Frameshifting in alphaviruses: a diversity of 3' stimulatory structures.
Chung, Betty Y-W; Firth, Andrew E; Atkins, John F
2010-03-26
Programmed ribosomal frameshifting allows the synthesis of alternative, N-terminally coincident, C-terminally distinct proteins from the same RNA. Many viruses utilize frameshifting to optimize the coding potential of compact genomes, to circumvent the host cell's canonical rule of one functional protein per mRNA, or to express alternative proteins in a fixed ratio. Programmed frameshifting is also used in the decoding of a small number of cellular genes. Recently, specific ribosomal -1 frameshifting was discovered at a conserved U_UUU_UUA motif within the sequence encoding the alphavirus 6K protein. In this case, frameshifting results in the synthesis of an additional protein, termed TF (TransFrame). This new case of frameshifting is unusual in that the -1 frame ORF is very short and completely embedded within the sequence encoding the overlapping polyprotein. The present work shows that there is remarkable diversity in the 3' sequences that are functionally important for efficient frameshifting at the U_UUU_UUA motif. While many alphavirus species utilize a 3' RNA structure such as a hairpin or pseudoknot, some species (such as Semliki Forest virus) apparently lack any intra-mRNA stimulatory structure, yet just 20 nt 3'-adjacent to the shift site stimulates up to 10% frameshifting. The analysis, both experimental and bioinformatic, significantly expands the known repertoire of -1 frameshifting stimulators in mammalian and insect systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firth, Andrew E., E-mail: a.firth@ucc.i; Blitvich, Bradley J., E-mail: blitvich@iastate.ed; Wills, Norma M., E-mail: nwills@genetics.utah.ed
2010-03-30
Flaviviruses have a positive-sense, single-stranded RNA genome of approx11 kb, encoding a large polyprotein that is cleaved to produce approx10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253-295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the - 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUYmore » slippery heptanucleotide with 3'-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.« less
Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick
2003-07-01
We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms.
Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D
2010-05-01
In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.
Plant, Ewan P.; Rakauskaitė, Rasa; Taylor, Deborah R.; Dinman, Jonathan D.
2010-01-01
In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed −1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the −1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a “golden mean” model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins. PMID:20164235
Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus.
Finch, Leanne K; Ling, Roger; Napthine, Sawsan; Olspert, Allan; Michiels, Thomas; Lardinois, Cécile; Bell, Susanne; Loughran, Gary; Brierley, Ian; Firth, Andew E
2015-08-01
Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed-1 ribosomal frameshift (1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that-1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3= RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient-1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses.
Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.
Nikolaitchik, Olga A; Hu, Wei-Shau
2014-04-01
A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts.
Deciphering the Role of the Gag-Pol Ribosomal Frameshift Signal in HIV-1 RNA Genome Packaging
Nikolaitchik, Olga A.
2014-01-01
ABSTRACT A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5′ untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. IMPORTANCE To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5′ end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts. PMID:24453371
Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus
Finch, Leanne K.; Ling, Roger; Napthine, Sawsan; Olspert, Allan; Michiels, Thomas; Lardinois, Cécile; Bell, Susanne; Loughran, Gary; Brierley, Ian
2015-01-01
ABSTRACT Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed −1 ribosomal frameshift (−1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that −1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3′ RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient −1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses. IMPORTANCE Many viruses utilize programmed −1 ribosomal frameshifting (−1 PRF) to produce different protein products at a defined ratio, or to translate overlapping ORFs to increase coding capacity. With few exceptions, −1 PRF occurs on specific “slippery” heptanucleotide sequences and is stimulated by RNA structure beginning 5 to 9 nucleotides (nt) downstream of the slippery site. Here we describe an unusual case of −1 PRF in Theiler's murine encephalomyelitis virus (TMEV) that is extraordinarily efficient (74 to 82% of ribosomes shift into the alternative reading frame) and, in stark contrast to other examples of −1 PRF, is dependent upon a stem-loop structure beginning 14 nt downstream of the slippery site. Furthermore, in TMEV-based reporter constructs in transfected cells, efficient frameshifting is critically dependent upon virus infection. We suggest that TMEV evolved frameshifting as a novel mechanism for removing ribosomes from the message (a “ribosome sink”) to downregulate synthesis of the 3′-encoded replication proteins. PMID:26063423
Atkins, John F.; Loughran, Gary; Bhatt, Pramod R.; Firth, Andrew E.; Baranov, Pavel V.
2016-01-01
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. PMID:27436286
Atkins, John F; Loughran, Gary; Bhatt, Pramod R; Firth, Andrew E; Baranov, Pavel V
2016-09-06
Genetic decoding is not 'frozen' as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational 'correction' of problem or 'savior' indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5' or 3' of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3' from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gaber, Richard F.; Mathison, Lorilee; Edelman, Irv; Culbertson, Michael R.
1983-01-01
Five previously unmapped frameshift suppressor genes have been located on the yeast genetic map. In addition, we have further characterized the map positions of two suppressors whose approximate locations were determined in an earlier study. These results represent the completion of genetic mapping studies on all 25 of the known frameshift suppressor genes in yeast.—The approximate location of each suppressor gene was initially determined through the use of a set of mapping strains containing 61 signal markers distributed throughout the yeast genome. Standard meiotic linkage was assayed in crosses between strains carrying the suppressors and the mapping strains. Subsequent to these approximate linkage determinations, each suppressor gene was more precisely located in multi-point crosses. The implications of these mapping results for the genomic distribution of frameshift suppressor genes, which include both glycine and proline tRNA genes, are discussed. PMID:17246112
Gurvich, Olga L.; Näsvall, S. Joakim; Baranov, Pavel V.; Björk, Glenn R.; Atkins, John F.
2011-01-01
The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5′-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNAPro mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting. PMID:21177642
Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo
2018-04-01
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass ( Zostera marina ) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae . They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.
Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo
2018-01-01
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses. PMID:29628822
Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi
2010-10-01
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein.
Fang, Ying; Treffers, Emmely E; Li, Yanhua; Tas, Ali; Sun, Zhi; van der Meer, Yvonne; de Ru, Arnoud H; van Veelen, Peter A; Atkins, John F; Snijder, Eric J; Firth, Andrew E
2012-10-23
Programmed -1 ribosomal frameshifting (-1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of -2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on -1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via -2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient -2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that -2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.
Analyses of frameshifting at UUU-pyrimidine sites.
Schwartz, R; Curran, J F
1997-05-15
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.
Analyses of frameshifting at UUU-pyrimidine sites.
Schwartz, R; Curran, J F
1997-01-01
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage. PMID:9115369
Ling, Roger; Firth, Andrew E
2017-08-01
Programmed -1 ribosomal frameshifting is a mechanism of gene expression whereby specific signals within messenger RNAs direct a proportion of ribosomes to shift -1 nt and continue translating in the new reading frame. Such frameshifting normally depends on an RNA structure stimulator 3'-adjacent to a 'slippery' heptanucleotide shift site sequence. Recently we identified an unusual frameshifting mechanism in encephalomyocarditis virus, where the stimulator involves a trans-acting virus protein. Thus, in contrast to other examples of -1 frameshifting, the efficiency of frameshifting in encephalomyocarditis virus is best studied in the context of virus infection. Here we use metabolic labelling to analyse the frameshifting efficiency of wild-type and mutant viruses. Confirming previous results, frameshifting depends on a G_GUU_UUU shift site sequence and a 3'-adjacent stem-loop structure, but is not appreciably affected by the 'StopGo' sequence present ~30 nt upstream. At late timepoints, frameshifting was estimated to be 46-76 % efficient.
Position-dependent termination and widespread obligatory frameshifting in Euplotes translation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, Alexei V.; Heaphy, Stephen M.; Turanov, Anton A.
2016-11-21
The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared tomore » designate termination. Thus, a ‘stop codon’ is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.« less
Firth, A E; Jagger, B W; Wise, H M; Nelson, C C; Parsawar, K; Wills, N M; Napthine, S; Taubenberger, J K; Digard, P; Atkins, J F
2012-10-01
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves -1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or -2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.
NASA Astrophysics Data System (ADS)
Mishra, Bhavya; Schütz, Gunter M.; Chowdhury, Debashish
2016-06-01
We develop a stochastic model for the programmed frameshift of ribosomes synthesizing a protein while moving along a mRNA template. Normally the reading frame of a ribosome decodes successive triplets of nucleotides on the mRNA in a step-by-step manner. We focus on the programmed shift of the ribosomal reading frame, forward or backward, by only one nucleotide which results in a fusion protein; it occurs when a ribosome temporarily loses its grip to its mRNA track. Special “slippery” sequences of nucleotides and also downstream secondary structures of the mRNA strand are believed to play key roles in programmed frameshift. Here we explore the role of an hitherto neglected parameter in regulating -1 programmed frameshift. Specifically, we demonstrate that the frameshift frequency can be strongly regulated also by the density of the ribosomes, all of which are engaged in simultaneous translation of the same mRNA, at and around the slippery sequence. Monte Carlo simulations support the analytical predictions obtained from a mean-field analysis of the stochastic dynamics.
Novel divergent nidovirus in a python with pneumonia.
Bodewes, Rogier; Lempp, Charlotte; Schürch, Anita C; Habierski, Andre; Hahn, Kerstin; Lamers, Mart; von Dörnberg, Katja; Wohlsein, Peter; Drexler, Jan Felix; Haagmans, Bart L; Smits, Saskia L; Baumgärtner, Wolfgang; Osterhaus, Albert D M E
2014-11-01
The order Nidovirales contains large, enveloped viruses with a non-segmented positive-stranded RNA genome. Nidoviruses have been detected in man and various animal species, but, to date, there have been no reports of nidovirus in reptiles. In the present study, we describe the detection, characterization, phylogenetic analyses and disease association of a novel divergent nidovirus in the lung of an Indian python (Python molurus) with necrotizing pneumonia. Characterization of the partial genome (>33 000 nt) of this virus revealed several genetic features that are distinct from other nidoviruses, including a very large polyprotein 1a, a putative ribosomal frameshift signal that was identical to the frameshift signal of astroviruses and retroviruses and an accessory ORF that showed some similarity with the haemagglutinin-neuraminidase of paramyxoviruses. Analysis of genome organization and phylogenetic analysis of polyprotein 1ab suggests that this virus belongs to the subfamily Torovirinae. Results of this study provide novel insights into the genetic diversity within the order Nidovirales. © 2014 The Authors.
Riveros-Mckay, Fernando; Campos, Itzia; Giles-Gómez, Martha; Bolívar, Francisco
2014-01-01
Leuconostoc mesenteroides P45 was isolated from the traditional Mexican pulque beverage. We report its draft genome sequence, assembled in 6 contigs consisting of 1,874,188 bp and no plasmids. Genome annotation predicted a total of 1,800 genes, 1,687 coding sequences, 52 pseudogenes, 9 rRNAs, 51 tRNAs, 1 noncoding RNA, and 44 frameshifted genes. PMID:25377708
Moreno-Avitia, Fabian; Lozano, Luis; Utrilla, Jose; Bolívar, Francisco; Escalante, Adelfo
2017-06-08
Pseudomonas chlororaphis strain ATCC 9446 is a biocontrol-related organism. We report here its draft genome sequence assembled into 35 contigs consisting of 6,783,030 bp. Genome annotation predicted a total of 6,200 genes, 6,128 coding sequences, 81 pseudogenes, 58 tRNAs, 4 noncoding RNAs (ncRNAs), and 41 frameshifted genes. Copyright © 2017 Moreno-Avitia et al.
Su, Fei; Yu, Bo; Sun, Jibin; Ou, Hong-Yu; Zhao, Bo; Wang, Limin; Qin, Jiayang; Tang, Hongzhi; Tao, Fei; Jarek, Michael; Scharfe, Maren; Ma, Cuiqing; Ma, Yanhe; Xu, Ping
2011-09-01
Bacillus coagulans 2-6 is an efficient producer of lactic acid. The genome of B. coagulans 2-6 has the smallest genome among the members of the genus Bacillus known to date. The frameshift mutation at the start of the d-lactate dehydrogenase sequence might be responsible for the production of high-optical-purity l-lactic acid.
Complete nucleotide sequence and annotation of the temperate corynephage ϕ16 genome.
Lobanova, Juliya S; Gak, Evgueni R; Andreeva, Irina G; Rybak, Konstantin V; Krylov, Alexander A; Mashko, Sergey V
2017-08-01
The complete genome of ϕ16, a temperate corynephage from Corynebacterium glutamicum ATCC 21792, was sequenced and annotated (GenBank: KY250482). The electron microscopy study of ϕ16 virion confirmed that it belongs to the family Siphoviridae. The ϕ16 genome consists of a linear double-stranded DNA molecule of 58,200 bp (G+C = 52.2%) with protruding cohesive 3'-ends of 14 nt. Four major structural proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting technique. Using bioinformatics analysis, 101 putative ORFs and 5 tRNA genes were predicted. Only 27 putative gene products could be assigned to known biological functions. The ϕ16 genome was divided into functional modules. Seven putative promoters and eight putative unidirectional intrinsic terminators were predicted. One site of putative «-1» programmed ribosomal frameshifting was proposed in the phage tail assembly genome region. C. glutamicum genetic tools could be broadened by exploiting the known integrase gene (gp33) and the newly identified excisionase gene (gp47), participating in site-specific recombination between ϕ16-attP/attB.
Gao, Feng; Simon, Anne E.
2016-01-01
Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5′-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3′ terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation. PMID:26578603
Firth, A. E.; Jagger, B. W.; Wise, H. M.; Nelson, C. C.; Parsawar, K.; Wills, N. M.; Napthine, S.; Taubenberger, J. K.; Digard, P.; Atkins, J. F.
2012-01-01
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes. PMID:23155484
Valles, Steven M; Bell, Susanne; Firth, Andrew E
2014-01-01
Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.
Owczarek-Lipska, Marta; Jagannathan, Vidhya; Drögemüller, Cord; Lutz, Sabina; Glanemann, Barbara
2013-01-01
Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies. PMID:23613799
Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P
2015-01-01
HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.
Riveros-Mckay, Fernando; Campos, Itzia; Giles-Gómez, Martha; Bolívar, Francisco; Escalante, Adelfo
2014-11-06
Leuconostoc mesenteroides P45 was isolated from the traditional Mexican pulque beverage. We report its draft genome sequence, assembled in 6 contigs consisting of 1,874,188 bp and no plasmids. Genome annotation predicted a total of 1,800 genes, 1,687 coding sequences, 52 pseudogenes, 9 rRNAs, 51 tRNAs, 1 noncoding RNA, and 44 frameshifted genes. Copyright © 2014 Riveros-Mckay et al.
Yordanova, Martina M; Wu, Cheng; Andreev, Dmitry E; Sachs, Matthew S; Atkins, John F
2015-07-17
The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3' end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5' and 3' of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5' of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5' part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3' part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3' of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Marshall, Christian R; Farrell, Sandra A; Cushing, Donna; Paton, Tara; Stockley, Tracy L; Stavropoulos, Dimitri J; Ray, Peter N; Szego, Michael; Lau, Lynette; Pereira, Sergio L; Cohn, Ronald D; Wintle, Richard F; Abuzenadah, Adel M; Abu-Elmagd, Muhammad; Scherer, Stephen W
2015-01-01
We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.
Global analysis of translation termination in E. coli.
Baggett, Natalie E; Zhang, Yan; Gross, Carol A
2017-03-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.
[Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong
2015-11-01
The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.
Moureau, Gregory; Cook, Shelley; Lemey, Philippe; Nougairede, Antoine; Forrester, Naomi L.; Khasnatinov, Maxim; Charrel, Remi N.; Firth, Andrew E.; Gould, Ernest A.; de Lamballerie, Xavier
2015-01-01
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses. PMID:25719412
Koi, Minoru; Tseng-Rogenski, Stephanie S; Carethers, John M
2018-01-15
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1 , resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.
Koi, Minoru; Tseng-Rogenski, Stephanie S; Carethers, John M
2018-01-01
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation’s effect upon the DNA MMR system. PMID:29375743
Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong
2016-05-01
The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.
Malagnac, Fabienne; Fabret, Céline; Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe
2013-01-01
In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongbing; Franz, Carl J.; Wu, Guang
2014-02-15
Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated intomore » Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.« less
Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.
Ma, Xiang; Li, Xiaoxin; Wang, Lihua
2008-01-01
To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.
Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F.; de Ridder, Dick; Pronk, Jack T.; van Maris, Antonius J. A.; Daran, Jean-Marc
2013-01-01
Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments. PMID:24145419
Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe
2013-01-01
In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild. PMID:24069231
Global analysis of translation termination in E. coli
Baggett, Natalie E.
2017-01-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469
Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito
2016-05-13
The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.
Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo
2001-01-01
Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193
Tsai, Meng-Che; Yu, Hui-Wen; Liu, Tsunglin; Chou, Yen-Yin; Chiou, Yuan-Yow; Chen, Peng-Chieh
2018-01-01
Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs * 10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs * 6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.
A novel NDUFS4 frameshift mutation causes Leigh disease in the Hutterite population.
Lamont, Ryan E; Beaulieu, Chandree L; Bernier, Francois P; Sparkes, Rebecca; Innes, A Micheil; Jackel-Cram, Candice; Ober, Carole; Parboosingh, Jillian S; Lemire, Edmond G
2017-03-01
Leigh disease is a progressive, infantile-onset, neurodegenerative disorder characterized by feeding difficulties, failure to thrive, hypotonia, seizures, and central respiratory compromise. Metabolic and neuroimaging investigations typically identify abnormalities consistent with a disorder of mitochondrial energy metabolism. Mutations in more than 35 genes affecting the mitochondrial respiratory chain encoded from both the nuclear and mitochondrial genomes have been associated with Leigh disease. The clinical presentations of five individuals of Hutterite descent with Leigh disease are described herein. An identity-by-descent mapping and candidate gene approach was used to identify a novel homozygous c.393dupA frameshift mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4) gene. The carrier frequency of this mutation was estimated in >1,300 Hutterite individuals to be 1 in 27. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wada, Takahito; Haddad, Marie Reine; Yi, Ling; Murakami, Tomomi; Sasaki, Akiko; Shimbo, Hiroko; Kodama, Hiroko; Osaka, Hitoshi; Kaler, Stephen G
2014-04-01
Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
Flores-Rozas, H; Kolodner, R D
1998-10-13
The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.
Stafuzza, Nedenia Bonvino; Zerlotini, Adhemar; Lobo, Francisco Pereira; Yamagishi, Michel Eduardo Beleza; Chud, Tatiane Cristina Seleguim; Caetano, Alexandre Rodrigues; Munari, Danísio Prado; Garrick, Dorian J; Machado, Marco Antonio; Martins, Marta Fonseca; Carvalho, Maria Raquel; Cole, John Bruce; Barbosa da Silva, Marcos Vinicius Gualberto
2017-01-01
Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs.
Lobo, Francisco Pereira; Yamagishi, Michel Eduardo Beleza; Chud, Tatiane Cristina Seleguim; Caetano, Alexandre Rodrigues; Munari, Danísio Prado; Garrick, Dorian J.; Machado, Marco Antonio; Martins, Marta Fonseca; Carvalho, Maria Raquel; Cole, John Bruce; Barbosa da Silva, Marcos Vinicius Gualberto
2017-01-01
Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs. PMID:28323836
High-Efficiency "-1" and "-2" Ribosomal Frameshiftings Revealed by Force Spectroscopy.
Tsai, Te-Wei; Yang, Haopeng; Yin, Heng; Xu, Shoujun; Wang, Yuhong
2017-06-16
Ribosomal frameshifting is a rare but ubiquitous process that is being studied extensively. Meanwhile, frameshifting motifs without any secondary mRNA structures were identified but rarely studied experimentally. We report unambiguous observation of highly efficient "-1" and "-2" frameshiftings on a GA 7 G slippery mRNA without the downstream secondary structure, using force-induced remnant magnetization spectroscopy combined with unique probing schemes. The result represents the first experimental evidence of multiple frameshifting steps. It is also one of the rare reports of the "-2" frameshifting. Our assay removed the ambiguity of transcriptional slippage involvement in other frameshifting assays. Two significant insights for the frameshifting mechanism were revealed. First, EF-G·GTP is indispensable to frameshifting. Although EFG·GDPCP has been shown to prompt translocation before, we found that it could not induce frameshifting. This implies that the GTP hydrolysis is responsible for the codon-anticodon re-pairing in frameshifting, which corroborates our previous mechanical force measurement of EF-G·GTP. Second, translation in all three reading frames of the slippery sequence can be induced by the corresponding in-frame aminoacyl tRNAs. Although A-site tRNA is known to affect the partition between "0" and "-1" frameshifting, it has not been reported that all three reading frames can be translated by their corresponding tRNAs. The in vitro results were confirmed by toe-printing assay and protein sequencing.
Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9.
Shen, Juntao; Zhou, Jinjie; Chen, Guo-Qiang; Xiu, Zhi-Long
2018-06-13
Klebsiella pneumoniae is one of the most common nosocomial opportunistic pathogens usually with multiple drug-resistance. Phage therapy, a potential new therapeutics to replace or supplement antibiotics, has attracted much attention. However, very few Klebsiella phages have been well-characterized as the lack of efficient genome editing tools. Here, Cas9 from Streptococcus pyogenes and a single guide RNA (sgRNA) were used to modify a virulent Klebsiella bacteriophage phiKpS2. We firstly evaluated the distribution of sgRNA activity in phages and proved that it's largely inconsistent with the predicted activity from current models trained on eukaryotic cell datasets. A simple CRISPR-based phage genome editing procedure was developed based on the discovery that homologous arms as short as 30-60 bp was sufficient to introduce point mutation, gene deletion and swap. We also demonstrated that weak sgRNAs could be used for precise phage genome editing but failed to select random recombinants, possibly because inefficient cleavage can be tolerated through continuous repair by homologous recombination with the uncut genomes. Small frameshift deletion was proved to be an efficient way to evaluate the essentiality of phage genes. By using the above strategies, a putative promoter and nine genes of phiKpS2 were successfully deleted. Interestingly, the holin gene can be deleted with little effect on phiKpS2 infection, but the reason is not yet clear. This study established an efficient, time-saving, and cost-effective procedure for phage genome editing, which is expected to significantly promote the development of bacteriophage therapy. IMPORTANCE In the present study, we have addressed an efficient, time-saving and cost-effective CRISPR-based phage genome editing of Klebsiella phage, which has the potential to significantly expand our knowledge of phage-host interactions and to promote the applications of phage therapy. The distribution of sgRNA activity was first evaluated in phages. Short homologous arms were proved enough to introduce point mutation, small frameshift deletion, gene deletion and swap into phages, and weak sgRNAs were proved useful for precise phage genome editing but failed to select random recombinants, which all make the CRISPR-based phage genome editing easier to use. Copyright © 2018 American Society for Microbiology.
A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.
2017-01-01
ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306
Nonin-Lecomte, Sylvie; Felden, Brice; Dardel, Frédéric
2006-01-01
The transfer-messenger RNA (tmRNA) pseudoknot PK1 is essential for bacterial trans-translation, a ribosomal rescue mechanism. We report the solution structure of PK1 from Aquifex aeolicus, which despite an unprecedented small number of nucleotides and thus an unprecented compact size, displays a very high thermal stability. Several unusual structural features account for these properties and indicate that PK1 belongs to the class of ribosomal frameshift pseudoknots. This suggests a similarity between the mechanism of programmed ribosomal frameshifting and trans-translation. PMID:16595798
Nonin-Lecomte, Sylvie; Felden, Brice; Dardel, Frédéric
2006-01-01
The transfer-messenger RNA (tmRNA) pseudoknot PK1 is essential for bacterial trans-translation, a ribosomal rescue mechanism. We report the solution structure of PK1 from Aquifex aeolicus, which despite an unprecedented small number of nucleotides and thus an unprecented compact size, displays a very high thermal stability. Several unusual structural features account for these properties and indicate that PK1 belongs to the class of ribosomal frameshift pseudoknots. This suggests a similarity between the mechanism of programmed ribosomal frameshifting and trans-translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilimire, Thomas A.; Bennett, Ryan P.; Stewart, Ryan A.
Human Immunodeficiency Virus (HIV) type 1 uses a -1 programmed ribosomal frameshift (-1 PRF) event to translate its enzymes from the same transcript used to encode the virus’ structural proteins. The frequency of this event is highly regulated, and significant deviation from the normal 5-10% frequency has been demonstrated to decrease viral infectivity. Frameshifting is primarily regulated by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically stable, highly conserved stem loop that has been proposed as a therapeutic target. We describe the design, synthesis, and testing of a series of N-methyl peptides able to bind the HIV-1 FSS RNA stemmore » loop with low nanomolar afinity and high selectivity. Surface plasmon resonance (SPR) data indicates increased affinity is a reflection of a substantially enhanced on rate. Compounds readily penetrate cell membranes and inhibit HIV infectivity in a pseudotyped virus assay. Viral infectivity inhibition correlates with compound-dependent changes in the ratios of Gag and Gag-Pol in virus particles. As the first compounds with both single digit nanomolar affinities for the FSS RNA and an ability to inhibit HIV in cells, these studies support the use of N-methylation for enhancing the affinity, selectivity, and bioactivity of RNA-binding peptides.« less
Hilimire, Thomas A.; Bennett, Ryan P.; Stewart, Ryan A.; ...
2015-10-23
Human Immunodeficiency Virus (HIV) type 1 uses a -1 programmed ribosomal frameshift (-1 PRF) event to translate its enzymes from the same transcript used to encode the virus’ structural proteins. The frequency of this event is highly regulated, and significant deviation from the normal 5-10% frequency has been demonstrated to decrease viral infectivity. Frameshifting is primarily regulated by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically stable, highly conserved stem loop that has been proposed as a therapeutic target. We describe the design, synthesis, and testing of a series of N-methyl peptides able to bind the HIV-1 FSS RNA stemmore » loop with low nanomolar afinity and high selectivity. Surface plasmon resonance (SPR) data indicates increased affinity is a reflection of a substantially enhanced on rate. Compounds readily penetrate cell membranes and inhibit HIV infectivity in a pseudotyped virus assay. Viral infectivity inhibition correlates with compound-dependent changes in the ratios of Gag and Gag-Pol in virus particles. As the first compounds with both single digit nanomolar affinities for the FSS RNA and an ability to inhibit HIV in cells, these studies support the use of N-methylation for enhancing the affinity, selectivity, and bioactivity of RNA-binding peptides.« less
A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II.
Boo, Sung Hyun; Song, Min-Jung; Kim, Hee-Jin; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won; Hong, Sung Hwa
2013-03-01
Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome.
Zhang, Yanjie; Sun, Jin; Li, Xinzheng; Qiu, Jian-Wen
2016-01-01
We reported a nearly complete mitochondrial genome (mitogenome) from the glass sponge Lophophysema eversa, the second mitogenome in the order Amphidiscosida and the ninth in the class Hexactinellida. It is 20,651 base pairs in length and contains 39 genes including 13 protein-coding genes, 2 ribosomal RNA subunit genes and 24 tRNA genes. The gene content and order of L. eversa are identical to those of Tabachnickia sp., the other species with a sequenced mitogenome in Amphidiscosida, except with two additional tRNAs and three tRNA translocations. The cob gene has a +1 translational frameshift. These results will contribute to a better understanding of the phylogeny of glass sponges.
OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.
Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit
2014-10-01
The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.
A mobile element in mutS drives hypermutation in a marine Vibrio
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; ...
2017-02-07
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less
Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...
2014-12-04
In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.
In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less
A mobile element in mutS drives hypermutation in a marine Vibrio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less
Ramlee, Muhammad Khairul; Wang, Jing; Cheung, Alice M S; Li, Shang
2017-04-08
The development of programmable genome-editing tools has facilitated the use of reverse genetics to understand the roles specific genomic sequences play in the functioning of cells and whole organisms. This cause has been tremendously aided by the recent introduction of the CRISPR/Cas9 system-a versatile tool that allows researchers to manipulate the genome and transcriptome in order to, among other things, knock out, knock down, or knock in genes in a targeted manner. For the purpose of knocking out a gene, CRISPR/Cas9-mediated double-strand breaks recruit the non-homologous end-joining DNA repair pathway to introduce the frameshift-causing insertion or deletion of nucleotides at the break site. However, an individual guide RNA may cause undesirable off-target effects, and to rule these out, the use of multiple guide RNAs is necessary. This multiplicity of targets also means that a high-volume screening of clones is required, which in turn begs the use of an efficient high-throughput technique to genotype the knockout clones. Current genotyping techniques either suffer from inherent limitations or incur high cost, hence rendering them unsuitable for high-throughput purposes. Here, we detail the protocol for using fluorescent PCR, which uses genomic DNA from crude cell lysate as a template, and then resolving the PCR fragments via capillary gel electrophoresis. This technique is accurate enough to differentiate one base-pair difference between fragments and hence is adequate in indicating the presence or absence of a frameshift in the coding sequence of the targeted gene. This precise knowledge effectively precludes the need for a confirmatory sequencing step and allows users to save time and cost in the process. Moreover, this technique has proven to be versatile in genotyping various mammalian cells of various tissue origins targeted by guide RNAs against numerous genes, as shown here and elsewhere.
Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui
2015-01-01
Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI. PMID:25983617
Large-scale whole-genome sequencing of the Icelandic population.
Gudbjartsson, Daniel F; Helgason, Hannes; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Gylfason, Arnaldur; Besenbacher, Soren; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Stacey, Simon N; Frigge, Michael L; Holm, Hilma; Saemundsdottir, Jona; Helgadottir, Hafdis Th; Johannsdottir, Hrefna; Sigfusson, Gunnlaugur; Thorgeirsson, Gudmundur; Sverrisson, Jon Th; Gretarsdottir, Solveig; Walters, G Bragi; Rafnar, Thorunn; Thjodleifsson, Bjarni; Bjornsson, Einar S; Olafsson, Sigurdur; Thorarinsdottir, Hildur; Steingrimsdottir, Thora; Gudmundsdottir, Thora S; Theodors, Asgeir; Jonasson, Jon G; Sigurdsson, Asgeir; Bjornsdottir, Gyda; Jonsson, Jon J; Thorarensen, Olafur; Ludvigsson, Petur; Gudbjartsson, Hakon; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Arnar, David O; Magnusson, Olafur Th; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Sulem, Patrick; Stefansson, Kari
2015-05-01
Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.
Goh, C J; Park, D; Lee, J S; Sebastiani, F; Hahn, Y
2018-01-01
Amalgaviridae is a family of double-stranded, monosegmented RNA viruses that are associated with plants, fungi, microsporidians, and animals. A sequence contig derived from the transcriptome of a eudicot, Cistus incanus (the family Cistaceae; commonly known as hoary rockrose), was identified as the genome sequence of a novel plant RNA virus and named Cistus incanus RNA virus 1 (CiRV1). Sequence comparison and phylogenetic analysis indicated that CiRV1 is a novel species of the genus Amalgavirus in the family Amalgaviridae. The CiRV1 genome contig has two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. An ORF1+2 fusion protein, which functions in viral RNA replication, is produced by a +1 programmed ribosomal frameshifting (PRF) mechanism. A +1 PRF motif UUU_CGU, which matches the conserved amalgavirus +1 PRF consensus sequence UUU_CGN, was found at the boundary of CiRV1 ORF1 and ORF2. Comparison of 25 amalgavirus ORF1+2 fusion proteins revealed that only three different positions within a 13-amino acid segment were recurrently used at the boundary, possibly being selected so as not to interfere with correct folding and function of the fusion protein. CiRV1 is the first virus found to be associated with the Cistus species and may be useful for studying amalgaviruses.
Dinan, Adam M; Atkins, John F; Firth, Andrew E
2017-10-16
Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. This article was reviewed by Laurence Hurst and Eugene Koonin.
Pett, Walker
2016-01-01
Abstract Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0–25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes. PMID:27557826
Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy
2017-01-01
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437
Facial asymmetry and clinical manifestations in patients with novel insertion of the TCOF1 gene.
