular chromosome rearrangements within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups. Conclusions The new gene-enriched high-resolution turbot map represents a useful genomic tool for QTL identification, positional cloning strategies, and future genome assembling. This map showed large synteny conservation against model teleost genomes. Comparative genomics and data mining from landmarks will provide straightforward access to candidate genes, which will be the basis for genetic breeding programs and evolutionary studies in this species. PMID:22747677

  10. From genomics to mechanistic insight: a global perspective on molecular deficits induced by environmental agents.

    PubMed

    Ramos, Kenneth S; Steffen, Marlene C; Falahatpisheh, M H; Nanez, Adrian

    2007-06-01

    As the postgenomic era continues to unfold, a new wave of scientific investigation is upon us focusing on the application of genomic technologies to study the meanings encrypted on the DNA code and the responses of living organisms to changes in their environment. Recent functional genomics studies in this laboratory have focused on the role of the aryl hydrocarbon receptor, a ubiquitous transcription factor, in genetic programming during renal development. Also of interest is the application of genomics investigations to the study of chronic medical conditions associated with early life exposures to environmental contaminants. Molecular evidence is discussed in this review within the framework of human molecular medicine.

  11. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    PubMed

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  12. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    PubMed Central

    Govindaraj, Mahalingam

    2015-01-01

    The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away. PMID:25874133

  13. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  15. WhopGenome: high-speed access to whole-genome variation and sequence data in R.

    PubMed

    Wittelsbürger, Ulrich; Pfeifer, Bastian; Lercher, Martin J

    2015-02-01

    The statistical programming language R has become a de facto standard for the analysis of many types of biological data, and is well suited for the rapid development of new algorithms. However, variant call data from population-scale resequencing projects are typically too large to be read and processed efficiently with R's built-in I/O capabilities. WhopGenome can efficiently read whole-genome variation data stored in the widely used variant call format (VCF) file format into several R data types. VCF files can be accessed either on local hard drives or on remote servers. WhopGenome can associate variants with annotations such as those available from the UCSC genome browser, and can accelerate the reading process by filtering loci according to user-defined criteria. WhopGenome can also read other Tabix-indexed files and create indices to allow fast selective access to FASTA-formatted sequence files. The WhopGenome R package is available on CRAN at http://cran.r-project.org/web/packages/WhopGenome/. A Bioconductor package has been submitted. lercher@cs.uni-duesseldorf.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Integrating cancer genomic data into electronic health records.

    PubMed

    Warner, Jeremy L; Jain, Sandeep K; Levy, Mia A

    2016-10-26

    The rise of genomically targeted therapies and immunotherapy has revolutionized the practice of oncology in the last 10-15 years. At the same time, new technologies and the electronic health record (EHR) in particular have permeated the oncology clinic. Initially designed as billing and clinical documentation systems, EHR systems have not anticipated the complexity and variety of genomic information that needs to be reviewed, interpreted, and acted upon on a daily basis. Improved integration of cancer genomic data with EHR systems will help guide clinician decision making, support secondary uses, and ultimately improve patient care within oncology clinics. Some of the key factors relating to the challenge of integrating cancer genomic data into EHRs include: the bioinformatics pipelines that translate raw genomic data into meaningful, actionable results; the role of human curation in the interpretation of variant calls; and the need for consistent standards with regard to genomic and clinical data. Several emerging paradigms for integration are discussed in this review, including: non-standardized efforts between individual institutions and genomic testing laboratories; "middleware" products that portray genomic information, albeit outside of the clinical workflow; and application programming interfaces that have the potential to work within clinical workflow. The critical need for clinical-genomic knowledge bases, which can be independent or integrated into the aforementioned solutions, is also discussed.

  17. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences.

    PubMed

    Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer

    2017-09-26

    Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .

  18. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  19. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    PubMed Central

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  20. Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics - assessment and update.

    PubMed

    Freyhult, Eva; Edvardsson, Sverker; Tamas, Ivica; Moulton, Vincent; Poole, Anthony M

    2008-07-21

    The H/ACA family of small nucleolar RNAs (snoRNAs) plays a central role in guiding the pseudouridylation of ribosomal RNA (rRNA). In an effort to systematically identify the complete set of rRNA-modifying H/ACA snoRNAs from the genome sequence of the budding yeast, Saccharomyces cerevisiae, we developed a program - Fisher - and previously presented several candidate snoRNAs based on our analysis 1. In this report, we provide a brief update of this work, which was aborted after the publication of experimentally-identified snoRNAs 2 identical to candidates we had identified bioinformatically using Fisher. Our motivation for revisiting this work is to report on the status of the candidate snoRNAs described in 1, and secondly, to report that a modified version of Fisher together with the available multiple yeast genome sequences was able to correctly identify several H/ACA snoRNAs for modification sites not identified by the snoGPS program 3. While we are no longer developing Fisher, we briefly consider the merits of the Fisher algorithm relative to snoGPS, which may be of use for workers considering pursuing a similar search strategy for the identification of small RNAs. The modified source code for Fisher is made available as supplementary material. Our results confirm the validity of using minimum free energy (MFE) secondary structure prediction to guide comparative genomic screening for RNA families with few sequence constraints.

  1. Steps Towards Precision Medicine: Utilizing FFPE Specimens - TCGA

    Cancer.gov

    Roy W. Tarnuzzer, Ph.D., the Biospecimen Core Resource Program Manager at the TCGA Program Office, provides an overview of the Formalin-fixed Paraffin Pilot Project, an initiative to investigate best practices for use of FFPE specimens in genomic studies.

  2. Future animal improvement programs applied to global populations

    USDA-ARS?s Scientific Manuscript database

    Breeding programs evolved gradually from within-herd phenotypic selection to local and regional cooperatives to national evaluations and now international evaluations. In the future, breeders may adapt reproductive, computational, and genomic methods to global populations as easily as with national ...

  3. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics.

    PubMed

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-12-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. Copyright © 2013. Production and hosting by Elsevier Ltd.

  4. MIPS: a database for protein sequences, homology data and yeast genome information.

    PubMed Central

    Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F

    1997-01-01

    The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498

  5. Identification and analysis of integrons and cassette arrays in bacterial genomes.

    PubMed

    Cury, Jean; Jové, Thomas; Touchon, Marie; Néron, Bertrand; Rocha, Eduardo Pc

    2016-06-02

    Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program - IntegronFinder - to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. CAR: contig assembly of prokaryotic draft genomes using rearrangements.

    PubMed

    Lu, Chin Lung; Chen, Kun-Tze; Huang, Shih-Yuan; Chiu, Hsien-Tai

    2014-11-28

    Next generation sequencing technology has allowed efficient production of draft genomes for many organisms of interest. However, most draft genomes are just collections of independent contigs, whose relative positions and orientations along the genome being sequenced are unknown. Although several tools have been developed to order and orient the contigs of draft genomes, more accurate tools are still needed. In this study, we present a novel reference-based contig assembly (or scaffolding) tool, named as CAR, that can efficiently and more accurately order and orient the contigs of a prokaryotic draft genome based on a reference genome of a related organism. Given a set of contigs in multi-FASTA format and a reference genome in FASTA format, CAR can output a list of scaffolds, each of which is a set of ordered and oriented contigs. For validation, we have tested CAR on a real dataset composed of several prokaryotic genomes and also compared its performance with several other reference-based contig assembly tools. Consequently, our experimental results have shown that CAR indeed performs better than all these other reference-based contig assembly tools in terms of sensitivity, precision and genome coverage. CAR serves as an efficient tool that can more accurately order and orient the contigs of a prokaryotic draft genome based on a reference genome. The web server of CAR is freely available at http://genome.cs.nthu.edu.tw/CAR/ and its stand-alone program can also be downloaded from the same website.

  7. Reproductive technologies combine well with genomic selection in dairy breeding programs.

    PubMed

    Thomasen, J R; Willam, A; Egger-Danner, C; Sørensen, A C

    2016-02-01

    The objective of the present study was to examine whether genomic selection of females interacts with the use of reproductive technologies (RT) to increase annual monetary genetic gain (AMGG). This was tested using a factorial design with 3 factors: genomic selection of females (0 or 2,000 genotyped heifers per year), RT (0 or 50 donors selected at 14 mo of age for producing 10 offspring), and 2 reliabilities of genomic prediction. In addition, different strategies for use of RT and how strategies interact with the reliability of genomic prediction were investigated using stochastic simulation by varying (1) number of donors (25, 50, 100, 200), (2) number of calves born per donor (10 or 20), (3) age of donor (2 or 14 mo), and (4) number of sires (25, 50, 100, 200). In total, 72 different breeding schemes were investigated. The profitability of the different breeding strategies was evaluated by deterministic simulation by varying the costs of a born calf with reproductive technologies at levels of €500, €1,000, and €1,500. The results confirm our hypothesis that combining genomic selection of females with use of RT increases AMGG more than in a reference scheme without genomic selection in females. When the reliability of genomic prediction is high, the effect on rate of inbreeding (ΔF) is small. The study also demonstrates favorable interaction effects between the components of the breeder's equation (selection intensity, selection accuracy, generation interval) for the bull dam donor path, leading to higher AMGG. Increasing the donor program and number of born calves to achieve higher AMGG is associated with the undesirable effect of increased ΔF. This can be alleviated, however, by increasing the numbers of sires without compromising AMGG remarkably. For the major part of the investigated donor schemes, the investment in RT is profitable in dairy cattle populations, even at high levels of costs for RT. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Current hepatitis B virus infection situation in Indonesia and its genetic diversity.

    PubMed

    Lusida, Maria Inge; Juniastuti; Yano, Yoshihiko

    2016-08-28

    Indonesia has a moderate to high endemicity of hepatitis B virus (HBV) infection. The risk for chronic HBV infection is highest among those infected during infancy. Since 1997, hepatitis B (HepB) vaccination of newborns has been fully integrated into the National Immunization Program. Although HBV infection has been reduced by the universal newborn HepB immunization program, it continues to occur in Indonesia. The low birth dose coverage and the presence of vaccine escape mutants might contribute to this endemicity among children. Although limited information is available for an analysis of occult HBV infection (OBI), several variations and substitutions in the pre-S/S region have been detected in Indonesian HBV strains. Additionally, persistent infection and disease progression of chronic hepatitis B are related to not only viral factors but also the host genome. Indonesia is one of the most ethnically heterogeneous nations, with Javanese and Sundanese as the two highest ethnic groups. This multi-ethnicity makes genomic research in Indonesia difficult. In this article, we focused on and reviewed the following aspects: the current hepatitis B immunization program and its efficacy, OBI, HBV infection among high-risk patients, such as hemodialysis patients, and research regarding the host genome in Indonesia.

  9. Democratizing Human Genome Project Information: A Model Program for Education, Information and Debate in Public Libraries.

    ERIC Educational Resources Information Center

    Pollack, Miriam

    The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…

  10. Findings from an Independent Evaluation of the AMNH's Online Seminars on Science Course: "Genetics, Genomics, Genethics"

    ERIC Educational Resources Information Center

    Inverness Research, 2008

    2008-01-01

    Inverness Research studied the American Museum of Natural History (AMNH) Seminars on Science program for eight years, from its inception in 1998 to 2006. This paper presents teacher survey ratings for "Genetics, Genomics, Genethics", along with profiles of three teachers who took the course. Course takers report on the annual follow-up…

  11. RSAT: regulatory sequence analysis tools.

    PubMed

    Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques

    2008-07-01

    The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published.

  12. Electronic Health Record Design and Implementation for Pharmacogenomics: a Local Perspective

    PubMed Central

    Peterson, Josh F.; Bowton, Erica; Field, Julie R.; Beller, Marc; Mitchell, Jennifer; Schildcrout, Jonathan; Gregg, William; Johnson, Kevin; Jirjis, Jim N; Roden, Dan M.; Pulley, Jill M.; Denny, Josh C.

