Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang
2016-01-01
The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397
Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.
Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi
2016-01-01
Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice.
Genomic selection for quantitative adult plant stem rust resistance in wheat
USDA-ARS?s Scientific Manuscript database
Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...
Leichty, Aaron R; Brisson, Dustin
2014-10-01
Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.
TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS
Jones, Matthew R.; Good, Jeffrey M.
2016-01-01
The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993
Genome-wide selection components analysis in a fish with male pregnancy.
Flanagan, Sarah P; Jones, Adam G
2017-04-01
A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double-digest restriction-site associated DNA sequencing (ddRAD-seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An F ST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the F ST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome-wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome-level targets of selection in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites
Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko
2015-01-01
Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360
DNA targeting specificity of RNA-guided Cas9 nucleases.
Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng
2013-09-01
The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
Genomic signatures of positive selection in humans and the limits of outlier approaches.
Kelley, Joanna L; Madeoy, Jennifer; Calhoun, John C; Swanson, Willie; Akey, Joshua M
2006-08-01
Identifying regions of the human genome that have been targets of positive selection will provide important insights into recent human evolutionary history and may facilitate the search for complex disease genes. However, the confounding effects of population demographic history and selection on patterns of genetic variation complicate inferences of selection when a small number of loci are studied. To this end, identifying outlier loci from empirical genome-wide distributions of genetic variation is a promising strategy to detect targets of selection. Here, we evaluate the power and efficiency of a simple outlier approach and describe a genome-wide scan for positive selection using a dense catalog of 1.58 million SNPs that were genotyped in three human populations. In total, we analyzed 14,589 genes, 385 of which possess patterns of genetic variation consistent with the hypothesis of positive selection. Furthermore, several extended genomic regions were found, spanning >500 kb, that contained multiple contiguous candidate selection genes. More generally, these data provide important practical insights into the limits of outlier approaches in genome-wide scans for selection, provide strong candidate selection genes to study in greater detail, and may have important implications for disease related research.
Microsatellites as targets of natural selection.
Haasl, Ryan J; Payseur, Bret A
2013-02-01
The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich's ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants.
Microsatellites as Targets of Natural Selection
Haasl, Ryan J.; Payseur, Bret A.
2013-01-01
The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich’s ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants. PMID:23104080
Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank
2016-07-22
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.
Oba, Mami; Tsuchiaka, Shinobu; Omatsu, Tsutomu; Katayama, Yukie; Otomaru, Konosuke; Hirata, Teppei; Aoki, Hiroshi; Murata, Yoshiteru; Makino, Shinji; Nagai, Makoto; Mizutani, Tetsuya
2018-01-08
We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Shinde, Santosh P; Banerjee, Amit Kumar; Arora, Neelima; Murty, U S N; Sripathi, Venkateswara Rao; Pal-Bhadra, Manika; Bhadra, Utpal
2015-03-01
Combating viral diseases has been a challenging task since time immemorial. Available molecular approaches are limited and not much effective for this daunting task. MicroRNA based therapies have shown promise in recent times. MicroRNAs are tiny non-coding RNAs that regulate translational repression of target mRNA in highly specific manner. In this study, we have determined the target regions for human and viral microRNAs in the conserved genomic regions of selected viruses of Flaviviridae family using miRanda and performed a comparative target selectivity analysis among them. Specific target regions were determined and they were compared extensively among themselves by exploring their position to determine the vicinity. Based on the multiplicity and cooperativity analysis, interaction maps were developed manually to represent the interactions between top-ranking miRNAs and genomes of the viruses considered in this study. Self-organizing map (SOM) was used to cluster the best-ranked microRNAs based on the vital physicochemical properties. This study will provide deep insight into the interrelation of the viral and human microRNAs interactions with the selected Flaviviridae genomes and will help to identify cross-species microRNA targets on the viral genome.
Sequencing Needs for Viral Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S N; Lam, M; Mulakken, N J
2004-01-26
We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''nearmore » neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.« less
Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank
2016-01-01
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945
Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M
2008-11-01
Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.
Cavanagh, Colin R; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K; Sorrells, Mark E; Hayden, Matthew J; Akhunov, Eduard
2013-05-14
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.