Su, P-H; Liu, Y-F; Yu, J-S; Chen, J-Y; Chen, S-J; Lai, Y-J
2012-11-01
This study explored the role of TCOF1 insertion mutations in Taiwanese patients with craniofacial anomalies. Twelve patients with single or multiple, asymmetrical congenital craniofacial anomalies were enrolled. Genomic DNA was prepared from leukocytes; the coding regions of TCOF1 were analyzed by polymerase chain reaction and direct sequencing. Clinical manifestations were correlated to the TCOF1 mutation. Six of 12 patients diagnosed with hemifacial microsomia exhibited a novel insertion mutation 4127 ins G (frameshift) in exon 24 in the TCOF1 gene. All six patients were diagnosed with anomalies on the left side. In addition, four of these six patients had hearing impairment; three had other major anomalies; and two had developmental delay. The insertion caused a frameshift, an early truncation, the loss of two putative nuclear localization signals (residues 1404-1420 and 1424-1440), and the loss of coiled coil domain (1406-1426) in treacle protein. These findings support the existence of two regulators of growth of the mandibular condyles. © 2011 John Wiley & Sons A/S.
A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II
Boo, Sung Hyun; Song, Min-Jung; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won
2013-01-01
Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome. PMID:23526569
Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.
2014-01-01
The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallan, Pradeep S.; Marshall, William S.; Harp, Joel
To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter.more » Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.« less
Prykhozhij, Sergey V; Rajan, Vinothkumar; Berman, Jason N
2016-02-01
The development of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology for mainstream biotechnological use based on its discovery as an adaptive immune mechanism in bacteria has dramatically improved the ability of molecular biologists to modify genomes of model organisms. The zebrafish is highly amenable to applications of CRISPR/Cas9 for mutation generation and a variety of DNA insertions. Cas9 protein in complex with a guide RNA molecule recognizes where to cut the homologous DNA based on a short stretch of DNA termed the protospacer-adjacent motif (PAM). Rapid and efficient identification of target sites immediately preceding PAM sites, quantification of genomic occurrences of similar (off target) sites and predictions of cutting efficiency are some of the features where computational tools play critical roles in CRISPR/Cas9 applications. Given the rapid advent and development of this technology, it can be a challenge for researchers to remain up to date with all of the important technological developments in this field. We have contributed to the armamentarium of CRISPR/Cas9 bioinformatics tools and trained other researchers in the use of appropriate computational programs to develop suitable experimental strategies. Here we provide an in-depth guide on how to use CRISPR/Cas9 and other relevant computational tools at each step of a host of genome editing experimental strategies. We also provide detailed conceptual outlines of the steps involved in the design and execution of CRISPR/Cas9-based experimental strategies, such as generation of frameshift mutations, larger chromosomal deletions and inversions, homology-independent insertion of gene cassettes and homology-based knock-in of defined point mutations and larger gene constructs.
2011-03-25
379 1317617 BG1320 (06415) NS pksR – Polyketide synthase BSU17720 (71.0) G:C C:S 1698/2574 1326096 BG1327 (06450) NS ebrB – multidrug resistance...frameshift mutation in the mmgD gene on the C-terminus of the 2-methylcitrate synthase homolog of B. atrophaeus strain Detrick-1. Arrow indicates the...lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole
Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa
Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu
2012-01-01
Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa. PMID:22567157
Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.
Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu
2012-01-01
Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.
Chiang, Yi-An; Kinoshita, Masato; Maekawa, Shun; Kulkarni, Amod; Lo, Chu-Fang; Yoshiura, Yasutoshi; Wang, Han-Ching; Aoki, Takashi
2016-01-01
Although myostatin, a suppressor of skeletal muscle development and growth, has been well studied in mammals, its function in fish remains unclear. In this study, we used a popular genome editing tool with high efficiency and target specificity (TALENs; transcription activator-like effector nucleases) to mutate the genome sequence of myostatin (MSTN) in medaka (Oryzias latipes). After the TALEN pair targeting OlMyostatin was injected into fertilized medaka eggs, mutant G0 fish carrying different TALENs-induced frameshifts in the OlMSTN coding sequence were mated together in order to transmit the mutant sequences to the F1 generation. Two F1 mutants with frameshifted myostatin alleles were then mated to produce the F2 generation, and these F2 OlMSTN null (MSTN(-/-)) medaka were evaluated for growth performance. The F2 fish showed significantly increased body length and weight compared to the wild type fish at the juvenile and post-juvenile stages. At the post-juvenile stage, the average body weight of the MSTN(-/-) medaka was ∼25% greater than the wild type. However, we also found that when the F3 generation were challenged with red spotted grouper nervous necrosis virus (RGNNV), the expression levels of the interferon-stimulated genes were lower than in the wild type, and the virus copy number was maintained at a high level. We therefore conclude that although the MSTN(-/-) medaka had a larger phenotype, their immune system appeared to be at least partially suppressed or undeveloped. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.
Palesch, David; Bosinger, Steven E; Tharp, Gregory K; Vanderford, Thomas H; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P; Kirchhoff, Frank; Hahn, Beatrice H; Norgren, Robert B; Patel, Nirav B; Sodora, Donald L; Dawoud, Reem A; Stewart, Caro-Beth; Seepo, Sara M; Harris, R Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W C; Hahn, Matthew W; Pipes, Lenore; Mason, Christopher E; Muzny, Donna M; Gibbs, Richard A; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-03
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host
Palesch, David; Bosinger, Steven E.; Tharp, Gregory K.; Vanderford, Thomas H.; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P.; Kirchhoff, Frank; Hahn, Beatrice H.; Norgren, Robert B.; Patel, Nirav B.; Sodora, Donald L.; Dawoud, Reem A.; Stewart, Caro-Beth; Seepo, Sara M.; Harris, R. Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W. C.; Hahn, Matthew W.; Pipes, Lenore; Mason, Christopher E.; Muzny, Donna M.; Gibbs, Richard A.; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-01
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia1. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS. PMID:29300007
Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, F.Y.M.; Humphries, M.L.; Ferreira, P.
1997-01-20
Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed whilemore » the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.« less
Whole-genome analyses of Korean native and Holstein cattle breeds by massively parallel sequencing.
Choi, Jung-Woo; Liao, Xiaoping; Stothard, Paul; Chung, Won-Hyong; Jeon, Heoyn-Jeong; Miller, Stephen P; Choi, So-Young; Lee, Jeong-Koo; Yang, Bokyoung; Lee, Kyung-Tai; Han, Kwang-Jin; Kim, Hyeong-Cheol; Jeong, Dongkee; Oh, Jae-Don; Kim, Namshin; Kim, Tae-Hun; Lee, Hak-Kyo; Lee, Sung-Jin
2014-01-01
A main goal of cattle genomics is to identify DNA differences that account for variations in economically important traits. In this study, we performed whole-genome analyses of three important cattle breeds in Korea--Hanwoo, Jeju Heugu, and Korean Holstein--using the Illumina HiSeq 2000 sequencing platform. We achieved 25.5-, 29.6-, and 29.5-fold coverage of the Hanwoo, Jeju Heugu, and Korean Holstein genomes, respectively, and identified a total of 10.4 million single nucleotide polymorphisms (SNPs), of which 54.12% were found to be novel. We also detected 1,063,267 insertions-deletions (InDels) across the genomes (78.92% novel). Annotations of the datasets identified a total of 31,503 nonsynonymous SNPs and 859 frameshift InDels that could affect phenotypic variations in traits of interest. Furthermore, genome-wide copy number variation regions (CNVRs) were detected by comparing the Hanwoo, Jeju Heugu, and previously published Chikso genomes against that of Korean Holstein. A total of 992, 284, and 1881 CNVRs, respectively, were detected throughout the genome. Moreover, 53, 65, 45, and 82 putative regions of homozygosity (ROH) were identified in Hanwoo, Jeju Heugu, Chikso, and Korean Holstein respectively. The results of this study provide a valuable foundation for further investigations to dissect the molecular mechanisms underlying variation in economically important traits in cattle and to develop genetic markers for use in cattle breeding.
Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont
Lindsey, Amelia R. I.; Werren, John H.; Richards, Stephen; Stouthamer, Richard
2016-01-01
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. PMID:27194801
Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont.
Lindsey, Amelia R I; Werren, John H; Richards, Stephen; Stouthamer, Richard
2016-07-07
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. Copyright © 2016 Lindsey et al.
Whole-Genome Analyses of Korean Native and Holstein Cattle Breeds by Massively Parallel Sequencing
Stothard, Paul; Chung, Won-Hyong; Jeon, Heoyn-Jeong; Miller, Stephen P.; Choi, So-Young; Lee, Jeong-Koo; Yang, Bokyoung; Lee, Kyung-Tai; Han, Kwang-Jin; Kim, Hyeong-Cheol; Jeong, Dongkee; Oh, Jae-Don; Kim, Namshin; Kim, Tae-Hun; Lee, Hak-Kyo; Lee, Sung-Jin
2014-01-01
A main goal of cattle genomics is to identify DNA differences that account for variations in economically important traits. In this study, we performed whole-genome analyses of three important cattle breeds in Korea—Hanwoo, Jeju Heugu, and Korean Holstein—using the Illumina HiSeq 2000 sequencing platform. We achieved 25.5-, 29.6-, and 29.5-fold coverage of the Hanwoo, Jeju Heugu, and Korean Holstein genomes, respectively, and identified a total of 10.4 million single nucleotide polymorphisms (SNPs), of which 54.12% were found to be novel. We also detected 1,063,267 insertions–deletions (InDels) across the genomes (78.92% novel). Annotations of the datasets identified a total of 31,503 nonsynonymous SNPs and 859 frameshift InDels that could affect phenotypic variations in traits of interest. Furthermore, genome-wide copy number variation regions (CNVRs) were detected by comparing the Hanwoo, Jeju Heugu, and previously published Chikso genomes against that of Korean Holstein. A total of 992, 284, and 1881 CNVRs, respectively, were detected throughout the genome. Moreover, 53, 65, 45, and 82 putative regions of homozygosity (ROH) were identified in Hanwoo, Jeju Heugu, Chikso, and Korean Holstein respectively. The results of this study provide a valuable foundation for further investigations to dissect the molecular mechanisms underlying variation in economically important traits in cattle and to develop genetic markers for use in cattle breeding. PMID:24992012
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa.
Arno, Gavin; Agrawal, Smriti A; Eblimit, Aiden; Bellingham, James; Xu, Mingchu; Wang, Feng; Chakarova, Christina; Parfitt, David A; Lane, Amelia; Burgoyne, Thomas; Hull, Sarah; Carss, Keren J; Fiorentino, Alessia; Hayes, Matthew J; Munro, Peter M; Nicols, Ralph; Pontikos, Nikolas; Holder, Graham E; Asomugha, Chinwe; Raymond, F Lucy; Moore, Anthony T; Plagnol, Vincent; Michaelides, Michel; Hardcastle, Alison J; Li, Yumei; Cukras, Catherine; Webster, Andrew R; Cheetham, Michael E; Chen, Rui
2016-12-01
Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Frameshift Mutation in KIT is Associated with White Spotting in the Arabian Camel.
Holl, Heather; Isaza, Ramiro; Mohamoud, Yasmin; Ahmed, Ayeda; Almathen, Faisal; Youcef, Cherifi; Gaouar, Semir; Antczak, Douglas F; Brooks, Samantha
2017-03-09
While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild-type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five kITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation.
A Frameshift Mutation in KIT is Associated with White Spotting in the Arabian Camel
Holl, Heather; Isaza, Ramiro; Mohamoud, Yasmin; Ahmed, Ayeda; Almathen, Faisal; Youcef, Cherifi; Gaouar, Semir; Antczak, Douglas F.; Brooks, Samantha
2017-01-01
While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild-type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five KITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation. PMID:28282952
Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H
2014-08-01
The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Evolution and Diversity in Human Herpes Simplex Virus Genomes
Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.
2014-01-01
Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835
Meredith, Robert W.; Gatesy, John; Murphy, William J.; Ryder, Oliver A.; Springer, Mark S.
2009-01-01
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686
McGrath, J A; Ashton, G H; Mellerio, J E; Salas-Alanis, J C; Swensson, O; McMillan, J R; Eady, R A
1999-09-01
Non-sense mutations on both alleles of either the type VII collagen gene (COL7A1) or the genes encoding laminin 5 (LAMA3, LAMB3, or LAMC2) usually result in clinically severe forms of recessive dystrophic or junctional epidermolysis bullosa, respectively. In this study we assessed two unrelated families whose mutations in genomic DNA predicted severe recessive dystrophic epidermolysis bullosa or junctional epidermolysis bullosa phenotypes but in whom the manifestations were milder than expected. The recessive dystrophic epidermolysis bullosa patients had a homozygous single base-pair frameshift mutation in exon 19 of COL7A1 (2470insG). Clinically, there was generalized blistering but only mild scarring. Skin biopsy revealed positive type VII collagen immunoreactivity and recognizable anchoring fibrils. The junctional epidermolysis bullosa patients were compound heterozygotes for a frameshift/non-sense combination of mutations in exons 3 and 17 of LAMB3 (29insC/Q834X). These patients did not have the lethal form of junctional epidermolysis bullosa but, as adults, displayed the milder generalized atrophic benign epidermolysis bullosa variant. There was undetectable laminin 5 staining at the dermal-epidermal junction using an antibody to the beta3 chain, but faintly positive alpha3 and gamma2 chain labeling, and there was variable hypoplasia of hemidesmosomes. To explain the milder recessive dystrophic epidermolysis bullosa and junctional epidermolysis bullosa phenotypes in these families, reverse transcription-polymerase chain reaction, using RNA extracted from frozen skin, was able to provide evidence for some rescue of mutant mRNA transcripts with restoration of the open- reading frame. In the recessive dystrophic epidermolysis bullosa patients, transcripts containing in-frame skipping of exon 19 of COL7A1 in the cDNA were detected, and in the junctional epidermolysis bullosa patients transcripts with in-frame skipping of exon 17 of LAMB3 were identified. The truncated proteins encoded by these transcripts are expected to lack certain critical domains involved in cell-matrix attachment, but may still be able to contribute to adhesion thereby moderating the severity of the skin blistering. This study shows the limitations in predicting phenotype in epidermolysis bullosa solely based on mutation analysis of genomic DNA and emphasizes the importance of immunohistochemistry, electron microscopy, and mRNA assessment as parallel investigations.
Ramsay, Joshua P; Tester, Laura G L; Major, Anthony S; Sullivan, John T; Edgar, Christina D; Kleffmann, Torsten; Patterson-House, Jackson R; Hall, Drew A; Tate, Warren P; Hynes, Michael F; Ronson, Clive W
2015-03-31
Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.
Ramsay, Joshua P.; Tester, Laura G. L.; Major, Anthony S.; Sullivan, John T.; Edgar, Christina D.; Kleffmann, Torsten; Patterson-House, Jackson R.; Hall, Drew A.; Tate, Warren P.; Hynes, Michael F.; Ronson, Clive W.
2015-01-01
Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSymR7A is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNAphe from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSymR7A, suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSymR7A-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSymR7A excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSymR7A transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSymR7A transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels. PMID:25787256
Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications.
Klassen, Roland; Bruch, Alexander; Schaffrath, Raffael
2017-09-02
Recently, a role for the anticodon wobble uridine modification 5-methoxycarbonylmethyl-2-thiouridine (mcm 5 s 2 U) has been revealed in the suppression of translational +1 frameshifts in Saccharomyces cerevisiae. Loss of either the mcm 5 U or s 2 U parts of the modification elevated +1 frameshift rates and results obtained with reporters involving a tRNA Lys UUU dependent frameshift site suggested these effects are caused by reduced ribosomal A-site binding of the hypomodified tRNA. Combined loss of mcm 5 U and s 2 U leads to increased ribosome pausing at tRNA Lys UUU dependent codons and synergistic growth defects but effects on +1 frameshift rates remained undefined to this end. We show in here that simultaneous removal of mcm 5 U and s 2 U results in synergistically increased +1 frameshift rates that are suppressible by extra copies of tRNA Lys UUU . Thus, two distinct chemical modifications of the same wobble base independently contribute to reading frame maintenance, loss of which may cause or contribute to observed growth defects. Since the thiolation pathway is sensitive to moderately elevated temperatures in yeast, we observe a heat-induced increase of +1 frameshift rates in wild type cells that depends on the sulfur transfer protein Urm1. Furthermore, we find that temperature-induced frameshifting is kept in check by the dehydration of N6-threonylcarbamoyladenosine (t 6 A) to its cyclic derivative (ct 6 A) at the anticodon adjacent position 37. Since loss of ct 6 A in elp3 or urm1 mutant cells is detrimental for temperature stress resistance we assume that conversion of t 6 A to ct 6 A serves to limit deleterious effects on translational fidelity caused by hypomodified states of wobble uridine bases.
Characterization of IS1515, a Functional Insertion Sequence in Streptococcus pneumoniae
Muñoz, Rosario; López, Rubens; García, Ernesto
1998-01-01
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus. PMID:9580131
Evolution of genome size and complexity in the rhabdoviridae.
Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos
2015-02-01
RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.
Evolution of Genome Size and Complexity in the Rhabdoviridae
Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos
2015-01-01
RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389
Lozano, Roberto; Ponce, Olga; Ramirez, Manuel; Mostajo, Nelly; Orjeda, Gisella
2012-01-01
The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes. PMID:22493716
A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.
Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J
2016-06-01
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.
A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research
Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.
2016-01-01
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963
Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Alan; Grigoriev, Igor
2009-04-17
Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentousmore » ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.« less
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells
Nakagawa, K.; Lokugamage, K.G.; Makino, S.
2017-01-01
Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623
Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu
2017-05-01
Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.
Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation
Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi
2015-01-01
In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921
Adams, Madeleine; Jenney, Meriel; Lazarou, Laz; White, Rhian; Birdsall, Sanda; Staab, Timo; Schindler, Detlev; Meyer, Stefan
2014-01-01
Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress. PMID:24932421
Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes
2013-01-01
Background Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results highlight the power of combining fossil and genomic evidence to decipher macroevolutionary transitions and characterize the functional range of different loci involved in tooth development. The fossil record and phylogenetics combine to predict the occurrence of molecular fossils of tooth-specific genes in the genomes of edentulous amniotes, and in every case these molecular fossils have been discovered. The widespread occurrence of EMP pseudogenes in turtles, birds, and edentulous/enamelless mammals also provides compelling evidence that in amniotes, the only unique, non-redundant function of these genes is in enamel formation. PMID:23342979
Mömke, Stefanie; Kerkmann, Andrea; Wöhlke, Anne; Ostmeier, Miriam; Hewicker-Trautwein, Marion; Ganter, Martin; Kijas, James; Distl, Ottmar
2011-01-01
Junctional epidermolysis bullosa (JEB) is a hereditary mechanobullous skin disease in humans and animals. A Herlitz type JEB was identified in German Black Headed Mutton (BHM) sheep and affected lambs were reproduced in a breeding trial. Affected lambs showed skin and mucous membranes blistering and all affected lambs died within the first weeks of life. The pedigree data were consistent with a monogenic autosomal recessive inheritance. Immunofluorescence showed a reduced expression of laminin 5 protein which consists of 3 subunits encoded by the genes LAMA3, LAMB3 and LAMC2. We screened these genes for polymorphisms. Linkage and genome-wide association analyses identified LAMC2 as the most likely candidate for HJEB. A two base pair deletion within exon 18 of the LAMC2 gene (FM872310:c.2746delCA) causes a frameshift mutation resulting in a premature stop codon (p.A928*) 13 triplets downstream of this mutation and in addition, introduces an alternative splicing of exon 18 LAMC2. This deletion showed a perfect co-segregation with HJEB in all 740 analysed BHM sheep. Identification of the LAMC2 deletion means an animal model for HJEB is now available to develop therapeutic approaches of relevance to the human form of this disease. PMID:21573221
Foamy virus reverse transcriptase is expressed independently from the Gag protein.
Enssle, J; Jordan, I; Mauer, B; Rethwilm, A
1996-01-01
In the foamy virus (FV) subgroup of retroviruses the pol genes are located in the +1 reading frame relative to the gag genes and possess potential ATG initiation codons in their 5' regions. This genome organization suggests either a + 1 ribosomal frameshift to generate a Gag-Pol fusion protein, similar to all other retroviruses studied so far, or new initiation of Pol translation, as used by pararetroviruses, to express the Pol protein. By using a genetic approach we have ruled out the former possibility and provide evidence for the latter. Two down-mutations (M53 and M54) of the pol ATG codon were found to abolish replication and Pol protein expression of the human FV isolate. The introduction of a new ATG in mutation M55, 3' to the down-mutated ATG of mutation M53, restored replication competence, indicating that the pol ATG functions as a translational initiation codon. Two nonsense mutants (M56 and M57), which functionally separated gag and pol with respect to potential frame-shifting sites, were also replication-competent, providing further genetic evidence that FVs express the Pol protein independently from Gag. Our results show that during a particular step of the replication cycle, FVs differ fundamentally from all other retroviruses. Images Fig. 3 PMID:8633029
Yeh, Ying-Chun; Kinoshita, Masato; Ng, Tze Hann; Chang, Yu-Hsuan; Maekawa, Shun; Chiang, Yi-An; Aoki, Takashi; Wang, Han-Ching
2017-09-12
Myostatin (MSTN) suppresses skeletal muscle development and growth in mammals, but its role in fish is less well understood. Here we used CRISPR/Cas9 to mutate the MSTN gene in medaka (Oryzias latipes) and evaluate subsequent growth performance. We produced mutant F0 fish that carried different frameshifts in the OlMSTN coding sequence and confirmed the heritability of the mutant genotypes to the F1 generation. Two F1 fish with the same heterozygous frame-shifted genomic mutations (a 22 bp insertion in one allele; a 32 bp insertion in the other) were then crossbred to produce subsequent generations (F2~F5). Body length and weight of the MSTN -/- F4 medaka were significantly higher than in the wild type fish, and muscle fiber density in the inner and outer compartments of the epaxial muscles was decreased, suggesting that MSTN null mutation induces muscle hypertrophy. From 3~4 weeks post hatching (wph), the expression of three major myogenic related factors (MRFs), MyoD, Myf5 and Myogenin, was also significantly upregulated. Some medaka had a spinal deformity, and we also observed a trade-off between growth and immunity in MSTN -/- F4 medaka. Reproduction was unimpaired in the fast-growth phenotypes.
Eimeria genomics: Where are we now and where are we going?
Blake, Damer P
2015-08-15
The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Zhensheng; Yang, Lixia; Zhang, Haiping; Shi, Jiahao; Vandana, J. Jeya; Lam, Do Thuy Uyen Ha; Olsthoorn, René C. L.; Lu, Lanyuan; Chen, Gang
2016-12-01
Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.
A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy
Ahonen, Saija J.; Arumilli, Meharji; Lohi, Hannes
2013-01-01
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes. PMID:24015210
2014-01-01
Background Small insertion and deletion polymorphisms (Indels) are the second most common mutations in the human genome, after Single Nucleotide Polymorphisms (SNPs). Recent studies have shown that they have significant influence on genetic variation by altering human traits and can cause multiple human diseases. In particular, many Indels that occur in protein coding regions are known to impact the structure or function of the protein. A major challenge is to predict the effects of these Indels and to distinguish between deleterious and neutral variants. When an Indel occurs within a coding region, it can be either frameshifting (FS) or non-frameshifting (NFS). FS-Indels either modify the complete C-terminal region of the protein or result in premature termination of translation. NFS-Indels insert/delete multiples of three nucleotides leading to the insertion/deletion of one or more amino acids. Results In order to study the relationships between NFS-Indels and Mendelian diseases, we characterized NFS-Indels according to numerous structural, functional and evolutionary parameters. We then used these parameters to identify specific characteristics of disease-causing and neutral NFS-Indels. Finally, we developed a new machine learning approach, KD4i, that can be used to predict the phenotypic effects of NFS-Indels. Conclusions We demonstrate in a large-scale evaluation that the accuracy of KD4i is comparable to existing state-of-the-art methods. However, a major advantage of our approach is that we also provide the reasons for the predictions, in the form of a set of rules. The rules are interpretable by non-expert humans and they thus represent new knowledge about the relationships between the genotype and phenotypes of NFS-Indels and the causative molecular perturbations that result in the disease. PMID:24742296
Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann
2017-01-01
Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.
Cornish, Peter V; Hennig, Mirko; Giedroc, David P
2005-09-06
The molecular determinants of stimulation of -1 programmed ribosomal frameshifting (-1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes -1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3' nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2'-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1-2'-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2-S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of -1 PRF (15 +/- 2%) relative to the BWYV pseudoknot (6 +/- 1%), a difference traced largely to the identity of the 3' nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by approximately 1.5 kcal x mol(-1) (pH 7.0, 37 degrees C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs.
Cornish, Peter V.; Hennig, Mirko; Giedroc, David P.
2005-01-01
The molecular determinants of stimulation of –1 programmed ribosomal frameshifting (–1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes –1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3′ nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2′-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1–2′-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2–S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of –1 PRF (15 ± 2%) relative to the BWYV pseudoknot (6 ± 1%), a difference traced largely to the identity of the 3′ nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by ≈1.5 kcal·mol–1 (pH 7.0, 37°C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs. PMID:16123125
Liphardt, J; Napthine, S; Kontos, H; Brierley, I
1999-05-07
RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2. Copyright 1999 Academic Press.
Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M
2016-05-17
Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.
Garza, Daniel Rios; Thompson, Cristiane C.; Loureiro, Edvaldo Carlos Brito; Dutilh, Bas E.; Inada, Davi Toshio; Junior, Edivaldo Costa Sousa; Cardoso, Jedson Ferreira; Nunes, Márcio Roberto T.; de Lima, Clayton Pereira Silva; Silvestre, Rodrigo Vellasco Duarte; Nunes, Keley Nascimento Barbosa; Santos, Elisabeth C. O.; Edwards, Robert A.; Vicente, Ana Carolina P.; de Sá Morais, Lena Lillian Canto
2012-01-01
The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics. PMID:22662140
Salem, Nida’ M.; Miller, W. Allen; Rowhani, Adib; Golino, Deborah A.; Moyne, Anne-Laure; Falk, Bryce W.
2015-01-01
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5′- and 3′-RACE showed the RSDaV genomic RNA to be 5,808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3′-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5′ ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5′ end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3′ cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae. PMID:18329064
Salem, Nida' M; Miller, W Allen; Rowhani, Adib; Golino, Deborah A; Moyne, Anne-Laure; Falk, Bryce W
2008-06-05
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5'- and 3'-RACE showed the RSDaV genomic RNA to be 5808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3'-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5' ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5' end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3' cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae.
Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua
2015-01-01
Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as revealed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus.
A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes
Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni
2014-01-01
The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782
Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models.
Stochmanski, Shawn J; Therrien, Martine; Laganière, Janet; Rochefort, Daniel; Laurent, Sandra; Karemera, Liliane; Gaudet, Rebecca; Vyboh, Kishanda; Van Meyel, Don J; Di Cristo, Graziella; Dion, Patrick A; Gaspar, Claudia; Rouleau, Guy A
2012-05-15
Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.
Assiri, Abdullah M.; Biggs, Holly M.; Abedi, Glen R.; Lu, Xiaoyan; Bin Saeed, Abdulaziz; Abdalla, Osman; Mohammed, Mutaz; Al-Abdely, Hail M.; Algarni, Homoud S.; Alhakeem, Raafat F.; Almasri, Malak M.; Alsharef, Ali A.; Nooh, Randa; Erdman, Dean D.; Gerber, Susan I.; Watson, John T.
2016-01-01
During July–August 2015, the number of cases of Middle East respiratory syndrome (MERS) reported from Saudi Arabia increased dramatically. We reviewed the 143 confirmed cases from this period and classified each based upon likely transmission source. We found that the surge in cases resulted predominantly (90%) from secondary transmission largely attributable to an outbreak at a single healthcare facility in Riyadh. Genome sequencing of MERS coronavirus from 6 cases demonstrated continued circulation of the recently described recombinant virus. A single unique frameshift deletion in open reading frame 5 was detected in the viral sequence from 1 case. PMID:27704019
Akhunov, Eduard D.; Sehgal, Sunish; Liang, Hanquan; Wang, Shichen; Akhunova, Alina R.; Kaur, Gaganpreet; Li, Wanlong; Forrest, Kerrie L.; See, Deven; Šimková, Hana; Ma, Yaqin; Hayden, Matthew J.; Luo, Mingcheng; Faris, Justin D.; Doležel, Jaroslav; Gill, Bikram S.
2013-01-01
Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%–25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits. PMID:23124323
Equid herpesvirus 8: Complete genome sequence and association with abortion in mares
Garvey, Marie; Suárez, Nicolás M.; Kerr, Karen; Hector, Ralph; Moloney-Quinn, Laura; Arkins, Sean; Davison, Andrew J.
2018-01-01
Equid herpesvirus 8 (EHV-8), formerly known as asinine herpesvirus 3, is an alphaherpesvirus that is closely related to equid herpesviruses 1 and 9 (EHV-1 and EHV-9). The pathogenesis of EHV-8 is relatively little studied and to date has only been associated with respiratory disease in donkeys in Australia and horses in China. A single EHV-8 genome sequence has been generated for strain Wh in China, but is apparently incomplete and contains frameshifts in two genes. In this study, the complete genome sequences of four EHV-8 strains isolated in Ireland between 2003 and 2015 were determined by Illumina sequencing. Two of these strains were isolated from cases of abortion in horses, and were misdiagnosed initially as EHV-1, and two were isolated from donkeys, one with neurological disease. The four genome sequences are very similar to each other, exhibiting greater than 98.4% nucleotide identity, and their phylogenetic clustering together demonstrated that genomic diversity is not dependent on the host. Comparative genomic analysis revealed 24 of the 76 predicted protein sequences are completely conserved among the Irish EHV-8 strains. Evolutionary comparisons indicate that EHV-8 is phylogenetically closer to EHV-9 than it is to EHV-1. In summary, the first complete genome sequences of EHV-8 isolates from two host species over a twelve year period are reported. The current study suggests that EHV-8 can cause abortion in horses. The potential threat of EHV-8 to the horse industry and the possibility that donkeys may act as reservoirs of infection warrant further investigation. PMID:29414990
Mayer, Jens; Tsangaras, Kyriakos; Heeger, Felix; Avila-Arcos, María; Stenglein, Mark D; Chen, Wei; Sun, Wei; Mazzoni, Camila J; Osterrieder, Nikolaus; Greenwood, Alex D
2013-08-15
Transcriptome analysis of polar bears (Ursus maritimus) yielded sequences with highest similarity to the human endogenous retrovirus group HERV-K(HML-2). Further analysis of the polar bear draft genome identified an endogenous betaretrovirus group comprising 26 proviral copies and 231 solo LTRs. Molecular dating indicates the group originated before the divergence of bears from a common ancestor but is not present in all carnivores. Closely related sequences were identified in the giant panda (Ailuropoda melanoleuca) and characterized from its genome. We have designated the polar bear and giant panda sequences U. maritimus endogenous retrovirus (UmaERV) and A. melanoleuca endogenous retrovirus (AmeERV), respectively. Phylogenetic analysis demonstrated that the bear virus group is nested within the HERV-K supergroup among bovine and bat endogenous retroviruses suggesting a complex evolutionary history within the HERV-K group. All individual remnants of proviral sequences contain numerous frameshifts and stop codons and thus, the virus is likely non-infectious. Copyright © 2013 Elsevier Inc. All rights reserved.
Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodner, R.D.; Lipford, J.; Kane, M.F.