    2014-01-01

    Purpose The design of electronic health records (EHR) to translate genomic medicine into clinical care is crucial to successful introduction of new genomic services, yet there are few published guides to implementation. Methods The design, implemented features, and evolution of a locally developed EHR that supports a large pharmacogenomics program at a tertiary care academic medical center was tracked over a 4-year development period. Results Developers and program staff created EHR mechanisms for ordering a pharmacogenomics panel in advance of clinical need (preemptive genotyping) and in response to a specific drug indication. Genetic data from panel-based genotyping were sequestered from the EHR until drug-gene interactions (DGIs) met evidentiary standards and deemed clinically actionable. A service to translate genotype to predicted drug response phenotype populated a summary of DGIs, triggered inpatient and outpatient clinical decision support, updated laboratory records, and created gene results within online personal health records. Conclusion The design of a locally developed EHR supporting pharmacogenomics has generalizable utility. The challenge of representing genomic data in a comprehensible and clinically actionable format is discussed along with reflection on the scalability of the model to larger sets of genomic data. PMID:24009000

  13. The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data

    PubMed Central

    Wilks, Christopher; Cline, Melissa S.; Weiler, Erich; Diehkans, Mark; Craft, Brian; Martin, Christy; Murphy, Daniel; Pierce, Howdy; Black, John; Nelson, Donavan; Litzinger, Brian; Hatton, Thomas; Maltbie, Lori; Ainsworth, Michael; Allen, Patrick; Rosewood, Linda; Mitchell, Elizabeth; Smith, Bradley; Warner, Jim; Groboske, John; Telc, Haifang; Wilson, Daniel; Sanford, Brian; Schmidt, Hannes; Haussler, David; Maltbie, Daniel

    2014-01-01

    The Cancer Genomics Hub (CGHub) is the online repository of the sequencing programs of the National Cancer Institute (NCI), including The Cancer Genomics Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects, with data from 25 different types of cancer. The CGHub currently contains >1.4 PB of data, has grown at an average rate of 50 TB a month and serves >100 TB per week. The architecture of CGHub is designed to support bulk searching and downloading through a Web-accessible application programming interface, enforce patient genome confidentiality in data storage and transmission and optimize for efficiency in access and transfer. In this article, we describe the design of these three components, present performance results for our transfer protocol, GeneTorrent, and finally report on the growth of the system in terms of data stored and transferred, including estimated limits on the current architecture. Our experienced-based estimates suggest that centralizing storage and computational resources is more efficient than wide distribution across many satellite labs. Database URL: https://cghub.ucsc.edu PMID:25267794

  14. Precision Medicine in Gastrointestinal Pathology.

    PubMed

    Wang, David H; Park, Jason Y

    2016-05-01

    -Precision medicine is the promise of individualized therapy and management of patients based on their personal biology. There are now multiple global initiatives to perform whole-genome sequencing on millions of individuals. In the United States, an early program was the Million Veteran Program, and a more recent proposal in 2015 by the president of the United States is the Precision Medicine Initiative. To implement precision medicine in routine oncology care, genetic variants present in tumors need to be matched with effective clinical therapeutics. When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. -To present the current state of precision medicine using gastrointestinal oncology as a model. We will present currently available targeted therapeutics, promising new findings in clinical genomic oncology, remaining quality issues in genomic testing, and emerging oncology clinical trial designs. -Review of the literature including clinical genomic studies on gastrointestinal malignancies, clinical oncology trials on therapeutics targeted to molecular alterations, and emerging clinical oncology study designs. -Translating our ability to sequence thousands of genes into meaningful improvements in patient survival will be the challenge for the next decade.

  15. Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize

    PubMed Central

    Technow, Frank; Schrag, Tobias A.; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E.

    2014-01-01

    Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses. PMID:24850820

  16. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    PubMed

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  17. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  18. A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens

    PubMed Central

    Sahl, Jason W.; Pearson, Talima; Okinaka, Richard; Schupp, James M.; Gillece, John D.; Heaton, Hannah; Birdsell, Dawn; Hepp, Crystal; Fofanov, Viacheslav; Noseda, Ramón; Fasanella, Antonio; Hoffmaster, Alex; Wagner, David M.

    2016-01-01

    ABSTRACT Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. PMID:27677796

  19. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.

    Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify codingmore » regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.« less

  20. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  1. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    PubMed

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel

    2017-08-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  2. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    PubMed Central

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis

    2017-01-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746

  3. Resources | Office of Cancer Genomics

    Cancer.gov

    OCG provides a variety of scientific and educational resources for both cancer researchers and members of the general public. These resources are divided into the following types: OCG-Supported Resources: Tools, databases, and reagents generated by initiated and completed OCG programs for researchers, educators, and students. (Note: Databases for current OCG programs are available through program-specific data matrices)

  4. Genomic selection signatures in sheep from the Western Pyrenees.

    PubMed

    Ruiz-Larrañaga, Otsanda; Langa, Jorge; Rendo, Fernando; Manzano, Carmen; Iriondo, Mikel; Estonba, Andone

    2018-03-22

    The current large spectrum of sheep phenotypic diversity results from the combined product of sheep selection for different production traits such as wool, milk and meat, and its natural adaptation to new environments. In this study, we scanned the genome of 25 Sasi Ardi and 75 Latxa sheep from the Western Pyrenees for three types of regions under selection: (1) regions underlying local adaptation of Sasi Ardi semi-feral sheep, (2) regions related to a long traditional dairy selection pressure in Latxa sheep, and (3) regions experiencing the specific effect of the modern genetic improvement program established for the Latxa breed during the last three decades. Thirty-two selected candidate regions including 147 annotated genes were detected by using three statistical parameters: pooled heterozygosity H, Tajima's D, and Wright's fixation index F st . For Sasi Ardi sheep, chromosomes Ovis aries (OAR)4, 6, and 22 showed the strongest signals and harbored several candidate genes related to energy metabolism and morphology (BBS9, ELOVL3 and LDB1), immunity (NFKB2), and reproduction (H2AFZ). The major genomic difference between Sasi Ardi and Latxa sheep was on OAR6, which is known to affect milk production, with highly selected regions around the ABCG2, SPP1, LAP3, NCAPG, LCORL, and MEPE genes in Latxa sheep. The effect of the modern genetic improvement program on Latxa sheep was also evident on OAR15, on which several olfactory genes are located. We also detected several genes involved in reproduction such as ESR1 and ZNF366 that were affected by this selection program. Natural and artificial selection have shaped the genome of both Sasi Ardi and Latxa sheep. Our results suggest that Sasi Ardi traits related to energy metabolism, morphological, reproductive, and immunological features have been under positive selection to adapt this semi-feral sheep to its particular environment. The highly selected Latxa sheep for dairy production showed clear signatures of selection in genomic regions related to milk production. Furthermore, our data indicate that the selection criteria applied in the modern genetic improvement program affect immunity and reproduction traits.

  5. Geneticizing Ethnicity and Diet: Anti-doping Science and Its Social Impact in the Age of Post-genomics.

    PubMed

    Hyun, Jaehwan

    2017-01-01

    While gene doping and other technological means of sport enhancement have become a topic of ethical debate, a major outcome from genomic research in sports is often linked to the regulation of doping. In particular, researchers within the field of anti-doping science, a regulatory science that aims to develop scientific solutions for regulating doped athletes, have conducted genomic research on anabolic-androgenic steroids. Genomic knowledge on anabolic-androgenic steroids, a knowledge base that has been produced to improve doping regulation, has caused the 'geneticization' of cultural objects such as ethnic identities and dietary habits. Through examining how anti-doping genomic knowledge and its media representation unnecessarily reify cultural objects in terms of genomics, I argue that Ethical, Legal, and Social Implications (ELSI) research programs in human enhancement should include the social impacts of anti-doping science in their discussions. Furthermore, this article will propose that ELSI scholars begin their academic analysis on anti-doping science by engaging with the recent ELSI scholarship on genomics and race and consider the regulatory and political natures of anti-doping research.

  6. Geneticizing Ethnicity and Diet: Anti-doping Science and Its Social Impact in the Age of Post-genomics

    PubMed Central

    Hyun, Jaehwan

    2017-01-01

    While gene doping and other technological means of sport enhancement have become a topic of ethical debate, a major outcome from genomic research in sports is often linked to the regulation of doping. In particular, researchers within the field of anti-doping science, a regulatory science that aims to develop scientific solutions for regulating doped athletes, have conducted genomic research on anabolic-androgenic steroids. Genomic knowledge on anabolic-androgenic steroids, a knowledge base that has been produced to improve doping regulation, has caused the ‘geneticization’ of cultural objects such as ethnic identities and dietary habits. Through examining how anti-doping genomic knowledge and its media representation unnecessarily reify cultural objects in terms of genomics, I argue that Ethical, Legal, and Social Implications (ELSI) research programs in human enhancement should include the social impacts of anti-doping science in their discussions. Furthermore, this article will propose that ELSI scholars begin their academic analysis on anti-doping science by engaging with the recent ELSI scholarship on genomics and race and consider the regulatory and political natures of anti-doping research. PMID:28536601

  7. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-11-10

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5more » binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis.« less

  8. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology

    PubMed Central

    Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron

    2016-01-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094

  9. Alignment-free detection of horizontal gene transfer between closely related bacterial genomes.

    PubMed

    Domazet-Lošo, Mirjana; Haubold, Bernhard

    2011-09-01

    Bacterial epidemics are often caused by strains that have acquired their increased virulence through horizontal gene transfer. Due to this association with disease, the detection of horizontal gene transfer continues to receive attention from microbiologists and bioinformaticians alike. Most software for detecting transfer events is based on alignments of sets of genes or of entire genomes. But despite great advances in the design of algorithms and computer programs, genome alignment remains computationally challenging. We have therefore developed an alignment-free algorithm for rapidly detecting horizontal gene transfer between closely related bacterial genomes. Our implementation of this algorithm is called alfy for "ALignment Free local homologY" and is freely available from http://guanine.evolbio.mpg.de/alfy/. In this comment we demonstrate the application of alfy to the genomes of Staphylococcus aureus. We also argue that-contrary to popular belief and in spite of increasing computer speed-algorithmic optimization is becoming more, not less, important if genome data continues to accumulate at the present rate.

  10. Assessing Predictive Properties of Genome-Wide Selection in Soybeans

    PubMed Central

    Xavier, Alencar; Muir, William M.; Rainey, Katy Martin

    2016-01-01

    Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786

  11. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Ravi; Howieson, John; Yates, Ron

    Bradyrhizobium sp. WSM1253 is a novel N 2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigsmore » arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.« less

  12. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    DOE PAGES

    Tiwari, Ravi; Howieson, John; Yates, Ron; ...

    2015-11-30

    Bradyrhizobium sp. WSM1253 is a novel N 2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigsmore » arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.« less

  13. Social and behavioral science priorities for genomic translation.

    PubMed

    Koehly, Laura M; Persky, Susan; Spotts, Erica; Acca, Gillian

    2018-01-29

    This commentary highlights the essential role of the social and behavioral sciences for genomic translation, and discusses some priority research areas in this regard. The first area encompasses genetics of behavioral, social, and neurocognitive factors, and how integration of these relationships might impact the development of treatments and interventions. The second area includes the contributions that social and behavioral sciences make toward the informed translation of genomic developments. Further, there is a need for behavioral and social sciences to inform biomedical research for effective implementation. The third area speaks to the need for increased outreach and education efforts to improve the public's genomic literacy such that individuals and communities can make informed health-related and societal (e.g., in legal or consumer settings) decisions. Finally, there is a need to prioritize representation of diverse communities in genomics research and equity of access to genomic technologies. Examples from National Institutes of Health-based intramural and extramural research programs and initiatives are used to discuss these points. © Society of Behavioral Medicine 2018.

  14. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less

  15. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    DOE PAGES

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; ...

    2016-07-28

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less

  16. Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spring, Stefan; Visser, Michael; Lu, Megan

    2012-12-11

    Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus Desulfotomaculum which contains 30 species and is contained in the family Peptococcaceae. This species is of interest because it represents one of the few sulfate- reducing bacteria that have been isolated from the rumen. Here we describe the features of D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second completed genome sequence of a type strain of the genus Desulfotomaculum to be pub- lished, and was sequenced asmore » part of the DOE Joint Genome Institute Community Sequencing Program 2009.« less

  17. Genomic basis for natural product biosynthetic diversity in the actinomycetes†

    PubMed Central

    Nett, Markus; Ikeda, Haruo; Moore, Bradley S.