Cavanagh, Colin R.; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L.; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A.; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K.; Sorrells, Mark E.; Hayden, Matthew J.; Akhunov, Eduard
2013-01-01
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. PMID:23630259
Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic
2005-03-16
Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.
Konijnendijk, Nellie; Shikano, Takahito; Daneels, Dorien; Volckaert, Filip A M; Raeymaekers, Joost A M
2015-09-01
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.
Laurenson, Yan C S M; Kyriazakis, Ilias; Bishop, Stephen C
2013-10-18
Estimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes. Copyright © 2013 Elsevier B.V. All rights reserved.
Genomic signatures of selection at linked sites: unifying the disparity among species
Cutter, Asher D.; Payseur, Bret A.
2014-01-01
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive variation in linked selection among species, including roles for selective sweeps being ‘hard’ or ‘soft’, and concealing by demography and genomic confounds. We advocate targeted studies of close relatives to unify our understanding of how selection and linkage interact to shape genome evolution. PMID:23478346
Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).
Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E
2017-01-01
Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.
USDA-ARS?s Scientific Manuscript database
Domesticated crops have experienced strong human-driven selection aimed at the development of improved varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated DNA m...
Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan
2005-06-01
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.
Genomic Target Database (GTD): A database of potential targets in human pathogenic bacteria
Barh, Debmalya; Kumar, Anil; Misra, Amarendra Narayana
2009-01-01
A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into Drug targets in pathogen specific unique metabolic pathways,Drug targets in host-pathogen common metabolic pathways, andMembrane localized drug targets. HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed. Availability GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB. PMID:20011153
Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System
Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao
2017-01-01
The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387
Divergent clonal selection dominates medulloblastoma at recurrence
Morrissy, A. Sorana; Garzia, Livia; Shih, David J. H.; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M. G.; Ramaswamy, Vijay; Lindsay, Patricia E.; Jelveh, Salomeh; Donovan, Laura K.; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L.; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J. L.; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L.; Lee, John J. Y.; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C.; Manno, Alex; Michealraj, K. A.; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y.; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S. N.; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D.; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I.; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q.; Schein, Jacqueline E.; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C.; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F.; Hamilton, Ronald L.; Li, Xiao-Nan; Bendel, Anne E.; Fults, Daniel W.; Walter, Andrew W.; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V. Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H.; Garvin, James H.; Stearns, Duncan S.; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E.; Tirapelli, Daniela P. C.; Carlotti, Carlos G.; Wheeler, Helen; Hallahan, Andrew R.; Ingram, Wendy; MacDonald, Tobey J.; Olson, Jeffrey J.; Van Meir, Erwin G.; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C.; Clifford, Steven C.; Eberhart, Charles G.; Cooper, Michael K.; Packer, Roger J.; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E.; Dirks, Peter; Bouffet, Eric; Rutka, James T.; Wechsler-Reya, Robert J.; Weiss, William A.; Collier, Lara S.; Dupuy, Adam J.; Korshunov, Andrey; Jones, David T. W.; Kool, Marcel; Northcott, Paul A.; Pfister, Stefan M.; Largaespada, David A.; Mungall, Andrew J.; Moore, Richard A.; Jabado, Nada; Bader, Gary D.; Jones, Steven J. M.; Malkin, David; Marra, Marco A.; Taylor, Michael D.
2016-01-01
The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon–driven, functional genomic mouse model of medulloblastoma with ‘humanized’ in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213
A programmable method for massively parallel targeted sequencing
Hopmans, Erik S.; Natsoulis, Georges; Bell, John M.; Grimes, Susan M.; Sieh, Weiva; Ji, Hanlee P.
2014-01-01
We have developed a targeted resequencing approach referred to as Oligonucleotide-Selective Sequencing. In this study, we report a series of significant improvements and novel applications of this method whereby the surface of a sequencing flow cell is modified in situ to capture specific genomic regions of interest from a sample and then sequenced. These improvements include a fully automated targeted sequencing platform through the use of a standard Illumina cBot fluidics station. Targeting optimization increased the yield of total on-target sequencing data 2-fold compared to the previous iteration, while simultaneously increasing the percentage of reads that could be mapped to the human genome. The described assays cover up to 1421 genes with a total coverage of 5.5 Megabases (Mb). We demonstrate a 10-fold abundance uniformity of greater than 90% in 1 log distance from the median and a targeting rate of up to 95%. We also sequenced continuous genomic loci up to 1.5 Mb while simultaneously genotyping SNPs and genes. Variants with low minor allele fraction were sensitively detected at levels of 5%. Finally, we determined the exact breakpoint sequence of cancer rearrangements. Overall, this approach has high performance for selective sequencing of genome targets, configuration flexibility and variant calling accuracy. PMID:24782526
Repeated divergent selection on pigmentation genes in a rapid finch radiation
Campagna, Leonardo; Repenning, Márcio; Silveira, Luís Fábio; Fontana, Carla Suertegaray; Tubaro, Pablo L.; Lovette, Irby J.