1994-12-01
Hereditary nonpolyposis colorectal carcinoma (HNPCC) is a major cancer susceptibility syndrome known to be caused by inheritance of mutations in genes such as hMSH2 and hMLH1, which encode components of a DNA mismatch repair system. The MSH2 genomic locus has been cloned and shown to cover {approximately}73 kb of genomic DNA and to contain 16 exons. The sequence of all of the intron-exon junctions has been determined and used to develop methods for analyzing each MSH2 exon for mutations. These methods have been used to analyze two large HNPCC kindreds exhibiting features of the Muir-Torre syndrome and demonstrate that cancermore » susceptibility is due to the inheritance of a frameshift mutation in the MSH2 gene in one family and a nonsense mutation in the MSH2 gene in the other family. 59 refs., 5 figs., 1 tab.« less
Cis- and trans-regulation of luteovirus gene expression by the 3’ end of the viral genome
Miller, W. Allen; Jackson, Jacquelyn; Feng, Ying
2016-01-01
Translation of the 5.7 kb luteovirus genome is controlled by the 3’ untranslated region (UTR). Base pairing between regions of the 3’ UTR and sequences kilobases upstream is required for cap-independent translation and ribosomal frameshifting needed to synthesize the viral replicase. Luteoviruses produce subgenomic RNAs, which can serve as mRNA, but one sgRNA also regulates translation initiation in trans. As on all viruses, the 3’ and 5’ ends contain structures that are presumed to facilitate RNA synthesis. This review describes the structures and interactions of Barley yellow dwarf virus RNA that facilitate the complex interplay between the above events and result in a successful virus infection. We also present surprising results on the apparent lack of need for some subgenomic RNAs for the virus to infect cells or whole plants. In summary, the UTRs of luteoviruses are highly complex entities that control and fine-tune many key events of the virus replication cycle. PMID:25858272
Mayer, Jens; Tsangaras, Kyriakos; Heeger, Felix; Ávila-Arcos, Maria; Stenglein, Mark D.; Chen, Wei; Sun, Wei; Mazzoni, Camila; Osterrieder, Nikolaus; Greenwood, Alex D.
2013-01-01
Transcriptome analysis of polar bears (Ursus maritimus) yielded sequences with highest similarity to the human endogenous retrovirus group HERV-K(HML-2). Further analysis of the polar bear draft genome identified an endogenous betaretrovirus group comprising 26 proviral copies and 231 solo LTRs. Molecular dating indicates the group originated before the divergence of bears from a common ancestor but is not present in all carnivores. Closely related sequences were identified in the giant panda (Ailuropoda melanoleuca) and characterized from its genome. We have designated the polar bear and giant panda sequences Ursus maritimus endogenous retrovirus (UmaERV) and Ailuropoda melanoleuca endogenous retrovirus (AmeERV), respectively. Phylogenetic analysis demonstrated that the bear virus group is nested within the HERV-K supergroup among bovine and bat endogenous retroviruses suggesting a complex evolutionary history within the HERV-K group. All individual remnants of proviral sequences contain numerous frameshifts and stop codons and thus, the virus is likely non-infectious. PMID:23725819
Mutations in the calcium-related gene IL1RAPL1 are associated with autism.
Piton, Amélie; Michaud, Jacques L; Peng, Huashan; Aradhya, Swaroop; Gauthier, Julie; Mottron, Laurent; Champagne, Nathalie; Lafrenière, Ronald G; Hamdan, Fadi F; Joober, Ridha; Fombonne, Eric; Marineau, Claude; Cossette, Patrick; Dubé, Marie-Pierre; Haghighi, Pejmun; Drapeau, Pierre; Barker, Philip A; Carbonetto, Salvatore; Rouleau, Guy A
2008-12-15
In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.
Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi
2003-08-01
To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).
A novel founder MYO15A frameshift duplication is the major cause of genetic hearing loss in Oman.
Palombo, Flavia; Al-Wardy, Nadia; Ruscone, Guido Alberto Gnecchi; Oppo, Manuela; Kindi, Mohammed Nasser Al; Angius, Andrea; Al Lamki, Khalsa; Girotto, Giorgia; Giangregorio, Tania; Benelli, Matteo; Magi, Alberto; Seri, Marco; Gasparini, Paolo; Cucca, Francesco; Sazzini, Marco; Al Khabori, Mazin; Pippucci, Tommaso; Romeo, Giovanni
2017-02-01
The increased risk for autosomal recessive disorders is one of the most well-known medical implications of consanguinity. In the Sultanate of Oman, a country characterized by one of the highest rates of consanguineous marriages worldwide, prevalence of genetic hearing loss (GHL) is estimated to be 6/10 000. Families of GHL patients have higher consanguinity rates than the general Omani population, indicating a major role for recessive forms. Mutations in GJB2, the most commonly mutated GHL gene, have been sporadically described. We collected 97 DNA samples of GHL probands, affected/unaffected siblings and parents from 26 Omani consanguineous families. Analyzing a first family by whole-exome sequencing, we identified a novel homozygous frameshift duplication (c.1171_1177dupGCCATCT) in MYO15A, the gene linked to the deafness locus DFNB3. This duplication was then found in a total of 8/26 (28%) families, within a 849 kb founder haplotype. Reconstruction of haplotype structure at MYO15A surrounding genomic regions indicated that the founder haplotype branched out in the past two to three centuries from a haplotype present worldwide. The MYO15A duplication emerges as the major cause of GHL in Oman. These findings have major implications for the design of GHL diagnosis and prevention policies in Oman.
Frameshifted prion proteins as pathological agents: quantitative considerations.
Wills, Peter R
2013-05-21
A quantitatively consistent explanation for the titres of infectivity found in a variety of prion-containing preparations is provided on the basis that the ætiological agents of transmissible spongiform encephalopathy comprise a very small population fraction of prion protein (PrP) variants, which contain frameshifted elements in their N-terminal octapeptide-repeat regions. A mechanism for the replication of frameshifted prions is described and calculations are performed to obtain estimates of the concentration of these PrP variants in normal and infected brain, as well as their enrichment in products of protein misfolding cyclic amplification. These calculations resolve the lack of proper quantitative correlation between measures of infectivity and the presence of conformationally-altered, protease-resistant variants of PrP. Experiments, which could confirm or eventually exclude the role of frameshifted variants in the ætiology of prion disease, are suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.
Culbertson, Michael R.; Gaber, Richard F.; Cummins, Claudia M.
1982-01-01
Two classes of frameshift suppressors distributed at 22 different loci were identified in previous studies in the yeast Saccharomyces cerevisiae. These suppressors exhibited allele-specific suppression of +1 G:C insertion mutations in either glycine or proline codons, designated as group II and group III frameshift mutations, respectively. Genes corresponding to representative suppressors of each group have been shown to encode altered glycine or proline tRNAs containing four base anticodons.—This communication reports the existence of a third class of frameshift suppressor that exhibits a wider range in specificity of suppression. The suppressors map at three loci, suf12, suf13, and suf14, which are located on chromosomes IV, XV, and XIV, respectively. The phenotypes of these suppressors suggest that suppression may be mediated by genes other than those encoding the primary structure of glycine or proline tRNAs. PMID:6757053
Benhar, I; Miller, C; Engelberg-Kulka, H
1993-01-01
The Escherichia coli trpR gene encodes the 108-amino-acid-long Trp repressor. We have shown previously that a +1 frameshifting event occurs during the expression of trpR, resulting in the synthesis of an additional (+1 frame) polypeptide. Using trpR-lac'Z fusions, we have recently found that the transition from the 0 to the +1 frame occurs via the bypassing of a 55-nucleotide-long segment of the trpR+1-lac'Z mRNA (I. Benhar, and H. Engelberg-Kulka, Cell 72:121-130, 1993). Here we show that the frequency of trpR frameshifting (or bypassing) can be regulated both in vivo and in vitro. This frequency is inversely proportional to the rate of initiation of translation of the trpR gene. Hence, modulating the level of translation initiation affects the frequency of frameshifting. Images PMID:8491735
A frameshift mutation in GON4L is associated with proportionate dwarfism in Fleckvieh cattle.
Schwarzenbacher, Hermann; Wurmser, Christine; Flisikowski, Krzysztof; Misurova, Lubica; Jung, Simone; Langenmayer, Martin C; Schnieke, Angelika; Knubben-Schweizer, Gabriela; Fries, Ruedi; Pausch, Hubert
2016-03-31
Low birth weight and postnatal growth restriction are the most evident symptoms of dwarfism. Accompanying skeletal aberrations may compromise the general condition and locomotion of affected individuals. Several paternal half-sibs with a low birth weight and a small size were born in 2013 in the Fleckvieh cattle population. Affected calves were strikingly underweight at birth in spite of a normal gestation length and had craniofacial abnormalities such as elongated narrow heads and brachygnathia inferior. In spite of a normal general condition, their growth remained restricted during rearing. We genotyped 27 affected and 10,454 unaffected animals at 44,672 single nucleotide polymorphisms and performed association tests followed by homozygosity mapping, which allowed us to map the locus responsible for growth failure to a 1.85-Mb segment on bovine chromosome 3. Analysis of whole-genome re-sequencing data from one affected and 289 unaffected animals revealed a 1-bp deletion (g.15079217delC, rs723240647) in the coding region of the GON4L gene that segregated with the dwarfism-associated haplotype. We showed that the deletion induces intron retention and premature termination of translation, which can lead to a severely truncated protein that lacks domains that are likely essential to normal protein function. The widespread use of an undetected carrier bull for artificial insemination has resulted in a tenfold increase in the frequency of the deleterious allele in the female population. A frameshift mutation in GON4L is associated with autosomal recessive proportionate dwarfism in Fleckvieh cattle. The mutation has segregated in the population for more than 50 years without being recognized as a genetic disorder. However, the widespread use of an undetected carrier bull for artificial insemination caused a sudden accumulation of homozygous calves with dwarfism. Our findings provide the basis for genome-based mating strategies to avoid the inadvertent mating of carrier animals and thereby prevent the birth of homozygous calves with impaired growth.
Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A
2008-01-01
Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids. PMID:18492277
Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua
2015-01-01
Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068
Walsh, Tom; Lee, Ming K.; Casadei, Silvia; Thornton, Anne M.; Stray, Sunday M.; Pennil, Christopher; Nord, Alex S.; Mandell, Jessica B.; Swisher, Elizabeth M.; King, Mary-Claire
2010-01-01
Inherited loss-of-function mutations in the tumor suppressor genes BRCA1, BRCA2, and multiple other genes predispose to high risks of breast and/or ovarian cancer. Cancer-associated inherited mutations in these genes are collectively quite common, but individually rare or even private. Genetic testing for BRCA1 and BRCA2 mutations has become an integral part of clinical practice, but testing is generally limited to these two genes and to women with severe family histories of breast or ovarian cancer. To determine whether massively parallel, “next-generation” sequencing would enable accurate, thorough, and cost-effective identification of inherited mutations for breast and ovarian cancer, we developed a genomic assay to capture, sequence, and detect all mutations in 21 genes, including BRCA1 and BRCA2, with inherited mutations that predispose to breast or ovarian cancer. Constitutional genomic DNA from subjects with known inherited mutations, ranging in size from 1 to >100,000 bp, was hybridized to custom oligonucleotides and then sequenced using a genome analyzer. Analysis was carried out blind to the mutation in each sample. Average coverage was >1200 reads per base pair. After filtering sequences for quality and number of reads, all single-nucleotide substitutions, small insertion and deletion mutations, and large genomic duplications and deletions were detected. There were zero false-positive calls of nonsense mutations, frameshift mutations, or genomic rearrangements for any gene in any of the test samples. This approach enables widespread genetic testing and personalized risk assessment for breast and ovarian cancer. PMID:20616022
Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed
2007-07-01
Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.
A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis
Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona
2015-01-01
Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533
Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy
2003-01-01
Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361
Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng
2015-01-01
Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258
Kim, Dong Seon; Hahn, Yoonsoo
2012-11-13
Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.
BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data
Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel
2012-01-01
BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310
FERMT1 promoter mutations in patients with Kindler syndrome.
Has, C; Chmel, N; Levati, L; Neri, I; Sonnenwald, T; Pigors, M; Godbole, K; Dudhbhate, A; Bruckner-Tuderman, L; Zambruno, G; Castiglia, D
2015-09-01
Mutations in the FERMT1 gene, encoding the focal adhesion protein kindlin-1 underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with a phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. The FERMT1 mutational spectrum comprises gross genomic deletions, splice site, nonsense, and frameshift mutations, which are scattered over the coding region spanning exon 2-15. We now report three KS families with mutations affecting the promoter region of FERMT1. Two of these mutations are large deletions (∼38.0 and 1.9 kb in size) and one is a single nucleotide variant (c.-20A>G) within the 5' untranslated region (UTR). Each mutation resulted in loss of gene expression in patient skin or cultured keratinocytes. Reporter assays showed the functional relevance of the genomic regions deleted in our patients for FERMT1 gene transcription and proved the causal role of the c.-20A>G variant in reducing transcriptional activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sternburg, Erin L; Dias, Kristen C; Karginov, Fedor V
2017-06-16
The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.
De novo mutations in the genome organizer CTCF cause intellectual disability.
Gregor, Anne; Oti, Martin; Kouwenhoven, Evelyn N; Hoyer, Juliane; Sticht, Heinrich; Ekici, Arif B; Kjaergaard, Susanne; Rauch, Anita; Stunnenberg, Hendrik G; Uebe, Steffen; Vasileiou, Georgia; Reis, André; Zhou, Huiqing; Zweier, Christiane
2013-07-11
An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in CTCF in individuals with intellectual disability, microcephaly, and growth retardation. Furthermore, an individual with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three individuals with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Hart, James C; Miller, Craig T
2017-09-07
Here, we present and characterize the spontaneous X-linked recessive mutation casper , which causes oculocutaneous albinism in threespine sticklebacks ( Gasterosteus aculeatus ). In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO), the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19) near the stickleback ortholog of Hermansky-Pudlak syndrome 5 ( Hps5 ). casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5 , predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish. Copyright © 2017 Hart and Milller.
Sherrard, Laura J; Tai, Anna S; Wee, Bryan A; Ramsay, Kay A; Kidd, Timothy J; Ben Zakour, Nouri L; Whiley, David M; Beatson, Scott A; Bell, Scott C
2017-01-01
A Pseudomonas aeruginosa AUST-02 strain sub-type (M3L7) has been identified in Australia, infects the lungs of some people with cystic fibrosis and is associated with antibiotic resistance. Multiple clonal lineages may emerge during treatment with mutations in chromosomally encoded antibiotic resistance genes commonly observed. Here we describe the within-host diversity and antibiotic resistance of M3L7 during and after antibiotic treatment of an acute pulmonary exacerbation using whole genome sequencing and show both variation and shared mutations in important genes. Eleven isolates from an M3L7 population (n = 134) isolated over 3 months from an individual with cystic fibrosis underwent whole genome sequencing. A phylogeny based on core genome SNPs identified three distinct phylogenetic groups comprising two groups with higher rates of mutation (hypermutators) and one non-hypermutator group. Genomes were screened for acquired antibiotic resistance genes with the result suggesting that M3L7 resistance is principally driven by chromosomal mutations as no acquired mechanisms were detected. Small genetic variations, shared by all 11 isolates, were found in 49 genes associated with antibiotic resistance including frame-shift mutations (mexA, mexT), premature stop codons (oprD, mexB) and mutations in quinolone-resistance determining regions (gyrA, parE). However, whole genome sequencing also revealed mutations in 21 genes that were acquired following divergence of groups, which may also impact the activity of antibiotics and multi-drug efflux pumps. Comparison of mutations with minimum inhibitory concentrations of anti-pseudomonal antibiotics could not easily explain all resistance profiles observed. These data further demonstrate the complexity of chronic and antibiotic resistant P. aeruginosa infection where a multitude of co-existing genotypically diverse sub-lineages might co-exist during and after intravenous antibiotic treatment.
Frameshifting in the p6 cDNA phage display system.
Govarts, Cindy; Somers, Klaartje; Stinissen, Piet; Somers, Veerle
2010-12-20
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.
Sandbaken, M. G.; Culbertson, M. R.
1988-01-01
A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688
Gaber, Richard F.; Culbertson, Michael R.
1982-01-01
ICR-induced frameshift mutations at the his4 locus in Saccharomyces cerevisiae have been classified into several groups on the basis of their reversion and suppression properties. One group of externally suppressible his4 mutations, designated Group II, have been shown to contain +1 G:C insertions in glycine codons and are suppressed by any one of five suppressor mutations described previously (SUF1, SUF3, SUF4, SUF5, and SUF6). The suppressor genes are believed to encode glycine tRNAs containing four base anticodons.—An analysis of spontaneous co-revertants of the Group II frameshift mutations his4-206 and leu2-3 has revealed the existence of eleven new Group II-specific suppressor genes (SUF15 through SUF25). The locations of the new suppressor loci on the yeast genetic map have been determined.—By comparing the ability or inability of Group II-specific suppressors mapping at 16 different loci to suppress different Group II his4 mutations, two subclasses of suppressors have been defined. One subclass suppresses his4-38 and his4-519, which contain the altered four base mRNA codons 5'-GGGU-3' and 5'-GGGG-3', respectively. The other subclass suppresses his4-38, but fails to suppress his4-519. The mechanism of tRNA-mediated frameshift suppression and the molecular basis for this division of the suppressors into two subclasses is discussed. PMID:6757051
Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam
2013-01-01
Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.
Beare, Paul A.; Samuel, James E.; Howe, Dale; Virtaneva, Kimmo; Porcella, Stephen F.; Heinzen, Robert A.
2006-01-01
Coxiella burnetii, a gram-negative obligate intracellular bacterium, causes human Q fever and is considered a potential agent of bioterrorism. Distinct genomic groups of C. burnetii are revealed by restriction fragment-length polymorphisms (RFLP). Here we comprehensively define the genetic diversity of C. burnetii by hybridizing the genomes of 20 RFLP-grouped and four ungrouped isolates from disparate sources to a high-density custom Affymetrix GeneChip containing all open reading frames (ORFs) of the Nine Mile phase I (NMI) reference isolate. We confirmed the relatedness of RFLP-grouped isolates and showed that two ungrouped isolates represent distinct genomic groups. Isolates contained up to 20 genomic polymorphisms consisting of 1 to 18 ORFs each. These were mostly complete ORF deletions, although partial deletions, point mutations, and insertions were also identified. A total of 139 chromosomal and plasmid ORFs were polymorphic among all C. burnetii isolates, representing ca. 7% of the NMI coding capacity. Approximately 67% of all deleted ORFs were hypothetical, while 9% were annotated in NMI as nonfunctional (e.g., frameshifted). The remaining deleted ORFs were associated with diverse cellular functions. The only deletions associated with isogenic NMI variants of attenuated virulence were previously described large deletions containing genes involved in lipopolysaccharide (LPS) biosynthesis, suggesting that these polymorphisms alone are responsible for the lower virulence of these variants. Interestingly, a variant of the Australia QD isolate producing truncated LPS had no detectable deletions, indicating LPS truncation can occur via small genetic changes. Our results provide new insight into the genetic diversity and virulence potential of Coxiella species. PMID:16547017
DeMarini, D M; Shelton, M L; Abu-Shakra, A; Szakmary, A; Levine, J G
1998-01-01
To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins. PMID:9584083
Belsham, Graham J; Polacek, Charlotta; Breum, Solvej Ø; Larsen, Lars E; Bøtner, Anette
2010-01-16
Myxoma virus is a member of the Poxviridae and causes disease in European rabbits. Laboratory confirmation of the clinical disease, which occurs in the autumn of most years in Denmark, has been achieved previously using antigen ELISA and electron microscopy. An unusually large number of clinically suspected cases of myxomatosis were observed in Denmark during 2007. Myxoma virus DNA was detected, using a new real time PCR assay which targets the M029L gene, in over 70% of the clinical samples submitted for laboratory confirmation. Unexpectedly, further analysis revealed that a high proportion of these viral DNA preparations contained a frame-shift mutation within the M135R gene that has previously been identified as a virulence factor. This frame-shift mutation results in expression of a greatly truncated product. The same frame-shift mutation has also been found recently within an avirulent strain of myxoma virus (6918). However, three other frame-shift mutations found in this strain (in the genes M009L, M036L and M148R) were not shared with the Danish viruses but a single nucleotide deletion in the M138R/M139R intergenic region was a common feature. It appears that expression of the full-length myxoma virus M135R protein is not required for virulence in rabbits. Hence, the frame-shift mutation in the M135R gene in the nonpathogenic 6918 virus strain is not sufficient to explain the attenuation of this myxoma virus but one/some of the other frame-shift mutations alone or in conjunction with one/some of the thirty two amino acid substitutions must also contribute. The real time PCR assay for myxoma virus is a useful diagnostic tool for laboratory confirmation of suspected cases of myxomatosis.
2010-01-01
Background Myxoma virus is a member of the Poxviridae and causes disease in European rabbits. Laboratory confirmation of the clinical disease, which occurs in the autumn of most years in Denmark, has been achieved previously using antigen ELISA and electron microscopy. Results An unusually large number of clinically suspected cases of myxomatosis were observed in Denmark during 2007. Myxoma virus DNA was detected, using a new real time PCR assay which targets the M029L gene, in over 70% of the clinical samples submitted for laboratory confirmation. Unexpectedly, further analysis revealed that a high proportion of these viral DNA preparations contained a frame-shift mutation within the M135R gene that has previously been identified as a virulence factor. This frame-shift mutation results in expression of a greatly truncated product. The same frame-shift mutation has also been found recently within an avirulent strain of myxoma virus (6918). However, three other frame-shift mutations found in this strain (in the genes M009L, M036L and M148R) were not shared with the Danish viruses but a single nucleotide deletion in the M138R/M139R intergenic region was a common feature. Conclusions It appears that expression of the full-length myxoma virus M135R protein is not required for virulence in rabbits. Hence, the frame-shift mutation in the M135R gene in the nonpathogenic 6918 virus strain is not sufficient to explain the attenuation of this myxoma virus but one/some of the other frame-shift mutations alone or in conjunction with one/some of the thirty two amino acid substitutions must also contribute. The real time PCR assay for myxoma virus is a useful diagnostic tool for laboratory confirmation of suspected cases of myxomatosis. PMID:20078890
Yang, Lixia; Zhong, Zhensheng; Tong, Cailing; Jia, Huan; Liu, Yiran; Chen, Gang
2018-06-08
A wobble A∙C pair can be protonated at near physiological pH to form a more stable wobble A+∙C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A∙C mismatch on the top (near the loop, U22C), middle (U25C) and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A∙C pair substitution, and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (~2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (~1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Polak, Paz; Kim, Jaegil; Braunstein, Lior Z; Karlic, Rosa; Haradhavala, Nicholas J; Tiao, Grace; Rosebrock, Daniel; Livitz, Dimitri; Kübler, Kirsten; Mouw, Kent W; Kamburov, Atanas; Maruvka, Yosef E; Leshchiner, Ignaty; Lander, Eric S; Golub, Todd R; Zick, Aviad; Orthwein, Alexandre; Lawrence, Michael S; Batra, Rajbir N; Caldas, Carlos; Haber, Daniel A; Laird, Peter W; Shen, Hui; Ellisen, Leif W; D'Andrea, Alan D; Chanock, Stephen J; Foulkes, William D; Getz, Gad
2017-10-01
Biallelic inactivation of BRCA1 or BRCA2 is associated with a pattern of genome-wide mutations known as signature 3. By analyzing ∼1,000 breast cancer samples, we confirmed this association and established that germline nonsense and frameshift variants in PALB2, but not in ATM or CHEK2, can also give rise to the same signature. We were able to accurately classify missense BRCA1 or BRCA2 variants known to impair homologous recombination (HR) on the basis of this signature. Finally, we show that epigenetic silencing of RAD51C and BRCA1 by promoter methylation is strongly associated with signature 3 and, in our data set, was highly enriched in basal-like breast cancers in young individuals of African descent.
The Evolution of Campylobacter jejuni and Campylobacter coli
Sheppard, Samuel K.; Maiden, Martin C.J.
2015-01-01
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080
Whole Exome Analysis of Early Onset Alzheimer’s Disease
2016-04-01
Early Onset Alzheimer’s Disease 5a. CONTRACT NUMBER W81XWH-12-1-0013 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Margaret A. Pericak...relationship between SORL1, AD, and Parkinsonism . 16 Appendix V: ABCA7 Frameshift Deletion Associated with Alzheimer’s Disease in African Americans...onset Alzheimer disease identified using whole-exome sequencing G. W. Beecham1, B. W. Kunkle1, B. Vardarajan2, P. L. Whitehead1, S . Rolati1, E. R
Oh, Hye Rim; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung
2015-02-01
Initiation of transcription for ribosomal RNA (rRNA) by RNA polymerase I requires TATA-binding protein (TBP) and TBP-associated factors (TAF1A, TAF1B and TAF1C). p53 tumour suppressor inhibits rRNA transcription by blocking TAF1C-UBF interaction, but alterations of TAF1C itself in tumorigenesis remain unknown. The aim of this study was to explore whether TAF1C gene was mutated in gastric (GC) and colorectal cancers (CRC).In a public database, we found that TAF1C gene had a mononucleotide repeat (C8) in the coding sequences that might be a mutation target in the cancers with microsatellite instability (MSI). We analysed 79 GC and 124 CRC by single-strand conformation polymorphism and DNA sequencing analyses. In this study, we found TAF1C frameshift mutations (8.8% of GC and 10.1% of CRC with MSI-H), which were not found in stable MSI/low MSI (MSS/MSI-L) (0/90). In addition, we analysed intratumoural heterogeneity (ITH) of TAF1C frameshift mutations in 16 CRC and found that three CRC (18.8%) harboured regional ITH of the TAF1C frameshift mutations. Our results indicate that TAF1C gene harboured not only somatic frameshift mutations but also the mutational ITH, which together might play a role in tumourigenesis of GC and CRC. Our data also suggest that multi-regional mutation analysis is needed for a better evaluation of the mutation status in CRC.
Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien
2016-08-10
Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sruewing, J.P.; Brody, L.C.; Erdos, M.R.
Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals.more » Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.« less
Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin.
Krivokuca, Ana; Dragos, Vita Setrajcic; Stamatovic, Ljiljana; Blatnik, Ana; Boljevic, Ivana; Stegel, Vida; Rakobradovic, Jelena; Skerl, Petra; Jovandic, Stevo; Krajc, Mateja; Magic, Mirjana Brankovic; Novakovic, Srdjan
2018-04-01
Mutations in breast cancer susceptibility gene 1 (BRCA1) lead to defects in a number of cellular pathways including DNA damage repair and transcriptional regulation, resulting in the elevated genome instability and predisposing to breast and ovarian cancers. We report a novel mutation LRG_292t1:c.4356delA,p.(Ala1453Glnfs*3) in the 12th exon of BRCA1, in the splice site region near the donor site of intron 12. It is a frameshift mutation with the termination codon generated on the third amino acid position from the site of deletion. Human Splice Finder 3.0 and MutationTaster have assessed this variation as disease causing, based on the alteration of splicing, creation of premature stop codon and other potential alterations initiated by nucleotide deletion. Among the most important alterations are frameshift and splice site changes (score of the newly created donor splice site: 0.82). c.4356delA was associated with two ovarian cancer cases in two families of Slavic origin. It was detected by next generation sequencing, and confirmed with Sanger sequencing in both cases. Because of the fact that it changes the reading frame of the protein, novel mutation c.4356delA p.(Ala1453Glnfs*3) in BRCA1 gene might be of clinical significance for hereditary ovarian cancer. Further functional as well as segregation analyses within the families are necessary for appropriate clinical classification of this variant. Since it has been detected in two ovarian cancer patients of Slavic origin, it is worth investigating founder effect of this mutation in Slavic populations.
Bae, Young-An; Ahn, Jong-Sook; Kim, Seon-Hee; Rhyu, Mun-Gan; Kong, Yoon; Cho, Seung-Yull
2008-10-14
Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 - AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.
2012-01-01
Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution. PMID:23148531
Banaszak, Lauren G; Giudice, Valentina; Zhao, Xin; Wu, Zhijie; Gao, Shouguo; Hosokawa, Kohei; Keyvanfar, Keyvan; Townsley, Danielle M; Gutierrez-Rodrigues, Fernanda; Fernandez Ibanez, Maria Del Pilar; Kajigaya, Sachiko; Young, Neal S
2018-03-01
DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy. Published by Elsevier Inc.
2012-01-01
Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291
LeBlanc, Jason; Weil, Jason; Beemon, Karen
2013-01-01
After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases. PMID:23754689
Woo, Sunghee; Cha, Seong Won; Na, Seungjin; ...
2014-11-17
Cancer is driven by the acquisition of somatic DNA lesions. Distinguishing the early driver mutations from subsequent passenger mutations is key to molecular sub-typing of cancers, and the discovery of novel biomarkers. The availability of genomics technologies (mainly wholegenome and exome sequencing, and transcript sampling via RNA-seq, collectively referred to as NGS) have fueled recent studies on somatic mutation discovery. However, the vision is challenged by the complexity, redundancy, and errors in genomic data, and the difficulty of investigating the proteome using only genomic approaches. Recently, combination of proteomic and genomic technologies are increasingly employed. However, the complexity and redundancymore » of NGS data remains a challenge for proteogenomics, and various trade-offs must be made to allow for the searches to take place. This paperprovides a discussion of two such trade-offs, relating to large database search, and FDR calculations, and their implication to cancer proteogenomics. Moreover, it extends and develops the idea of a unified genomic variant database that can be searched by any mass spectrometry sample. A total of 879 BAM files downloaded from TCGA repository were used to create a 4.34 GB unified FASTA database which contained 2,787,062 novel splice junctions, 38,464 deletions, 1105 insertions, and 182,302 substitutions. Proteomic data from a single ovarian carcinoma sample (439,858 spectra) was searched against the database. By applying the most conservative FDR measure, we have identified 524 novel peptides and 65,578 known peptides at 1% FDR threshold. The novel peptides include interesting examples of doubly mutated peptides, frame-shifts, and non-sample-recruited mutations, which emphasize the strength of our approach.« less
Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.
Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo
2015-01-01
To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.
Calin, G A; Gafà, R; Tibiletti, M G; Herlea, V; Becheanu, G; Cavazzini, L; Barbanti-Brodano, G; Nenci, I; Negrini, M; Lanza, G
2000-05-20
Colon carcinomas with microsatellite mutator phenotype exhibit specific genetic and clinico-pathological features. This report describes the analysis of 63 "microsatellite instability-high" (MSI-H) tumors for the presence of mutations in microsatellites located in the coding regions (CDRs) of 6 genes: TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR, and BLM. The following frequencies of mutations were detected: TGFbetaRII (70%), BAX (54%), hMSH3 (36.5%), IGFIIR (22%), hMSH6 (17.5%), and BLM (16%). The overall picture revealed combinations of mutations suggestive of a progressive order of accumulation, with mutations of TGFbetaRII and BAX first, followed by frameshifts in hMSH3, hMSH6, IGFIIR, and BLM. Correlations with 12 clinico-pathological parameters revealed that tumors with frameshifts in 1 or 2 CDRs were significantly better differentiated than tumors with frameshifts in more than 2 CDRs. We also found that mutations in the hMSH3 gene were significantly associated with decreased wall invasiveness and aneuploidy, and frameshifts in the BLM gene were significantly associated with the mucinous histotype. A trend toward an association between hMSH3 and IGFIIR with the medullary and conventional adenocarcinoma histotypes, respectively, was seen. Our results strengthen the concept that mutations in target genes have a role in the tumorigenic process of MSI-H tumors, and indicate that frameshifts in microsatellites located in CDRs occur in a limited number of combinations that could determine distinct clinico-pathological traits. Copyright 2000 Wiley-Liss, Inc.
Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot
NASA Technical Reports Server (NTRS)
Su, L.; Chen, L.; Egli, M.; Berger, J. M.; Rich, A.
1999-01-01
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.
Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro
2018-04-01
In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.
Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F
2014-01-01
The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.