    2010-01-01

    The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references. PMID:19844637

  18. What works in genomics education: outcomes of an evidenced-based instructional model for community-based physicians.

    PubMed

    Reed, E Kate; Johansen Taber, Katherine A; Ingram Nissen, Therese; Schott, Suzanna; Dowling, Lynn O; O'Leary, James C; Scott, Joan A

    2016-07-01

    Education of practicing health professionals is likely to be one factor that will speed appropriate integration of genomics into routine clinical practice. Yet many health professionals, including physicians, find it difficult to keep up with the rapid pace of clinical genomic advances and are often uncomfortable using genomic information in practice. Having identified the genomics educational needs of physicians in a Silicon Valley-area community hospital, we developed, implemented, and evaluated an educational course entitled Medicine's Future: Genomics for Practicing Doctors. The course structure and approach were based on best practices in adult learning, including interactivity, case-based learning, skill-focused objectives, and sequential monthly modules. Approximately 20-30 physicians attended each module. They demonstrated significant gains in genomics knowledge and confidence in practice skills that were sustained throughout and following the course. Six months following the course, the majority of participants reported that they had changed their practice to incorporate skills learned during the course. We believe the adult-learning principles underlying the development and delivery of Medicine's Future were responsible for participants' outcomes. These principles form a model for the development and delivery of other genomics educational programs for health professionals.Genet Med 18 7, 737-745.

  19. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization

    PubMed Central

    Qin, Cheng; Yu, Changshui; Shen, Yaou; Fang, Xiaodong; Chen, Lang; Min, Jiumeng; Cheng, Jiaowen; Zhao, Shancen; Xu, Meng; Luo, Yong; Yang, Yulan; Wu, Zhiming; Mao, Likai; Wu, Haiyang; Ling-Hu, Changying; Zhou, Huangkai; Lin, Haijian; González-Morales, Sandra; Trejo-Saavedra, Diana L.; Tian, Hao; Tang, Xin; Zhao, Maojun; Huang, Zhiyong; Zhou, Anwei; Yao, Xiaoming; Cui, Junjie; Li, Wenqi; Chen, Zhe; Feng, Yongqiang; Niu, Yongchao; Bi, Shimin; Yang, Xiuwei; Li, Weipeng; Cai, Huimin; Luo, Xirong; Montes-Hernández, Salvador; Leyva-González, Marco A.; Xiong, Zhiqiang; He, Xiujing; Bai, Lijun; Tan, Shu; Tang, Xiangqun; Liu, Dan; Liu, Jinwen; Zhang, Shangxing; Chen, Maoshan; Zhang, Lu; Zhang, Li; Zhang, Yinchao; Liao, Weiqin; Zhang, Yan; Wang, Min; Lv, Xiaodan; Wen, Bo; Liu, Hongjun; Luan, Hemi; Zhang, Yonggang; Yang, Shuang; Wang, Xiaodian; Xu, Jiaohui; Li, Xueqin; Li, Shuaicheng; Wang, Junyi; Palloix, Alain; Bosland, Paul W.; Li, Yingrui; Krogh, Anders; Rivera-Bustamante, Rafael F.; Herrera-Estrella, Luis; Yin, Ye; Yu, Jiping; Hu, Kailin; Zhang, Zhiming

    2014-01-01

    As an economic crop, pepper satisfies people’s spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs. PMID:24591624

  20. Using comparative genome analysis to identify problems in annotated microbial genomes.

    PubMed

    Poptsova, Maria S; Gogarten, J Peter

    2010-07-01

    Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.

  1. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    PubMed

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  2. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    PubMed

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  3. RetroTector online, a rational tool for analysis of retroviral elements in small and medium size vertebrate genomic sequences

    PubMed Central

    Sperber, Göran; Lövgren, Anders; Eriksson, Nils-Einar; Benachenhou, Farid; Blomberg, Jonas

    2009-01-01

    Background The rapid accumulation of genomic information in databases necessitates rapid and specific algorithms for extracting biologically meaningful information. More or less complete retroviral sequences, also called proviral or endogenous retroviral sequences; ERVs, constitutes at least 5% of vertebrate genomes. After infecting the host, these retroviruses have integrated in germ line cells, and have then been carried in genomes for at least several 100 million years. A better understanding of structure and function of these sequences can have profound biological and medical consequences. Methods RetroTector© (ReTe) is a platform-independent Java program for identification and characterization of proviral sequences in vertebrate genomes. The full ReTe requires a local installation with a MySQL database. Although not overly complicated, the installation may take some time. A "light" version of ReTe, (RetroTector online; ROL) which does not require specific installation procedures is provided, via the World Wide Web. Results ROL was implemented under the Batchelor web interface (A Lövgren et al). It allows both GenBank accession number, file and FASTA cut-and-paste admission of sequences (5 to 10 000 kilobases). Up to ten submissions can be done simultaneously, allowing batch analysis of <= 100 Megabases. Jobs are shown in an IP-number specific list. Results are text files, and can be viewed with the program, RetroTectorViewer.jar (at the same site), which has the full graphical capabilities of the basic ReTe program. A detailed analysis of any retroviral sequences found in the submitted sequence is graphically presented, exportable in standard formats. With the current server, a complete analysis of a 1 Megabase sequence is complete in 10 minutes. It is possible to mask nonretroviral repetitive sequences in the submitted sequence, using host genome specific "brooms", which increase specificity. Discussion Proviral sequences can be hard to recognize, especially if the integration occurred many million years ago. Precise delineation of LTR, gag, pro, pol and env can be difficult, requiring manual work. ROL is a way of simplifying these tasks. Conclusion ROL provides 1. annotation and presentation of known retroviral sequences, 2. detection of proviral chains in unknown genomic sequences, with up to 100 Mbase per submission. PMID:19534753

  4. RetroTector online, a rational tool for analysis of retroviral elements in small and medium size vertebrate genomic sequences.

    PubMed

    Sperber, Göran; Lövgren, Anders; Eriksson, Nils-Einar; Benachenhou, Farid; Blomberg, Jonas

    2009-06-16

    The rapid accumulation of genomic information in databases necessitates rapid and specific algorithms for extracting biologically meaningful information. More or less complete retroviral sequences, also called proviral or endogenous retroviral sequences; ERVs, constitutes at least 5% of vertebrate genomes. After infecting the host, these retroviruses have integrated in germ line cells, and have then been carried in genomes for at least several 100 million years. A better understanding of structure and function of these sequences can have profound biological and medical consequences. RetroTector (ReTe) is a platform-independent Java program for identification and characterization of proviral sequences in vertebrate genomes. The full ReTe requires a local installation with a MySQL database. Although not overly complicated, the installation may take some time. A "light" version of ReTe, (RetroTector online; ROL) which does not require specific installation procedures is provided, via the World Wide Web. ROL http://www.fysiologi.neuro.uu.se/jbgs/ was implemented under the Batchelor web interface (A Lövgren et al). It allows both GenBank accession number, file and FASTA cut-and-paste admission of sequences (5 to 10,000 kilobases). Up to ten submissions can be done simultaneously, allowing batch analysis of

  5. GenColors: annotation and comparative genomics of prokaryotes made easy.

    PubMed

    Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen

    2007-01-01

    GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293 species. The system provides versatile quick and advanced search options for all currently known prokaryotic genomes and generates circular and linear genome plots. Gene information sheets contain basic gene information, database search options, and links to external databases. GenColors is also available on request for local installation.

  6. Interest in genomic SNP testing for prostate cancer risk: a pilot survey.

    PubMed

    Hall, Michael J; Ruth, Karen J; Chen, David Yt; Gross, Laura M; Giri, Veda N

    2015-01-01

    Advancements in genomic testing have led to the identification of single nucleotide polymorphisms (SNPs) associated with prostate cancer. The clinical utility of SNP tests to evaluate prostate cancer risk is unclear. Studies have not examined predictors of interest in novel genomic SNP tests for prostate cancer risk in a diverse population. Consecutive participants in the Fox Chase Prostate Cancer Risk Assessment Program (PRAP) (n = 40) and unselected men from surgical urology clinics (n = 40) completed a one-time survey. Items examined interest in genomic SNP testing for prostate cancer risk, knowledge, impact of unsolicited findings, and psychosocial factors including health literacy. Knowledge of genomic SNP tests was low in both groups, but interest was higher among PRAP men (p < 0.001). The prospect of receiving unsolicited results about ancestral genomic markers increased interest in testing in both groups. Multivariable modeling identified several predictors of higher interest in a genomic SNP test including higher perceived risk (p = 0.025), indicating zero reasons for not wanting testing (vs ≥1 reason) (p = 0.013), and higher health literacy (p = 0.016). Knowledge of genomic SNP testing was low in this sample, but higher among high-risk men. High-risk status may increase interest in novel genomic tests, while low literacy may lessen interest.

  7. Recent updates and developments to plant genome size databases

    PubMed Central

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  8. The COG database: new developments in phylogenetic classification of proteins from complete genomes

    PubMed Central

    Tatusov, Roman L.; Natale, Darren A.; Garkavtsev, Igor V.; Tatusova, Tatiana A.; Shankavaram, Uma T.; Rao, Bachoti S.; Kiryutin, Boris; Galperin, Michael Y.; Fedorova, Natalie D.; Koonin, Eugene V.

    2001-01-01

    The database of Clusters of Orthologous Groups of proteins (COGs), which represents an attempt on a phylogenetic classification of the proteins encoded in complete genomes, currently consists of 2791 COGs including 45 350 proteins from 30 genomes of bacteria, archaea and the yeast Saccharomyces cerevisiae (http://www.ncbi.nlm.nih.gov/COG). In addition, a supplement to the COGs is available, in which proteins encoded in the genomes of two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and shared with bacteria and/or archaea were included. The new features added to the COG database include information pages with structural and functional details on each COG and literature references, improvements of the COGNITOR program that is used to fit new proteins into the COGs, and classification of genomes and COGs constructed by using principal component analysis. PMID:11125040

  9. RNA-Mediated Epigenetic Programming of Genome Rearrangements

    PubMed Central

    Nowacki, Mariusz; Shetty, Keerthi; Landweber, Laura F.

    2012-01-01

    RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha’s somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells. PMID:21801022

  10. Prokaryotic Contig Annotation Pipeline Server: Web Application for a Prokaryotic Genome Annotation Pipeline Based on the Shiny App Package.

    PubMed

    Park, Byeonghyeok; Baek, Min-Jeong; Min, Byoungnam; Choi, In-Geol

    2017-09-01

    Genome annotation is a primary step in genomic research. To establish a light and portable prokaryotic genome annotation pipeline for use in individual laboratories, we developed a Shiny app package designated as "P-CAPS" (Prokaryotic Contig Annotation Pipeline Server). The package is composed of R and Python scripts that integrate publicly available annotation programs into a server application. P-CAPS is not only a browser-based interactive application but also a distributable Shiny app package that can be installed on any personal computer. The final annotation is provided in various standard formats and is summarized in an R markdown document. Annotation can be visualized and examined with a public genome browser. A benchmark test showed that the annotation quality and completeness of P-CAPS were reliable and compatible with those of currently available public pipelines.