2017-01-01
Instances of recent and rapid speciation are suitable for associating phenotypes with their causal genotypes, especially if gene flow homogenizes areas of the genome that are not under divergent selection. We study a rapid radiation of nine sympatric bird species known as capuchino seedeaters, which are differentiated in sexually selected characters of male plumage and song. We sequenced the genomes of a phenotypically diverse set of species to search for differentiated genomic regions. Capuchinos show differences in a small proportion of their genomes, yet selection has acted independently on the same targets in different members of this radiation. Many divergent regions contain genes involved in the melanogenesis pathway, with the strongest signal originating from putative regulatory regions. Selection has acted on these same genomic regions in different lineages, likely shaping the evolution of cis-regulatory elements, which control how more conserved genes are expressed and thereby generate diversity in classically sexually selected traits. PMID:28560331
swga: a primer design toolkit for selective whole genome amplification.
Clarke, Erik L; Sundararaman, Sesh A; Seifert, Stephanie N; Bushman, Frederic D; Hahn, Beatrice H; Brisson, Dustin
2017-07-15
Population genomic analyses are often hindered by difficulties in obtaining sufficient numbers of genomes for analysis by DNA sequencing. Selective whole-genome amplification (SWGA) provides an efficient approach to amplify microbial genomes from complex backgrounds for sequence acquisition. However, the process of designing sets of primers for this method has many degrees of freedom and would benefit from an automated process to evaluate the vast number of potential primer sets. Here, we present swga , a program that identifies primer sets for SWGA and evaluates them for efficiency and selectivity. We used swga to design and test primer sets for the selective amplification of Wolbachia pipientis genomic DNA from infected Drosophila melanogaster and Mycobacterium tuberculosis from human blood. We identify primer sets that successfully amplify each against their backgrounds and describe a general method for using swga for arbitrary targets. In addition, we describe characteristics of primer sets that correlate with successful amplification, and present guidelines for implementation of SWGA to detect new targets. Source code and documentation are freely available on https://www.github.com/eclarke/swga . The program is implemented in Python and C and licensed under the GNU Public License. ecl@mail.med.upenn.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Data integration to prioritize drugs using genomics and curated data.
Louhimo, Riku; Laakso, Marko; Belitskin, Denis; Klefström, Juha; Lehtonen, Rainer; Hautaniemi, Sampsa
2016-01-01
Genomic alterations affecting drug target proteins occur in several tumor types and are prime candidates for patient-specific tailored treatments. Increasingly, patients likely to benefit from targeted cancer therapy are selected based on molecular alterations. The selection of a precision therapy benefiting most patients is challenging but can be enhanced with integration of multiple types of molecular data. Data integration approaches for drug prioritization have successfully integrated diverse molecular data but do not take full advantage of existing data and literature. We have built a knowledge-base which connects data from public databases with molecular results from over 2200 tumors, signaling pathways and drug-target databases. Moreover, we have developed a data mining algorithm to effectively utilize this heterogeneous knowledge-base. Our algorithm is designed to facilitate retargeting of existing drugs by stratifying samples and prioritizing drug targets. We analyzed 797 primary tumors from The Cancer Genome Atlas breast and ovarian cancer cohorts using our framework. FGFR, CDK and HER2 inhibitors were prioritized in breast and ovarian data sets. Estrogen receptor positive breast tumors showed potential sensitivity to targeted inhibitors of FGFR due to activation of FGFR3. Our results suggest that computational sample stratification selects potentially sensitive samples for targeted therapies and can aid in precision medicine drug repositioning. Source code is available from http://csblcanges.fimm.fi/GOPredict/.
Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.
Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver
2007-01-01
The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.
A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
Sun, Huihui; Li, Fanfan; Liu, Jie; Yang, Fayu; Zeng, Zhenhai; Lv, Xiujuan; Tu, Mengjun; Liu, Yeqing; Ge, Xianglian; Liu, Changbao; Zhao, Junzhao; Zhang, Zongduan; Qu, Jia; Song, Zongming; Gu, Feng
2018-06-15
Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat un...
Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations.
Hullahalli, Karthik; Rodrigues, Marinelle; Palmer, Kelli L
2017-06-23
CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis , which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.
Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B
2018-05-31
Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.
Genome-wide scans for loci under selection in humans
2005-01-01
Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection. PMID:16004726
Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji
2018-05-14
Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.
Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.
2003-01-01
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038
Studying the genetic basis of speciation in high gene flow marine invertebrates
2016-01-01
A growing number of genes responsible for reproductive incompatibilities between species (barrier loci) exhibit the signals of positive selection. However, the possibility that genes experiencing positive selection diverge early in speciation and commonly cause reproductive incompatibilities has not been systematically investigated on a genome-wide scale. Here, I outline a research program for studying the genetic basis of speciation in broadcast spawning marine invertebrates that uses a priori genome-wide information on a large, unbiased sample of genes tested for positive selection. A targeted sequence capture approach is proposed that scores single-nucleotide polymorphisms (SNPs) in widely separated species populations at an early stage of allopatric divergence. The targeted capture of both coding and non-coding sequences enables SNPs to be characterized at known locations across the genome and at genes with known selective or neutral histories. The neutral coding and non-coding SNPs provide robust background distributions for identifying FST-outliers within genes that can, in principle, identify specific mutations experiencing diversifying selection. If natural hybridization occurs between species, the neutral coding and non-coding SNPs can provide a neutral admixture model for genomic clines analyses aimed at finding genes exhibiting strong blocks to introgression. Strongylocentrotid sea urchins are used as a model system to outline the approach but it can be used for any group that has a complete reference genome available. PMID:29491951
Kim, Eui-Soo; Sonstegard, Tad S; da Silva, Marcos V G B; Gasbarre, Louis C; Van Tassell, Curtis P
2015-01-01
Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI) nematode fecal egg count (FEC) data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS) based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3) with Box-Cox transformed mean FEC (BC-MFEC). DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.
Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria
Dy, Ron L; Pitman, Andrew R; Fineran, Peter C
2013-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution. PMID:24251073
Resende, R T; Resende, M D V; Silva, F F; Azevedo, C F; Takahashi, E K; Silva-Junior, O B; Grattapaglia, D
2017-10-01
We report a genomic selection (GS) study of growth and wood quality traits in an outbred F 2 hybrid Eucalyptus population (n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees, models were developed for different selection targets, namely, families, individuals within families and individuals across the entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the performance of GS we calculated the expected response as the percentage gain over the population average expected genetic value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40-0.57 for individual selection and 0.56-0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in tree breeding practice.
RNA-guided genome editing for target gene mutations in wheat.
Upadhyay, Santosh Kumar; Kumar, Jitesh; Alok, Anshu; Tuli, Rakesh
2013-12-09
The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system has been used as an efficient tool for genome editing. We report the application of CRISPR-Cas-mediated genome editing to wheat (Triticum aestivum), the most important food crop plant with a very large and complex genome. The mutations were targeted in the inositol oxygenase (inox) and phytoene desaturase (pds) genes using cell suspension culture of wheat and in the pds gene in leaves of Nicotiana benthamiana. The expression of chimeric guide RNAs (cgRNA) targeting single and multiple sites resulted in indel mutations in all the tested samples. The expression of Cas9 or sgRNA alone did not cause any mutation. The expression of duplex cgRNA with Cas9 targeting two sites in the same gene resulted in deletion of DNA fragment between the targeted sequences. Multiplexing the cgRNA could target two genes at one time. Target specificity analysis of cgRNA showed that mismatches at the 3' end of the target site abolished the cleavage activity completely. The mismatches at the 5' end reduced cleavage, suggesting that the off target effects can be abolished in vivo by selecting target sites with unique sequences at 3' end. This approach provides a powerful method for genome engineering in plants.
Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing
Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2016-01-01
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039
Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M
2012-03-01
Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.