Gerber, Martina; Fischer, Andrea; Jagannathan, Vidhya; Drögemüller, Michaela; Drögemüller, Cord; Schmidt, Martin J; Bernardino, Filipa; Manz, Eberhard; Matiasek, Kaspar; Rentmeister, Kai; Leeb, Tosso
2015-01-01
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Beres, Stephen B; Richter, Ellen W; Nagiec, Michal J; Sumby, Paul; Porcella, Stephen F; DeLeo, Frank R; Musser, James M
2006-05-02
In recent years we have studied the relationship between strain genotypes and patient phenotypes in group A Streptococcus (GAS), a model human bacterial pathogen that causes extensive morbidity and mortality worldwide. We have concentrated our efforts on serotype M3 organisms because these strains are common causes of pharyngeal and invasive infections, produce unusually severe invasive infections, and can exhibit epidemic behavior. Our studies have been hindered by the lack of genome-scale phylogenies of multiple GAS strains and whole-genome sequences of multiple serotype M3 strains recovered from individuals with defined clinical phenotypes. To remove some of these impediments, we sequenced to closure the genome of four additional GAS strains and conducted comparative genomic resequencing of 12 contemporary serotype M3 strains representing distinct genotypes and phenotypes. Serotype M3 strains are a single phylogenetic lineage. Strains from asymptomatic throat carriers were significantly less virulent for mice than sterile-site isolates and evolved to a less virulent phenotype by multiple genetic pathways. Strain persistence or extinction between epidemics was strongly associated with presence or absence, respectively, of the prophage encoding streptococcal pyrogenic exotoxin A. A serotype M3 clone significantly underrepresented among necrotizing fasciitis cases has a unique frameshift mutation that truncates MtsR, a transcriptional regulator controlling expression of genes encoding iron-acquisition proteins. Expression microarray analysis of this clone confirmed significant alteration in expression of genes encoding iron metabolism proteins. Our analysis provided unprecedented detail about the molecular anatomy of bacterial strain genotype-patient phenotype relationships.
Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutledge, Alexandra C.; Jones, Marcus B.; Chauhan, Sadhana
2012-03-27
Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. To date, the perceived value of manual curation for genome annotations is not offset by the real cost and time associated with the process. In order to balance the large number of sequences generated, the annotation process is now performed almost exclusively in an automated fashion for most genome sequencing projects. One possible way to reduce errors inherent to automated computational annotations is to apply data from 'omics' measurements (i.e. transcriptional and proteomic) to themore » un-annotated genome with a proteogenomic-based approach. This approach does require additional experimental and bioinformatics methods to include omics technologies; however, the approach is readily automatable and can benefit from rapid developments occurring in those research domains as well. The annotation process can be improved by experimental validation of transcription and translation and aid in the discovery of annotation errors. Here the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species, as is becoming common in sequencing efforts. Transcriptomic and proteomic data derived from three highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 previously incorrect protein-coding sequences (e.g., observed frameshifts, extended start sites, and translated pseudogenes) within the three current Yersinia genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, and a transcriptional regulator, among other proteins, most of which are annotated as hypothetical, that were missed during annotation.« less
Fine, Dina; Flusser, Hagit; Markus, Barak; Shorer, Zamir; Gradstein, Libe; Khateeb, Shareef; Langer, Yshia; Narkis, Ginat; Birk, Ruth; Galil, Aharon; Shelef, Ilan; Birk, Ohad S
2015-12-01
A consanguineous Bedouin Israeli kindred presented with a novel autosomal recessive intellectual disability syndrome of congenital microcephaly, low anterior hairline, bitemporal narrowing, low-set protruding ears, strabismus and tented thick eyebrows with sparse hair in their medial segment. Brain imaging demonstrated various degrees of agenesis of corpus callosum and hypoplasia of the vermis and cerebellum. Genome-wide linkage analysis followed by fine mapping defined a 7.67 Mb disease-associated locus (LOD score 4.99 at θ=0 for marker D10S1653). Sequencing of the 48 genes within the locus identified a single non-synonymous homozygous duplication frameshift mutation of 13 nucleotides (c.2134_2146dup13) within the coding region of FRMD4A, that was common to all affected individuals and not found in 180 non-related Bedouin controls. Three of 50 remotely related healthy controls of the same tribe were heterozygous for the mutation. FRMD4A, member of the FERM superfamily, is involved in cell structure, transport and signaling. It regulates cell polarity by playing an important role in the activation of ARF6, mediating the interaction between Par3 and the ARF6 guanine nucleotide exchange factor. ARF6 is known to modulate cell polarity in neurons, and regulates dendritic branching in hippocampal neurons and neurite outgrowth. The FRMD4 domain that is essential for determining cell polarity through interaction with Par3 is truncated by the c.2134_2146dup13 mutation. FRMD4A polymorphisms were recently suggested to be a risk factor for Alzheimer's disease. We now show a homozygous frameshift mutation of the same gene in a severe neurologic syndrome with unique dysmorphism.
Mutation in TDRD9 causes non-obstructive azoospermia in infertile men.
Arafat, Maram; Har-Vardi, Iris; Harlev, Avi; Levitas, Eliahu; Zeadna, Atif; Abofoul-Azab, Maram; Dyomin, Victor; Sheffield, Val C; Lunenfeld, Eitan; Huleihel, Mahmoud; Parvari, Ruti
2017-09-01
Azoospermia is diagnosed when sperm cells are completely absent in the ejaculate even after centrifugation. It is identified in approximately 1% of all men and in 10%-20% of infertile males. Non-obstructive azoospermia (NOA) is characterised by the absence of sperm due to either a Sertoli cell-only pattern, maturation arrest, hypospermatogenesis or mixed patterns. NOA is a severe form of male infertility, with limited treatment options and low fertility success rates. In the majority of patients, the cause for NOA is not known and mutations in only a few genes were shown to be causative. We investigated the cause of maturation arrest in five azoospermic infertile men of a large consanguineous Bedouin family. Using whole genome genotyping and exome sequencing we identified a 4 bp deletion frameshift mutation in TDRD9 as the causative mutation with a Lod Score of 3.42. We demonstrate that the mutation results in a frameshift as well as exon skipping. Immunofluorescent staining with anti-TDRD9 antibody directed towards the N terminus demonstrated the presence of the protein in testicular biopsies of patients with an intracellular distribution comparable to a control biopsy. The mutation does not cause female infertility. This is the first report of a recessive deleterious mutation in TDRD9 in humans. The clinical phenotype recapitulates that observed in the Tdrd9 knockout mice where this gene was demonstrated to participate in long interspersed element-1 retrotransposon silencing. If this function is preserved in human, our data underscore the importance of maintaining DNA stability in the human male germ line. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bashir, Tufail; Sailer, Christian; Gerber, Florian; Loganathan, Nitin; Bhoopalan, Hemadev; Eichenberger, Christof; Grossniklaus, Ueli; Baskar, Ramamurthy
2014-05-01
Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.
Downs, Louise M.; Wallin-Håkansson, Berit; Boursnell, Mike; Marklund, Stefan; Hedhammar, Åke; Truvé, Katarina; Hübinette, Louise; Lindblad-Toh, Kerstin; Bergström, Tomas; Mellersh, Cathryn S.
2011-01-01
Progressive retinal atrophy (PRA) in dogs, the canine equivalent of retinitis pigmentosa (RP) in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR) breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (praw = 1.94×10−10, pgenome = 1.0×10−5), where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3) located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44%) remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans. PMID:21738669
A Newly Described Bovine Type 2 Scurs Syndrome Segregates with a Frame-Shift Mutation in TWIST1
Capitan, Aurélien; Grohs, Cécile; Weiss, Bernard; Rossignol, Marie-Noëlle; Reversé, Patrick; Eggen, André
2011-01-01
The developmental pathways involved in horn development are complex and still poorly understood. Here we report the description of a new dominant inherited syndrome in the bovine Charolais breed that we have named type 2 scurs. Clinical examination revealed that, despite a strong phenotypic variability, all affected individuals show both horn abnormalities similar to classical scurs phenotype and skull interfrontal suture synostosis. Based on a genome-wide linkage analysis using Illumina BovineSNP50 BeadChip genotyping data from 57 half-sib and full-sib progeny, this locus was mapped to a 1.7 Mb interval on bovine chromosome 4. Within this region, the TWIST1 gene encoding a transcription factor was considered as a strong candidate gene since its haploinsufficiency is responsible for the human Saethre-Chotzen syndrome, characterized by skull coronal suture synostosis. Sequencing of the TWIST1 gene identified a c.148_157dup (p.A56RfsX87) frame-shift mutation predicted to completely inactivate this gene. Genotyping 17 scurred and 20 horned founders of our pedigree as well as 48 unrelated horned controls revealed a perfect association between this mutation and the type 2 scurs phenotype. Subsequent genotyping of 32 individuals born from heterozygous parents showed that homozygous mutated progeny are completely absent, which is consistent with the embryonic lethality reported in Drosophila and mouse suffering from TWIST1 complete insufficiency. Finally, data from previous studies on model species and a fine description of type 2 scurs symptoms allowed us to propose different mechanisms to explain the features of this syndrome. In conclusion, this first report on the identification of a potential causal mutation affecting horn development in cattle offers a unique opportunity to better understand horn ontogenesis. PMID:21814570
2005-01-18
r A L 1 3 3 4 1 4 ) w a s u s e d a s a re fe re n c e . D a s h e s in d ic a te id e n ti...le d th e tr a n s m e m b ra n e e xo n a s e xo n 7 in o rd e r to k e e p th e re la ti o n s h ip a m o n g K IR e xo n s in th e d if fe re n t...g e n e s c o n s is te n t. N u c le o ti d e p o s it io n s w e
Recent discoveries in the molecular genetics of Lynch syndrome.
Boland, C Richard
2016-07-01
Lynch syndrome is the inherited predisposition to cancer caused by a germline mutation in a DNA mismatch repair gene. The consequent tumors have a characteristic microsatellite instability (MSI) phenotype. Genomic sequencing of Lynch syndrome-associated colorectal cancers (CRCs) has demonstrated that these tumors have a substantially greater number of mutations than non-MSI CRCs, and that the target mutations driving tumor behavior are also different from what occurs in sporadic tumors. There are multiple non-Lynch syndrome entities that can create clinical confusion with that disease, including the acquired methylation of MLH1, Lynch-like syndrome, and Familial CRC-Type X. Patients with Lynch syndrome-associated CRCs have a substantially better prognosis, and there is growing evidence that this is due to the generation of immunogenic frameshift peptides as a consequence of defective DNA mismatch repair, and an effective immune response to the tumor.
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.
Fiorini, Francesca; Robin, Jean-Philippe; Kanaan, Joanne; Borowiak, Malgorzata; Croquette, Vincent; Le Hir, Hervé; Jalinot, Pierre; Mocquet, Vincent
2018-01-30
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome.
Heo, You Jeong; Kim, Seungtae; Kim, Nayoung KD; Park, Joon Oh; Kang, Won Ki; Lee, Jeeyun; Kim, Kyoung-Mee
2018-01-01
Introduction Programmed death-ligand 1 (PD-L1) can be overexpressed in tumours other than Epstein-Barr virus (EBV)-positive (EBV+) or microsatellite instability-high (MSI-H) gastric cancer (GC) subtypes. We aimed to determine the tumour immune microenvironment (TME) classification of GC to better understand tumour–immune interactions and help patient selection for future immunotherapy with special reference to MSI-H. Methods Immunohistochemistry (IHC) for PD-L1 and CD8+ T cells in three distinct subtypes of GC (43 EBV+, 79 MSI-H and 125 EBV−/MSS) were performed and analysed. In 66 MSI-H GC, mutation counts were compared with PD-L1 expression and survival of the patients. Results GC TME divided by PD-L1 IHC and tumour-infiltrating lymphocytes (TIL) measured by intratumoural CD8 density showed: (1) about 40% of GC are type I (PD-L1+/TIL+) consisting ~70% of MSI-H or EBV+ GC, and ~15% of EBV−/microsatellite stable (MSS) GC patients show the best survival in both disease-free (HR 2.044) and overall survival (HR 1.993); this type would respond to a checkpoint blockade therapy; (2) almost 30% of GC are type II (PD-L1−/TIL−) with the worst survival; (3) approximately 10% of GC are type III (PD-L1+/TIL−); and (4) up to 20% are type IV (PD-L1−/TIL+) and, unexpectedly, ~25% of EBV+ or MSI-H GC are within this subtype. In MSI-H GC, frequent frameshift mutations were observed in ARID1A, RNF43, NF1, MSH6, BRD3, NCOA3, BCORL1, TNKS2 and NPM1 and the numbers of frameshift mutation correlated significantly with PD-L1 expression (P<0.05). Discussion GC can be classified into four TME types based on PD-L1 and TIL, and numbers of frameshift mutation correlate well with PD-L1 expression in MSI-H GC. PMID:29636988
Cho, Junhun; Chang, Young Hwan; Heo, You Jeong; Kim, Seungtae; Kim, Nayoung Kd; Park, Joon Oh; Kang, Won Ki; Lee, Jeeyun; Kim, Kyoung-Mee
2018-01-01
Programmed death-ligand 1 (PD-L1) can be overexpressed in tumours other than Epstein-Barr virus (EBV)-positive (EBV + ) or microsatellite instability-high (MSI-H) gastric cancer (GC) subtypes. We aimed to determine the tumour immune microenvironment (TME) classification of GC to better understand tumour-immune interactions and help patient selection for future immunotherapy with special reference to MSI-H. Immunohistochemistry (IHC) for PD-L1 and CD8 + T cells in three distinct subtypes of GC (43 EBV + , 79 MSI-H and 125 EBV - /MSS) were performed and analysed. In 66 MSI-H GC, mutation counts were compared with PD-L1 expression and survival of the patients. GC TME divided by PD-L1 IHC and tumour-infiltrating lymphocytes (TIL) measured by intratumoural CD8 density showed: (1) about 40% of GC are type I (PD-L1 + /TIL + ) consisting ~70% of MSI-H or EBV + GC, and ~15% of EBV - /microsatellite stable (MSS) GC patients show the best survival in both disease-free (HR 2.044) and overall survival (HR 1.993); this type would respond to a checkpoint blockade therapy; (2) almost 30% of GC are type II (PD-L1 - /TIL - ) with the worst survival; (3) approximately 10% of GC are type III (PD-L1 + /TIL - ); and (4) up to 20% are type IV (PD-L1 - /TIL + ) and, unexpectedly, ~25% of EBV + or MSI-H GC are within this subtype. In MSI-H GC, frequent frameshift mutations were observed in ARID1A , RNF43 , NF1 , MSH6 , BRD3 , NCOA3 , BCORL1 , TNKS2 and NPM1 and the numbers of frameshift mutation correlated significantly with PD-L1 expression (P<0.05). GC can be classified into four TME types based on PD-L1 and TIL, and numbers of frameshift mutation correlate well with PD-L1 expression in MSI-H GC.
Atkins, John F; Loughran, Gary; Baranov, Pavel V
2017-01-19
In many bacteria, separate genes encode a copper binding chaperone and a copper efflux pump, but in some the chaperone encoding gene has been elusive. In this issue of Molecular Cell, Meydan et al. (2017) report that ribosomes translating the ORF that encodes the copper pump frequently frameshift and terminate to produce the copper chaperone. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Fan; Huang, Lv-Yin; Chen, Gui-Lan; Zhou, Jian-Ying; Xie, Xing-Mei; Li, Dong-Zhi
2017-01-01
We describe a new β-thalassemic mutation in a Chinese subject. This allele develops by insertion of one nucleotide (+T) between codons 138 and 139 in the third exon of the β-globin gene. The mutation causes a frameshift that leads to a termination codon at codon 139. In the heterozygote, this allele has the phenotype of classical β-thalassemia (β-thal) minor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willing, M.C.; Deschenes, S.P.; Roberts, E.J.
Nonsense and frameshift mutations, which predict premature termination of translation, often cause a dramatic reduction in the amount of transcript from the mutant allele (nonsense-mediated mRNA decay). In some genes, these mutations also influence RNA splicing and induce skipping of the exon that contains the nonsense codon. To begin to dissect how premature termination alters the metabolism of RNA from the COL1A1 gene, we studied nonsense and frameshift mutations distributed over exons 11-49 of the gene. These mutations were originally identified in 10 unrelated families with osteogenesis imperfecta (OI) type I. We observed marked reduction in steady-state amounts of mRNAmore » from the mutant allele in both total cellular and nuclear RNA extracts of cells from affected individuals, suggesting that nonsense-mediated decay of COL1A1 RNA is a nuclear phenomenon. Position of the mutation within the gene did not influence this observation. None of the mutations induced skipping of either the exon containing the mutation or, for the frameshifts, the downstream exons with the new termination sites. Our data suggest that nonsense and frameshift mutations throughout most of the COL1A1 gene result in a null allele, which is associated with the predictable mild clinical phenotype, OI type I. 42 refs., 6 figs., 1 tab.« less
Schäfgen, Johanna; Cremer, Kirsten; Becker, Jessica; Wieland, Thomas; Zink, Alexander M; Kim, Sarah; Windheuser, Isabelle C; Kreiß, Martina; Aretz, Stefan; Strom, Tim M; Wieczorek, Dagmar; Engels, Hartmut
2016-12-01
Recently, germline variants of the transcriptional co-regulator gene TCF20 have been implicated in the aetiology of autism spectrum disorders (ASD). However, the knowledge about the associated clinical picture remains fragmentary. In this study, two individuals with de novo TCF20 sequence variants were identified in a cohort of 313 individuals with intellectual disability of unknown aetiology, which was analysed by whole exome sequencing using a child-parent trio design. Both detected variants - one nonsense and one frameshift variant - were truncating. A comprehensive clinical characterisation of the patients yielded mild intellectual disability, postnatal tall stature and macrocephaly, obesity and muscular hypotonia as common clinical signs while ASD was only present in one proband. The present report begins to establish the clinical picture of individuals with de novo nonsense and frameshift variants of TCF20 which includes features such as proportionate overgrowth and muscular hypotonia. Furthermore, intellectual disability/developmental delay seems to be fully penetrant amongst known individuals with de novo nonsense and frameshift variants of TCF20, whereas ASD is shown to be incompletely penetrant. The transcriptional co-regulator gene TCF20 is hereby added to the growing number of genes implicated in the aetiology of both ASD and intellectual disability. Furthermore, such de novo variants of TCF20 may represent a novel differential diagnosis in the overgrowth syndrome spectrum.
Phadnis, Naina; Mehta, Reema; Meednu, Nida; Sia, Elaine A
2006-07-13
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.
A novel frameshift mutation of CHD7 in a Japanese patient with CHARGE syndrome
Kohmoto, Tomohiro; Shono, Miki; Naruto, Takuya; Watanabe, Miki; Suga, Ken-ichi; Nakagawa, Ryuji; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei
2016-01-01
CHARGE syndrome is a rare autosomal dominant developmental disorder involving multiple organs. CHD7 is a major causative gene of CHARGE syndrome. We performed targeted-exome sequencing using a next-generation sequencer for molecular diagnosis of a 4-month-old male patient who was clinically suspected to have CHARGE syndrome, and report a novel monoallelic mutation in CHD7, NM_017780.3(CHD7_v001):c.2966del causing a reading frameshift [p.(Cys989Serfs*3)]. PMID:27081570
A novel frameshift mutation of CHD7 in a Japanese patient with CHARGE syndrome.
Kohmoto, Tomohiro; Shono, Miki; Naruto, Takuya; Watanabe, Miki; Suga, Ken-Ichi; Nakagawa, Ryuji; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei
2016-01-01
CHARGE syndrome is a rare autosomal dominant developmental disorder involving multiple organs. CHD7 is a major causative gene of CHARGE syndrome. We performed targeted-exome sequencing using a next-generation sequencer for molecular diagnosis of a 4-month-old male patient who was clinically suspected to have CHARGE syndrome, and report a novel monoallelic mutation in CHD7, NM_017780.3(CHD7_v001):c.2966del causing a reading frameshift [p.(Cys989Serfs*3)].
Murgiano, Leonardo; Jagannathan, Vidhya; Piffer, Christian; Diez-Prieto, Inmaculada; Bolcato, Marilena; Gentile, Arcangelo; Drögemüller, Cord
2016-12-05
Renal syndromes are occasionally reported in domestic animals. Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. Despite demonstrating striking phenotypic similarities, no obvious presence of pathogenic variants of this candidate gene were found. Therefore further analysis was required to decipher the genetic etiology of the condition. The family history of the cases suggested the possibility of an autosomal recessive inheritance. Homozygosity mapping combined with sequencing of the whole genome of one case detected two associated non-synonymous private coding variants: A homozygous missense variant in the uncharacterized KIAA2026 gene (g.39038055C > G; c.926C > G), located in a 15 Mb sized region of homozygosity on BTA 8; and a homozygous 1 bp deletion in the molybdenum cofactor sulfurase (MOCOS) gene (g.21222030delC; c.1881delG and c.1782delG), located in an 11 Mb region of homozygosity on BTA 24. Pathogenic variants in MOCOS have previously been associated with inherited metabolic syndromes and xanthinuria in different species including Japanese Black cattle. Genotyping of two additional clinically suspicious cases confirmed the association with the MOCOS variant, as both animals had a homozygous mutant genotype and did not show the variant KIAA2026 allele. The identified genomic deletion is predicted to be highly disruptive, creating a frameshift and premature termination of translation, resulting in severely truncated MOCOS proteins that lack two functionally essential domains. The variant MOCOS allele was absent from cattle of other breeds and approximately 4% carriers were detected among more than 1200 genotyped Tyrolean Grey cattle. Biochemical urolith analysis of one case revealed the presence of approximately 95% xanthine. The identified MOCOS loss of function variant is highly likely to cause the renal syndrome in the affected animals. The results suggest that the phenotypic features of the renal syndrome were related to an early onset form of xanthinuria, which is highly likely to lead to the progressive defects. The identification of the candidate causative mutation thus enables selection against this pathogenic variant in Tyrolean Grey cattle.
Wolf, Zena T; Brand, Harrison A; Shaffer, John R; Leslie, Elizabeth J; Arzi, Boaz; Willet, Cali E; Cox, Timothy C; McHenry, Toby; Narayan, Nicole; Feingold, Eleanor; Wang, Xioajing; Sliskovic, Saundra; Karmi, Nili; Safra, Noa; Sanchez, Carla; Deleyiannis, Frederic W B; Murray, Jeffrey C; Wade, Claire M; Marazita, Mary L; Bannasch, Danika L
2015-03-01
Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10(-13); adjusted p= 2.2 x 10(-3)). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 - 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans.
Pyle, Jesse D; Keeling, Patrick J; Nibert, Max L
2017-04-02
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens. Copyright © 2017 Elsevier B.V. All rights reserved.
Taylor-Brown, Alyce; Bachmann, Nathan L; Borel, Nicole; Polkinghorne, Adam
2016-09-05
Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.
Dela Cruz, Filemon S; Diolaiti, Daniel; Turk, Andrew T; Rainey, Allison R; Ambesi-Impiombato, Alberto; Andrews, Stuart J; Mansukhani, Mahesh M; Nagy, Peter L; Alvarez, Mariano J; Califano, Andrea; Forouhar, Farhad; Modzelewski, Beata; Mitchell, Chelsey M; Yamashiro, Darrell J; Marks, Lianna J; Glade Bender, Julia L; Kung, Andrew L
2016-10-31
Precision medicine approaches are ideally suited for rare tumors where comprehensive characterization may have diagnostic, prognostic, and therapeutic value. We describe the clinical case and molecular characterization of an adolescent with metastatic poorly differentiated carcinoma (PDC). Given the rarity and poor prognosis associated with PDC in children, we utilized genomic analysis and preclinical models to validate oncogenic drivers and identify molecular vulnerabilities. We utilized whole exome sequencing (WES) and transcriptome analysis to identify germline and somatic alterations in the patient's tumor. In silico and in vitro studies were used to determine the functional consequences of genomic alterations. Primary tumor was used to generate a patient-derived xenograft (PDX) model, which was used for in vivo assessment of predicted therapeutic options. WES revealed a novel germline frameshift variant (p.E1554fs) in APC, establishing a diagnosis of Gardner syndrome, along with a somatic nonsense (p.R790*) APC mutation in the tumor. Somatic mutations in TP53, MAX, BRAF, ROS1, and RPTOR were also identified and transcriptome and immunohistochemical analyses suggested hyperactivation of the Wnt/ß-catenin and AKT/mTOR pathways. In silico and biochemical assays demonstrated that the MAX p.R60Q and BRAF p.K483E mutations were activating mutations, whereas the ROS1 and RPTOR mutations were of lower utility for therapeutic targeting. Utilizing a patient-specific PDX model, we demonstrated in vivo activity of mTOR inhibition with temsirolimus and partial response to inhibition of MEK. This clinical case illustrates the depth of investigation necessary to fully characterize the functional significance of the breadth of alterations identified through genomic analysis.
Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.
Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan
2011-09-01
The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersuk, V.H.; Rose, T.M.; Todaro, G.J.
The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5{prime} ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-relatedmore » sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1. 33 refs., 3 figs., 1 tab.« less
UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.
Lawrence, C W; O'Brien, T; Bond, J
1984-01-01
The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.
CCC CGA is a weak translational recoding site in Escherichia coli.
Shu, Ping; Dai, Huacheng; Mandecki, Wlodek; Goldman, Emanuel
2004-12-08
Previously published experiments had indicated unexpected expression of a control vector in which a beta-galactosidase reporter was in the +1 reading frame relative to the translation start. This control vector contained the codon pair CCC CGA in the zero reading frame, raising the possibility that ribosomes rephased on this sequence, with peptidyl-tRNA(Pro) pairing with CCC in the +1 frame. This putative rephasing might also be exacerbated by the rare CGA Arg codon in the second position due to increased vacancy of the ribosomal A-site. To test this hypothesis, a series of site-directed mutants was constructed, including mutations in both the first and second codons of this codon pair. The results show that interrupting the continuous run of C residues with synonymous codon changes essentially abolishes the frameshift. Further, changing the rare Arg codon to a common Arg codon also reduces the frequency of the frameshift. These results provide strong support for the hypothesis that CCC CGA in the zero frame is indeed a weak translational frameshift site in Escherichia coli, with a 1-2% efficiency. Because the vector sequence also contains another CCC triplet in the +1 reading frame starting within the next codon after the CGA, our data also support possible contribution to expression of a +7 nucleotide ribosome hop into the same +1 reading frame. We also confirm here a previous report that CCC UGA is a translational frameshift site, in these experiments, with about 5% efficiency.
Elaswad, Ahmed; Khalil, Karim; Cline, David; Page-McCaw, Patrick; Chen, Wenbiao; Michel, Maximilian; Cone, Roger; Dunham, Rex
2018-01-20
The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection, this can be a slow and inefficient process in catfish. Here, a detailed protocol for microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Holtfreter's solution. Injection volume was calibrated and then guide RNAs/Cas9 targeting the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) gene and rhamnose binding lectin (RBL) gene were microinjected into the yolk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premature stop codons.
A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters.
Goudenège, David; Travers, Marie Agnès; Lemire, Astrid; Petton, Bruno; Haffner, Philippe; Labreuche, Yannick; Tourbiez, Delphine; Mangenot, Sophie; Calteau, Alexandra; Mazel, Didier; Nicolas, Jean Louis; Jacq, Annick; Le roux, Frédérique
2015-11-01
Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva
2016-12-14
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.
Powell, Kim L.; Zhu, Mingfu; Campbell, C. Ryan; Maia, Jessica M.; Ren, Zhong; Jones, Nigel C.; O’Brien, Terence J.; Petrovski, Slavé
2017-01-01
Objective The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are an inbreed Wistar rat strain widely used as a model of genetic generalised epilepsy with absence seizures. As in humans, the genetic architecture that results in genetic generalized epilepsy in GAERS is poorly understood. Here we present the strain-specific variants found among the epileptic GAERS and their related Non-Epileptic Control (NEC) strain. The GAERS and NEC represent a powerful opportunity to identify neurobiological factors that are associated with the genetic generalised epilepsy phenotype. Methods We performed whole genome sequencing on adult epileptic GAERS and adult NEC rats, a strain derived from the same original Wistar colony. We also generated whole genome sequencing on four double-crossed (GAERS with NEC) F2 selected for high-seizing (n = 2) and non-seizing (n = 2) phenotypes. Results Specific to the GAERS genome, we identified 1.12 million single nucleotide variants, 296.5K short insertion-deletions, and 354 putative copy number variants that result in complete or partial loss/duplication of 41 genes. Of the GAERS-specific variants that met high quality criteria, 25 are annotated as stop codon gain/loss, 56 as putative essential splice sites, and 56 indels are predicted to result in a frameshift. Subsequent screening against the two F2 progeny sequenced for having the highest and two F2 progeny for having the lowest seizure burden identified only the selected Cacna1h GAERS-private protein-coding variant as exclusively co-segregating with the two high-seizing F2 rats. Significance This study highlights an approach for using whole genome sequencing to narrow down to a manageable candidate list of genetic variants in a complex genetic epilepsy animal model, and suggests utility of this sequencing design to investigate other spontaneously occurring animal models of human disease. PMID:28708842
Choi, Min-Yeon; Park, Sang-Hyun
2016-06-01
Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.
2014-01-01
Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear. PMID:24725625
Salinas-Saavedra, Miguel; Gonzalez-Cabrera, Cristian; Ossa-Fuentes, Luis; Botelho, Joao F; Ruiz-Flores, Macarena; Vargas, Alexander O
2014-04-12
The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear.
Structural insights into translational recoding by frameshift suppressor tRNASufJ
Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; Miles, Stacey J.
2014-01-01
The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5′ or 3′ direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5′ to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting. PMID:25352689
Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael
2011-01-01
Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI(+) colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. FSP-specific CD8(+) T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI(+) colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were (386)-FLLALWECSL (FSP18) and (387)-LLALWECSL (FSP19) as well as (403)-IVSRTLLLV (FSP23) and (402)-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI(+)-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or--even more important--preventive purposes.
Liu, Chunqiao; Widen, Sonya A.; Williamson, Kathleen A.; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P.; Strachan, Erin; Manjunath, Souparnika H.; Balakrishnan, Archana; Floyd, James A.; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P.; Lehmann, Ordan J.; FitzPatrick, David R.; Swaroop, Anand
2016-01-01
Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt–Frizzled (FZD) signaling in ocular development and directly implicate WNT–FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622
Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas
1999-01-01
Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290
Analysis of Arabidopsis Accessions Hypersensitive to a Loss of Chloroplast Translation1[OPEN
Parker, Nicole; Wang, Yixing; Meinke, David
2016-01-01
Natural accessions of Arabidopsis (Arabidopsis thaliana) differ in their ability to tolerate a loss of chloroplast translation. These differences can be attributed in part to variation in a duplicated nuclear gene (ACC2) that targets homomeric acetyl-coenzyme A carboxylase (ACCase) to plastids. This functional redundancy allows limited fatty acid biosynthesis to occur in the absence of heteromeric ACCase, which is encoded in part by the plastid genome. In the presence of functional ACC2, tolerant alleles of several nuclear genes, not yet identified, enhance the growth of seedlings and embryos disrupted in chloroplast translation. ACC2 knockout mutants, by contrast, are hypersensitive. Here we describe an expanded search for hypersensitive accessions of Arabidopsis, evaluate whether all of these accessions are defective in ACC2, and characterize genotype-to-phenotype relationships for homomeric ACCase variants identified among 855 accessions with sequenced genomes. Null alleles with ACC2 nonsense mutations, frameshift mutations, small deletions, genomic rearrangements, and defects in RNA splicing are included among the most sensitive accessions examined. By contrast, most missense mutations affecting highly conserved residues failed to eliminate ACC2 function. Several accessions were identified where sensitivity could not be attributed to a defect in either ACC2 or Tic20-IV, the chloroplast membrane channel required for ACC2 uptake. Overall, these results underscore the central role of ACC2 in mediating Arabidopsis response to a loss of chloroplast translation, highlight future applications of this system to analyzing chloroplast protein import, and provide valuable insights into the mutational landscape of an important metabolic enzyme that is highly conserved throughout eukaryotes. PMID:27707889
Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T
2012-01-01
Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.
Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki
2014-01-01
Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.
Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W
1998-04-01
Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.