  11. Genome-wide association study for birth, weaning and yearling weight in Colombian Brahman cattle

    PubMed Central

    Martínez, Rodrigo; Bejarano, Diego; Gómez, Yolanda; Dasoneville, Romain; Jiménez, Ariel; Even, Gael; Sölkner, Johann; Mészáros, Gabor

    2017-01-01

    Abstract Genotypic and phenotypic data of 1,562 animals were analyzed to find genomic regions that potentially influence the birth weight (BW), weaning weight at seven months of age (WW) and yearling weight (YW) of Colombian Brahman cattle, with genotyping conducted using Illumina Bead chip array with 74,669 SNPs. A Single Step Genomic BLUP (ssGBLP), approach was used to estimate the proportion of variance explained by each marker. Multiple regions scattered across the genome were found to influence weights at different ages, also dependent on the trait component (direct or maternal). The most interesting regions were connected to previously identified QTLs and genes, such as ADAMTSL3, CAPN2, CAPN2, FABP6, ZEB2 influencing growth and weight traits. The identified regions will contribute to the development and refinement of genomic selection programs for Zebu Brahman cattle in Colombia. PMID:28534927

  12. The NIH BD2K center for big data in translational genomics

    PubMed Central

    Paten, Benedict; Diekhans, Mark; Druker, Brian J; Friend, Stephen; Guinney, Justin; Gassner, Nadine; Guttman, Mitchell; James Kent, W; Mantey, Patrick; Margolin, Adam A; Massie, Matt; Novak, Adam M; Nothaft, Frank; Pachter, Lior; Patterson, David; Smuga-Otto, Maciej; Stuart, Joshua M; Van’t Veer, Laura; Haussler, David

    2015-01-01

    The world’s genomics data will never be stored in a single repository – rather, it will be distributed among many sites in many countries. No one site will have enough data to explain genotype to phenotype relationships in rare diseases; therefore, sites must share data. To accomplish this, the genetics community must forge common standards and protocols to make sharing and computing data among many sites a seamless activity. Through the Global Alliance for Genomics and Health, we are pioneering the development of shared application programming interfaces (APIs) to connect the world’s genome repositories. In parallel, we are developing an open source software stack (ADAM) that uses these APIs. This combination will create a cohesive genome informatics ecosystem. Using containers, we are facilitating the deployment of this software in a diverse array of environments. Through benchmarking efforts and big data driver projects, we are ensuring ADAM’s performance and utility. PMID:26174866

  13. Genome editing via delivery of Cas9 ribonucleoprotein.

    PubMed

    DeWitt, Mark A; Corn, Jacob E; Carroll, Dana

    2017-05-15

    The CRISPR-Cas genome editing system is very powerful. The format of the CRISPR reagents and the means of delivery are often important factors in targeting efficiency. Delivery of recombinant Cas9 protein and guide RNA (gRNA) as a preformed ribonucleoprotein (RNP) complex has recently emerged as a powerful and general approach to genome editing. Here we outline methods to produce and deliver Cas9 RNPs. A donor DNA carrying desired sequence changes can also be included to program precise sequence introduction or replacement. RNP delivery limits exposure to genome editing reagents, reduces off-target events, drives high rates of homology-dependent repair, and can be applied to embryos to rapidly generate animal models. RNP delivery thus minimizes some of the pitfalls of alternative editing modalities and is rapidly being adopted by the genome editing community. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity.

    PubMed

    Vasileiou, Panagiotis V S; Mourouzis, Iordanis; Pantos, Constantinos

    2017-08-22

    Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.

  15. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity

    PubMed Central

    Vasileiou, Panagiotis V. S.; Mourouzis, Iordanis; Pantos, Constantinos

    2017-01-01

    Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis. PMID:28829360

  16. Germline Modification and Engineering in Avian Species

    PubMed Central

    Lee, Hong Jo; Lee, Hyung Chul; Han, Jae Yong

    2015-01-01

    Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies. PMID:26333275

  17. The complete chloroplast genome of an irreplaceable dietary and model crop, foxtail millet (Setaria italica).

    PubMed

    Wang, Shuo; Gao, Li-Zhi

    2016-11-01

    The complete chloroplast genome sequence of foxtail millet (Setaria italica), an important food and fodder crop in the family Poaceae, is first reported in this study. The genome consists of 1 35 516 bp containing a pair of inverted repeats (IRs) of 21 804 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 79 896 bp and 12 012 bp, respectively. Coding sequences constitute 58.8% of the genome harboring 111 unique genes, 71 of which are protein-coding genes, 4 are rRNA genes, and 36 are tRNA genes. Phylogenetic analysis indicated foxtail millet clustered with Panicum virgatum and Echinochloa crus-galli belonging to the tribe Paniceae of the subfamily Panicoideae. This newly determined chloroplast genome will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  18. Practical Approaches for Detecting Selection in Microbial Genomes.

    PubMed

    Hedge, Jessica; Wilson, Daniel J

    2016-02-01

    Microbial genome evolution is shaped by a variety of selective pressures. Understanding how these processes occur can help to address important problems in microbiology by explaining observed differences in phenotypes, including virulence and resistance to antibiotics. Greater access to whole-genome sequencing provides microbiologists with the opportunity to perform large-scale analyses of selection in novel settings, such as within individual hosts. This tutorial aims to guide researchers through the fundamentals underpinning popular methods for measuring selection in pathogens. These methods are transferable to a wide variety of organisms, and the exercises provided are designed for researchers with any level of programming experience.

  19. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile

    DOE PAGES

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex; ...

    2017-09-21

    Dethiobacter alkaliphilus strain AHT1 T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is thus a Gram-positive bacterium with low GC content, within the phylum Firmicutes. We report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1 T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.

  20. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex

    Dethiobacter alkaliphilus strain AHT1 T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is thus a Gram-positive bacterium with low GC content, within the phylum Firmicutes. We report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1 T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.

  1. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  2. Final Report for LDRD Project 02-ERD-069: Discovering the Unknown Mechanism(s) of Virulence in a BW, Class A Select Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, P; Garcia, E

    2003-02-06

    The goal of this proposed effort was to assess the difficulty in identifying and characterizing virulence candidate genes in an organism for which very limited data exists. This was accomplished by first addressing the finishing phase of draft-sequenced F. tularensis genomes and conducting comparative analyses to determine the coding potential of each genome; to discover the differences in genome structure and content, and to identify potential genes whose products may be involved in the F. tularensis virulence process. The project was divided into three parts: (1) Genome finishing: This part involves determining the order and orientation of the consensus sequencesmore » of contigs obtained from Phrap assemblies of random draft genomic sequences. This tedious process consists of linking contig ends using information embedded in each sequence file that relates the sequence to the original cloned insert. Since inserts are sequenced from both ends, we can establish a link between these paired-ends in different contigs and thus order and orient contigs. Since these genomes carry numerous copies of insertion sequences, these repeated elements ''confuse'' the Phrap assembly program. It is thus necessary to break these contigs apart at the repeated sequences and individually join the proper flanking regions using paired-end information, or using results of comparisons against a similar genome. Larger repeated elements such as the small subunit ribosomal RNA operon require verification with PCR. Tandem repeats require manual intervention and typically rely on single nucleotide polymorphisms to be resolved. Remaining gaps require PCR reactions and sequencing. Once the genomes have been ''closed'', low quality regions are addressed by resequencing reactions. (2) Genome analysis: The final consensus sequences are processed by combining the results of three gene modelers: Glimmer, Critica and Generation. The final gene models are submitted to a battery of homology searches and domain prediction programs in order to annotate them (e.g. BLAST, Pfam, TIGRfam, COG, KEGG, InterPro, TMhmm, SignalP). The genome structure is also assessed in terms of G+C content, GC bias (GC skew), and locations of repeated regions (e.g. IS elements) and phage-like genes. (3) Comparative genomics: The results of the various genome analyses are compared between the finished (or almost finished) genomes. Here, we have compared the F. tularensis genomes from the extremely lethal strain Schu4 (subsp. tularensis), the vaccine strain LVS (subsp. holartica), and strain UT01-4992 of the less virulent, opportunistic subsp. novicida. Regions present in the highly virulent strain that are absent from the other less virulent strains may provide insight into what factors are required for the high level of virulence.« less

  3. EPA'S TOXCAST PROGRAM FOR PREDICTING TOXICITY AND PRIORITIZING ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    ToxCast is a research program to predict or forecast toxicity by evaluating a broad spectrum of chemicals and effects; physical-chemical properties, predicted bioactivities, HTS and cell-based assays, and genomics. Data will be interpretively linked to known or predicted toxicol...

  4. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    PubMed

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-09

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Study reveals potentially prognostic gene, metabolism changes in kidney cancers | Center for Cancer Research

    Cancer.gov

    The Cancer Genome Atlas Research Network investigators, including CCR scientists, identified genetic and metabolic pathway changes linked to reduced survival of patients within and across subtypes of renal cell carcinoma (RCC), a type of kidney cancer. The study, published April 5, 2018, in Cell Reports, is part of The Cancer Genome Atlas (TCGA) Program, a joint effort of the

  6. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less

  7. Providing guidance for genomics-based cancer treatment decisions: insights from stakeholder engagement for post-prostatectomy radiation therapy.

    PubMed

    Abe, James; Lobo, Jennifer M; Trifiletti, Daniel M; Showalter, Timothy N

    2017-08-24

    Despite the emergence of genomics-based risk prediction tools in oncology, there is not yet an established framework for communication of test results to cancer patients to support shared decision-making. We report findings from a stakeholder engagement program that aimed to develop a framework for using Markov models with individualized model inputs, including genomics-based estimates of cancer recurrence probability, to generate personalized decision aids for prostate cancer patients faced with radiation therapy treatment decisions after prostatectomy. We engaged a total of 22 stakeholders, including: prostate cancer patients, urological surgeons, radiation oncologists, genomic testing industry representatives, and biomedical informatics faculty. Slides were at each meeting to provide background information regarding the analytical framework. Participants were invited to provide feedback during the meeting, including revising the overall project aims. Stakeholder meeting content was reviewed and summarized by stakeholder group and by theme. The majority of stakeholder suggestions focused on aspects of decision aid design and formatting. Stakeholders were enthusiastic about the potential value of using decision analysis modeling with personalized model inputs for cancer recurrence risk, as well as competing risks from age and comorbidities, to generate a patient-centered tool to assist decision-making. Stakeholders did not view privacy considerations as a major barrier to the proposed decision aid program. A common theme was that decision aids should be portable across multiple platforms (electronic and paper), should allow for interaction by the user to adjust model inputs iteratively, and available to patients both before and during consult appointments. Emphasis was placed on the challenge of explaining the model's composite result of quality-adjusted life years. A range of stakeholders provided valuable insights regarding the design of a personalized decision aid program, based upon Markov modeling with individualized model inputs, to provide a patient-centered framework to support for genomic-based treatment decisions for cancer patients. The guidance provided by our stakeholders may be broadly applicable to the communication of genomic test results to patients in a patient-centered fashion that supports effective shared decision-making that represents a spectrum of personal factors such as age, medical comorbidities, and individual priorities and values.

  8. EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity

    PubMed Central

    Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D

    2006-01-01

    Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150

  9. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai

    2015-01-01

    The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227

  10. DraGnET: Software for storing, managing and analyzing annotated draft genome sequence data

    PubMed Central

    2010-01-01

    Background New "next generation" DNA sequencing technologies offer individual researchers the ability to rapidly generate large amounts of genome sequence data at dramatically reduced costs. As a result, a need has arisen for new software tools for storage, management and analysis of genome sequence data. Although bioinformatic tools are available for the analysis and management of genome sequences, limitations still remain. For example, restrictions on the submission of data and use of these tools may be imposed, thereby making them unsuitable for sequencing projects that need to remain in-house or proprietary during their initial stages. Furthermore, the availability and use of next generation sequencing in industrial, governmental and academic environments requires biologist to have access to computational support for the curation and analysis of the data generated; however, this type of support is not always immediately available. Results To address these limitations, we have developed DraGnET (Draft Genome Evaluation Tool). DraGnET is an open source web application which allows researchers, with no experience in programming and database management, to setup their own in-house projects for storing, retrieving, organizing and managing annotated draft and complete genome sequence data. The software provides a web interface for the use of BLAST, allowing users to perform preliminary comparative analysis among multiple genomes. We demonstrate the utility of DraGnET for performing comparative genomics on closely related bacterial strains. Furthermore, DraGnET can be further developed to incorporate additional tools for more sophisticated analyses. Conclusions DraGnET is designed for use either by individual researchers or as a collaborative tool available through Internet (or Intranet) deployment. For genome projects that require genome sequencing data to initially remain proprietary, DraGnET provides the means for researchers to keep their data in-house for analysis using local programs or until it is made publicly available, at which point it may be uploaded to additional analysis software applications. The DraGnET home page is available at http://www.dragnet.cvm.iastate.edu and includes example files for examining the functionalities, a link for downloading the DraGnET setup package and a link to the DraGnET source code hosted with full documentation on SourceForge. PMID:20175920

  11. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    PubMed

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. © 2014 John Wiley & Sons Ltd.