A trait stacking system via intra-genomic homologous recombination.
Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F
2016-11-01
A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.
Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao
2017-11-17
The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.
Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.
Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T
2017-04-21
Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.
Malina, Abba; Cameron, Christopher J F; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-12-08
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing
Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-01-01
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285
Target Capture during Mos1 Transposition*
Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine
2014-01-01
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide. PMID:24269942
Target capture during Mos1 transposition.
Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine
2014-01-03
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens
Sosa, Ezequiel J; Burguener, Germán; Lanzarotti, Esteban; Radusky, Leandro; Pardo, Agustín M; Marti, Marcelo
2018-01-01
Abstract Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request. PMID:29106651
Roswitha Schmickl; Aaron Liston; Vojtěch Zeisek; Kenneth Oberlander; Kevin Weitemier; Shannon C. K. Straub; Richard C. Cronn; Léanne L. Dreyer; Jan Suda
2016-01-01
Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds...
The genome sequence of a widespread apex Predator, the golden eagle (Aquila chrysaetos)
Jacqueline M. Doyle; Todd E. Katzner; Peter H. Bloom; Yanzhu Ji; Bhagya K. Wijayawardena; J. Andrew DeWoody; Ludovic Orlando
2014-01-01
Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male...
[Genome editing of industrial microorganism].
Zhu, Linjiang; Li, Qi
2015-03-01
Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems
Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.
2014-01-01
ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129
Chromatin Landscapes of Retroviral and Transposon Integration Profiles
Badhai, Jitendra; Rust, Alistair G.; Rad, Roland; Hilkens, John; Berns, Anton; van Lohuizen, Maarten; Wessels, Lodewyk F. A.; de Ridder, Jeroen
2014-01-01
The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes. PMID:24721906
Cheng, Lijun; Schneider, Bryan P
2016-01-01
Background Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. Objective The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. Methods In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. Results By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug selection strategy is also fully supported by the drug screening data on TNBC cell lines in the Cancer Cell Line Encyclopedia. Conclusions The proposed bioinformatics approach lays a foundation for cancer precision medicine. It supplies much needed knowledge base for the off-label cancer drug usage in clinics. PMID:27107440
FOXP2 Targets Show Evidence of Positive Selection in European Populations
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C.; Fisher, Simon E.; Tyler-Smith, Chris
2013-01-01
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. PMID:23602712
SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate
Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart
2016-01-01
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...
An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.
Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald
2016-02-01
Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hsieh, PingHsun; Veeramah, Krishna R.; Lachance, Joseph; Tishkoff, Sarah A.; Wall, Jeffrey D.; Hammer, Michael F.; Gutenkunst, Ryan N.
2016-01-01
African Pygmies practicing a mobile hunter-gatherer lifestyle are phenotypically and genetically diverged from other anatomically modern humans, and they likely experienced strong selective pressures due to their unique lifestyle in the Central African rainforest. To identify genomic targets of adaptation, we sequenced the genomes of four Biaka Pygmies from the Central African Republic and jointly analyzed these data with the genome sequences of three Baka Pygmies from Cameroon and nine Yoruba famers. To account for the complex demographic history of these populations that includes both isolation and gene flow, we fit models using the joint allele frequency spectrum and validated them using independent approaches. Our two best-fit models both suggest ancient divergence between the ancestors of the farmers and Pygmies, 90,000 or 150,000 yr ago. We also find that bidirectional asymmetric gene flow is statistically better supported than a single pulse of unidirectional gene flow from farmers to Pygmies, as previously suggested. We then applied complementary statistics to scan the genome for evidence of selective sweeps and polygenic selection. We found that conventional statistical outlier approaches were biased toward identifying candidates in regions of high mutation or low recombination rate. To avoid this bias, we assigned P-values for candidates using whole-genome simulations incorporating demography and variation in both recombination and mutation rates. We found that genes and gene sets involved in muscle development, bone synthesis, immunity, reproduction, cell signaling and development, and energy metabolism are likely to be targets of positive natural selection in Western African Pygmies or their recent ancestors. PMID:26888263
Convergent genomic signatures of domestication in sheep and goats.