Nga, Phan Thi; Parquet, Maria del Carmen; Lauber, Chris; Parida, Manmohan; Nabeshima, Takeshi; Yu, Fuxun; Thuy, Nguyen Thanh; Inoue, Shingo; Ito, Takashi; Okamoto, Kenta; Ichinose, Akitoyo; Snijder, Eric J; Morita, Kouichi; Gorbalenya, Alexander E
2011-09-01
Nidoviruses with large genomes (26.3-31.7 kb; 'large nidoviruses'), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7-15.7 kb; 'small nidoviruses'). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3'-5'exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60-80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3'-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3'-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2'-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that - in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses.
Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn
2006-01-01
PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824
Meggouh, F; Benomar, A; Rouger, H; Tardieu, S; Birouk, N; Tassin, J; Barhoumi, C; Yahyaoui, M; Chkili, T; Brice, A; LeGuern, E
1998-01-01
X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified the first de novo mutation of the Cx32 gene, consisting of a deletion of a G residue at position 499 in the Cx32 open reading frame. This previously unreported mutation produces a frameshift at position 147 in the protein and introduces a premature stop codon (TAG) at nucleotide 643, which results in the production of a truncated Cx32 molecule. This mutation illustrates the risk of an erroneous diagnosis of autosomal recessive CMT, especially in populations where consanguineous unions are frequent, and its consequences for genetic counselling, which can be avoided by molecular analysis. Images PMID:9541114
Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K
2003-12-22
Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.
Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis.
Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu
2012-02-01
The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutation was identified in the patients of this four-generation pedigree; however, this mutation was absent in normal or non-carrier subjects. In conclusion, this 573delG mutation is reported in the Chinese population for the first time. This mutation widens the mutational spectrum of RS1 in Asians. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael
2011-01-01
Background Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI+ colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. Methodology/Principal Findings FSP-specific CD8+ T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI+ colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. Conclusions We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were 386-FLLALWECSL (FSP18) and 387-LLALWECSL (FSP19) as well as 403-IVSRTLLLV (FSP23) and 402-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI+-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or –even more important– preventive purposes. PMID:22110587
Structural insights into translational recoding by frameshift suppressor tRNA SufJ
Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; ...
2014-10-28
The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA SufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA SufJ contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL SufJ ormore » tRNA SufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL SufJ and ASL Thr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL SufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA SufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.« less
A Protein Linkage Map of the P2 Nonstructural Proteins of Poliovirus
Cuconati, Andrea; Xiang, Wenkai; Lahser, Frederick; Pfister, Thomas; Wimmer, Eckard
1998-01-01
The yeast two-hybrid system was used to catalog all detectable interactions among the P2 nonstructural cleavage products of poliovirus type 1 (Mahoney). Evidence has been obtained for specific associations among 2Apro, 2BC, 2C, and 2B. Specifically, 2Apro can interact with itself and 2BC and its cleavage products (2B and 2C) interact in all possible combinations, with the exception of 2C/2C. Detected interactions were confirmed in vitro by a glutathione S-transferase pulldown assay, which allowed us to detect 2C/2C association. trans-dominant-negative mutants of 2B (K. Johnson and P. J. Sarnow, J. Virol. 65:4341–4349, 1991) were examined and were found to retain interaction with wild-type 2B, perhaps reflecting a need for 2B multimerization in viral RNA replication. The multimerization of 2B was examined further by screening a mutagenized library for 2B variants that have lost the ability to bind wild-type 2B. The screen identified two nonconservative missense mutations within a central hydrophobic region, as well as truncations and frameshifts that implicate the C terminus in homointeraction. Introduction of the missense mutations into the genome of the virus conferred a quasi-infectious phenotype, an observation strongly suggesting that the 2B/2B interaction is required for replication of the viral genome. PMID:9445030
Nguyen, K; Putoux, A; Busa, T; Cordier, M P; Sigaudy, S; Till, M; Chabrol, B; Michel-Calemard, L; Bernard, R; Julia, S; Malzac, P; Labalme, A; Missirian, C; Edery, P; Popovici, C; Philip, N; Sanlaville, D
2015-05-01
Array comparative genomic hybridization (aCGH) has progressively replaced conventional karyotype in the diagnostic strategy of intellectual disability (ID) and congenital malformations. This technique increases not only the diagnostic rate but also the possibility of finding unexpected variants unrelated to the indication of referral, namely incidental findings. The incidental finding of copy number variants (CNVs) located in X-linked genes in girls addresses the crucial question of genetic counseling in the family. We report here five cases of CNVs involving the dystrophin gene detected by aCGH in girls referred for developmental delay, without any family history of dystrophinopathy. The rearrangements included three in-frame deletions; one maternally and two paternally inherited, and two frameshift duplications: one de novo and one from undetermined inheritance. In two cases, the deletion identified in a girl was transmitted by the asymptomatic father. In the case of the maternally inherited deletion, prenatal diagnosis of dystrophinopathy was proposed for an ongoing pregnancy, whereas the cause of developmental delay in the index case remained unknown. Through these cases, we discussed the challenges of genetic counseling in the family, regarding the predictive issues for male individuals at risk for a muscular dystrophy without precise knowledge of the clinical consequences of some CNVs in the DMD gene. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genetic features of Mycobacterium tuberculosis modern Beijing sublineage
Liu, Qingyun; Luo, Tao; Dong, Xinran; Sun, Gang; Liu, Zhu; Gan, Mingyun; Wu, Jie; Shen, Xin; Gao, Qian
2016-01-01
Mycobacterium tuberculosis (MTB) Beijing strains have caused a great concern because of their rapid emergence and increasing prevalence in worldwide regions. Great efforts have been made to investigate the pathogenic characteristics of Beijing strains such as hypervirulence, drug resistance and favoring transmission. Phylogenetically, MTB Beijing family was divided into modern and ancient sublineages. Modern Beijing strains displayed enhanced virulence and higher prevalence when compared with ancient Beijing strains, but the genetic basis for this difference remains unclear. In this study, by analyzing previously published sequencing data of 1082 MTB Beijing isolates, we determined the genetic changes that were commonly present in modern Beijing strains but absent in ancient Beijing strains. These changes include 44 single-nucleotide polymorphisms (SNPs) and two short genomic deletions. Through bioinformatics analysis, we demonstrated that these genetic changes had high probability of functional effects. For example, 4 genes were frameshifted due to premature stop mutation or genomic deletions, 19 nonsynonymous SNPs located in conservative codons, and there is a significant enrichment in regulatory network for all nonsynonymous mutations. Besides, three SNPs located in promoter regions were verified to alter downstream gene expressions. Our study precisely defined the genetic features of modern Beijing strains and provided interesting clues for future researches to elucidate the mechanisms that underlie this sublineage's successful expansion. These findings from the analysis of the modern Beijing sublineage could provide us a model to understand the dynamics of pathogenicity of MTB. PMID:26905026
Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko
2016-11-01
Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Woerner, Stefan M.; Yuan, Yan P.; Benner, Axel; Korff, Sebastian; von Knebel Doeberitz, Magnus; Bork, Peer
2010-01-01
About 15% of human colorectal cancers and, at varying degrees, other tumor entities as well as nearly all tumors related to Lynch syndrome are hallmarked by microsatellite instability (MSI) as a result of a defective mismatch repair system. The functional impact of resulting mutations depends on their genomic localization. Alterations within coding mononucleotide repeat tracts (MNRs) can lead to protein truncation and formation of neopeptides, whereas alterations within untranslated MNRs can alter transcription level or transcript stability. These mutations may provide selective advantage or disadvantage to affected cells. They may further concern the biology of microsatellite unstable cells, e.g. by generating immunogenic peptides induced by frameshifts mutations. The Selective Targets database (http://www.seltarbase.org) is a curated database of a growing number of public MNR mutation data in microsatellite unstable human tumors. Regression calculations for various MSI–H tumor entities indicating statistically deviant mutation frequencies predict TGFBR2, BAX, ACVR2A and others that are shown or highly suspected to be involved in MSI tumorigenesis. Many useful tools for further analyzing genomic DNA, derived wild-type and mutated cDNAs and peptides are integrated. A comprehensive database of all human coding, untranslated, non-coding RNA- and intronic MNRs (MNR_ensembl) is also included. Herewith, SelTarbase presents as a plenty instrument for MSI-carcinogenesis-related research, diagnostics and therapy. PMID:19820113
78 FR 18680 - Genomic Medicine Program Advisory Committee, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The..., that the Genomic Medicine Program Advisory Committee will meet on April 11, 2013, in Suite 1000 at the... ongoing Million Veteran Program, as well as the clinical Genomic Medicine Service. The emerging...
2010-01-01
Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. Results A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. Conclusions The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host. PMID:20649993
Seamless editing of the chloroplast genome in plants.
Martin Avila, Elena; Gisby, Martin F; Day, Anil
2016-07-29
Gene editing technologies enable the precise insertion of favourable mutations and performance enhancing trait genes into chromosomes whilst excluding all excess DNA from modified genomes. The technology gives rise to a new class of biotech crops which is likely to have widespread applications in agriculture. Despite progress in the nucleus, the seamless insertions of point mutations and non-selectable foreign genes into the organelle genomes of crops have not been described. The chloroplast genome is an attractive target to improve photosynthesis and crop performance. Current chloroplast genome engineering technologies for introducing point mutations into native chloroplast genes leave DNA scars, such as the target sites for recombination enzymes. Seamless editing methods to modify chloroplast genes need to address reversal of site-directed point mutations by template mediated repair with the vast excess of wild type chloroplast genomes that are present early in the transformation process. Using tobacco, we developed an efficient two-step method to edit a chloroplast gene by replacing the wild type sequence with a transient intermediate. This was resolved to the final edited gene by recombination between imperfect direct repeats. Six out of 11 transplastomic plants isolated contained the desired intermediate and at the second step this was resolved to the edited chloroplast gene in five of six plants tested. Maintenance of a single base deletion mutation in an imperfect direct repeat of the native chloroplast rbcL gene showed the limited influence of biased repair back to the wild type sequence. The deletion caused a frameshift, which replaced the five C-terminal amino acids of the Rubisco large subunit with 16 alternative residues resulting in a ~30-fold reduction in its accumulation. We monitored the process in vivo by engineering an overlapping gusA gene downstream of the edited rbcL gene. Translational coupling between the overlapping rbcL and gusA genes resulted in relatively high GUS accumulation (~0.5 % of leaf protein). Editing chloroplast genomes using transient imperfect direct repeats provides an efficient method for introducing point mutations into chloroplast genes. Moreover, we describe the first synthetic operon allowing expression of a downstream overlapping gene by translational coupling in chloroplasts. Overlapping genes provide a new mechanism for co-ordinating the translation of foreign proteins in chloroplasts.
Programs | Office of Cancer Genomics
OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:
Sabharwal, Priyanka; Devinsky, Orrin; M Shepherd, Timothy
2017-12-01
Malformations of cortical development are associated with epilepsy and cognitive dysfunction, and can occur in patients with SCN1A ion channel mutations. We report a novel and subtle bandlike subcortical heterotopia on integrated positron emission tomography-magnetic resonance imaging ( PET-MRI) in a patient with treatment-resistant epilepsy due to a de novo KCNQ1 frameshift mutation. Our case highlights the potential for other channel mutations to cause both epilepsy and cortical malformations. Further scrutiny of high contrast resolution MRI studies is warranted for patients with KCNQ1 and other epilepsy genes to further define their extended phenotype.
Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation
Hodgson-Zingman, Denice M.; Karst, Margaret L.; Zingman, Leonid V.; Heublein, Denise M.; Darbar, Dawood; Herron, Kathleen J.; Ballew, Jeffrey D.; de Andrade, Mariza; Burnett, John C.; Olson, Timothy M.
2008-01-01
Summary Atrial fibrillation is a common arrhythmia that is hereditary in a small subgroup of patients. In a family with 11 clinically affected members, we mapped an atrial fibrillation locus to chromosome 1p36-p35 and identified a heterozygous frameshift mutation in the gene encoding atrial natriuretic peptide. Circulating chimeric atrial natriuretic peptide (ANP) was detected in high concentration in subjects with the mutation, and shortened atrial action potentials were seen in an isolated heart model, creating a possible substrate for atrial fibrillation. This report implicates perturbation of the atrial natriuretic peptide–cyclic guanosine monophosphate (cGMP) pathway in cardiac electrical instability. PMID:18614783
Fremerey, Julia; Balzer, Stefan; Brozou, Triantafyllia; Schaper, Joerg; Borkhardt, Arndt; Kuhlen, Michaela
2017-07-01
Germline mutations in the DICER1 gene are associated with an inherited cancer predisposition syndrome also known as the DICER1-syndrome, which is implicated in a broad range of tumors including pleuropulmonary blastoma, ovarian Sertoli-Leydig cell tumors, ciliary body medulloepithelioma (CBME), pituitary blastoma, embryonal rhabdomyosarcoma (eRMS), anaplastic renal sarcoma as well as ocular, sinonasal tumors ovarian sex-cord tumors, thyroid neoplasia and cystic nephroma. This study describes a novel, heterozygous frameshift DICER1 mutation in a patient, who is affected by different tumors of the DICER1-syndrome, including eRMS, CBME and suspected pleuropulmonary blastoma type I. By whole-exome sequencing of germline material using peripheral blood-derived DNA, we identified a single base pair duplication within the DICER1 gene (c.3405 dupA) that leads to a frameshift and results in a premature stop in exon 21 (p.Gly1136Arg). The metachronous occurrence of two unrelated tumor entities (eRMS and CBME) in a very young child within a short timeframe should have raised the suspicion of an underlying cancer susceptibility syndrome and should be prompt tested for DICER1.
Subbiah, Vivek; Westin, Shannon N; Wang, Kai; Araujo, Dejka; Wang, Wei-Lien; Miller, Vincent A; Ross, Jeffrey S; Stephens, Phillip J; Palmer, Gary A; Ali, Siraj M
2014-01-14
Oncologic patients who are extreme responders to molecularly targeted therapy provide an important opportunity to better understand the biologic basis of response and, in turn, inform clinical decision making. Malignant neoplasms with an uncertain histologic and immunohistochemical characterization present challenges both on initial diagnostic workups and then later in management, as current treatment algorithms are based on a morphologic diagnosis. Herein, we report a case of a difficult to characterize sarcoma-like lesion for which genomic profiling with clinical next generation sequencing (NGS) identified the molecular underpinnings of arrested progression(stable disease) under combination targeted therapy within a phase I clinical trial. Genomic profiling with clinical next generation sequencing was performed on the FoundationOne™ platform (Foundation Medicine, Cambridge MA). Histopathology and immunohistochemical studies were performed in the Department of Pathology, MD Anderson Cancer Center (Houston, TX). Treatment was administered in the context of a phase I clinical trial ClinicalTrials.gov Identifier: (NCT01187199). The histology of the tumor was that of a spindle cell neoplasm, grade 2 by FNCLCC standards. Immunohistochemical staining was positive for S100 and CD34. Genomic profiling identified the following alterations: a KIAA1549-BRAF gene fusion resulting from a tandem duplication event, a homozygous deletion of PTEN, and frameshift insertion/deletions in CDKN2A A68fs*51, SUFU E283fs*3, and MAP3K1 N325fs*3. The patient had a 25% reduction in tumor (RECIST v1.1) following combination therapy consisting of sorafenib, temsirolimus, and bevazicumab within a phase I clinical trial. The patient responded to combination targeted therapy that fortuitously targeted KIAA1549-BRAF and PTEN loss within a spindle cell neoplasm, as revealed by genomic profiling based on NGS. This is the first report of a tumor driven by a KIAA1549-BRAF fusion responding to sorafenib-based combination therapy.
Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang
2016-06-14
Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).
Kim, Seon-Hee; Kong, Yoon; Bae, Young-An
2017-06-01
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome. Copyright © 2017 Elsevier B.V. All rights reserved.
Maurer, B; Bannert, H; Darai, G; Flügel, R M
1988-01-01
The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755
Sue, David; Gee, Jay E.; Elrod, Mindy G.; Hoffmaster, Alex R.; Randall, Linnell B.; Chirakul, Sunisa; Tuanyok, Apichai; Schweizer, Herbert P.; Weigel, Linda M.
2017-01-01
ABSTRACT Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei. Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis. PMID:28396541
Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali
2017-06-01
Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Clinical detection of deletion structural variants in whole-genome sequences
Noll, Aaron C; Miller, Neil A; Smith, Laurie D; Yoo, Byunggil; Fiedler, Stephanie; Cooley, Linda D; Willig, Laurel K; Petrikin, Josh E; Cakici, Julie; Lesko, John; Newton, Angela; Detherage, Kali; Thiffault, Isabelle; Saunders, Carol J; Farrow, Emily G; Kingsmore, Stephen F
2016-01-01
Optimal management of acutely ill infants with monogenetic diseases requires rapid identification of causative haplotypes. Whole-genome sequencing (WGS) has been shown to identify pathogenic nucleotide variants in such infants. Deletion structural variants (DSVs, >50 nt) are implicated in many genetic diseases, and tools have been designed to identify DSVs using short-read WGS. Optimisation and integration of these tools into a WGS pipeline could improve diagnostic sensitivity and specificity of WGS. In addition, it may improve turnaround time when compared with current CNV assays, enhancing utility in acute settings. Here we describe DSV detection methods for use in WGS for rapid diagnosis in acutely ill infants: SKALD (Screening Konsensus and Annotation of Large Deletions) combines calls from two tools (Breakdancer and GenomeStrip) with calibrated filters and clinical interpretation rules. In four WGS runs, the average analytic precision (positive predictive value) of SKALD was 78%, and recall (sensitivity) was 27%, when compared with validated reference DSV calls. When retrospectively applied to a cohort of 36 families with acutely ill infants SKALD identified causative DSVs in two. The first was heterozygous deletion of exons 1–3 of MMP21 in trans with a heterozygous frame-shift deletion in two siblings with transposition of the great arteries and heterotaxy. In a newborn female with dysmorphic features, ventricular septal defect and persistent pulmonary hypertension, SKALD identified the breakpoints of a heterozygous, de novo 1p36.32p36.13 deletion. In summary, consensus DSV calling, implemented in an 8-h computational pipeline with parameterised filtering, has the potential to increase the diagnostic yield of WGS in acutely ill neonates and discover novel disease genes. PMID:29263817
75 FR 26846 - Genomic Medicine Program Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The...) that the Genomic Medicine Program Advisory Committee will meet on May 21, 2010, at the Westin... appropriate ethical oversight and protecting the privacy of Veterans; presentations on genomic medicine...
History of the DOE Human Genome Program
History of the DOE Human Genome Program The following history is taken from the U.S. Department of Energy 1991-91 Human Genome Program Report (June 1992). This is an archived item. A brief history of the U.S. Department of Energy (DOE) Human Genome Program will be useful in a discussion of the objectives
Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.
2016-01-01
Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461
Parida, Manmohan; Nabeshima, Takeshi; Yu, Fuxun; Thuy, Nguyen Thanh; Inoue, Shingo; Ito, Takashi; Okamoto, Kenta; Ichinose, Akitoyo; Snijder, Eric J.; Morita, Kouichi; Gorbalenya, Alexander E.
2011-01-01
Nidoviruses with large genomes (26.3–31.7 kb; ‘large nidoviruses’), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7–15.7 kb; ‘small nidoviruses’). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3′-5′exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60–80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3′-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3′-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2′-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that – in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses. PMID:21931546
Genetic Characterization of the SufJ Frameshift Suppressor in SALMONELLA TYPHIMURIUM
Bossi, Lionello; Kohno, Tadahiko; Roth, John R.
1983-01-01
A new suppressor of +1 frameshift mutations has been isolated in Salmonella typhimurium. This suppressor, sufJ, maps at minute 89 on the Salmonella genetic map between the argH and rpo(rif) loci, closely linked to the gene for the ochre suppressor tyrU(supM). The suppressor mutation is dominant to its wild-type allele, consistent with the suppressor phenotype being caused by an altered tRNA species. The sufJ map position coincides with that of a threonine tRNA(ACC/U) gene; the suppressor has been shown to read the related fourbase codons ACCU, ACCC, ACCA.—The ability of sufJ to correct one particular mutation depends on the presence of a hisT mutation which causes a defect in tRNA modification. This requirement is allele specific, since other frameshift mutations can be corrected by sufJ regardless of the state of the hisT locus.—Strains carrying both a sufJ and a hisT mutation are acutely sensitive to growth inhibition by uracil; the inhibition is reversed by arginine. This behavior is characteristic of strains with mutations affecting the arginine-uracil biosynthetic enzyme carbamyl phosphate synthetase. The combination of two mutations affecting tRNA structure may reduce expression of the structural gene for this enzyme (pyrA). PMID:6188650
Saeterdal, I; Bjørheim, J; Lislerud, K; Gjertsen, M K; Bukholm, I K; Olsen, O C; Nesland, J M; Eriksen, J A; Møller, M; Lindblom, A; Gaudernack, G
2001-11-06
The functional role and specificity of tumor infiltrating lymphocytes (TIL) is generally not well characterized. Prominent lymphocyte infiltration is the hallmark of the most common form of hereditary colon cancer, hereditary nonpolyposis colon cancer (HNPCC) and the corresponding spontaneous colon cancers with the microsatellite instability (MSI) phenotype. These cancers are caused by inherited or acquired defects in the DNA mismatch-repair machinery. The molecular mechanism behind the MSI phenotype provides a clue to understanding the lymphocyte reaction by allowing reliable prediction of potential T cell epitopes created by frameshift mutations in candidate genes carrying nucleotide repeat sequences, such as TGF beta RII and BAX. These tumors therefore represent an interesting human system for studying TIL and characterizing tumor-specific T cells. We here describe T cell reactivity against several T helper cell epitopes, representing a common frameshift mutation in TGF beta RII, in TIL and peripheral blood lymphocytes from patients with MSI(+) tumors. The peptide SLVRLSSCVPVALMSAMTTSSSQ was recognized by T cells from two of three patients with spontaneous MSI(+) colon cancers and from all three patients with HNPCC. Because such mutations are present in 90% of cancers within this patient group, these newly characterized epitopes provide attractive targets for cancer vaccines, including a prophylactic vaccine for individuals carrying a genetic disposition for developing HNPCC.
Sæterdal, Ingvil; Bjørheim, Jens; Lislerud, Kari; Gjertsen, Marianne K.; Bukholm, Ida K.; Olsen, Ole Christian; Nesland, Jahn M.; Eriksen, Jon Amund; Møller, Mona; Lindblom, Annika; Gaudernack, Gustav
2001-01-01
The functional role and specificity of tumor infiltrating lymphocytes (TIL) is generally not well characterized. Prominent lymphocyte infiltration is the hallmark of the most common form of hereditary colon cancer, hereditary nonpolyposis colon cancer (HNPCC) and the corresponding spontaneous colon cancers with the microsatellite instability (MSI) phenotype. These cancers are caused by inherited or acquired defects in the DNA mismatch–repair machinery. The molecular mechanism behind the MSI phenotype provides a clue to understanding the lymphocyte reaction by allowing reliable prediction of potential T cell epitopes created by frameshift mutations in candidate genes carrying nucleotide repeat sequences, such as TGFβRII and BAX. These tumors therefore represent an interesting human system for studying TIL and characterizing tumor-specific T cells. We here describe T cell reactivity against several T helper cell epitopes, representing a common frameshift mutation in TGFβRII, in TIL and peripheral blood lymphocytes from patients with MSI+ tumors. The peptide SLVRLSSCVPVALMSAMTTSSSQ was recognized by T cells from two of three patients with spontaneous MSI+ colon cancers and from all three patients with HNPCC. Because such mutations are present in 90% of cancers within this patient group, these newly characterized epitopes provide attractive targets for cancer vaccines, including a prophylactic vaccine for individuals carrying a genetic disposition for developing HNPCC. PMID:11687624
A novel frameshift variant in the CADASIL gene NOTCH3: pathogenic or not?
Schubert, V; Bender, B; Kinzel, M; Peters, N; Freilinger, T
2018-06-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) represents the most common monogenic cause of adult-onset ischemic stroke and vascular dementia. It is caused by heterozygous missense mutations in the NOTCH3 gene, encoding a transmembrane receptor protein on vascular smooth muscle cells. Classical CADASIL mutations affect conserved cysteine residues of the Notch3 protein. By contrast, the role of non-canonical genetic variation in NOTCH3, in particular of variants causing a hypomorphic Notch3 protein, is subject to an ongoing scientific debate. In this context, we here report a novel NOTCH3 frameshift variant in exon 18 (NM_000435.2: c.2853_2857delTCCCG), causing a frameshift and introducing a premature stop codon, which was detected in a 43-year-old woman and her father. Both carriers of the variant were carefully evaluated, including serial follow-up in the index. Neither clinical nor imaging features provided convincing evidence for a classical CADASIL phenotype, thus reinforcing the concept of hypomorphic NOTCH3 variants most likely not being causative for CADASIL. Our finding, which is discussed in the light of the published literature, has practical implications for interpreting results of NOTCH3 molecular genetic testing as well as patient counseling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, D.M.; Kaiser-Kupfer, M.; Eldridge, R.
Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsensemore » mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.« less
Hinney, Anke; Hoch, Anne; Geller, Frank; Schäfer, Helmut; Siegfried, Wolfgang; Goldschmidt, Hanspeter; Remschmidt, Helmut; Hebebrand, Johannes
2002-06-01
Ghrelin induces obesity via central and peripheral mechanisms. Administration of ghrelin leads to increased food intake and decreased fat utilisation in rodents. Ghrelin levels are decreased in obese individuals. Recently, a polymorphism (Arg-51-Gln) within the ghrelin gene (GHRL) was described to be associated with obesity. We screened the GHRL coding region in 215 extremely obese German Children and adolescents (study group 1) and 93 normal weight students (study group 2) by single strand conformation polymorphism analysis (SSCP). We found the two previously described single nucleotide polymorphisms (SNP: Arg-51-Gln and Leu-72-Met) in similar frequencies in study groups 1 and 2 (allele frequencies were: 0.019 and 0.016 for the 51-Gln allele and 0.091 and 0.086 for the 72-Met allele, respectively). Hence, we could not confirm the previous finding. Additionally, two novel variants were identified within the coding region: (1) We detected one healthy normal weight individual with a frameshift mutation (2bp deletion at codon 34). This frameshift mutation affects the coding region of the mature ghrelin. Hence, it is highly likely that the normal weight student is haplo-insufficient for ghrelin. (2) An A to T transversion leads to an amino acid exchange from Gln to Leu at amino acid position 90. The frequency of the 90-Leu allele was significantly higher in the extremely obese children and adolescents (0.063) than in the normal weight students (0.016; nominal p = 0.011). Additionally, we genotyped 134 underweight students and 44 normal weight adults for this SNP. Genotype frequencies were similar in extremely obese children and adolescents, underweight students and normal weight adults (p > 0.8). In conclusion, we identified four sequence variants in the coding region of the ghrelin gene in individuals belonging to different weight extremes. A frameshift mutation was detected in a normal weight individual. None of the variants seem to influence weight regulation.
Plaschke, Jens; Krüger, Stefan; Jeske, Birgit; Theissig, Franz; Kreuz, Friedmar R; Pistorius, Steffen; Saeger, Hans D; Iaccarino, Ingram; Marra, Giancarlo; Schackert, Hans K
2004-02-01
Mononucleotide repeat sequences are particularly prone to frameshift mutations in tumors with biallelic inactivation of the mismatch repair (MMR) genes MLH1 or MSH2. In these tumors, several genes harboring mononucleotide repeats in their coding region have been proposed as targets involved in tumor progression, among which are also the MMR genes MSH3 and MSH6. We have analyzed the expression of the MSH3 and MSH6 proteins by immunohistochemistry in 31 colorectal carcinomas in which MLH1 was inactivated. Loss of MSH3 expression was identified in 15 tumors (48.5%), whereas all tumors expressed MSH6. Frameshift mutations at coding microsatellites were more frequent in MSH3 (16 of 31) than in MSH6 (3 of 31; Fisher's exact test, P < 0.001). Frameshift mutations and allelic losses of MSH3 were more frequent in MSH3-negative tumors compared with those with normal expression (22 mutations in 30 alleles versus 8 mutations in 28 alleles; chi(2), P = 0.001). Biallelic inactivation was evident or inferred for 60% of MSH3-negative tumors but none of the tumors with normal MSH3 expression. In contrast, we did not identify frameshift mutations in the (A)8 tract of MSH3 in a control group of 18 colorectal carcinomas in which the MMR deficiency was based on the inactivation of MSH2. As it has been suggested that mutations of MSH3 might play a role in tumor progression, we studied the association between MSH3 expression and disease stage assessed by lymph node and distant metastases status. Dukes stages C and D were more frequent in primary tumors with loss of MSH3 expression (9 of 13), compared with tumors with retained expression (1 of 14; Fisher's exact test, P = 0.001), suggesting that MSH3 abrogation may be a predictor of metastatic disease or even favor tumor cell spread in MLH1-deficient colorectal cancers.
Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V
2018-01-01
Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.
Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei
2018-04-15
The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection. Copyright © 2018 American Society for Microbiology.
Lambert, I. B.; Gordon, AJE.; Glickman, B. W.; McCalla, D. R.
1992-01-01
We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/-ΔuvrB) and MucA/B-mediated error-prone translesion synthesis (+/-pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (>92%) which occurred at G·C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G·C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G·C -> T·A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G·C -> T·A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G·C -> T·A transversions by a factor of 30-60. In contrast, the -(G·C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G·C -> T·A transversions and -(G·C) frameshifts. Deletion mutations were induced in the Δuvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G·C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell. PMID:1459443
Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto
2008-11-01
Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from Mendel's peas not only because many students do not understand that plants are organisms, but also because human biology contains important social and health issues. Therefore, we have developed a teaching program for the introduction to genome science, whose subjects are focused on the human genome. This program comprises mixed multimedia presentations: a large poster with illustrations and text on the human genome (a human genome map for every home), and animations on the basics of genome science. We implemented and assessed this program at four high schools. Our results indicate that students felt that they learned about the human genome from the program and some increases in students' understanding were observed with longer exposure to the mixed multimedia presentations. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.
Cryptic tRNAs in chaetognath mitochondrial genomes.
Barthélémy, Roxane-Marie; Seligmann, Hervé
2016-06-01
The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khan, Arif O; Becirovic, Elvir; Betz, Christian; Neuhaus, Christine; Altmüller, Janine; Maria Riedmayr, Lisa; Motameny, Susanne; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J
2017-05-03
Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.
Alencar, Valquíria Campos; Jabes, Daniela Leite; Menegidio, Fabiano Bezerra; Sassaki, Guilherme Lanzi; de Souza, Lucas Rodrigo; Puzer, Luciano; Meneghetti, Maria Cecília Zorél; Lima, Marcelo Andrade; Tersariol, Ivarne Luis Dos Santos; de Oliveira, Regina Costa; Nunes, Luiz R
2017-02-07
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Using secondary structure to identify ribosomal numts: cautionary examples from the human genome.
Olson, Link E; Yoder, Anne D
2002-01-01
The identification of inadvertently sequenced mitochondrial pseudogenes (numts) is critical to any study employing mitochondrial DNA sequence data. Failure to discriminate numts correctly can confound phylogenetic reconstruction and studies of molecular evolution. This is especially problematic for ribosomal mtDNA genes. Unlike protein-coding loci, whose pseudogenes tend to accumulate diagnostic frameshift or premature stop mutations, functional ribosomal genes are not constrained to maintain a reading frame and can accumulate insertion-deletion events of varying length, particularly in nonpairing regions. Several authors have advocated using structural features of the transcribed rRNA molecule to differentiate functional mitochondrial rRNA genes from their nuclear paralogs. We explored this approach using the mitochondrial 12S rRNA gene and three known 12S numts from the human genome in the context of anthropoid phylogeny and the inferred secondary structure of primate 12S rRNA. Contrary to expectation, each of the three human numts exhibits striking concordance with secondary structure models, with little, if any, indication of their pseudogene status, and would likely escape detection based on structural criteria alone. Furthermore, we show that the unwitting inclusion of a particularly ancient (18-25 Myr old) and surprisingly cryptic human numt in a phylogenetic analysis would yield a well-supported but dramatically incorrect conclusion regarding anthropoid relationships. Though we endorse the use of secondary structure models for inferring positional homology wholeheartedly, we caution against reliance on structural criteria for the discrimination of rRNA numts, given the potential fallibility of this approach.