  12. Defining linkages between the GSC and NSF's LTER program: How the Ecological Metadata Language (EML) relates to GCDML and other outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inigo, Gil San; Servilla, Mark; Brunt, James

    2008-06-01

    The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata.more » EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.« less

  13. Defining linkages between the GSC and NSF's LTER program: how the Ecological Metadata Language (EML) relates to GCDML and other outcomes.

    PubMed

    Gil, Inigo San; Sheldon, Wade; Schmidt, Tom; Servilla, Mark; Aguilar, Raul; Gries, Corinna; Gray, Tanya; Field, Dawn; Cole, James; Pan, Jerry Yun; Palanisamy, Giri; Henshaw, Donald; O'Brien, Margaret; Kinkel, Linda; McMahon, Katherine; Kottmann, Renzo; Amaral-Zettler, Linda; Hobbie, John; Goldstein, Philip; Guralnick, Robert P; Brunt, James; Michener, William K

    2008-06-01

    The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata. EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.

  14. The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes

    PubMed Central

    Swart, Estienne C.; Bracht, John R.; Magrini, Vincent; Minx, Patrick; Chen, Xiao; Zhou, Yi; Khurana, Jaspreet S.; Goldman, Aaron D.; Nowacki, Mariusz; Schotanus, Klaas; Jung, Seolkyoung; Fulton, Robert S.; Ly, Amy; McGrath, Sean; Haub, Kevin; Wiggins, Jessica L.; Storton, Donna; Matese, John C.; Parsons, Lance; Chang, Wei-Jen; Bowen, Michael S.; Stover, Nicholas A.; Jones, Thomas A.; Eddy, Sean R.; Herrick, Glenn A.; Doak, Thomas G.; Wilson, Richard K.; Mardis, Elaine R.; Landweber, Laura F.

    2013-01-01

    The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease. PMID:23382650

  15. Genome Annotation Generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission.

    PubMed

    Geib, Scott M; Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle; Sim, Sheina B

    2018-04-01

    One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI's annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline. The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI.

  16. Genome Annotation Generator: a simple tool for generating and correcting WGS annotation tables for NCBI submission

    PubMed Central

    Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle

    2018-01-01

    Abstract Background One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI’s annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. Findings The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline Conclusions The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI. PMID:29635297

  17. Predicting discovery rates of genomic features.

    PubMed

    Gravel, Simon

    2014-06-01

    Successful sequencing experiments require judicious sample selection. However, this selection must often be performed on the basis of limited preliminary data. Predicting the statistical properties of the final sample based on preliminary data can be challenging, because numerous uncertain model assumptions may be involved. Here, we ask whether we can predict "omics" variation across many samples by sequencing only a fraction of them. In the infinite-genome limit, we find that a pilot study sequencing 5% of a population is sufficient to predict the number of genetic variants in the entire population within 6% of the correct value, using an estimator agnostic to demography, selection, or population structure. To reach similar accuracy in a finite genome with millions of polymorphisms, the pilot study would require ∼15% of the population. We present computationally efficient jackknife and linear programming methods that exhibit substantially less bias than the state of the art when applied to simulated data and subsampled 1000 Genomes Project data. Extrapolating based on the National Heart, Lung, and Blood Institute Exome Sequencing Project data, we predict that 7.2% of sites in the capture region would be variable in a sample of 50,000 African Americans and 8.8% in a European sample of equal size. Finally, we show how the linear programming method can also predict discovery rates of various genomic features, such as the number of transcription factor binding sites across different cell types. Copyright © 2014 by the Genetics Society of America.

  18. Comparing genomes with rearrangements and segmental duplications.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  19. Canine hip dysplasia is predictable by genotyping.

    PubMed

    Guo, G; Zhou, Z; Wang, Y; Zhao, K; Zhu, L; Lust, G; Hunter, L; Friedenberg, S; Li, J; Zhang, Y; Harris, S; Jones, P; Sandler, J; Krotscheck, U; Todhunter, R; Zhang, Z

    2011-04-01

    To establish a predictive method using whole genome genotyping for early intervention in canine hip dysplasia (CHD) risk management, for the prevention of the progression of secondary osteoarthritis (OA), and for selective breeding. Two sets of dogs (six breeds) were genotyped with dense SNPs covering the entire canine genome. The first set contained 359 dogs upon which a predictive formula for genomic breeding value (GBV) was derived by using their estimated breeding value (EBV) of the Norberg angle (a measure of CHD) and their genotypes. To investigate how well the formula would work for an individual dog with genotype only (without using EBV), a cross validation was performed by masking the EBV of one dog at a time. The genomic data and the EBV of the remaining dogs were used to predict the GBV for the single dog that was left out. The second set of dogs included 38 new Labrador retriever dogs, which had no pedigree relationship to the dogs in the first set. The cross validation showed a strong correlation (R>0.7) between the EBV and the GBV. The independent validation showed a moderate correlation (R=0.5) between GBV for the Norberg angle and the observed Norberg angle (no EBV was available for the new 38 dogs). Sensitivity, specificity, positive and negative predictive values of the genomic data were all above 70%. Prediction of CHD from genomic data is feasible, and can be applied for risk management of CHD and early selection for genetic improvement to reduce the prevalence of CHD in breeding programs. The prediction can be implemented before maturity, at which age current radiographic screening programs are traditionally applied, and as soon as DNA is available. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    PubMed

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  1. Microarray-based comparative genomic hybridization analysis in neonates with congenital anomalies: detection of chromosomal imbalances.

    PubMed

    Emy Dorfman, Luiza; Leite, Júlio César L; Giugliani, Roberto; Riegel, Mariluce

    2015-01-01

    To identify chromosomal imbalances by whole-genome microarray-based comparative genomic hybridization (array-CGH) in DNA samples of neonates with congenital anomalies of unknown cause from a birth defects monitoring program at a public maternity hospital. A blind genomic analysis was performed retrospectively in 35 stored DNA samples of neonates born between July of 2011 and December of 2012. All potential DNA copy number variations detected (CNVs) were matched with those reported in public genomic databases, and their clinical significance was evaluated. Out of a total of 35 samples tested, 13 genomic imbalances were detected in 12/35 cases (34.3%). In 4/35 cases (11.4%), chromosomal imbalances could be defined as pathogenic; in 5/35 (14.3%) cases, DNA CNVs of uncertain clinical significance were identified; and in 4/35 cases (11.4%), normal variants were detected. Among the four cases with results considered causally related to the clinical findings, two of the four (50%) showed causative alterations already associated with well-defined microdeletion syndromes. In two of the four samples (50%), the chromosomal imbalances found, although predicted as pathogenic, had not been previously associated with recognized clinical entities. Array-CGH analysis allowed for a higher rate of detection of chromosomal anomalies, and this determination is especially valuable in neonates with congenital anomalies of unknown etiology, or in cases in which karyotype results cannot be obtained. Moreover, although the interpretation of the results must be refined, this method is a robust and precise tool that can be used in the first-line investigation of congenital anomalies, and should be considered for prospective/retrospective analyses of DNA samples by birth defect monitoring programs. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  2. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.

    PubMed

    Technow, Frank; Schrag, Tobias A; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E

    2014-08-01

    Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill-Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker-QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in test crosses. Copyright © 2014 by the Genetics Society of America.

  3. Genomic-based-breeding tools for tropical maize improvement.

    PubMed

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.

  4. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording.

    PubMed

    Kariuki, C M; Komen, H; Kahi, A K; van Arendonk, J A M

    2014-12-01

    Dairy cattle breeding programs in developing countries are constrained by minimal and erratic pedigree and performance recording on cows on commercial farms. Small-sized nucleus breeding programs offer a viable alternative. Deterministic simulations using selection index theory were performed to determine the optimum design for small-sized nucleus schemes for dairy cattle. The nucleus was made up of 197 bulls and 243 cows distributed in 8 non-overlapping age classes. Each year 10 sires and 100 dams were selected to produce the next generation of male and female selection candidates. Conception rates and sex ratio were fixed at 0.90 and 0.50, respectively, translating to 45 male and 45 female candidates joining the nucleus per year. Commercial recorded dams provided information for genetic evaluation of selection candidates (bulls) in the nucleus. Five strategies were defined: nucleus records only [within-nucleus dam performance (DP)], progeny records in addition to nucleus records [progeny testing (PT)], genomic information only [genomic selection (GS)], dam performance records in addition to genomic information (GS+DP), and progeny records in addition to genomic information (GS+PT). Alternative PT, GS, GS+DP, and GS+PT schemes differed in the number of progeny per sire and size of reference population. The maximum number of progeny records per sire was 30, and the maximum size of the reference population was 5,000. Results show that GS schemes had higher responses and lower accuracies compared with other strategies, with the higher response being due to shorter generation intervals. Compared with similar sized progeny-testing schemes, genomic-selection schemes would have lower accuracies but these are offset by higher responses per year, which might provide additional incentive for farmers to participate in recording. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Ayurgenomics for stratified medicine: TRISUTRA consortium initiative across ethnically and geographically diverse Indian populations.

    PubMed

    Prasher, Bhavana; Varma, Binuja; Kumar, Arvind; Khuntia, Bharat Krushna; Pandey, Rajesh; Narang, Ankita; Tiwari, Pradeep; Kutum, Rintu; Guin, Debleena; Kukreti, Ritushree; Dash, Debasis; Mukerji, Mitali

    2017-02-02

    Genetic differences in the target proteins, metabolizing enzymes and transporters that contribute to inter-individual differences in drug response are not integrated in contemporary drug development programs. Ayurveda, that has propelled many drug discovery programs albeit for the search of new chemical entities incorporates inter-individual variability "Prakriti" in development and administration of drug in an individualized manner. Prakriti of an individual largely determines responsiveness to external environment including drugs as well as susceptibility to diseases. Prakriti has also been shown to have molecular and genomic correlates. We highlight how integration of Prakriti concepts can augment the efficiency of drug discovery and development programs through a unique initiative of Ayurgenomics TRISUTRA consortium. Five aspects that have been carried out are (1) analysis of variability in FDA approved pharmacogenomics genes/SNPs in exomes of 72 healthy individuals including predominant Prakriti types and matched controls from a North Indian Indo-European cohort (2) establishment of a consortium network and development of five genetically homogeneous cohorts from diverse ethnic and geo-climatic background (3) identification of parameters and development of uniform standard protocols for objective assessment of Prakriti types (4) development of protocols for Prakriti evaluation and its application in more than 7500 individuals in the five cohorts (5) Development of data and sample repository and integrative omics pipelines for identification of genomic correlates. Highlight of the study are (1) Exome sequencing revealed significant differences between Prakriti types in 28 SNPs of 11 FDA approved genes of pharmacogenomics relevance viz. CYP2C19, CYP2B6, ESR1, F2, PGR, HLA-B, HLA-DQA1, HLA-DRB1, LDLR, CFTR, CPS1. These variations are polymorphic in diverse Indian and world populations included in 1000 genomes project. (2) Based on the phenotypic attributes of Prakriti we identified anthropometry for anatomical features, biophysical parameters for skin types, HRV for autonomic function tests, spirometry for vital capacity and gustometry for taste thresholds as objective parameters. (3) Comparison of Prakriti phenotypes across different ethnic, age and gender groups led to identification of invariant features as well as some that require weighted considerations across the cohorts. Considering the molecular and genomics differences underlying Prakriti and relevance in disease pharmacogenomics studies, this novel integrative platform would help in identification of differently susceptible and drug responsive population. Additionally, integrated analysis of phenomic and genomic variations would not only allow identification of clinical and genomic markers of Prakriti for application in personalized medicine but also its integration in drug discovery and development programs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The Functional Genomics Network in the evolution of biological text mining over the past decade.

    PubMed

    Blaschke, Christian; Valencia, Alfonso

    2013-03-25

    Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Whole-genome regression and prediction methods applied to plant and animal breeding.

    PubMed

    de Los Campos, Gustavo; Hickey, John M; Pong-Wong, Ricardo; Daetwyler, Hans D; Calus, Mario P L

    2013-02-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.