Alberto, Florian J; Boyer, Frédéric; Orozco-terWengel, Pablo; Streeter, Ian; Servin, Bertrand; de Villemereuil, Pierre; Benjelloun, Badr; Librado, Pablo; Biscarini, Filippo; Colli, Licia; Barbato, Mario; Zamani, Wahid; Alberti, Adriana; Engelen, Stefan; Stella, Alessandra; Joost, Stéphane; Ajmone-Marsan, Paolo; Negrini, Riccardo; Orlando, Ludovic; Rezaei, Hamid Reza; Naderi, Saeid; Clarke, Laura; Flicek, Paul; Wincker, Patrick; Coissac, Eric; Kijas, James; Tosser-Klopp, Gwenola; Chikhi, Abdelkader; Bruford, Michael W; Taberlet, Pierre; Pompanon, François
2018-03-06
The evolutionary basis of domestication has been a longstanding question and its genetic architecture is becoming more tractable as more domestic species become genome-enabled. Before becoming established worldwide, sheep and goats were domesticated in the fertile crescent 10,500 years before present (YBP) where their wild relatives remain. Here we sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat domestication center and compare their genomes with that of domestics from local, traditional, and improved breeds. Among the genomic regions carrying selective sweeps differentiating domestic breeds from wild populations, which are associated among others to genes involved in nervous system, immunity and productivity traits, 20 are common to Capra and Ovis. The patterns of selection vary between species, suggesting that while common targets of selection related to domestication and improvement exist, different solutions have arisen to achieve similar phenotypic end-points within these closely related livestock species.
Thermodynamically optimal whole-genome tiling microarray design and validation.
Cho, Hyejin; Chou, Hui-Hsien
2016-06-13
Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.
Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy
2017-11-02
Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.
Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens.
Sosa, Ezequiel J; Burguener, Germán; Lanzarotti, Esteban; Defelipe, Lucas; Radusky, Leandro; Pardo, Agustín M; Marti, Marcelo; Turjanski, Adrián G; Fernández Do Porto, Darío
2018-01-04
Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan
2015-03-01
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.
Personalized targeted therapy for esophageal squamous cell carcinoma
Kang, Xiaozheng; Chen, Keneng; Li, Yicheng; Li, Jianying; D'Amico, Thomas A; Chen, Xiaoxin
2015-01-01
Esophageal squamous cell carcinoma continues to heavily burden clinicians worldwide. Researchers have discovered the genomic landscape of esophageal squamous cell carcinoma, which holds promise for an era of personalized oncology care. One of the most pressing problems facing this issue is to improve the understanding of the newly available genomic data, and identify the driver-gene mutations, pathways, and networks. The emergence of a legion of novel targeted agents has generated much hope and hype regarding more potent treatment regimens, but the accuracy of drug selection is still arguable. Other problems, such as cancer heterogeneity, drug resistance, exceptional responders, and side effects, have to be surmounted. Evolving topics in personalized oncology, such as interpretation of genomics data, issues in targeted therapy, research approaches for targeted therapy, and future perspectives, will be discussed in this editorial. PMID:26167067
Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.
Kelleher, Erin S; Barbash, Daniel A
2013-08-01
The Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of transposable element (TE) infection by imposing small-RNA-mediated silencing. Because silencing is targeted by TE-derived piRNAs, piRNA production is posited to be central to the evolution of genome defense. We harnessed genomic data sets from Drosophila melanogaster, including genome-wide measures of piRNA, mRNA, and genomic abundance, along with estimates of age structure and risk of ectopic recombination, to address fundamental questions about the functional and evolutionary relationships between TE families and their regulatory piRNAs. We demonstrate that mRNA transcript abundance, robustness of "ping-pong" amplification, and representation in piRNA clusters together explain the majority of variation in piRNA abundance between TE families, providing the first robust statistical support for the prevailing model of piRNA biogenesis. Intriguingly, we also discover that the most transpositionally active TE families, with the greatest capacity to induce harmful mutations or disrupt gametogenesis, are not necessarily the most abundant among piRNAs. Rather, the level of piRNA targeting is largely independent of recent transposition rate for active TE families, but is rapidly lost for inactive TEs. These observations are consistent with population genetic theory that suggests a limited selective advantage for host repression of transposition. Additionally, we find no evidence that piRNA targeting responds to selection against a second major cost of TE infection: ectopic recombination between TE insertions. Our observations confirm the pivotal role of piRNA-mediated silencing in defending the genome against selfish transposition, yet also suggest limits to the optimization of host genome defense.