Lerch, R A; Friesen, P D
1992-01-01
TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168
Magiorkinis, E; Paraskevis, D; Pavlopoulou, I D; Kantzanou, M; Haida, C; Hatzakis, A; Boletis, I N
2013-08-01
The purpose of this study was to present a fatal case of fulminant hepatitis B (FHB) that developed in a renal transplant recipient, immunized against hepatitis B, 1 year post transplantation. Polymerase chain reaction amplification and full genome sequencing were performed to investigate whether specific mutations were associated with hepatitis B virus (HBV) transmission and FHB. Molecular analysis revealed multiple mutations in various open reading frames of HBV, the most important being the G145R escape mutation and a frameshift mutation-insertion (1838insA) within the pre-C/C reading frame. Our results highlight the possibility of developing FHB, despite previous immunization against HBV or administration of hyperimmune gammaglobulin, because of the selection of escape virus mutants. The current literature and guidelines regarding renal transplantation from hepatitis B surface antigen (HBsAg)-positive to HBsAg-negative patients were also reviewed. © 2013 John Wiley & Sons A/S.
[Molecular and prenatal diagnosis of a family with Fanconi anemia by next generation sequencing].
Gong, Zhuwen; Yu, Yongguo; Zhang, Qigang; Gu, Xuefan
2015-04-01
To provide prenatal diagnosis for a pregnant woman who had given birth to a child with Fanconi anemia with combined next-generation sequencing (NGS) and Sanger sequencing. For the affected child, potential mutations of the FANCA gene were analyzed with NGS. Suspected mutation was verified with Sanger sequencing. For prenatal diagnosis, genomic DNA was extracted from cultured fetal amniotic fluid cells and subjected to analysis of the same mutations. A low-frequency frameshifting mutation c.989_995del7 (p.H330LfsX2, inherited from his father) and a truncating mutation c.3971C>T (p.P1324L, inherited from his mother) have been identified in the affected child and considered to be pathogenic. The two mutations were subsequently verified by Sanger sequencing. Upon prenatal diagnosis, the fetus was found to carry two mutations. The combined next-generation sequencing and Sanger sequencing can reduce the time for diagnosis and identify subtypes of Fanconi anemia and the mutational sites, which has enabled reliable prenatal diagnosis of this disease.
Beeman, R. W.; Thomson, M. S.; Clark, J. M.; DeCamillis, M. A.; Brown, S. J.; Denell, R. E.
1996-01-01
A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains. PMID:8722793
Zhang, Xiuwen; Unmack, Peter J; Kuchling, Gerald; Wang, Yinan; Georges, Arthur
2017-10-01
Pseudemydura umbrina is one of the most endangered turtle species in the world, and the imperative for its conservation is its distinctive morphology and relict status among the Chelidae. We use Illumina sequencing to obtain the complete mitogenome for resolving its uncertain phylogenetic position. A novel nuclear paralogue confounded the assembly, and resolution of the authentic mitogenome required further Sanger sequencing. The P. umbrina mitogenome is 16,414bp comprising 37 genes organized in a conserved pattern for other vertebrates. The nuclear paralogue is 547bp, 97.8% identity to the corresponding mitochondrial sequence. Particular features of the mitogenome include an nd3 174+1A frameshift, loss of DHC loop in tRNA Ser (AGN), and a light-strand replication initiation site in Wancy region that extends into an adjacent tRNA gene. Phylogenetic analysis showed that P. umbrina is the monotypic sister lineage to the remaining Australasian Chelidae, a lineage probably dating back to the Cretaceous. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu
2015-01-13
Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Boileau, Catherine; Guo, Dong-Chuan; Hanna, Nadine; Regalado, Ellen S; Detaint, Delphine; Gong, Limin; Varret, Mathilde; Prakash, Siddharth K; Li, Alexander H; d'Indy, Hyacintha; Braverman, Alan C; Grandchamp, Bernard; Kwartler, Callie S; Gouya, Laurent; Santos-Cortez, Regie Lyn P; Abifadel, Marianne; Leal, Suzanne M; Muti, Christine; Shendure, Jay; Gross, Marie-Sylvie; Rieder, Mark J; Vahanian, Alec; Nickerson, Deborah A; Michel, Jean Baptiste; Jondeau, Guillaume; Milewicz, Dianna M
2012-07-08
A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations-a frameshift mutation in exon 6 and a nonsense mutation in exon 4-segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.
2012 U.S. Department of Energy: Joint Genome Institute: Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, David
2013-01-01
The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.
Human genome. 1993 Program report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.
endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1.
Cavicchioli, R; East, P D; Watson, K
1991-01-01
The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2. Images PMID:1708767
Kim, Hee-Jung; Song, Min-Jung; Lee, Ki-O; Kim, Sun-Hee; Kim, Hee-Jin
2015-12-01
Severe congenital neutropenia (SCN) is a bone marrow failure disease with an autosomal dominant inheritance from mutations in ELANE. Here, we report a 7-week-old Korean male with SCN. His elder sister died from pneumonia at 2 years. Direct sequencing of ELANE in the proband identified a heterozygous novel frameshift mutation: c.658delC (p.Arg220Glyfs20*). Family study involving his asymptomatic parents with normal cell counts revealed that his father had the same mutation, but at a lower burden than expected in a typical heterozygous state. Further molecular investigation demonstrated somatic mosaicism with ~18% mutant alleles. We concluded the proband inherited the mutation from his somatic mosaic father. © 2015 Wiley Periodicals, Inc.
Post-Genome Era Pedagogy: How a BS Biotechnology Program Benefits the Liberal Arts Institution
ERIC Educational Resources Information Center
Eden, Peter
2005-01-01
Genomics profoundly affects society, because genome sequence information is widely used in such areas as genetic testing, genomic medicine/vaccine development, and so forth. Therefore, a responsibility to modernize science curricula exists for "post-genome era" educators. At my university, we developed a BS biotechnology program within a…
Mating programs including genomic relationships and dominance effects
USDA-ARS?s Scientific Manuscript database
Breed associations, artificial-insemination organizations, and on-farm software providers need new computerized mating programs for genomic selection so that genomic inbreeding could be minimized by comparing genotypes of potential mates. Efficient methods for transferring elements of the genomic re...
McEwen, Jean E; Boyer, Joy T; Sun, Kathie Y; Rothenberg, Karen H; Lockhart, Nicole C; Guyer, Mark S
2014-01-01
For more than 20 years, the Ethical, Legal, and Social Implications (ELSI) Program of the National Human Genome Research Institute has supported empirical and conceptual research to anticipate and address the ethical, legal, and social implications of genomics. As a component of the agency that funds much of the underlying science, the program has always been an experiment. The ever-expanding number of issues the program addresses and the relatively low level of commitment on the part of other funding agencies to support such research make setting priorities especially challenging. Program-supported studies have had a significant impact on the conduct of genomics research, the implementation of genomic medicine, and broader public policies. The program's influence is likely to grow as ELSI research, genomics research, and policy development activities become increasingly integrated. Achieving the benefits of increased integration while preserving the autonomy, objectivity, and intellectual independence of ELSI investigators presents ongoing challenges and new opportunities.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers.
Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas; Lütken, Henrik; Müller, Renate
2016-05-23
The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers are sensitive to even minute concentrations of ethylene. Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development and in response to ethylene. In contrast, EIL2 was found only in Cf and Cm. We identified a natural mutation in Cmeil2 causing a frameshift which resulted in difference in expression levels of EIL2, with more than 100-fold change between Cf and Cm in young flowers. This study shows that the naturally occurring 7 bp frameshift discovered in Cmeil2, a key gene in the ethylene signaling pathway, correlates with ethylene insensitivity in flowers. We suggest that transfer of the eil2 mutation to other plant species will provide a novel tool to engineer ethylene insensitive flowers.
Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.
77 FR 58913 - Genomic Medicine Program Advisory Committee, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on October 16, 2012, at the American...
76 FR 24573 - Genomic Medicine Program Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on May 20, 2011, at the St. Regis Hotel...
78 FR 58612 - Genomic Medicine Program Advisory Committee, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Genomic Medicine Program Advisory Committee will meet on October 16, 2013, at the Sheraton...
75 FR 61861 - Genomic Medicine Program Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on October 22, 2010, at the Embassy...
77 FR 16898 - Genomic Medicine Program Advisory Committee, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on April 17, 2012, at the Sheraton...
Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.
Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay
2012-12-01
Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmer, P.; Lader, E.; George, P.C.
1986-10-01
The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' ..delta..gag-fms-..delta..pol-..delta..env 3'. The HZ5- and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. Inmore » the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV.« less
Besmer, P; Lader, E; George, P C; Bergold, P J; Qiu, F H; Zuckerman, E E; Hardy, W D
1986-01-01
The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' delta gag-fms-delta pol-delta env 3'. The HZ5-and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. In the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV. Images PMID:3018286
Genetic characterization of frameshift suppressors with new decoding properties.
Hughes, D; Thompson, S; O'Connor, M; Tuohy, T; Nichols, B P; Atkins, J F
1989-01-01
Suppressor mutants that cause ribosomes to shift reading frame at specific and new sequences are described. Suppressors for trpE91, the only known suppressible -1 frameshift mutant, have been isolated in Escherichia coli and in Salmonella typhimurium. E. coli hopR acts on trpE91 within the 9-base-pair sequence GGA GUG UGA, is dominant, and is located at min 52 on the chromosome. Its Salmonella homolog maps at an equivalent position and arises as a rarer class in that organism as compared with E. coli. The Salmonella suppressor, hopE, believed to be in a duplicate copy of the same gene, maps at min 17. The +1 suppressor, sufT, acts at the nonmonotonous sequence CCGU, is dominant, and maps at min 59 on the Salmonella chromosome. PMID:2644219
A novel de novo POGZ mutation in a patient with intellectual disability.
Tan, Bo; Zou, Yongyi; Zhang, Yue; Zhang, Rui; Ou, Jianjun; Shen, Yidong; Zhao, Jingping; Luo, Xiaomei; Guo, Jing; Zeng, Lanlan; Hu, Yiqiao; Zheng, Yu; Pan, Qian; Liang, Desheng; Wu, Lingqian
2016-04-01
POGZ, the gene encoding pogo transposable element-derived protein with zinc-finger domain, has been implicated in autism spectrum disorder and it is widely expressed in the human tissues, including the brain. Intellectual disability (ID) is highly heterogeneous neurodevelopment disorder and affects ~2-3% of the general population. Here we report the identification of a novel frameshift mutation in the coding region of the POGZ gene (c.1277_1278insC), which occurred de novo in a Chinese patient with ID. In silico analysis and western blotting revealed this frameshift mutation generating truncated protein in peripheral blood lymphocytes, and this may disrupt several important domains of POGZ gene. Our finding broadens the spectrum of POGZ mutations and may help to understand the molecular basis of ID and aid genetic counseling.
Translational Genomics in Low and Middle Income Countries: Opportunities and Challenges
Tekola-Ayele, Fasil; Rotimi, Charles N.
2015-01-01
Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low and middle income countries (LMIC) have participated minimally in genomic research for several reasons including lack of coherent national policies, limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomics research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and socio-cultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomics research, we advocate that large-scale genomics research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and socio-cultural uniqueness. These policies should encourage international collaboration and promote link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. PMID:26138992
USDA-ARS?s Scientific Manuscript database
The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside...
76 FR 65563 - Genomic Medicine Program Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine Program Advisory Committee will meet on November 2, 2011, at the Hamilton Crowne Plaza, 14th and K Streets, NW.,...
Cancer Genomic Resources and Present Needs in the Latin American Region.
Torres, Ángela; Oliver, Javier; Frecha, Cecilia; Montealegre, Ana Lorena; Quezada-Urbán, Rosalía; Díaz-Velásquez, Clara Estela; Vaca-Paniagua, Felipe; Perdomo, Sandra
2017-01-01
In Latin America (LA), cancer is the second leading cause of death, and little is known about the capacities and needs for the development of research in the field of cancer genomics. In order to evaluate the current capacity for and development of cancer genomics in LA, we collected the available information on genomics, including the number of next-generation sequencing (NGS) platforms, the number of cancer research institutions and research groups, publications in the last 10 years, educational programs, and related national cancer control policies. Currently, there are 221 NGS platforms and 118 research groups in LA developing cancer genomics projects. A total of 272 articles in the field of cancer genetics/genomics were published by authors affiliated to Latin American institutions. Educational programs in genomics are scarce, almost exclusive of graduate programs, and only few are concerning cancer. Only 14 countries have national cancer control plans, but all of them consider secondary prevention strategies for early diagnosis, opportune treatment, and decreasing mortality, where genomic analyses could be implemented. Despite recent advances in introducing knowledge about cancer genomics and its application to LA, the region lacks development of integrated genomic research projects, improved use of NGS platforms, implementation of associated educational programs, and health policies that could have an impact on cancer care. © 2017 S. Karger AG, Basel.
Mlotshwa, Busisiwe C; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W; Hanchard, Neil A; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W
2017-07-01
The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.
Mlotshwa, Busisiwe C.; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W.; Hanchard, Neil A.; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W.
2017-01-01
Purpose: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees’ perspectives on their involvement. Background: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North–South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. Methods: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Conclusion: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North–South and South–South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their “first language.” Genet Med advance online publication 06 April 2017 PMID:28383545
Eight previously unidentified mutations found in the OA1 ocular albinism gene
Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc
2006-01-01
Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960
Burnight, Erin R; Gupta, Manav; Wiley, Luke A; Anfinson, Kristin R; Tran, Audrey; Triboulet, Robinson; Hoffmann, Jeremy M; Klaahsen, Darcey L; Andorf, Jeaneen L; Jiao, Chunhua; Sohn, Elliott H; Adur, Malavika K; Ross, Jason W; Mullins, Robert F; Daley, George Q; Schlaeger, Thorsten M; Stone, Edwin M; Tucker, Budd A
2017-09-06
Patient-derived induced pluripotent stem cells (iPSCs) hold great promise for autologous cell replacement. However, for many inherited diseases, treatment will likely require genetic repair pre-transplantation. Genome editing technologies are useful for this application. The purpose of this study was to develop CRISPR-Cas9-mediated genome editing strategies to target and correct the three most common types of disease-causing variants in patient-derived iPSCs: (1) exonic, (2) deep intronic, and (3) dominant gain of function. We developed a homology-directed repair strategy targeting a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) and demonstrated restoration of the retinal transcript and protein in patient cells. We generated a CRISPR-Cas9-mediated non-homologous end joining (NHEJ) approach to excise a major contributor to Leber congenital amaurosis, the IVS26 cryptic-splice mutation in CEP290, and demonstrated correction of the transcript and protein in patient iPSCs. Lastly, we designed allele-specific CRISPR guides that selectively target the mutant Pro23His rhodopsin (RHO) allele, which, following delivery to both patient iPSCs in vitro and pig retina in vivo, created a frameshift and premature stop that would prevent transcription of the disease-causing variant. The strategies developed in this study will prove useful for correcting a wide range of genetic variants in genes that cause inherited retinal degeneration. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Kawano, Yasuhiro; Neeley, Shane; Adachi, Kei; Nakai, Hiroyuki
2013-01-01
Overlapping open reading frames (ORFs) in viral genomes undergo co-evolution; however, how individual amino acids coded by overlapping ORFs are structurally, functionally, and co-evolutionarily constrained remains difficult to address by conventional homologous sequence alignment approaches. We report here a new experimental and computational evolution-based methodology to address this question and report its preliminary application to elucidating a mode of co-evolution of the frame-shifted overlapping ORFs in the adeno-associated virus (AAV) serotype 2 viral genome. These ORFs encode both capsid VP protein and non-structural assembly-activating protein (AAP). To show proof of principle of the new method, we focused on the evolutionarily conserved QVKEVTQ and KSKRSRR motifs, a pair of overlapping heptapeptides in VP and AAP, respectively. In the new method, we first identified a large number of capsid-forming VP3 mutants and functionally competent AAP mutants of these motifs from mutant libraries by experimental directed evolution under no co-evolutionary constraints. We used Illumina sequencing to obtain a large dataset and then statistically assessed the viability of VP and AAP heptapeptide mutants. The obtained heptapeptide information was then integrated into an evolutionary algorithm, with which VP and AAP were co-evolved from random or native nucleotide sequences in silico. As a result, we demonstrate that these two heptapeptide motifs could exhibit high degeneracy if coded by separate nucleotide sequences, and elucidate how overlap-evoked co-evolutionary constraints play a role in making the VP and AAP heptapeptide sequences into the present shape. Specifically, we demonstrate that two valine (V) residues and β-strand propensity in QVKEVTQ are structurally important, the strongly negative and hydrophilic nature of KSKRSRR is functionally important, and overlap-evoked co-evolution imposes strong constraints on serine (S) residues in KSKRSRR, despite high degeneracy of the motifs in the absence of co-evolutionary constraints.
Karakikes, Ioannis; Termglinchan, Vittavat; Cepeda, Diana A.; Lee, Jaecheol; Diecke, Sebastian; Hendel, Ayal; Itzhaki, Ilanit; Ameen, Mohamed; Shrestha, Rajani; Wu, Haodi; Ma, Ning; Shao, Ning-Yi; Seeger, Timon; Woo, Nicole; Wilson, Kitchener D.; Matsa, Elena; Porteus, Matthew H.; Sebastiano, Vittorio; Wu, Joseph C.
2017-01-01
Rationale Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusion Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research. PMID:28246128
Translational Genomics in Low- and Middle-Income Countries: Opportunities and Challenges.
Tekola-Ayele, Fasil; Rotimi, Charles N
2015-01-01
Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low- and middle-income countries (LMIC) have participated minimally in genomic research for several reasons including the lack of coherent national policies, the limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project, and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomic research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and sociocultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomic research, we advocate that large-scale genomic research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and sociocultural uniqueness. These policies should encourage international collaboration and promote the link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. © 2015 S. Karger AG, Basel.
The Human Genome Initiative of the Department of Energy
DOE R&D Accomplishments Database
1988-01-01
The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.
Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.
Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung
2008-01-01
The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.
VLITL is a major cross-β-sheet signal for fibrinogen Aα-chain frameshift variants
Garnier, Cyrille; Briki, Fatma; Le Pogamp, Patrick; Dogan, Ahmet; Rioux-Leclercq, Nathalie; Goude, Renan; Beugnet, Caroline; Martin, Laurent; Delpech, Marc; Bridoux, Frank; Grateau, Gilles; Doucet, Jean
2017-01-01
The first case of hereditary fibrinogen Aα-chain amyloidosis was recognized >20 years ago, but disease mechanisms still remain unknown. Here we report detailed clinical and proteomics studies of a French kindred with a novel amyloidogenic fibrinogen Aα-chain frameshift variant, Phe521Leufs, causing a severe familial form of renal amyloidosis. Next, we focused our investigations to elucidate the molecular basis that render this Aα-chain variant amyloidogenic. We show that a 49-mer peptide derived from the C-terminal part of the Phe521Leufs chain is deposited as fibrils in the patient’s kidneys, establishing that only a small portion of Phe521Leufs directly contributes to amyloid formation in vivo. In silico analysis indicated that this 49-mer Aα-chain peptide contained a motif (VLITL), with a high intrinsic propensity for β-aggregation at residues 44 to 48 of human renal fibrils. To experimentally verify the amyloid propensity of VLITL, we generated synthetic Phe521Leufs-derived peptides and compared their capacity for fibril formation in vitro with that of their VLITL-deleted counterparts. We show that VLITL forms typical amyloid fibrils in vitro and is a major signal for cross-β-sheet self-association of the 49-mer Phe521Leufs peptide identified in vivo, whereas its absence abrogates fibril formation. This study provides compelling evidence that VLITL confers amyloidogenic properties to Aα-chain frameshift variants, yielding a previously unknown molecular basis for the pathogenesis of Aα-chain amyloidosis. PMID:29089309
Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi
2017-08-01
Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.
Hu, Yi-Fan; Liu, Chang-Pan; Wang, Nai-Yu; Shih, Shou-Chuan
2016-08-24
Multidrug-resistant Pseudomonas aeruginosa has emerged as one of the most important healthcare-associated pathogens. Colistin is regarded as the last-resort antibiotic for multidrug-resistant Gram-negative bacteria, but is associated with high rates of acute kidney injury. The aim of this in vitro study is to search for an alternative treatment to colistin for multidrug-resistant P. aeruginosa infections. Multidrug and carbapenem-resistant P. aeruginosa isolates were collected between January 2009 and December 2012 at MacKay Memorial Hospital. Minimal inhibitory concentrations (MICs) were determined for various antibiotic combinations. Carbapenemase-producing genes including bla VIM, other β-lactamase genes and porin mutations were screened by PCR and sequencing. The efficacy of carbapenems (imipenem, meropenem, doripenem) with or without rifampicin was correlated with the type of porin mutation (frameshift mutation, premature stop codon mutation) in multidrug-resistant P. aeruginosa isolates without carbapenemase-producing genes. Of the 71 multidrug-resistant clinical P. aeruginosa isolates, only six harboured the bla VIM gene. Imipenem, meropenem and doripenem were significantly more effective (reduced fold-change of MICs) when combined with rifampicin in bla VIM-negative isolates, especially in isolates with porin frameshift mutation. Imipenem + rifampicin combination has a low MIC against multidrug-resistant P. aeruginosa, especially in isolates with porin frameshift mutation. The imipenem + rifampicin combination may provide an alternative treatment to colistin for multidrug -resistant P. aeruginosa infections, especially for patients with renal insufficiency.
Jonas, Elisabeth; de Koning, Dirk-Jan
2015-01-01
Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID:25750652
Jonas, Elisabeth; de Koning, Dirk-Jan
2015-01-01
Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.
Rhnull syndrome: identification of a novel mutation in RHce.
Rosa, K A; Reid, M E; Lomas-Francis, C; Powell, V I; Costa, F F; Stinghen, S T; Watanabe, A M; Carboni, E K; Baldon, J P; Jucksch, M M F; Castilho, L
2005-11-01
The deficiency of Rh proteins on red blood cells (RBCs) from individuals of the Rh(null) amorph type are the result of homozygosity for a silent RHCE in cis with a deleted RHD. A novel mutation in RHce was identified in two Caucasian Brazilian girls with the amorph type of Rh(null) who were born to parents who were first cousins. RBCs from the Rh(null) sisters and from family members were analyzed by serology and flow cytometry with specific antibodies. Genomic DNA and transcripts were tested by polymerase chain reaction and sequence analysis. Rh(null) RBCs were nonreactive with anti-Rh and anti-LW. Molecular analyses showed a deletion of RHD and of one nucleotide (960/963; GGGG-->GGG) in exon 7 of the RHce. This deletion introduced a frameshift after Gly321, a new C-terminal sequence, and a premature stop codon, resulting in a shorter predicted protein with 357 amino acids. The detection of a unique RHce transcript indicated that the two sisters were homozygous, whereas the other family members were heterozygous for the mutation. A novel mutation resulting in the amorph Rh(null) with loss of Rh antigen expression is described.
Shirts, Brian H; Salipante, Stephen J; Casadei, Silvia; Ryan, Shawnia; Martin, Judith; Jacobson, Angela; Vlaskin, Tatyana; Koehler, Karen; Livingston, Robert J; King, Mary-Claire; Walsh, Tom; Pritchard, Colin C
2014-10-01
Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.
Mitsui, Silvia Naomi; Yasue, Akihiro; Masuda, Kiyoshi; Naruto, Takuya; Minegishi, Yoshiyuki; Oyadomari, Seiichi; Noji, Sumihare; Imoto, Issei; Tanaka, Eiji
2016-01-01
Several mutations, located mainly in the MSX1 homeodomain, have been identified in non-syndromic tooth agenesis predominantly affecting premolars and third molars. We identified a novel frameshift mutation of the highly conserved C-terminal domain of MSX1, known as Msx homology domain 6 (MH6), in a Japanese family with non-syndromic tooth agenesis. To investigate the importance of MH6 in tooth development, Msx1 was targeted in mice with CRISPR/Cas system. Although heterozygous MH6 disruption did not alter craniofacial development, homozygous mice exhibited agenesis of lower incisors with or without cleft palate at E16.5. In addition, agenesis of the upper third molars and the lower second and third molars were observed in 4-week-old mutant mice. Although the upper second molars were present, they were abnormally small. These results suggest that the C-terminal domain of MSX1 is important for tooth and palate development, and demonstrate that that CRISPR/Cas system can be used as a tool to assess causality of human disorders in vivo and to study the importance of conserved domains in genes. PMID:27917906
Mitsui, Silvia Naomi; Yasue, Akihiro; Masuda, Kiyoshi; Naruto, Takuya; Minegishi, Yoshiyuki; Oyadomari, Seiichi; Noji, Sumihare; Imoto, Issei; Tanaka, Eiji
2016-12-05
Several mutations, located mainly in the MSX1 homeodomain, have been identified in non-syndromic tooth agenesis predominantly affecting premolars and third molars. We identified a novel frameshift mutation of the highly conserved C-terminal domain of MSX1, known as Msx homology domain 6 (MH6), in a Japanese family with non-syndromic tooth agenesis. To investigate the importance of MH6 in tooth development, Msx1 was targeted in mice with CRISPR/Cas system. Although heterozygous MH6 disruption did not alter craniofacial development, homozygous mice exhibited agenesis of lower incisors with or without cleft palate at E16.5. In addition, agenesis of the upper third molars and the lower second and third molars were observed in 4-week-old mutant mice. Although the upper second molars were present, they were abnormally small. These results suggest that the C-terminal domain of MSX1 is important for tooth and palate development, and demonstrate that that CRISPR/Cas system can be used as a tool to assess causality of human disorders in vivo and to study the importance of conserved domains in genes.
Analysis of the neuroligin 4Y gene in patients with autism.
Yan, Jin; Feng, Jinong; Schroer, Richard; Li, Wenyan; Skinner, Cindy; Schwartz, Charles E; Cook, Edwin H; Sommer, Steve S
2008-08-01
Frameshift and missense mutations in the X-linked neuroligin 4 (NLGN4, MIM# 300427) and neuroligin 3 (NLGN3, MIM# 300336) genes have been identified in patients with autism, Asperger syndrome and mental retardation. We hypothesize that sequence variants in NLGN4Y are associated with autism or mental retardation. The coding sequences and splice junctions of the NLGN4Y gene were analyzed in 335 male samples (290 with autism and 45 with mental retardation). A total of 1.1 Mb of genomic DNA was sequenced. One missense variant, p.I679V, was identified in a patient with autism, as well as his father with learning disabilities. The I679 residue is highly conserved in three members of the neuroligin family. The absence of p.I679V in 2986 control Y chromosomes and the high similarity of NLGN4 and NLGN4Y are consistent with the hypothesis that p.I679V contributes to the etiology of autism. The presence of only one structural variant in our population of 335 males with autism/mental retardation, the unavailability of significant family cosegregation and an absence of functional assays are, however, important limitations of this study.
Evolution and Distribution of Class II-Related Endogenous Retroviruses†
Gifford, Robert; Kabat, Peter; Martin, Joanne; Lynch, Clare; Tristem, Michael
2005-01-01
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into “classes” on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera—the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses—form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha- and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain. PMID:15858031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ion, A.; Telvi, L.; Galacteros, F.
We describe a pedigree presenting X-linked severe mental retardation associated with multiple congenital abnormalities and 46,XY gonadal dysgenesis, leading in one family member to female gender assignment. Female carriers are unaffected. The dysmorphic features are similar to those described in the {alpha}-thalassemia and mental retardation (ATR-X) syndrome, although there is no clinical evidence of {alpha}-thalassemia in this family. In addition, the family had other clinical features not previously observed in the ATR-X syndrome, including partial optic-nerve atrophy and partial ocular albinism. Mutations in a putative DNA helicase, termed XH2, have been reported to give rise to the ATR-X syndrome. Wemore » screened the YCH2 gene for mutations in affected members of the family and identified a 4-bp deletion at an intron/exon boundary that removes an invariant 3{prime} splice-acceptor site. The mutation cosegregates with the syndrome. The genomic deletion causes missplicing of the pre-mRNA, which results in the loss of 8 bp of coding sequence, thereby generating a frameshift and a downstream premature stop codon. Our finding increases the range of clinical features associated with mutations in the XH2 gene. 17 refs., 4 figs., 2 tabs.« less
Convergent Evolution of Slick Coat in Cattle through Truncation Mutations in the Prolactin Receptor.
Porto-Neto, Laercio R; Bickhart, Derek M; Landaeta-Hernandez, Antonio J; Utsunomiya, Yuri T; Pagan, Melvin; Jimenez, Esbal; Hansen, Peter J; Dikmen, Serdal; Schroeder, Steven G; Kim, Eui-Soo; Sun, Jiajie; Crespo, Edward; Amati, Norman; Cole, John B; Null, Daniel J; Garcia, Jose F; Reverter, Antonio; Barendse, William; Sonstegard, Tad S
2018-01-01
Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11 th exon of prolactin receptor , produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11 th exon of the prolactin receptor , two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment.
Convergent Evolution of Slick Coat in Cattle through Truncation Mutations in the Prolactin Receptor
Porto-Neto, Laercio R.; Bickhart, Derek M.; Landaeta-Hernandez, Antonio J.; Utsunomiya, Yuri T.; Pagan, Melvin; Jimenez, Esbal; Hansen, Peter J.; Dikmen, Serdal; Schroeder, Steven G.; Kim, Eui-Soo; Sun, Jiajie; Crespo, Edward; Amati, Norman; Cole, John B.; Null, Daniel J.; Garcia, Jose F.; Reverter, Antonio; Barendse, William; Sonstegard, Tad S.
2018-01-01
Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11th exon of prolactin receptor, produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11th exon of the prolactin receptor, two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment. PMID:29527221
Asymptomatic Carriage of Group A Streptococcus Is Associated with Elimination of Capsule Production
Jewell, Brittany E.; Olsen, Randall J.; Shelburne, Samuel A.; Fittipaldi, Nahuel; Beres, Stephen B.; Musser, James M.
2014-01-01
Humans commonly carry pathogenic bacteria asymptomatically, but despite decades of study, the underlying molecular contributors remain poorly understood. Here, we show that a group A streptococcus carriage strain contains a frameshift mutation in the hasA gene resulting in loss of hyaluronic acid capsule biosynthesis. This mutation was repaired by allelic replacement, resulting in restoration of capsule production in the isogenic derivative strain. The “repaired” isogenic strain was significantly more virulent than the carriage strain in a mouse model of necrotizing fasciitis and had enhanced growth ex vivo in human blood. Importantly, the repaired isogenic strain colonized the mouse oropharynx with significantly greater bacterial burden and had significantly reduced ability to internalize into cultured epithelial cells than the acapsular carriage strain. We conducted full-genome sequencing of 81 strains cultured serially from 19 epidemiologically unrelated human subjects and discovered the common theme that mutations negatively affecting capsule biosynthesis arise in vivo in the has operon. The significantly decreased capsule production is a key factor contributing to the molecular détente between pathogen and host. Our discoveries suggest a general model for bacterial pathogens in which mutations that downregulate or ablate virulence factor production contribute to carriage. PMID:25024363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poliakov, Alexander; Couronne, Olivier
2002-11-04
Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less
Tringe, Susannah
2018-01-15
Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.
Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney
2004-08-01
We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America
Characterization of Founder Viruses in Very Early SIV Rectal Transmission
Yuan, Zhe; Ma, Fangrui; Demers, Andrew J.; Wang, Dong; Xu, Jianqing; Lewis, Mark G.; Li, Qingsheng
2016-01-01
A better understanding of HIV-1 transmission is critical for developing preventative strategies. To that end, we analyzed 524 full-length env sequences of SIVmac251 at 6 and 10 days post intrarectal infection of rhesus macaques. There was no tissue compartmentalization of founder viruses across plasma, rectal and distal lymphatic tissues for most animals; however one animal has evidence of virus tissue compartmentalization. Despite identical viral inoculums, founder viruses were animal-specific, primarily derived from rare variants in the inoculum, and have a founder virus signature that can distinguish dominant founder variants from minor founder or untransmitted variants in the inoculum. Importantly, the sequences of post-transmission defective viruses were phylogenetically associated with competent viral variants in the inoculum and were mainly converted from competent viral variants by frameshift rather than APOBEC mediated mutations, suggesting the converting the transmitted viruses into defective viruses through frameshift mutation is an important component of rectal transmission bottleneck. PMID:28027479
Li, Wanbo; Dive, Marc; Tamma, Nico; Michaux, Charles; Druet, Tom; Huijbers, Ivo J.; Isacke, Clare M.; Coppieters, Wouter; Georges, Michel; Charlier, Carole
2009-01-01
We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed. PMID:19779552
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2011-03-14
Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.
Mating programs including genomic relationships
USDA-ARS?s Scientific Manuscript database
Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...
GenomeGraphs: integrated genomic data visualization with R.
Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine
2009-01-06
Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.
Obuchi, N; Takahashi, M; Nouchi, T; Satoh, M; Arimura, T; Ueda, K; Akai, J; Ota, M; Naruse, T; Inoko, H; Numano, F; Kimura, A
2001-06-01
MHC class I chain-related gene A (MICA) is located close to HLA-B gene and expressed in epithelial cells. The MICA gene is reported to be highly polymorphic as are the classical class I genes. To further assess the polymorphism in the MICA gene, we analyzed a total of 60 HLA-homozygous cells for the sequences spanning exons 2-6. In the analysis, four new MICA alleles were identified and six variations were recognized in exon 6. MICA*017, which was identified in three HLA-B57 homozygous cells (DBB, DEM and WIN), differed from MICA*002 in exon 3 and had a guanine deletion at the 3' end of exon 4. MICA*015 identified in an HLA-B45 homozygous cell (OMW) also had the same deletion that causes a frameshift mutation resulting in complete change of the transmembrane region and premature termination in the cytoplasmic tail; these alleles have a long hydrophobic leucine-rich region instead of the alanine repeat in the transmembrane region and terminate at the second position in the cytoplasmic domain. The frameshift deletion was found only in HLA-B45- or -B57-positive panels tested, suggesting a strong linkage disequilibrium between the deletion and B45 or B57. MICA*048, which was different in exon 5 from MICA*008, was identified in an HLA-B61 homozygous cell (TA21), while MICA*00901 identified in HLA-B51 homozygous cells (LUY and KT2) was distinguished from MICA*009 by exon 6.
Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals.
El Houmami, Nawal; Seligmann, Hervé
2017-01-01
We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals.
Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN
Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.
2018-01-01
Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956
Mating programs including genomic relationships and dominance effects
USDA-ARS?s Scientific Manuscript database
Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...
2013-01-01
Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets. PMID:23514126
Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing
Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.
2014-01-01
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075
Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.
Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J
2014-05-01
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.
Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.
Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860
Willet, Cali E; Makara, Mariano; Reppas, George; Tsoukalas, George; Malik, Richard; Haase, Bianca; Wade, Claire M
2015-01-01
Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.
Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC.
Jarosinski, Keith W; Margulis, Neil G; Kamil, Jeremy P; Spatz, Stephen J; Nair, Venugopal K; Osterrieder, Nikolaus
2007-10-01
Marek's disease virus (MDV) causes a general malaise in chickens that is mostly characterized by the development of lymphoblastoid tumors in multiple organs. The use of bacterial artificial chromosomes (BACs) for cloning and manipulation of the MDV genome has facilitated characterization of specific genes and genomic regions. The development of most MDV BACs, including pRB-1B-5, derived from a very virulent MDV strain, involved replacement of the US2 gene with mini-F vector sequences. However, when reconstituted viruses based on pRB-1B were used in pathogenicity studies, it was discovered that contact chickens housed together with experimentally infected chickens did not contract Marek's disease (MD), indicating a lack of horizontal transmission. Staining of feather follicle epithelial cells in the skins of infected chickens showed that virus was present but was unable to be released and/or infect susceptible chickens. Restoration of US2 and removal of mini-F sequences within viral RB-1B did not alter this characteristic, although in vivo viremia levels were increased significantly. Sequence analyses of pRB-1B revealed that the UL13, UL44, and US6 genes encoding the UL13 serine/threonine protein kinase, glycoprotein C (gC), and gD, respectively, harbored frameshift mutations. These mutations were repaired individually, or in combination, using two-step Red mutagenesis. Reconstituted viruses were tested for replication, MD incidence, and their abilities to horizontally spread to contact chickens. The experiments clearly showed that US2, UL13, and gC in combination are essential for horizontal transmission of MDV and that none of the genes alone is able to restore this phenotype.
Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham
2014-01-01
Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012
A novel mitochondrial genome of Arborophila and new insight into Arborophila evolutionary history.
Yan, Chaochao; Mou, Biqin; Meng, Yang; Tu, Feiyun; Fan, Zhenxin; Price, Megan; Yue, Bisong; Zhang, Xiuyue
2017-01-01
The lineage of the Bar-backed Partridge (Arborophila brunneopectus) was investigated to determine the phylogenetic relationships within Arborophila as the species is centrally distributed within an area covered by the distributions of 22 South-east Asian hill partridge species. The complete mitochondrial genome (mitogenome) of A. brunneopectus was determined and compared with four other hill partridge species mitogenomes. NADH subunit genes are radical in hill partridge mitogenomes and contain the most potential positive selective sites around where variable sites are abundant. Together with 44 other mitogenomes of closely related species, we reconstructed highly resolved phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) analyses and calculated the divergence and dispersal history of Arborophila using combined datasets composed of their 13-protein coding sequences. Arborophila is reportedly be the oldest group in Phasianidae whose ancestors probably originated in Asia. A. rufipectus shares a closer relationship with A. ardens and A. brunneopectus compared to A. gingica and A. rufogularis, and such relationships were supported and profiled by NADH dehydrogenase subunit 5 (ND5). The intragenus divergence of all five Arborophila species occurred in the Miocene (16.84~5.69 Mya) when there were periods of climate cooling. We propose that these cooling events in the Miocene forced hill partridges from higher to lower altitudes, which led to geographic isolation and speciation. We demonstrated that the apparently deleterious +1 frameshift mutation in NADH dehydrogenase subunit 3 (ND3) found in all Arborophila is an ancient trait that has been eliminated in some younger lineages, such as Passeriformes. It is unclear of the biological advantages of this elimination for the relevant taxa and this requires further investigation.
The application of CRISPR technology to high content screening in primary neurons.
Callif, Ben L; Maunze, Brian; Krueger, Nick L; Simpson, Matthew T; Blackmore, Murray G
2017-04-01
Axon growth is coordinated by multiple interacting proteins that remain incompletely characterized. High content screening (HCS), in which manipulation of candidate genes is combined with rapid image analysis of phenotypic effects, has emerged as a powerful technique to identify key regulators of axon outgrowth. Here we explore the utility of a genome editing approach referred to as CRISPR (Clustered Regularly Interspersed Palindromic Repeats) for knockout screening in primary neurons. In the CRISPR approach a DNA-cleaving Cas enzyme is guided to genomic target sequences by user-created guide RNA (sgRNA), where it initiates a double-stranded break that ultimately results in frameshift mutation and loss of protein production. Using electroporation of plasmid DNA that co-expresses Cas9 enzyme and sgRNA, we first verified the ability of CRISPR targeting to achieve protein-level knockdown in cultured postnatal cortical neurons. Targeted proteins included NeuN (RbFox3) and PTEN, a well-studied regulator of axon growth. Effective knockdown lagged at least four days behind transfection, but targeted proteins were eventually undetectable by immunohistochemistry in >80% of transfected cells. Consistent with this, anti-PTEN sgRNA produced no changes in neurite outgrowth when assessed three days post-transfection. When week-long cultures were replated, however, PTEN knockdown consistently increased neurite lengths. These CRISPR-mediated PTEN effects were achieved using multi-well transfection and automated phenotypic analysis, indicating the suitability of PTEN as a positive control for future CRISPR-based screening efforts. Combined, these data establish an example of CRISPR-mediated protein knockdown in primary cortical neurons and its compatibility with HCS workflows. Copyright © 2017 Elsevier Inc. All rights reserved.
Liang, Shengran; Ling, Chao; You, Yan; Xu, Lai; Zhong, Min-Er; Xiao, Yi; Qiu, Hui-Zhong; Lu, Jun-Yang; Banerjee, Santasree
2017-01-01
Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five generation Chinese family with LS clinically diagnosed according to the Amsterdam II criteria. Immuno-histochemical staining of MSH2 and MSH6 shows only foci nuclear positive on the surface of the tumor with strong expression of MLH1 and PMS2 with diffuse immunoreactivity. In order to dig into the molecular basis of this LS pedigree, we collected the proband's blood sample, extracted the genomic DNA and applied the genetic screening. As a result, we identified a novel heterozygous deletion in MSH2 gene by targeted next generation sequencing, which is also proved to be co-segregated among other affected family members by following validation. To our knowledge, this novel heterozygous deletion (c.1676_1679 delTAAA) in MSH2 gene causes frameshift mutation (p.Asn560Lysfs*29) and leads to the formation of a truncated MSH2 protein which is confirmed to be a deleterious mutation according to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG). Identification of novel DNA mismatch repair (MMR) gene mutations can definitely benefit to the clinical diagnosis and management. PMID:28903413
Global Implementation of Genomic Medicine: We Are Not Alone
Manolio, Teri A.; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C.; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L.; Dissanayake, Vajira H. W.; Dunn, Michael; Dzau, Victor J.; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P.; Matthijs, Gert; McLeod, Howard L.; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O’Rourke, P. Pearl; Patrinos, George P.; Rehm, Heidi L.; Relling, Mary V.; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M.; Shuldiner, Alan R.; Sinha, Sukdev; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S.; Wong, John E.L.; Green, Eric D.; Ginsburg, Geoffrey S.
2016-01-01
Advances in high-throughput genomic technologies coupled with a growing number of genomic results potentially useful in clinical care have led to ground-breaking genomic medicine implementation programs in various nations. Many of these innovative programs capitalize on unique local capabilities arising from the structure of their health care systems or their cultural or political milieu, as well as from unusual burdens of disease or risk alleles. Many such programs are being conducted in relative isolation and might benefit from sharing of approaches and lessons learned in other nations. The National Human Genome Research Institute recently brought together 25 of these groups from around the world to describe and compare projects, examine the current state of implementation and desired near-term capabilities, and identify opportunities for collaboration to promote the responsible implementation of genomic medicine. The wide variety of nascent programs in diverse settings demonstrates that implementation of genomic medicine is expanding globally in varied and highly innovative ways. Opportunities for collaboration abound in the areas of evidence generation, health information technology, education, workforce development, pharmacogenomics, and policy and regulatory issues. Several international organizations that are already facilitating effective research collaborations should engage to ensure implementation proceeds collaboratively without potentially wasteful duplication. Efforts to coalesce these groups around concrete but compelling signature projects, such as global eradication of genetically-mediated drug reactions or developing a truly global genomic variant data resource across a wide number of ethnicities, would accelerate appropriate implementation of genomics to improve clinical care world-wide. PMID:26041702
Epidemiology & Genomics Research Program
The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.
LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.
2017-01-01
All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
Teaching strategies to incorporate genomics education into academic nursing curricula.
Quevedo Garcia, Sylvia P; Greco, Karen E; Loescher, Lois J
2011-11-01
The translation of genomic science into health care has expanded our ability to understand the effects of genomics on human health and disease. As genomic advances continue, nurses are expected to have the knowledge and skills to translate genomic information into improved patient care. This integrative review describes strategies used to teach genomics in academic nursing programs and their facilitators and barriers to inclusion in nursing curricula. The Learning Engagement Model and the Diffusion of Innovations Theory guided the interpretation of findings. CINAHL, Medline, and Web of Science were resources for articles published during the past decade that included strategies for teaching genomics in academic nursing programs. Of 135 articles, 13 met criteria for review. Examples of effective genomics teaching strategies included clinical application through case studies, storytelling, online genomics resources, student self-assessment, guest lecturers, and a genetics focus group. Most strategies were not evaluated for effectiveness. Copyright 2011, SLACK Incorporated.
RSAT 2015: Regulatory Sequence Analysis Tools
Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A.; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M.; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2015-01-01
RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632
Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.
Deml, Brett; Kariminejad, Ariana; Borujerdi, Razieh H R; Muheisen, Sanaa; Reis, Linda M; Semina, Elena V
2015-01-01
Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.
Conde-Álvarez, Raquel; Palacios-Chaves, Leyre; Gil-Ramírez, Yolanda; Salvador-Bescós, Miriam; Bárcena-Varela, Marina; Aragón-Aranda, Beatriz; Martínez-Gómez, Estrella; Zúñiga-Ripa, Amaia; de Miguel, María J; Bartholomew, Toby Leigh; Hanniffy, Sean; Grilló, María-Jesús; Vences-Guzmán, Miguel Ángel; Bengoechea, José A; Arce-Gorvel, Vilma; Gorvel, Jean-Pierre; Moriyón, Ignacio; Iriarte, Maite
2017-01-01
The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE , and lpxO , three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA , which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi . Free-lipid analysis revealed that lpxO corresponded to olsC , the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti , while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE , or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL β-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.
GenomeVx: simple web-based creation of editable circular chromosome maps.
Conant, Gavin C; Wolfe, Kenneth H
2008-03-15
We describe GenomeVx, a web-based tool for making editable, publication-quality, maps of mitochondrial and chloroplast genomes and of large plasmids. These maps show the location of genes and chromosomal features as well as a position scale. The program takes as input either raw feature positions or GenBank records. In the latter case, features are automatically extracted and colored, an example of which is given. Output is in the Adobe Portable Document Format (PDF) and can be edited by programs such as Adobe Illustrator. GenomeVx is available at http://wolfe.gen.tcd.ie/GenomeVx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.
Cell illustrator 4.0: a computational platform for systems biology.
Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru
2011-01-01
Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.
Cell Illustrator 4.0: a computational platform for systems biology.
Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru
2010-01-01
Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.
Human Genome Program Report. Part 1, Overview and Progress
DOE R&D Accomplishments Database
1997-11-01
This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.
Human genome program report. Part 1, overview and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.
Genetics/genomics education for nongenetic health professionals: a systematic literature review.
Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih
2017-07-01
The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Pritchard, Leighton; White, Jennifer A; Birch, Paul R J; Toth, Ian K
2006-03-01
We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.
USDA-ARS?s Scientific Manuscript database
SNP effects estimated in genomic selection programs allow for the prediction of direct genomic values (DGV) both at genome-wide and chromosomal level. As a consequence, genome-wide (G_GW) or chromosomal (G_CHR) correlation matrices between genomic predictions for different traits can be calculated. ...
Fungal Genomics for Energy and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2013-03-11
Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less
Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae)
Liu, Gui-Chun; Dong, Zhi-Wei; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan
2017-01-01
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0. 42 to 1. 31 pg, a 3. 1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution. PMID:29280364
Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I
2018-06-02
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina
2012-01-01
Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016
Landolph, J R
1994-01-01
Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085
Olsen, Rikke K J; Koňaříková, Eliška; Giancaspero, Teresa A; Mosegaard, Signe; Boczonadi, Veronika; Mataković, Lavinija; Veauville-Merllié, Alice; Terrile, Caterina; Schwarzmayr, Thomas; Haack, Tobias B; Auranen, Mari; Leone, Piero; Galluccio, Michele; Imbard, Apolline; Gutierrez-Rios, Purificacion; Palmfeldt, Johan; Graf, Elisabeth; Vianey-Saban, Christine; Oppenheim, Marcus; Schiff, Manuel; Pichard, Samia; Rigal, Odile; Pyle, Angela; Chinnery, Patrick F; Konstantopoulou, Vassiliki; Möslinger, Dorothea; Feichtinger, René G; Talim, Beril; Topaloglu, Haluk; Coskun, Turgay; Gucer, Safak; Botta, Annalisa; Pegoraro, Elena; Malena, Adriana; Vergani, Lodovica; Mazzà, Daniela; Zollino, Marcella; Ghezzi, Daniele; Acquaviva, Cecile; Tyni, Tiina; Boneh, Avihu; Meitinger, Thomas; Strom, Tim M; Gregersen, Niels; Mayr, Johannes A; Horvath, Rita; Barile, Maria; Prokisch, Holger
2016-06-02
Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Xiaoxin; Ma, Xiang; Tao, Yong
2007-06-07
To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Ma, Xiang; Tao, Yong
2007-01-01
Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541
Genome-wide alterations of the DNA replication program during tumor progression
NASA Astrophysics Data System (ADS)
Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.
2016-08-01
Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.
Hal: an automated pipeline for phylogenetic analyses of genomic data.
Robbertse, Barbara; Yoder, Ryan J; Boyd, Alex; Reeves, John; Spatafora, Joseph W
2011-02-07
The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosatelli, M.C.; Faa, V.; Sardu, R.
This study reports the molecular characterization of [beta]-thalassemia in the Sardinian population. Three thousand [beta]-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common [beta]-thalassemia mutations in the Mediterranean at-risk populations. The mutation which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. The authors reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the [beta]-thalassemia chromosomes. The other two relatively commonmore » mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study they have detected a novel [beta]-thalassemia mutation, i.e., a frameshift at codon 1, in three [beta]-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system.« less
Thériault, Sébastien; Don-Wauchope, Andrew; Chong, Michael; Lali, Ricky; Morrison, Katherine M; Paré, Guillaume
2016-01-01
We report a novel homozygous apolipoprotein A5 (APOA5) frameshift mutation (c.G425del-C, p.Arg143AlafsTer57) identified in a 12-year-old boy of Pakistani origin with severe hypertriglyceridemia (up to 35 mmol/L) and type V hyperlipoproteinemia. The patient did not respond to fibrate therapy, but his condition improved under a very low fat diet, although compliance was suboptimal. Heterozygous status was detected in both parents (consanguineous union) and one sibling, all showing moderate hypertriglyceridemia (between 5 and 10 mmol/L). There was a significant family history of premature cardiovascular disease. The index case was also diagnosed with a coronary artery anomaly. Considering the recently reported association of rare mutations in APOA5 with the risk of early myocardial infarction, we discuss the implications of these findings for the young man and his family. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses.
Nibert, Max L; Pyle, Jesse D; Firth, Andrew E
2016-11-01
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fueling the Future with Fungal Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2014-10-27
Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less
Primer on Molecular Genetics; DOE Human Genome Program
DOE R&D Accomplishments Database
1992-04-01
This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.
GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research
Zhang, Hao; van Diepeningen, Anne D.; van der Lee, Theo A. J.; Waalwijk, Cees; de Hoog, G. Sybren
2016-01-01
GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID:27308864
GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research.
Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren
2016-06-01
GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).
Transposable element junctions in marker development and genomic characterization of barley
USDA-ARS?s Scientific Manuscript database
Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...
Intronic splicing mutations in PTCH1 cause Gorlin syndrome.
Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G
2014-09-01
Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.
Mutations in HPSE2 cause urofacial syndrome.
Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G
2010-06-11
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.
Hoe, Nicholas; Huang, Chung M.; Landis, Gary; Verhage, Marian; Ford, Daniel; Yang, Junsheng; van Leeuwen, Fred W.; Tower, John
2011-01-01
Molecular Misreading (MM) is the inaccurate conversion of genomic information into aberrant proteins. For example, when RNA polymerase II transcribes a GAGAG motif it synthesizes at low frequency RNA with a two-base deletion. If the deletion occurs in a coding region, translation will result in production of misframed proteins. During mammalian aging, misframed versions of human amyloid precursor protein (hApp) and ubiquitin (hUbb) accumulate in the aggregates characteristic of neurodegenerative diseases, suggesting dysfunctional degradation or clearance. Here cDNA clones encoding wild-type hUbb and the frame-shifted version hUbb+1 were expressed in transgenic Drosophila using the doxycycline-regulated system. Misframed proteins were abundantly produced, both from the transgenes and from endogenous Drosophila ubiquitin-encoding genes, and their abundance increased during aging in whole-fly extracts. Over-expression of wild-type hUbb, but not hUbb+1, was toxic during fly development. In contrast, when over-expressed specifically in adult flies, hUbb+1 caused small decreases in life span, whereas hUbb was associated with small increases, preferentially in males. The data suggest that MM occurs in Drosophila and that the resultant misframed proteins accumulate with age. MM of the ubiquitin gene can produce alternative ubiquitin gene products with different and sometimes opposing phenotypic effects. PMID:21415465
Osteogenesis imperfecta type I: Molecular heterogeneity for COL1A1 null alleles of type I collagen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willing, M.C.; Deschenes, S.P.; Pitts, S.H.
Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 {open_quotes}null{close_quotes} allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5{prime} donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon,more » that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype. 58 refs., 4 figs., 1 tab.« less
Mutations in HPSE2 Cause Urofacial Syndrome
Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.
2010-01-01
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210
Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii.
Lin, Huawen; Zhang, Zhengyan; Iomini, Carlo; Dutcher, Susan K
2018-03-01
Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 ( fla9 ) and IFT121 ( ift121-2 ), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3' splice site mutation in IFT81 , and a frameshift mutant of FRA10 , which suppresses the 5' splice site mutation in IFT121 Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1 , which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening. © 2018 The Authors.
IL26 gene inactivation in Equidae.
Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T
2013-12-01
Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Brusa, Roberta; Magri, Francesca; Papadimitriou, Dimitra; Govoni, Alessandra; Del Bo, Roberto; Ciscato, Patrizia; Savarese, Marco; Cinnante, Claudia; Walter, Maggie C; Abicht, Angela; Bulst, Stefanie; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Nigro, Vincenzo; Comi, Giacomo Pietro
2018-04-13
Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area. Copyright © 2018 Elsevier B.V. All rights reserved.
Fantin, Yuri S.; Neverov, Alexey D.; Favorov, Alexander V.; Alvarez-Figueroa, Maria V.; Braslavskaya, Svetlana I.; Gordukova, Maria A.; Karandashova, Inga V.; Kuleshov, Konstantin V.; Myznikova, Anna I.; Polishchuk, Maya S.; Reshetov, Denis A.; Voiciehovskaya, Yana A.; Mironov, Andrei A.; Chulanov, Vladimir P.
2013-01-01
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing. PMID:23382983
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
Frequency of pathogenic germline mutations in cancer susceptibility genes in breast cancer patients.
Kaur, Raman Preet; Shafi, Gowhar; Benipal, Raja Paramjeet Singh; Munshi, Anjana
2018-04-26
In this study, we evaluated the incidence of pathogenic germline mutations in 30 breast cancer susceptibility genes in breast cancer patients. Our aim was to understand the involvement of the inherited mutations in these genes in a breast cancer cohort. Two hundred ninety-six female breast cancer patients including 4.5% of familial breast cancer cases were included in the study. 200 ng of genomic DNA was used to evaluate the pathogenic mutations, detected using Global Screening Array (GSA) microchip (Illumina Inc.) according to the manufacturer's instructions. The pathogenic frameshift and nonsense mutations were observed in BRCA2 (10.9%), MLH1 (58.6%), MTHFR (50%), MSH2 (14.2%), and CYTB (52%) genes. Familial breast cancer patients (4.5%) had variations in BRCA2, MLH1, MSH2, and CYTB genes. 28% of patients with metastasis, recurrence, and death harbored mono/biallelic alterations in MSH2, MLH1, and BRCA2 genes. The results of this study can guide to develop a panel to test the breast cancer patients for pathogenic mutations, from Malwa region of Punjab. The screening of MSH2, MLH1, and BRCA2 should be carried in individuals with or without family history of breast cancer as these genes have been reported to increase the cancer risk by tenfold.
Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales
Braun, Benjamin A.; Marcovitz, Amir; Camp, J. Gray; Jia, Robin; Bejerano, Gill
2015-01-01
Viral outbreaks in dolphins and other Delphinoidea family members warrant investigation into the integrity of the cetacean immune system. The dynamin-like GTPase genes Myxovirus 1 (Mx1) and Mx2 defend mammals against a broad range of viral infections. Loss of Mx1 function in human and mice enhances infectivity by multiple RNA and DNA viruses, including orthomyxoviruses (influenza A), paramyxoviruses (measles), and hepadnaviruses (hepatitis B), whereas loss of Mx2 function leads to decreased resistance to HIV-1 and other viruses. Here we show that both Mx1 and Mx2 have been rendered nonfunctional in Odontoceti cetaceans (toothed whales, including dolphins and orcas). We discovered multiple exon deletions, frameshift mutations, premature stop codons, and transcriptional evidence of decay in the coding sequence of both Mx1 and Mx2 in four species of Odontocetes. We trace the likely loss event for both proteins to soon after the divergence of Odontocetes and Mystocetes (baleen whales) ∼33–37 Mya. Our data raise intriguing questions as to what drove the loss of both Mx1 and Mx2 genes in the Odontoceti lineage, a double loss seen in none of 56 other mammalian genomes, and suggests a hitherto unappreciated fundamental genetic difference in the way these magnificent mammals respond to viral infections. PMID:26080416
Silver syndrome variant of hereditary spastic paraplegia: A locus to 4p and allelism with SPG4.
Orlacchio, A; Patrono, C; Gaudiello, F; Rocchi, C; Moschella, V; Floris, R; Bernardi, G; Kawarai, T
2008-05-20
To perform a clinical and genetic study of two large Italian families (RM-36 and RM-51) showing the cardinal clinical features of Silver syndrome (SS), a rare dominantly inherited form of hereditary spastic paraplegia (HSP) complicated by amyotrophy of the small hand muscles. Clinical assessment including neurophysiologic, neuropsychological, and neuroimaging evaluations. Genetic studies included linkage and sequence analyses. Using a genome-wide survey in the RM-36 family, a novel locus (SPG38) has been identified and mapped within the 13.1-cM region on chromosome 4p16-p15 between markers D4S432 and D4S1599. The RM-51 family was linked to the SPG4 locus at 2p21-p24 and sequence analysis of SPG4 showed a novel frameshift mutation p.Asp321GlyfsX6. Clinical examination of the affected members carrying the mutation showed high frequency of additional clinical features including decreased vibration sense, pes cavus, temporal lobe epilepsy, and cognitive impairment. This study demonstrates evidence of a novel locus SPG38 for Silver syndrome (SS) and suggests that genetic defects in SPG4 might lead to broad clinical features overlapped with those of SS.
Takcı, Şahin; Anuk-İnce, Deniz; Louha, Malek; Couderc, Remy; Çakar, Nursen; Köseoğlu, Reşit Doğan; Ateş, Ömer
2017-01-01
Takcı Ş, Anuk-İnce D, Louha M, Couderc R, Çakar N, Köseoğlu RD, Ateş Ö. A rare large mutation involving two exons of the SP-B gene in an infant with severe respiratory distress. Turk J Pediatr 2017; 59: 483-486. Hereditary surfactant protein-B (SP-B) deficiency is a rare autosomal recessive disease of newborn infants causing severe respiratory failure and death within the first year of life. The most common cause of SP-B deficiency is a frameshift mutation in exon 4 (121ins2) in the gene encoding SP-B. We report a term infant with unremitting respiratory distress who was unresponsive to all treatment modalities. The parents were consanguineous and a term sibling of the infant had died due to respiratory failure without a certain diagnosis. In the first step of the diagnostic work-up, common genetic mutations for SP-B, surfactant protein C and ATP-binding cassette s3 were absent, however sequencing of SP-B gene revealed a large homozygous genomic deletion covering exon 8 and 9. In this case report, we aimed to emphasize further genetic evaluation in all cases suggestive of surfactant dysfunction, even if common mutations are absent.
Bernkopf, Marie; Webersinke, Gerald; Tongsook, Chanakan; Koyani, Chintan N.; Rafiq, Muhammad A.; Ayaz, Muhammad; Müller, Doris; Enzinger, Christian; Aslam, Muhammad; Naeem, Farooq; Schmidt, Kurt; Gruber, Karl; Speicher, Michael R.; Malle, Ernst; Macheroux, Peter; Ayub, Muhammad; Vincent, John B.; Windpassinger, Christian; Duba, Hans-Christoph
2014-01-01
We describe the characterization of a gene for mild nonsyndromic autosomal recessive intellectual disability (ID) in two unrelated families, one from Austria, the other from Pakistan. Genome-wide single nucleotide polymorphism microarray analysis enabled us to define a region of homozygosity by descent on chromosome 17q25. Whole-exome sequencing and analysis of this region in an affected individual from the Austrian family identified a 5 bp frameshifting deletion in the METTL23 gene. By means of Sanger sequencing of METTL23, a nonsense mutation was detected in a consanguineous ID family from Pakistan for which homozygosity-by-descent mapping had identified a region on 17q25. Both changes lead to truncation of the putative METTL23 protein, which disrupts the predicted catalytic domain and alters the cellular localization. 3D-modelling of the protein indicates that METTL23 is strongly predicted to function as an S-adenosyl-methionine (SAM)-dependent methyltransferase. Expression analysis of METTL23 indicated a strong association with heat shock proteins, which suggests that these may act as a putative substrate for methylation by METTL23. A number of methyltransferases have been described recently in association with ID. Disruption of METTL23 presented here supports the importance of methylation processes for intact neuronal function and brain development. PMID:24626631
Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales.
Braun, Benjamin A; Marcovitz, Amir; Camp, J Gray; Jia, Robin; Bejerano, Gill
2015-06-30
Viral outbreaks in dolphins and other Delphinoidea family members warrant investigation into the integrity of the cetacean immune system. The dynamin-like GTPase genes Myxovirus 1 (Mx1) and Mx2 defend mammals against a broad range of viral infections. Loss of Mx1 function in human and mice enhances infectivity by multiple RNA and DNA viruses, including orthomyxoviruses (influenza A), paramyxoviruses (measles), and hepadnaviruses (hepatitis B), whereas loss of Mx2 function leads to decreased resistance to HIV-1 and other viruses. Here we show that both Mx1 and Mx2 have been rendered nonfunctional in Odontoceti cetaceans (toothed whales, including dolphins and orcas). We discovered multiple exon deletions, frameshift mutations, premature stop codons, and transcriptional evidence of decay in the coding sequence of both Mx1 and Mx2 in four species of Odontocetes. We trace the likely loss event for both proteins to soon after the divergence of Odontocetes and Mystocetes (baleen whales) ∼33-37 Mya. Our data raise intriguing questions as to what drove the loss of both Mx1 and Mx2 genes in the Odontoceti lineage, a double loss seen in none of 56 other mammalian genomes, and suggests a hitherto unappreciated fundamental genetic difference in the way these magnificent mammals respond to viral infections.
The chicken talpid3 gene encodesa novel protein essentialfor Hedgehog signaling
Davey, Megan G.; Paton, I. Robert; Yin, Yili; Schmidt, Maike; Bangs, Fiona K.; Morrice, David R.; Smith, Terence Gordon; Buxton, Paul; Stamataki, Despina; Tanaka, Mikiko; Münsterberg, Andrea E.; Briscoe, James; Tickle, Cheryll; Burt, Dave W.
2006-01-01
Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins. PMID:16702409
Dynamics of actin evolution in dinoflagellates.
Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F
2011-04-01
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
CHALLENGES FOR IMPLEMENTING A PTSD PREVENTIVE GENOMIC SEQUENCING PROGRAM IN THE U.S. MILITARY
Lázaro-Muñoz, Gabriel; Juengst, Eric T.
2015-01-01
There is growing interest in using the quickly developing field of genomics to contribute to military readiness and effectiveness. Specifically, influential military advisory panels have recommended that the U.S. military apply genomics to help treat, prevent, or minimize the risk for post-traumatic stress disorder (PTSD) among service members. This article highlights some important scientific, legal, and ethical challenges regarding the development and deployment of a preventive genomic sequencing (PGS) program to predict the risk of PTSD among military service members. PMID:26401056
RSAT 2015: Regulatory Sequence Analysis Tools.
Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques
2015-07-01
RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D
2017-05-01
Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
Towards the Batch Synthesis of Long DNA
2002-10-01
mishybridizations which arise because of frame-shifting (in the special case of pairs of batch ssDNAs [as opposed to semi-ligated “DNA Frankensteins ...of DNA in solution, despite the possible influences of steric constraints, applied electric potential, etc. 78 Although Howorka et al. do not
Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K
2014-01-01
Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.
ERIC Educational Resources Information Center
Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.
2005-01-01
Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…
Fungal genome sequencing: basic biology to biotechnology.
Sharma, Krishna Kant
2016-08-01
The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less
Thakur, Shalabh; Guttman, David S
2016-06-30
Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .
Advances and Challenges in Genomic Selection for Disease Resistance.
Poland, Jesse; Rutkoski, Jessica
2016-08-04
Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens, becomes a tractable and powerful approach in breeding programs.
Screening synteny blocks in pairwise genome comparisons through integer programming.
Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael
2011-04-18
It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota-based screening can eliminate ambiguous synteny blocks and focus on specific genomic evolutionary events, like the divergence of lineages (in cross-species comparisons) and the most recent WGD (in self comparisons). The QUOTA-ALIGN algorithm screens a set of synteny blocks to retain only those compatible with a user specified ploidy relationship between two genomes. These blocks, in turn, may be used for additional downstream analyses such as identifying true orthologous regions in interspecific comparisons. There are two major contributions of QUOTA-ALIGN: 1) reducing the block screening task to a BIP problem, which is novel; 2) providing an efficient software pipeline starting from all-against-all BLAST to the screened synteny blocks with dot plot visualizations. Python codes and full documentations are publicly available http://github.com/tanghaibao/quota-alignment. QUOTA-ALIGN program is also integrated as a major component in SynMap http://genomevolution.com/CoGe/SynMap.pl, offering easier access to thousands of genomes for non-programmers. © 2011 Tang et al; licensee BioMed Central Ltd.
75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...
75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
pyGeno: A Python package for precision medicine and proteogenomics.
Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien
2016-01-01
pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies.
pyGeno: A Python package for precision medicine and proteogenomics
Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien
2016-01-01
pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies. PMID:27785359
Senier, Laura; Tan, Catherine; Smollin, Leandra; Lee, Rachael
2018-06-12
State health agencies (SHAs) have developed public health genomics (PHG) programs that play an instrumental role in advancing precision public health, but there is limited research on their approaches. This study examines how PHG programs attempt to mitigate or forestall health disparities and inequities in the utilization of genomic medicine. We compared PHG programs in three states: Connecticut, Michigan, and Utah. We analyzed 85 in-depth interviews with SHA internal and external collaborators and program documents. We employed a qualitative coding process to capture themes relating to health disparities and inequities. Each SHA implemented population-level approaches to identify individuals who carry genetic variants that increase risk of hereditary cancers. However, each SHA developed a unique strategy-which we label public health action repertoires-to reach specific subgroups who faced barriers in accessing genetic services. These strategies varied across states given demographics of the state population, state-level partnerships, and availability of healthcare services. Our findings illustrate the imperative of tailoring PHG programs to local demographic characteristics and existing community resources. Furthermore, our study highlights how integrating genomics into precision public health will require multilevel, multisector collaboration to optimize efficacy and equity.
76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome...). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 21, 2011...
75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-02
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...
75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...
76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 7...
77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) [[Page 61771...
76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...
75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS...
76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program No. 93.172, Human Genome Research, National Institutes of...
75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...
76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...
Phytozome Comparative Plant Genomics Portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodstein, David; Batra, Sajeev; Carlson, Joseph
2014-09-09
The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes
Building Communities: The Community Sequencing Program at JGI (2011 JGI User Meeting)
Bristow, Jim
2018-01-22
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. DOE JGI Deputy Director Jim Bristow gives a presentation on the Community Sequencing Program at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.
Silver, Pamela
2018-02-13
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing
Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao
2018-01-01
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions. PMID:29344267
Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing.
Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao
2018-01-01
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Genome Improvement at JGI-HAGSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.
Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less
A novel program to design siRNAs simultaneously effective to highly variable virus genomes.
Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran
2009-07-10
A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.
Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H.; Lau, Ching C.; Behl, Sanjiv; Man, Tsz-Kwong
2007-01-01
With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License. PMID:19936083
Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong
2007-10-06
With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.
76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 19...
The development of genomics applied to dairy breeding
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade and can be defined as the use of genomic breeding values (GEBV) in selection programs. The GEBV is the sum of the effects of dense DNA markers across the whole genome, capturing all the quantitative trait loci (QT...
75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 16...
Jean C. Zenklusen, M.S., Ph.D., Discusses the NCI Genomics Data Commons at AACR 2014 - TCGA
At the AACR 2014 meeting, Dr. Jean C. Zenklusen, Director of The Cancer Genome Atlas Program Office, highlights the Genomics Data Commons, a harmonized data repository that will allow simultaneous access and analysis of NCI genomics data, including The Ca
Collaborative Genomics Study Advances Precision Oncology
A collaborative study conducted by two Office of Cancer Genomics (OCG) initiatives highlights the importance of integrating structural and functional genomics programs to improve cancer therapies, and more specifically, contribute to precision oncology treatments for children.
TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA
Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.
The Cancer Genome Atlas (TCGA): The next stage - TCGA
The Cancer Genome Atlas (TCGA), the NIH research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale, is moving to its next phase.
Endometrial and acute myeloid leukemia cancer genomes characterized
Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.
Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M
2013-08-01
In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.
Identification of key ancestors of modern germplasm in a breeding program of maize.
Technow, F; Schrag, T A; Schipprack, W; Melchinger, A E
2014-12-01
Probabilities of gene origin computed from the genomic kinships matrix can accurately identify key ancestors of modern germplasms Identifying the key ancestors of modern plant breeding populations can provide valuable insights into the history of a breeding program and provide reference genomes for next generation whole genome sequencing. In an animal breeding context, a method was developed that employs probabilities of gene origin, computed from the pedigree-based additive kinship matrix, for identifying key ancestors. Because reliable and complete pedigree information is often not available in plant breeding, we replaced the additive kinship matrix with the genomic kinship matrix. As a proof-of-concept, we applied this approach to simulated data sets with known ancestries. The relative contribution of the ancestral lines to later generations could be determined with high accuracy, with and without selection. Our method was subsequently used for identifying the key ancestors of the modern Dent germplasm of the public maize breeding program of the University of Hohenheim. We found that the modern germplasm can be traced back to six or seven key ancestors, with one or two of them having a disproportionately large contribution. These results largely corroborated conjectures based on early records of the breeding program. We conclude that probabilities of gene origin computed from the genomic kinships matrix can be used for identifying key ancestors in breeding programs and estimating the proportion of genes contributed by them.
PanWeb: A web interface for pan-genomic analysis.
Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J
2017-01-01
With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.
i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles.
Simillion, Cedric; Janssens, Koen; Sterck, Lieven; Van de Peer, Yves
2008-01-01
i-ADHoRe is a software tool that combines gene content and gene order information of homologous genomic segments into profiles to detect highly degenerated homology relations within and between genomes. The new version offers, besides a significant increase in performance, several optimizations to the algorithm, most importantly to the profile alignment routine. As a result, the annotations of multiple genomes, or parts thereof, can be fed simultaneously into the program, after which it will report all regions of homology, both within and between genomes. The i-ADHoRe 2.0 package contains the C++ source code for the main program as well as various Perl scripts and a fully documented Perl API to facilitate post-processing. The software runs on any Linux- or -UNIX based platform. The package is freely available for academic users and can be downloaded from http://bioinformatics.psb.ugent.be/
Ketelboeter, Laura M.
2017-01-01
Pyomelanin is a reddish-brown pigment that provides bacteria and fungi protection from oxidative stress, and is reported to contribute to infection persistence. Production of this pigment can be inhibited by the anti-virulence agent 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). The Pseudomonas aeruginosa clinical isolate DKN343 exhibited high levels of resistance to NTBC, and the mechanism of pyomelanin production in this strain was uncharacterized. We determined that pyomelanin production in the clinical Pseudomonas aeruginosa isolate DKN343 was due to a loss of function in homogentisate 1,2-dioxygenase (HmgA). Several potential resistance mechanisms were investigated, and the MexAB-OprM efflux pump is required for resistance to NTBC. DKN343 has a frameshift mutation in NalC, which is a known indirect repressor of the mexAB-oprM operon. This frameshift mutation may contribute to the increased resistance of DKN343 to NTBC. Additional studies investigating the prevalence of resistance in pyomelanogenic microbes are necessary to determine the future applications of NTBC as an anti-virulence therapy. PMID:28570601
Intracistronic complementation in the simian virus 40 A gene.
Tornow, J; Cole, C N
1983-01-01
A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452
Cancer genes mutation profiling in calcifying epithelial odontogenic tumour.
de Sousa, Sílvia Ferreira; Diniz, Marina Gonçalves; França, Josiane Alves; Fontes Pereira, Thaís Dos Santos; Moreira, Rennan Garcias; Santos, Jean Nunes Dos; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri
2018-03-01
To identify calcifying epithelial odontogenic tumour (CEOT) mutations in oncogenes and tumour suppressor genes. A panel of 50 genes commonly mutated in cancer was sequenced in CEOT by next-generation sequencing. Sanger sequencing was used to cover the region of the frameshift deletion identified in one sample. Missense single nucleotide variants (SNVs) with minor allele frequency (MAF) <1% were detected in PTEN , MET and JAK3 . A frameshift deletion in CDKN2A occurred in association with a missense mutation in the same gene region, suggesting a second hit in the inactivation of this gene. APC, KDR, KIT, PIK3CA and TP53 missense SNVs were identified; however, these are common SNVs, showing MAF >1%. CEOT harbours mutations in the tumour suppressor PTEN and CDKN2A and in the oncogenes JAK3 and MET . As these mutations occurred in only one case each, they are probably not driver mutations for these tumours. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung
2009-07-01
Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.
Scheps, Karen G; De Paula, Silvia M; Bitsman, Alicia R; Freigeiro, Daniel H; Basack, F Nora; Pennesi, Sandra P; Varela, Viviana
2013-01-01
We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation. The deletion of the first base of codon 62 resulted in a frameshift at amino acid 62 with a putative premature termination codon (PTC) at amino acid 66 on the same exon (p.W62fsX66), which most likely triggers nonsense mediated decay of the resulting mRNA. This study also presents the first report of the α212 patchwork allele in Latin America and the description of two new sequence variants in the HBA2 region (c.-614G>A in the promoter region and c.95+39 C>T on the first intron).
Project Team, Saudi Genome
2015-01-01
Oil wells, endless deserts, stifling heat, masses of pilgrims, and wealthy-looking urban areas still dominate the widespread mental image of Saudi Arabia. Currently, this image is being extended to include a recent endeavor that is reserving a global share in the limelight as one of the top ten genomics projects currently underway: the Saudi Human Genome Program (SHGP). With sound funding, dedicated resources, and national determination, the SHGP targets the sequencing of 100,000 human genomes over the next five years to conduct world-class genomics-based biomedical research in the Saudi population. Why this project was conceived and thought to be feasible, what is the ultimate target, and how it operates are the questions we answer in this article.
Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu
2015-01-01
The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Breeding nursery tissue collection for possible genomic analysis
USDA-ARS?s Scientific Manuscript database
Phenotyping is considered a major bottleneck in breeding programs. With new genomic technologies, high throughput genotype schemes are constantly being developed. However, every genomic technology requires phenotypic data to inform prediction models generated from the technology. Forage breeders con...
Rubanovich, Caryn Kseniya; Cheung, Cynthia; Mandel, Jess; Bloss, Cinnamon S
2018-05-10
In the last decade, genomic medicine education initiatives have surfaced across the spectrum of physician training in order to help address a gap in genomic medicine preparedness among physicians. The approaches are diverse and stem from the belief that 21st century physicians must be proficient in genomic medicine applications as they will be leaders in the precision medicine movement. We conducted a review of literature in genomic medicine education and training for medical students, graduate medical education, and practicing physicians with articles published between June 2015 and January 2018 to gain a picture of the current state of genomic medicine education with a focus on the United States. We found evidence of progress in the development of new and innovative educational programs and other resources aimed at increasing physician knowledge and readiness. Three overarching educational approach themes emerged, including immersive and experiential learning; interdisciplinary and interprofessional education; and electronic- and web-based approaches. This review is not exhaustive, nevertheless, it may inform future directions and improvements for genomic medicine education. Important next-steps include: 1) identifying and studying ways to best implement low-cost dissemination of genomic information; 2) emphasizing genomic medicine education program evaluation; and 3) incorporating interprofessional and interdisciplinary initiatives. Genomic medicine education and training will become more and more relevant in the years to come as physicians increasingly interact with genomic and other precision medicine technologies.
A source of artifact in the lacZ reversion assay in Escherichia coli.
Hoffmann, George R; Gray, Carol L; Lange, Paulina B; Marando, Christie I
2015-06-01
The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its utility for discerning effects of weak mutagens may be compromised by the artifact. Copyright © 2015 Elsevier B.V. All rights reserved.
Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.
Legrand, Romain; Tiret, Laurent; Abitbol, Marie
2014-09-25
Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.
Cao, Yang; Hunter, Zachary R; Liu, Xia; Xu, Lian; Yang, Guang; Chen, Jie; Tsakmaklis, Nickolas; Kanan, Sandra; Castillo, Jorge J; Treon, Steven P
2015-03-01
CXCR4(WHIM) frameshift and nonsense mutations follow MYD88(L265P) as the most common somatic variants in Waldenström Macroglobulinaemia (WM), and impact clinical presentation and ibrutinib response. While the nonsense (CXCR4(S338X) ) mutation has been investigated, little is known about CXCR4 frameshift (CXCR4(FS) ) mutations. We engineered WM cells to express CXCR4(FS) mutations present in patients, and compared their CXCL12 (SDF-1a) induced signalling and ibrutinib sensitivity to CXCR4(wild-type (WT)) and CXCR4(S338X) cells. Following CXCL12 stimulation, CXCR4(FS) and CXCR4(S338X) WM cells showed impaired CXCR4 receptor internalization, and enhanced AKT1 (also termed AKT) and MAPK1 (also termed ERK) activation versus CXCR(WT) cells (P < 0·05), though MAPK1 activation was more prolonged in CXCR4(S338X) cells (P < 0·05). CXCR4(FS) and CXCR4(S338X) cells, but not CXCR4(WT) cells, were rescued from ibrutinib-triggered apoptosis by CXCL12 that was reversed by AKT1, MAPK1 or CXCR4 antagonists. Treatment with an inhibitor that blocks MYD88(L265P) signalling triggered similar levels of apoptosis that was not abrogated by CXCL12 treatment in CXCR4(WT) and CXCR4(WHIM) cells. These studies show a functional role for CXCR4(FS) mutations in WM, and provide a framework for the investigation of CXCR4 antagonists with ibrutinib in CXCR4(WHIM) -mutated WM patients. Direct inhibition of MYD88(L265P) signalling overcomes CXCL12 triggered survival effects in CXCR4(WHIM) -mutated cells supporting a primary role for this survival pathway in WM. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Amritaj; Zhang, Qianqian; Lei, Li
2015-02-09
The most prevalent lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the “A rule”). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F.more » P. (2010 J. Mol. Biol. 404, 34–44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a “purine rule.” A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. Finally, we conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.« less
Cummins, Claudia M.; Gaber, Richard F.; Culbertson, Michael R.; Mann, Richard; Fink, Gerald R.
1980-01-01
Suppressors of ICR-induced mutations that exhibit behavior similar to bacterial frameshift suppressors have been identified in the yeast Saccharomyces cerevisiae. The yeast suppressors have been divided into two groups. Previous evidence indicated that suppressors of one group (Group II: SUF1, SUF3, SUF4, SUF5 and SUF6) represent mutations in the structural genes for glycyl-tRNA's. Suppressors of the other group (Group III: SUF2 and SUF7) were less well characterized. Although they suppressed some ICR-revertible mutations, they failed to suppress Group II frameshift mutations. This communication provides a more thorough characterization of the Group III suppressors and describes the isolation and properties of four new suppressors in that group (SUF8, SUF9, SUF10 and suf11).——In our original study, Group III suppressors were isolated as revertants of the Group III mutations his4–712 and his4–713. All suppressors obtained as ICR-induced revertants of these mutations mapped at the SUF2 locus near the centromere of chromosome III. Suppressors mapping at other loci were obtained in this study by analyzing spontaneous and UV-induced revertants of the Group III mutations. SUF2 and SUF10 suppress both Group III his4 mutations, whereas SUF7, SUF8, SUF9 and suf11 suppress his4–713, but not his4–712. All of the suppressors except suf11 are dominant in diploids homozygous for his4-713. The suppressors fail to suppress representative UAA, UAG and UGA nonsense mutations.——SUF9 is linked to the centromere of chromosome VI, and SUF10 is linked to the centromere of chromosome XIV. A triploid mapping procedure was used to determine the chromosome locations of SUF7 and SUF8. Subsequent standard crosses revealed linkage of SUF7 to cdc5 on chromosome XIII and linkage of SUF8 to cdc12 and pet3 on chromosome VIII. PMID:7009319
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Dey, Nandini; Krie, Amy; Klein, Jessica; Williams, Kirstin; McMillan, Amanda; Elsey, Rachel; Sun, Yuliang; Williams, Casey; De, Pradip; Leyland-Jones, Brian
2017-01-01
Down’s syndrome (DS), the most common genetic cause of significant intellectual disability in children and adults is caused by the trisomy of either all or a part of human chromosome 21 (HSA21). Patients with DS mostly suffer from characteristic tumor types. Although individual patients of DS are at a higher risk for acute leukemia and testicular cancers, other types of solid tumors including breast cancers are mostly uncommon and have significantly lower-than-expected age-adjusted incidence rates. Except for an increased risk of retinoblastomas, and lymphomas, the risk of developing solid tumors has been found to be lower in both children and adults, and breast cancer was found to be almost absent (Hasle H., The Lancet Oncology, 2001). A study conducted in the United States found only one death when 11.65 were expected (Scholl T et al., Dev Med Child Neurol. 1982). A recent study examined mammogram reports of women with DS treated in the largest medical facility specifically serving adults with DS in the United States. It was found that only 0.7% women with DS had been diagnosed with breast cancers (Chicoine B et al., Intellect Dev Disabil. 2015). Here we describe a case of breast cancer in a 25-year-old patient with DS. The disease was presented as lymph node positive carcinoma with alterations of tumor suppressor genes characteristic to the triple negative breast cancer subtype. Comprehensive Genomic Profiling (CGP) revealed a wild-type status for BRCA1. The CGP report showed a frameshift mutation, A359fs*10 of the tumor suppressor gene INPP4B and another frameshift mutation, R282fs*63 of tumor suppressor gene TP53 in the tumor biopsy as characteristically found in triple-negative breast cancers. The VUS (Variance of Unknown Significance) alteration(s) were identified in ASXL1 (L1395V), NTRK1 (G18E), DDR2 (I159T), RUNX1 (amplification), ERG (amplification), SOX2 (T26A), FAM123B (G1031D), and HNF1A (A301T). Bonafide cancer-related genes of chromosome 21 amplified in the patient’s tumor are RUNX1 and ERG genes. After the completion of the radiation, the patient was placed on everolimus which was based on the result of her CGP report. Thus, post-mastectomy radiation therapy was completed with a recommendation for everolimus for one year. During the time of writing of this report, no metastatic lesions were identified. The patient currently has no evidence of disease. PMID:28590426
A system-level model for the microbial regulatory genome.
Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S
2014-07-15
Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Genotypes are useful for more than genomic evaluation
USDA-ARS?s Scientific Manuscript database
New services that provide pedigree discovery, breed composition, mating programs, genomic inbreeding, fertility defects, and inheritance tracking all are possible from low-cost genotyping in addition to genomic evaluation. Genetic markers let breeders select among sibs before their phenotypes became...
Parents' interest in whole-genome sequencing of newborns.
Goldenberg, Aaron J; Dodson, Daniel S; Davis, Matthew M; Tarini, Beth A
2014-01-01
The aim of this study was to assess parents' interest in whole-genome sequencing for newborns. We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician's office. Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state's newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician's office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as "very important" in making a decision to have a newborn's whole genome sequenced. These data may help health departments and children's health-care providers anticipate parents' level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.
Training in Psychiatric Genomics during Residency: A New Challenge
ERIC Educational Resources Information Center
Winner, Joel G.; Goebert, Deborah; Matsu, Courtenay; Mrazek, David A.
2010-01-01
Objective: The authors ascertained the amount of training in psychiatric genomics that is provided in North American psychiatric residency programs. Methods: A sample of 217 chief residents in psychiatric residency programs in the United States and Canada were identified by e-mail and surveyed to assess their training in psychiatric genetics and…
Simulating a base population in honey bee for molecular genetic studies
2012-01-01
Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html PMID:22520469
Simulating a base population in honey bee for molecular genetic studies.
Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar
2012-06-27
Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html.
Applying Genomic and Genetic Tools to Understand and Mitigate Damage from Exposure to Toxins
2013-10-01
sequences to the human genome . Genome Biol 10, R25 (2009). 26 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand...utilizing the high-throughput technology of mRNA-seq. BODY The goal of our research program (W81XWH-09-1-0715) was to utilize genetic and genomic ...also acquired the achetf222a * * * * * 5 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand and Mitigate
Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per
2017-09-01
Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Pitfalls and caveats in BRCA sequencing.
Bellosillo, Beatriz; Tusquets, Ignacio
2006-01-01
Between 5 and 10% of breast cancer cases are considered to result from hereditary predisposition. Germ-line mutations in BRCA1 and BRCA2 are responsible for an inherited predisposition of breast and ovarian cancer. Direct nucleotide sequencing is considered the gold standard technique for mutation detection for genes such as BRCA1 and BRCA2. In many laboratories that analyze BRCA1 and BRCA2, previous to direct sequencing, screening techniques to identify sequence variants in the PCR amplicons are performed. The mutations detected in these genes may be frameshift mutations (insertions or deletions), nonsense mutations, or missense mutations. The clinical interpretation of the mutation as the cause of the disease may be difficult to establish in the case of missense mutations. Only in 30-70% of the families in which a hereditary component is suspected, a mutation in BRCA1 and/or BRCA2 is detected. Negative results may be due to: wrong selection of the proband; mutations in the regulatory portion of the genes; gene silencing due to epigenetic phenomena; or large genomic rearrangements that produce deletions of whole exons. Another possibility that explains the lack of detection of alterations in BRCA1 or BRCA2 is the presence of mutations in undiscovered genes or in genes that interact with BRCA1 and/or BRCA2, which may be low-penetrance genes, like CHEK2.
Kindler syndrome with severe mucosal involvement in a large Palestinian pedigree.
El Hachem, May; Diociaiuti, Andrea; Proto, Vittoria; Fortugno, Paola; Zambruno, Giovanna; Castiglia, Daniele; Naim, Majdy
2015-01-01
Kindler syndrome (KS) is a rare autosomal recessive disease of skin fragility, photosensitivity and progressive poikiloderma. Mucous membranes may also be involved. KS is caused by mutations in the FERMT1 gene encoding kindlin-1. We report the clinical and molecular features of the largest kindred with KS to date, comprising 18 affected family members (age range: 12-63 years) from the Gaza Strip. All the affected family members were clinically examined. In addition a skin biopsy for immunofluorescence testing was obtained from the index case. Molecular analysis of the FERMT1 gene was performed on genomic DNA extracted from peripheral blood of 5 patients. All patients presented skin and eye photosensitivity, cutaneous atrophy, dyschromia and poikiloderma, oral cavity involvement, dysphagia and constipation with anal fissures. In addition, nail dystrophy and digit webbing were observed in most of them. Ocular manifestations detected in all patients comprised ectropion and keratoconjunctivitis, with early development of symblepharon in 17 out of 18 cases and blindness in one. Of note, 17 out of 18 affected family members also suffered from urethral strictures since childhood. Diagnosis was supported by immunofluorescence findings and definitely confirmed by FERMT1 sequencing which identified the homozygous frame-shift mutation c.137_140delTAGT. The high rate of mucosal involvement, its early onset and progressive course are noticeable features of our kindred. Also noteworthy is the lack of muco-cutaneous malignancies, despite the sunny habitat.
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mutagenicity of ω-3 fatty acid peroxidation products in the Ames test.
Grúz, Petr; Shimizu, Masatomi; Sugiyama, Kei-Ichi; Honma, Masamitsu
2017-07-01
Polyunsaturated fatty acids (PUFA) represent one of the main building blocks of cellular membranes and their varying composition impacts lifespan as well as susceptibility to cancer and other degenerative diseases. Increased intake of ω-3 PUFA is taught to compensate for the abundance of ω-6 PUFA in modern human diet and prevent cardiocirculatory diseases. However, highly unsaturated PUFA of marine and seed origin easily oxidize to aldehydic products which form DNA adducts. With increased PUFA consumption it is prudent to re-evaluate ω-3 PUFA safety and the genotoxic hazards of their metabolites. We have used the standard Ames test to examine the mutagenicity of 2 hexenals derived from lipid peroxidation of the common ω-3 PUFA in human diet and tissues. Both 4-hydroxyhexenal and 2-hexenal derived from the ω-3 docosahexaenoic and α-linolenic acid, respectively, induced base substitutions in the TA104 and TA100 Ames strains in a dose dependent manner. Their mutagenicity was dependent on the Y-family DNA polymerase RI and they did not induce other types of mutations such as the -2 and -1 frameshifts in the TA98 and TA97 strains. Our results expand previous findings about the mutagenicity of related ω-3 peroxidation product 4-oxohexenal and raise alert that overuse of ω-3 rich oils may have adverse effect on genome stability. Copyright © 2017 Elsevier B.V. All rights reserved.
GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.
Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi
2008-02-01
Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.
Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.
Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark
2018-05-29
CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bernkopf, Marie; Webersinke, Gerald; Tongsook, Chanakan; Koyani, Chintan N; Rafiq, Muhammad A; Ayaz, Muhammad; Müller, Doris; Enzinger, Christian; Aslam, Muhammad; Naeem, Farooq; Schmidt, Kurt; Gruber, Karl; Speicher, Michael R; Malle, Ernst; Macheroux, Peter; Ayub, Muhammad; Vincent, John B; Windpassinger, Christian; Duba, Hans-Christoph
2014-08-01
We describe the characterization of a gene for mild nonsyndromic autosomal recessive intellectual disability (ID) in two unrelated families, one from Austria, the other from Pakistan. Genome-wide single nucleotide polymorphism microarray analysis enabled us to define a region of homozygosity by descent on chromosome 17q25. Whole-exome sequencing and analysis of this region in an affected individual from the Austrian family identified a 5 bp frameshifting deletion in the METTL23 gene. By means of Sanger sequencing of METTL23, a nonsense mutation was detected in a consanguineous ID family from Pakistan for which homozygosity-by-descent mapping had identified a region on 17q25. Both changes lead to truncation of the putative METTL23 protein, which disrupts the predicted catalytic domain and alters the cellular localization. 3D-modelling of the protein indicates that METTL23 is strongly predicted to function as an S-adenosyl-methionine (SAM)-dependent methyltransferase. Expression analysis of METTL23 indicated a strong association with heat shock proteins, which suggests that these may act as a putative substrate for methylation by METTL23. A number of methyltransferases have been described recently in association with ID. Disruption of METTL23 presented here supports the importance of methylation processes for intact neuronal function and brain development. © The Author 2014. Published by Oxford University Press.
Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales
Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.
2011-01-01
Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053
Fatal acute hepatic failure in a family infected with the hepatitis A virus subgenotype IB
Yoshida, Yuichi; Okada, Yohei; Suzuki, Akiko; Kakisaka, Keisuke; Miyamoto, Yasuhiro; Miyasaka, Akio; Takikawa, Yasuhiro; Nishizawa, Tsutomu; Okamoto, Hiroaki
2017-01-01
Abstract Rationale: Hepatitis A viral infection is a well-known cause of subclinical or acute self-limited hepatitis. Few cases of hepatitis A virus (HAV)–associated acute liver failure (ALF) have been reported in low HAV endemic countries annually. Patients concerns: To investigate the possible factors that affected the severity of HAV infection, a family cluster infected with the HAV subgenotype IB strain, which is not common in Japan, was described. Diagnoses: This family consisted of five members who all were infected with HAV. Interventions: Four of the five patients hospitalized except for an asymptomatic patient. Outcomes: Two of the five patients, men in their 50s and 60s, developed ALF, and one patient died. Various host factors, including sex (male), age, and a high bilirubin level, may affect the outcomes. Based on viral factors, HAV RNA was higher in the fatal case compared with others, and it decreased within a short period of time. The similarity of the nucleotide sequences was 99.9% among the HAV isolates based on an entire genomic sequence. Deletions and/or insertions on the HAV protein-coding sequences that caused a frameshift were found in surviving cases but not in the fatal case. Lessons: The rapid clearance of increased HAV and the absence of defective HAV might be closely associated with the onset of liver failure. PMID:28858094
Yoshida, Yuichi; Okada, Yohei; Suzuki, Akiko; Kakisaka, Keisuke; Miyamoto, Yasuhiro; Miyasaka, Akio; Takikawa, Yasuhiro; Nishizawa, Tsutomu; Okamoto, Hiroaki
2017-09-01
Hepatitis A viral infection is a well-known cause of subclinical or acute self-limited hepatitis. Few cases of hepatitis A virus (HAV)-associated acute liver failure (ALF) have been reported in low HAV endemic countries annually. To investigate the possible factors that affected the severity of HAV infection, a family cluster infected with the HAV subgenotype IB strain, which is not common in Japan, was described. This family consisted of five members who all were infected with HAV. Four of the five patients hospitalized except for an asymptomatic patient. Two of the five patients, men in their 50s and 60s, developed ALF, and one patient died. Various host factors, including sex (male), age, and a high bilirubin level, may affect the outcomes. Based on viral factors, HAV RNA was higher in the fatal case compared with others, and it decreased within a short period of time. The similarity of the nucleotide sequences was 99.9% among the HAV isolates based on an entire genomic sequence. Deletions and/or insertions on the HAV protein-coding sequences that caused a frameshift were found in surviving cases but not in the fatal case. The rapid clearance of increased HAV and the absence of defective HAV might be closely associated with the onset of liver failure.
Mata López, Sara; Hammond, James J; Rigsby, Madison B; Balog-Alvarez, Cynthia J; Kornegay, Joe N; Nghiem, Peter P
2018-05-29
Boys with Duchenne muscular dystrophy (DMD) have DMD gene mutations, with associated loss of the dystrophin protein and progressive muscle degeneration and weakness. Corticosteroids and palliative support are currently the best treatment options. The long-term benefits of recently approved compounds such as eteplirsen and ataluren remain to be seen. Dogs with naturally occurring dystrophinopathies show progressive disease akin to that of DMD. Accordingly, canine DMD models are useful for studies of pathogenesis and preclinical therapy development. A dystrophin-deficient, male border collie dog was evaluated at the age of 5 months for progressive muscle weakness and dysphagia. Dramatically increased serum creatine kinase levels (41,520 U/L; normal range 59-895 U/L) were seen on a biochemistry panel. Histopathologic changes characteristic of dystrophinopathy were seen. Dystrophin was absent in the skeletal muscle on immunofluorescence microscopy and western blot. Whole genome sequencing, polymerase chain reaction, and Sanger sequencing revealed a frameshift, single nucleotide deletion in canine DMD exon 20, position 27,626,466 (c.2841delT mRNA), resulting in a stop codon six nucleotides downstream. Semen was archived for future line perpetuation. This spontaneous canine dystrophinopathy occurred due to a novel mutation in the minor DMD mutation hotspot (between exons 2 through 20). Perpetuating this line could allow for preclinical testing of genetic therapies targeted to this area of the DMD gene.
Sun, Linhan; Kao, Teh-Hui
2018-06-01
Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2 -haplotype and S 3 -haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCF SLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3 ) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2 ) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S 3 -RNase was completely suppressed by an antisense S 3 -RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.
Newly identified CHO ERCC3/XPB mutations and phenotype characterization
Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav
2010-01-01
Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596