  8. The complete mitochondrial genome of domestic sheep, Ovis aries.

    PubMed

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we report a complete mitochondrial (mt) genome sequence of the Texel ewe, Ovis aries. The total genome is 16,615 bp in length and its overall base composition was estimated to be 33.68% for A, 27.36% for T, 25.86% for C, and 13.10% for G indicating an AT-rich (61.04%) feature in the O. aries mtgenome. It contains a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a control region (D-loop region). Comparisons with other publicly available sheep mitogenomes revealed a bunch of nucleotide diversity. This complete mitgenome sequence would enlarge useful genomic information for further studies on sheep evolution and domestication that will enhance germplasm conservation and breeding programs of O. aries.

  9. A Simple Measure of the Dynamics of Segmented Genomes: An Application to Influenza

    NASA Astrophysics Data System (ADS)

    Aris-Brosou, Stéphane

    The severity of influenza epidemics, which can potentially become a pandemic, has been very difficult to predict. However, past efforts were focusing on gene-by-gene approaches, while it is acknowledged that the whole genome dynamics contribute to the severity of an epidemic. Here, putting this rationale into action, I describe a simple measure of the amount of reassortment that affects influenza at a genomic scale during a particular year. The analysis of 530 complete genomes of the H1N1 subtype, sampled over eleven years, shows that the proposed measure explains 58% of the variance in the prevalence of H1 influenza in the US population. The proposed measure, denoted nRF, could therefore improve influenza surveillance programs at a minimal cost.

  10. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    PubMed Central

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  11. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Hogberg, Nils; Alstrom, Sadhna

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogensmore » awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, Caroline S.

    Rhodopseudomonas palustris is a common soil and water bacterium that makes its living by converting sunlight to cellular energy and by absorbing atmospheric carbon dioxide and converting it to biomass. This microbe can also degrade and recycle components of the woody tissues of plants, wood being the most abundant polymer on earth. Because of its intimate involvement in carbon management and recycling, R. palustris was selected by the DOE Carbon Management Program to have its genome sequenced by the Joint Genome Institute (JGI). This award provided funds for the preparation of R. palustris genomic DNA which was then supplied tomore » the JGI in sufficient amounts to enable the complete sequencing of the R. palustris genome. The PI also supplied the JGI with technical information about the molecular biology of R. palustris.« less

  13. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  14. A genomic lifespan program that reorganises the young adult brain is targeted in schizophrenia.

    PubMed

    Skene, Nathan G; Roy, Marcia; Grant, Seth Gn

    2017-09-12

    The genetic mechanisms regulating the brain and behaviour across the lifespan are poorly understood. We found that lifespan transcriptome trajectories describe a calendar of gene regulatory events in the brain of humans and mice. Transcriptome trajectories defined a sequence of gene expression changes in neuronal, glial and endothelial cell-types, which enabled prediction of age from tissue samples. A major lifespan landmark was the peak change in trajectories occurring in humans at 26 years and in mice at 5 months of age. This species-conserved peak was delayed in females and marked a reorganization of expression of synaptic and schizophrenia-susceptibility genes. The lifespan calendar predicted the characteristic age of onset in young adults and sex differences in schizophrenia. We propose a genomic program generates a lifespan calendar of gene regulation that times age-dependent molecular organization of the brain and mutations that interrupt the program in young adults cause schizophrenia.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Pruneda, J.H.

    This issue pays tribute to Roger Batzel, the Laboratory's sixth and longest-tenured direct (1971-1988). The articles in this issue are: (1) ''Roger Batzel--A Leader and a Gentleman''. (2) ''A Career of Distinguished Achievement'' A superb manager with a quiet and self-effacing demeanor. Roger Batzel presided over a period of unprecedented growth and technical diversification at Lawrence Livermore. (3) ''From Dosimetry to Genomics'' Roger Batzel's support of Livermore's relatively new biomedical research program led to its growth into a major contributor to the worldwide Human Genome Project. (4) ''Swords into Plowshares and Beyond'' Under Roger Batzel's leadership, the Laboratory championed numerousmore » long-term, innovative alternative energy technologies to help address challenges not unlike those we are facing today. (5) ''Adapting to a Changing Weapons Program'' Roger Batzel's knowledge of the US weapons program and his much-trusted professional judgment served the Laboratory and the nation well as arms control and deterrence emerged as national priorities.« less

  16. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs

    PubMed Central

    King, Jaime S.; Smith, Monica E.

    2016-01-01

    State newborn screening (NBS) programs routinely screen nearly all of the 4 million newborns in the United States each year for ~30 primary conditions and a number of secondary conditions. NBS could be on the cusp of an unprecedented expansion as a result of advances in whole-genome sequencing (WGS). As WGS becomes cheaper and easier and as our knowledge and understanding of human genetics expand, the question of whether WGS has a role to play in state NBS programs becomes increasingly relevant and complex. As geneticists and state public health officials begin to contemplate the technical and procedural details of whether WGS could benefit existing NBS programs, this is an opportune time to revisit the legal framework of state NBS programs. In this article, we examine the constitutional underpinnings of state-mandated NBS and explore the range of current state statutes and regulations that govern the programs. We consider the legal refinements that will be needed to keep state NBS programs within constitutional bounds, focusing on 2 areas of concern: consent procedures and the criteria used to select new conditions for NBS panels. We conclude by providing options for states to consider when contemplating the use of WGS for NBS. PMID:26729704

  17. Current hepatitis B virus infection situation in Indonesia and its genetic diversity

    PubMed Central

    Lusida, Maria Inge; Juniastuti; Yano, Yoshihiko

    2016-01-01

    Indonesia has a moderate to high endemicity of hepatitis B virus (HBV) infection. The risk for chronic HBV infection is highest among those infected during infancy. Since 1997, hepatitis B (HepB) vaccination of newborns has been fully integrated into the National Immunization Program. Although HBV infection has been reduced by the universal newborn HepB immunization program, it continues to occur in Indonesia. The low birth dose coverage and the presence of vaccine escape mutants might contribute to this endemicity among children. Although limited information is available for an analysis of occult HBV infection (OBI), several variations and substitutions in the pre-S/S region have been detected in Indonesian HBV strains. Additionally, persistent infection and disease progression of chronic hepatitis B are related to not only viral factors but also the host genome. Indonesia is one of the most ethnically heterogeneous nations, with Javanese and Sundanese as the two highest ethnic groups. This multi-ethnicity makes genomic research in Indonesia difficult. In this article, we focused on and reviewed the following aspects: the current hepatitis B immunization program and its efficacy, OBI, HBV infection among high-risk patients, such as hemodialysis patients, and research regarding the host genome in Indonesia. PMID:27621573

  18. Genotyping by sequencing for genomic prediction in a soybean breeding population.

    PubMed

    Jarquín, Diego; Kocak, Kyle; Posadas, Luis; Hyma, Katie; Jedlicka, Joseph; Graef, George; Lorenz, Aaron

    2014-08-29

    Advances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations. Genotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller. Using GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.

  19. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato.

    PubMed

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.

  20. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato

    PubMed Central

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs. PMID:29563919

  1. The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data.

    PubMed

    Wilks, Christopher; Cline, Melissa S; Weiler, Erich; Diehkans, Mark; Craft, Brian; Martin, Christy; Murphy, Daniel; Pierce, Howdy; Black, John; Nelson, Donavan; Litzinger, Brian; Hatton, Thomas; Maltbie, Lori; Ainsworth, Michael; Allen, Patrick; Rosewood, Linda; Mitchell, Elizabeth; Smith, Bradley; Warner, Jim; Groboske, John; Telc, Haifang; Wilson, Daniel; Sanford, Brian; Schmidt, Hannes; Haussler, David; Maltbie, Daniel

    2014-01-01

    The Cancer Genomics Hub (CGHub) is the online repository of the sequencing programs of the National Cancer Institute (NCI), including The Cancer Genomics Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects, with data from 25 different types of cancer. The CGHub currently contains >1.4 PB of data, has grown at an average rate of 50 TB a month and serves >100 TB per week. The architecture of CGHub is designed to support bulk searching and downloading through a Web-accessible application programming interface, enforce patient genome confidentiality in data storage and transmission and optimize for efficiency in access and transfer. In this article, we describe the design of these three components, present performance results for our transfer protocol, GeneTorrent, and finally report on the growth of the system in terms of data stored and transferred, including estimated limits on the current architecture. Our experienced-based estimates suggest that centralizing storage and computational resources is more efficient than wide distribution across many satellite labs. Database URL: https://cghub.ucsc.edu. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  2. The Proteins API: accessing key integrated protein and genome information

    PubMed Central

    Antunes, Ricardo; Alpi, Emanuele; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd

    2017-01-01

    Abstract The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to ‘talk’ to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). PMID:28383659

  3. A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

    PubMed Central

    Lopatto, David; Hauser, Charles; Jones, Christopher J.; Paetkau, Don; Chandrasekaran, Vidya; Dunbar, David; MacKinnon, Christy; Stamm, Joyce; Alvarez, Consuelo; Barnard, Daron; Bedard, James E. J.; Bednarski, April E.; Bhalla, Satish; Braverman, John M.; Burg, Martin; Chung, Hui-Min; DeJong, Randall J.; DiAngelo, Justin R.; Du, Chunguang; Eckdahl, Todd T.; Emerson, Julia; Frary, Amy; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Govind, Shubha; Haberman, Adam; Hark, Amy T.; Hoogewerf, Arlene; Johnson, Diana; Kadlec, Lisa; Kaehler, Marian; Key, S. Catherine Silver; Kokan, Nighat P.; Kopp, Olga R.; Kuleck, Gary A.; Lopilato, Jane; Martinez-Cruzado, Juan C.; McNeil, Gerard; Mel, Stephanie; Nagengast, Alexis; Overvoorde, Paul J.; Parrish, Susan; Preuss, Mary L.; Reed, Laura D.; Regisford, E. Gloria; Revie, Dennis; Robic, Srebrenka; Roecklien-Canfield, Jennifer A.; Rosenwald, Anne G.; Rubin, Michael R.; Saville, Kenneth; Schroeder, Stephanie; Sharif, Karim A.; Shaw, Mary; Skuse, Gary; Smith, Christopher D.; Smith, Mary; Smith, Sheryl T.; Spana, Eric P.; Spratt, Mary; Sreenivasan, Aparna; Thompson, Jeffrey S.; Wawersik, Matthew; Wolyniak, Michael J.; Youngblom, James; Zhou, Leming; Buhler, Jeremy; Mardis, Elaine; Leung, Wilson; Threlfall, Jennifer; Elgin, Sarah C. R.

    2014-01-01

    In their 2012 report, the President's Council of Advisors on Science and Technology advocated “replacing standard science laboratory courses with discovery-based research courses”—a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates. PMID:25452493

  4. The Proteins API: accessing key integrated protein and genome information.

    PubMed

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. How Great Is Your Student Intern? | Poster

    Cancer.gov

    Editor’s note: We asked Werner H. Kirsten Student Internship Program (WHK SIP) mentors to tell us about the unique and diverse backgrounds of some of this year’s student interns. Alex Beall Microarray Group, Genomics Laboratory, Cancer Research Technology Program Mentors: Nicole Shrader and Stephanie Mellott, research associates

  6. Increased use of young bulls in dairy cattle breeding programs

    USDA-ARS?s Scientific Manuscript database

    Availability of genomic evaluations since 2008 has provided many benefits with regard to improving the rate of genetic gain in dairy cattle breeding programs, one of which is a greater accuracy for young animals. As a result, AI organizations have been aggressively promoting young bulls and producer...

  7. Addition of a breeding database in the Genome Database for Rosaceae

    PubMed Central

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will further accelerate the cross-utilization of diverse data types by researchers from various disciplines. Database URL: http://www.rosaceae.org/breeders_toolbox PMID:24247530

  8. Addition of a breeding database in the Genome Database for Rosaceae.

    PubMed

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will further accelerate the cross-utilization of diverse data types by researchers from various disciplines. Database URL: http://www.rosaceae.org/breeders_toolbox.

  9. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species.

    PubMed

    Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  10. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species

    PubMed Central

    Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076

  11. Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly.

    PubMed

    Rando, Halie M; Farré, Marta; Robson, Michael P; Won, Naomi B; Johnson, Jennifer L; Buch, Ronak; Bastounes, Estelle R; Xiang, Xueyan; Feng, Shaohong; Liu, Shiping; Xiong, Zijun; Kim, Jaebum; Zhang, Guojie; Trut, Lyudmila N; Larkin, Denis M; Kukekova, Anna V

    2018-06-20

    The genome of a red fox ( Vulpes vulpes ) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.

  12. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis.

    PubMed

    Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.

  13. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    PubMed Central

    Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204

  14. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  15. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.

    PubMed

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-10-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  16. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations

    PubMed Central

    Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.

    2013-01-01

    Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191

  18. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.

    PubMed

    Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A

    2017-10-15

    Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. MiSNPDb: a web-based genomic resources of tropical ecology fruit mango (Mangifera indica L.) for phylogeography and varietal differentiation.

    PubMed

    Iquebal, M A; Jaiswal, Sarika; Mahato, Ajay Kumar; Jayaswal, Pawan K; Angadi, U B; Kumar, Neeraj; Sharma, Nimisha; Singh, Anand K; Srivastav, Manish; Prakash, Jai; Singh, S K; Khan, Kasim; Mishra, Rupesh K; Rajan, Shailendra; Bajpai, Anju; Sandhya, B S; Nischita, Puttaraju; Ravishankar, K V; Dinesh, M R; Rai, Anil; Kumar, Dinesh; Sharma, Tilak R; Singh, Nagendra K

    2017-11-02

    Mango is one of the most important fruits of tropical ecological region of the world, well known for its nutritive value, aroma and taste. Its world production is >45MT worth >200 billion US dollars. Genomic resources are required for improvement in productivity and management of mango germplasm. There is no web-based genomic resources available for mango. Hence rapid and cost-effective high throughput putative marker discovery is required to develop such resources. RAD-based marker discovery can cater this urgent need till whole genome sequence of mango becomes available. Using a panel of 84 mango varieties, a total of 28.6 Gb data was generated by ddRAD-Seq approach on Illumina HiSeq 2000 platform. A total of 1.25 million SNPs were discovered. Phylogenetic tree using 749 common SNPs across these varieties revealed three major lineages which was compared with geographical locations. A web genomic resources MiSNPDb, available at http://webtom.cabgrid.res.in/mangosnps/ is based on 3-tier architecture, developed using PHP, MySQL and Javascript. This web genomic resources can be of immense use in the development of high density linkage map, QTL discovery, varietal differentiation, traceability, genome finishing and SNP chip development for future GWAS in genomic selection program. We report here world's first web-based genomic resources for genetic improvement and germplasm management of mango.

  20. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  1. The emerging genomics and systems biology research lead to systems genomics studies.

    PubMed

    Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A; Chen, Zhongxue; Arbania, Hamid R; Liu, Jun S; Niemierko, Andrzej; Yang, Jack Y

    2014-01-01

    Synergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.

  2. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1 T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification

    DOE PAGES

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...

    2015-10-26

    Thioalkalivibrio thiocyanodenitrificans strain ARhD 1 T is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification under anaerobic conditions. In addition, the draft genome sequence consists of 3,746,647 bp in 3 scaffolds, containing 3558 protein-coding and 121 RNA genes. T. thiocyanodenitrificans ARhD 1 T was sequenced as part of the DOE Joint Genome Institute Community Science Program.

  3. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2 T

    DOE PAGES

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...

    2015-10-26

    Thioalkalivibrio thiocyanoxidans strain ARh 2 T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na +. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. In conclusion, this organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

  4. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1 T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake

    DOE PAGES

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...

    2015-11-19

    Thioalkalivibrio paradoxus strain ARh 1 T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

  5. Genomic Perspectives of Transcriptional Regulation in Forebrain Development

    DOE PAGES

    Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; ...

    2015-01-07

    The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less

  6. Detecting distant homologies on protozoans metabolic pathways using scientific workflows.

    PubMed

    da Cruz, Sérgio Manuel Serra; Batista, Vanessa; Silva, Edno; Tosta, Frederico; Vilela, Clarissa; Cuadrat, Rafael; Tschoeke, Diogo; Dávila, Alberto M R; Campos, Maria Luiza Machado; Mattoso, Marta

    2010-01-01

    Bioinformatics experiments are typically composed of programs in pipelines manipulating an enormous quantity of data. An interesting approach for managing those experiments is through workflow management systems (WfMS). In this work we discuss WfMS features to support genome homology workflows and present some relevant issues for typical genomic experiments. Our evaluation used Kepler WfMS to manage a real genomic pipeline, named OrthoSearch, originally defined as a Perl script. We show a case study detecting distant homologies on trypanomatids metabolic pathways. Our results reinforce the benefits of WfMS over script languages and point out challenges to WfMS in distributed environments.

  7. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    PubMed Central

    Lemoine, Frédéric; Lespinet, Olivier; Labedan, Bernard

    2007-01-01

    Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD) using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs), and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene order conservation in prokaryotes whichever their taxonomic distance. Thus, our approach will make easy the rapid identification of POGS in the next few years as we are expecting to be inundated with thousands of completely sequenced microbial genomes. PMID:18047665

  8. HIPAA's Individual Right of Access to Genomic Data: Reconciling Safety and Civil Rights.

    PubMed

    Evans, Barbara J

    2018-01-04

    In 2014, the United States granted individuals a right of access to their own laboratory test results, including genomic data. Many observers feel that this right is in tension with regulatory and bioethical standards designed to protect the safety of people who undergo genomic testing. This commentary attributes this tension to growing pains within an expanding federal regulatory program for genetic and genomic testing. The Genetic Information Nondiscrimination Act of 2008 expanded the regulatory agenda to encompass civil rights and consumer safety. The individual access right, as it applies to genomic data, is best understood as a civil-rights regulation. Competing regulatory objectives-safety and civil rights-were not successfully integrated during the initial rollout of genomic civil-rights regulations after 2008. Federal law clarifies how to prioritize safety and civil rights when the two come into conflict, although with careful policy design, the two need not collide. This commentary opens a dialog about possible solutions to advance safety and civil rights together. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    NASA Astrophysics Data System (ADS)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  10. Savant Genome Browser 2: visualization and analysis for population-scale genomics.

    PubMed

    Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael

    2012-07-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.

  11. Savant Genome Browser 2: visualization and analysis for population-scale genomics

    PubMed Central

    Smith, Eric J. M.; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M.; Robinson, Mark D.; Wodak, Shoshana J.; Brudno, Michael

    2012-01-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com. PMID:22638571

  12. Ensembl BioMarts: a hub for data retrieval across taxonomic space.

    PubMed

    Kinsella, Rhoda J; Kähäri, Andreas; Haider, Syed; Zamora, Jorge; Proctor, Glenn; Spudich, Giulietta; Almeida-King, Jeff; Staines, Daniel; Derwent, Paul; Kerhornou, Arnaud; Kersey, Paul; Flicek, Paul

    2011-01-01

    For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.

  13. The genomic applications in practice and prevention network.

    PubMed

    Khoury, Muin J; Feero, W Gregory; Reyes, Michele; Citrin, Toby; Freedman, Andrew; Leonard, Debra; Burke, Wylie; Coates, Ralph; Croyle, Robert T; Edwards, Karen; Kardia, Sharon; McBride, Colleen; Manolio, Teri; Randhawa, Gurvaneet; Rasooly, Rebekah; St Pierre, Jeannette; Terry, Sharon

    2009-07-01

    The authors describe the rationale and initial development of a new collaborative initiative, the Genomic Applications in Practice and Prevention Network. The network convened by the Centers for Disease Control and Prevention and the National Institutes of Health includes multiple stakeholders from academia, government, health care, public health, industry and consumers. The premise of Genomic Applications in Practice and Prevention Network is that there is an unaddressed chasm between gene discoveries and demonstration of their clinical validity and utility. This chasm is due to the lack of readily accessible information about the utility of most genomic applications and the lack of necessary knowledge by consumers and providers to implement what is known. The mission of Genomic Applications in Practice and Prevention Network is to accelerate and streamline the effective integration of validated genomic knowledge into the practice of medicine and public health, by empowering and sponsoring research, evaluating research findings, and disseminating high quality information on candidate genomic applications in practice and prevention. Genomic Applications in Practice and Prevention Network will develop a process that links ongoing collection of information on candidate genomic applications to four crucial domains: (1) knowledge synthesis and dissemination for new and existing technologies, and the identification of knowledge gaps, (2) a robust evidence-based recommendation development process, (3) translation research to evaluate validity, utility and impact in the real world and how to disseminate and implement recommended genomic applications, and (4) programs to enhance practice, education, and surveillance.

  14. An Introduction to Programming for Bioscientists: A Python-Based Primer

    PubMed Central

    Mura, Cameron

    2016-01-01

    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language’s usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a “variable,” the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences. PMID:27271528

  15. An Introduction to Programming for Bioscientists: A Python-Based Primer.

    PubMed

    Ekmekci, Berk; McAnany, Charles E; Mura, Cameron

    2016-06-01

    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a "variable," the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.

  16. Identification of tumor evolution patterns by means of inductive logic programming.

    PubMed

    Bevilacqua, Vitoantonio; Chiarappa, Patrizia; Mastronardi, Giuseppe; Menolascina, Filippo; Paradiso, Angelo; Tommasi, Stefania

    2008-06-01

    In considering key events of genomic disorders in the development and progression of cancer, the correlation between genomic instability and carcinogenesis is currently under investigation. In this work, we propose an inductive logic programming approach to the problem of modeling evolution patterns for breast cancer. Using this approach, it is possible to extract fingerprints of stages of the disease that can be used in order to develop and deliver the most adequate therapies to patients. Furthermore, such a model can help physicians and biologists in the elucidation of molecular dynamics underlying the aberrations-waterfall model behind carcinogenesis. By showing results obtained on a real-world dataset, we try to give some hints about further approach to the knowledge-driven validations of such hypotheses.

  17. Genomic and epigenomic regulation of adipose tissue inflammation in obesity.

    PubMed

    Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas

    2013-12-01

    Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    PubMed Central

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  19. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  20. Plastid genome sequence of an ornamental and editable fruit tree of Rosaceae, Prunus mume.

    PubMed

    Wang, Shuo; Gao, Cheng-Wen; Gao, Li-Zhi

    2016-11-01

    Here we assembled and analyzed the complete chloroplast genome of Prunus mume, a popular ornamental and editable fruit tree of Rosaceae. The cp genome exhibited a circular DNA molecule of 157 712 bp with a typical quadripartite structure consisted of two inverted repeat regions (IRa and IRb) of 26 394 bp separated by large (LSC) and small (SSC) single-copy regions of 85 861 and 19 063 bp, respectively. It encoded 112 unique genes, 19 of which were duplicated in the IR regions, giving a total of 131 genes. Eighteen of these genes harbored one or two introns. GC content was 38.9%, and coding regions accounted for 51.3% of the genome. Phylogenetic analysis showed that P. mume clustered with P. persica and P. kansuensis in the genus Punus. This newly determined chloroplast genome will enhance modern breeding programs for the purpose of genetic improvement of this valuable plant.

  1. The BioCyc collection of microbial genomes and metabolic pathways.

    PubMed

    Karp, Peter D; Billington, Richard; Caspi, Ron; Fulcher, Carol A; Latendresse, Mario; Kothari, Anamika; Keseler, Ingrid M; Krummenacker, Markus; Midford, Peter E; Ong, Quang; Ong, Wai Kit; Paley, Suzanne M; Subhraveti, Pallavi

    2017-08-17

    BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Genome-scale CRISPR-Cas9 knockout screening in human cells.

    PubMed

    Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelson, Tarjei; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng

    2014-01-03

    The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

  3. Genome engineering in ornamental plants: Current status and future prospects.

    PubMed

    Kishi-Kaboshi, Mitsuko; Aida, Ryutaro; Sasaki, Katsutomo

    2018-03-13

    Ornamental plants, like roses, carnations, and chrysanthemums, are economically important and are sold all over the world. In addition, numerous cut and garden flowers add colors to homes and gardens. Various strategies of plant breeding have been employed to improve traits of many ornamental plants. These approaches span from conventional techniques, such as crossbreeding and mutation breeding, to genetically modified plants. Recently, genome editing has become available as an efficient means for modifying traits in plant species. Genome editing technology is useful for genetic analysis and is poised to become a common breeding method for ornamental plants. In this review, we summarize the benefits and limitations of conventional breeding techniques and genome editing methods and discuss their future potential to accelerate the rate breeding programs in ornamental plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    PubMed

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of a unique library of complex, but ordered, arrays of repetitive elements in the human genome and implication of their potential involvement in pathobiology.

    PubMed

    Lee, Kang-Hoon; Lee, Young-Kwan; Kwon, Deug-Nam; Chiu, Sophia; Chew, Victoria; Rah, Hyungchul; Kujawski, Gregory; Melhem, Ramzi; Hsu, Karen; Chung, Cecilia; Greenhalgh, David G; Cho, Kiho

    2011-06-01

    Approximately 2% of the human genome is reported to be occupied by genes. Various forms of repetitive elements (REs), both characterized and uncharacterized, are presumed to make up the vast majority of the rest of the genomes of human and other species. In conjunction with a comprehensive annotation of genes, information regarding components of genome biology, such as gene polymorphisms, non-coding RNAs, and certain REs, is found in human genome databases. However, the genome-wide profile of unique RE arrangements formed by different groups of REs has not been fully characterized yet. In this study, the entire human genome was subjected to an unbiased RE survey to establish a whole-genome profile of REs and their arrangements. Due to the limitation in query size within the bl2seq alignment program (National Center for Biotechnology Information [NCBI]) utilized for the RE survey, the entire NCBI reference human genome was fragmented into 6206 units of 0.5M nucleotides. A number of RE arrangements with varying complexities and patterns were identified throughout the genome. Each chromosome had unique profiles of RE arrangements and density, and high levels of RE density were measured near the centromere regions. Subsequently, 175 complex RE arrangements, which were selected throughout the genome, were subjected to a comparison analysis using five different human genome sequences. Interestingly, three of the five human genome databases shared the exactly same arrangement patterns and sequences for all 175 RE arrangement regions (a total of 12,765,625 nucleotides). The findings from this study demonstrate that a substantial fraction of REs in the human genome are clustered into various forms of ordered structures. Further investigations are needed to examine whether some of these ordered RE arrangements contribute to the human pathobiology as a functional genome unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Development of Novel Microsatellite Markers for the BBCC Oryza Genome (Poaceae) Using High-Throughput Sequencing Technology

    PubMed Central

    Peng, Suotang; Xu, Qun; Yuan, Xiaoping; Feng, Yue; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2014-01-01

    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa. PMID:24632997

  7. Comparative genome analysis of the Flavobacteriales bacterium strain UJ101, isolated from the gut of Atergatis reticulatus.

    PubMed

    Yang, Jhung-Ahn; Yang, Sung-Hyun; Kim, Junghee; Kwon, Kae Kyoung; Oh, Hyun-Myung

    2017-07-01

    Here we report the comparative genomic analysis of strain UJ101 with 15 strains from the family Flavobacteriaceae, using the CGExplorer program. Flavobacteriales bacterium strain UJ101 was isolated from a xanthid crab, Atergatis reticulatus, from the East Sea near Korea. The complete genome of strain UJ101 is a 3,074,209 bp, single, circular chromosome with 30.74% GC content. While the UJ101 genome contains a number of annotated genes for many metabolic pathways, such as the Embden-Meyerhof pathway, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle, genes for the Entner-Douddoroff pathway are not found in the UJ101 genome. Overall, carbon fixation processes were absent but nitrate reduction and denitrification pathways were conserved. The UJ101 genome was compared to genomes from other marine animals (three invertebrate strains and 5 fish strains) and other marine animal- derived genera. Notable results by genome comparisons showed that UJ101 is capable of denitrification and nitrate reduction, and that biotin-thiamine pathway participation varies among marine bacteria; fish-dwelling bacteria, freeliving bacteria, invertebrate-dwelling bacteria, and strain UJ101. Pan-genome analysis of the 16 strains in this study included 7,220 non-redundant genes that covered 62% of the pan-genome. A core-genome of 994 genes was present and consisted of 8% of the genes from the pan-genome. Strain UJ101 is a symbiotic hetero-organotroph isolated from xanthid crab, and is a metabolic generalist with nitrate-reducing abilities but without the ability to synthesize biotin. There is a general tendency of UJ101 and some fish pathogens to prefer thiamine-dependent glycolysis to gluconeogenesis. Biotin and thiamine auxotrophy or prototrophy may be used as important markers in microbial community studies.

  8. PhyloGibbs-MP: Module Prediction and Discriminative Motif-Finding by Gibbs Sampling

    PubMed Central

    Siddharthan, Rahul

    2008-01-01

    PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously predicting binding sites in those modules—tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other “discriminative motif-finders” have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use “informative priors” on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data. PMID:18769735

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaumberg, Andrew

    The Omics Tools package provides several small trivial tools for work in genomics. This single portable package, the “omics.jar” file, is a toolbox that works in any Java-based environment, including PCs, Macs, and supercomputers. The number of tools is expected to grow. One tool (called cmsearch.hadoop or cmsearch.local), calls the external cmsearch program to predict non-coding RNA in a genome. The cmsearch program is part of the third-party Infernal package. Omics Tools does not contain Infernal. Infernal may be installed separately. The cmsearch.hadoop subtool requires Apache Hadoop and runs on a supercomputer, though cmsearch.local does not and runs on amore » server. Omics Tools does not contain Hadoop. Hadoop mat be installed separartely The other tools (cmgbk, cmgff, fastats, pal, randgrp, randgrpr, randsub) do not interface with third-party tools. Omics Tools is written in Java and Scala programming languages. Invoking the “help” command shows currently available tools, as shown below: schaumbe@gpint06:~/proj/omics$ java -jar omics.jar help Known commands are: cmgbk : compare cmsearch and GenBank Infernal hits cmgff : compare hits among two GFF (version 3) files cmsearch.hadoop : find Infernal hits in a genome, on your supercomputer cmsearch.local : find Infernal hits in a genome, on your workstation fastats : FASTA stats, e.g. # bases, GC content pal : stem-loop motif detection by palindromic sequence search (code stub) randgrp : random subsample without replacement, of groups randgrpr : random subsample with replacement, of groups (fast) randsub : random subsample without replacement, of file lines For more help regarding a particular command, use: java -jar omics.jar command help Usage: java -jar omics.jar command args« less

  10. P-Hint-Hunt: a deep parallelized whole genome DNA methylation detection tool.

    PubMed

    Peng, Shaoliang; Yang, Shunyun; Gao, Ming; Liao, Xiangke; Liu, Jie; Yang, Canqun; Wu, Chengkun; Yu, Wenqiang

    2017-03-14

    The increasing studies have been conducted using whole genome DNA methylation detection as one of the most important part of epigenetics research to find the significant relationships among DNA methylation and several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence to the whole genome has been the main method to study DNA cytosine methylation. However, today's relative tools almost suffer from inaccuracies and time-consuming problems. In our study, we designed a new DNA methylation prediction tool ("Hint-Hunt") to solve the problem. By having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep parallelized whole genome DNA methylation detection tool ("P-Hint-Hunt") on Tianhe-2 (TH-2) supercomputer. To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi).

  11. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  12. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  13. Navigating the evidentiary turn in public health: Sensemaking strategies to integrate genomics into state-level chronic disease prevention programs.

    PubMed

    Senier, Laura; Smollin, Leandra; Lee, Rachael; Nicoll, Lauren; Shields, Michael; Tan, Catherine

    2018-06-23

    In the past decade, healthcare delivery has faced two major disruptions: the mapping of the human genome and the rise of evidence-based practice. Sociologists have documented the paradigmatic shift towards evidence-based practice in medicine, but have yet to examine its effect on other health professions or the broader healthcare arena. This article shows how evidence-based practice is transforming public health in the United States. We present an in-depth qualitative analysis of interview, ethnographic, and archival data to show how Michigan's state public health agency has navigated the turn to evidence-based practice, as they have integrated scientific advances in genomics into their chronic disease prevention programming. Drawing on organizational theory, we demonstrate how they managed ambiguity through a combination of sensegiving and sensemaking activities. Specifically, they linked novel developments in genomics to a long-accepted public health planning model, the Core Public Health Functions. This made cutting edge advances in genomics more familiar to their peers in the state health agency. They also marshaled state-specific surveillance data to illustrate the public health burden of hereditary cancers in Michigan, and to make expert panel recommendations for genetic screening more locally relevant. Finally, they mobilized expertise to help their internal colleagues and external partners modernize conventional public health activities in chronic disease prevention. Our findings show that tools and concepts from organizational sociology can help medical sociologists understand how evidence-based practice is shaping institutions and interprofessional relations in the healthcare arena. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. ILP-based maximum likelihood genome scaffolding

    PubMed Central

    2014-01-01

    Background Interest in de novo genome assembly has been renewed in the past decade due to rapid advances in high-throughput sequencing (HTS) technologies which generate relatively short reads resulting in highly fragmented assemblies consisting of contigs. Additional long-range linkage information is typically used to orient, order, and link contigs into larger structures referred to as scaffolds. Due to library preparation artifacts and erroneous mapping of reads originating from repeats, scaffolding remains a challenging problem. In this paper, we provide a scalable scaffolding algorithm (SILP2) employing a maximum likelihood model capturing read mapping uncertainty and/or non-uniformity of contig coverage which is solved using integer linear programming. A Non-Serial Dynamic Programming (NSDP) paradigm is applied to render our algorithm useful in the processing of larger mammalian genomes. To compare scaffolding tools, we employ novel quantitative metrics in addition to the extant metrics in the field. We have also expanded the set of experiments to include scaffolding of low-complexity metagenomic samples. Results SILP2 achieves better scalability throughg a more efficient NSDP algorithm than previous release of SILP. The results show that SILP2 compares favorably to previous methods OPERA and MIP in both scalability and accuracy for scaffolding single genomes of up to human size, and significantly outperforms them on scaffolding low-complexity metagenomic samples. Conclusions Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, resulting in the longest and most accurate scaffolds. The ILP formulation for the maximum likelihood model is shown to be flexible enough to handle metagenomic samples. PMID:25253180

  15. Increasing the efficiency of traditional cacao breeding using whole genome sequencing information.

    USDA-ARS?s Scientific Manuscript database

    Unfortunately, 80% of the genotypes from the "hybrid seeds" are unproductive in farmers' fields. In 1999 the USDA and Mars Inc. initiated a Marker Assisted Selection (MAS) program for cacao that has reduces many of the problems in traditional breeding. One limitation of the MAS program is the distan...

  16. Universal Newborn Screening and Adverse Medical Outcomes: A Historical Note

    ERIC Educational Resources Information Center

    Brosco, Jeffrey P.; Seider, Michael I.; Dunn, Angela C.

    2006-01-01

    Universal newborn screening programs for metabolic disorders are typically described as a triumph of medicine and public policy in the US over the last 50 years. Advances in science and technology, including the Human Genome Project, offer the opportunity to expand universal newborn screening programs to include many additional metabolic and…

  17. DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.

    PubMed

    Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard

    2004-09-09

    Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  18. Resolving Heart Regeneration by Replacement Histone Profiling.

    PubMed

    Goldman, Joseph Aaron; Kuzu, Guray; Lee, Nutishia; Karasik, Jaclyn; Gemberling, Matthew; Foglia, Matthew J; Karra, Ravi; Dickson, Amy L; Sun, Fei; Tolstorukov, Michael Y; Poss, Kenneth D

    2017-02-27

    Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution.

    PubMed

    Brody, Thomas; Yavatkar, Amarendra S; Park, Dong Sun; Kuzin, Alexander; Ross, Jermaine; Odenwald, Ward F

    2017-06-01

    Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter's ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses.

  20. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    PubMed

    Yin, T; Wensch-Dorendorf, M; Simianer, H; Swalve, H H; König, S

    2014-06-01

    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices.

Top