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity
Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.
2016-01-01
Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557
Evolving targeted therapies for right ventricular failure.
Di Salvo, Thomas G
2015-01-01
Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.
Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing.
Bierle, Craig J; Anderholm, Kaitlyn M; Wang, Jian Ben; McVoy, Michael A; Schleiss, Mark R
2016-08-01
The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates. The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial artificial chromosome recombineering but does so directly in virus-infected cells. CRISPR/Cas9 mutagenesis is not dependent on a bacterial intermediate, and defined viral mutants can be recovered after a limited number of viral genome replications, minimizing the risk of spontaneous mutation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Genome engineering using a synthetic gene circuit in Bacillus subtilis.
Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun
2015-03-31
Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Multi-targeted priming for genome-wide gene expression assays.
Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P
2010-08-17
Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.
Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing
2015-04-30
recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two recent papers from the Broad Institute published
Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
Wang, Yi; Liu, Xianju; Ren, Chong; Zhong, Gan-Yuan; Yang, Long; Li, Shaohua; Liang, Zhenchang
2016-04-21
CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of humans, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific target sites for CRISPR/Cas9 have been computationally identified for several annual model and crop species, but such sites have not been reported for perennial, woody fruit species. In this study, we identified and characterized five types of CRISPR/Cas9 target sites in the widely cultivated grape species Vitis vinifera and developed a user-friendly database for editing grape genomes in the future. A total of 35,767,960 potential CRISPR/Cas9 target sites were identified from grape genomes in this study. Among them, 22,597,817 target sites were mapped to specific genomic locations and 7,269,788 were found to be highly specific. Protospacers and PAMs were found to distribute uniformly and abundantly in the grape genomes. They were present in all the structural elements of genes with the coding region having the highest abundance. Five PAM types, TGG, AGG, GGG, CGG and NGG, were observed. With the exception of the NGG type, they were abundantly present in the grape genomes. Synteny analysis of similar genes revealed that the synteny of protospacers matched the synteny of homologous genes. A user-friendly database containing protospacers and detailed information of the sites was developed and is available for public use at the Grape-CRISPR website ( http://biodb.sdau.edu.cn/gc/index.html ). Grape genomes harbour millions of potential CRISPR/Cas9 target sites. These sites are widely distributed among and within chromosomes with predominant abundance in the coding regions of genes. We developed a publicly-accessible Grape-CRISPR database for facilitating the use of the CRISPR/Cas9 system as a genome editing tool for functional studies and molecular breeding of grapes. Among other functions, the database allows users to identify and select multi-protospacers for editing similar sequences in grape genomes simultaneously.
Mutants of Cre recombinase with improved accuracy
Eroshenko, Nikolai; Church, George M.
2013-01-01
Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590
Wu, Yun; Xu, Kun; Ren, Chonghua; Li, Xinyi; Lv, Huijiao; Han, Furong; Wei, Zehui; Wang, Xin; Zhang, Zhiying
2017-03-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has recently emerged as a simple, yet powerful genome engineering tool, which has been widely used for genome modification in various organisms and cell types. However, screening biallelic genome-modified cells is often time-consuming and technically challenging. In this study, we incorporated two different surrogate reporter cassettes into paired donor plasmids, which were used as both the surrogate reporters and the knock-in donors. By applying our dual surrogate reporter-integrated donor system, we demonstrate high frequency of CRISPR/Cas9-mediated biallelic genome integration in both human HEK293T and porcine PK15 cells (34.09% and 18.18%, respectively). Our work provides a powerful genetic tool for assisting the selection and enrichment of cells with targeted biallelic genome modification. © 2017 Federation of European Biochemical Societies.
FOXP2 targets show evidence of positive selection in European populations.
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C; Fisher, Simon E; Tyler-Smith, Chris
2013-05-02
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate
Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon
2016-01-01
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.
Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael
2017-06-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.
Lazzari, Barbara; Caprera, Andrea; Cestaro, Alessandro; Merelli, Ivan; Del Corvo, Marcello; Fontana, Paolo; Milanesi, Luciano; Velasco, Riccardo; Stella, Alessandra
2009-06-29
Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.
Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta
2014-06-01
Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.
WGE: a CRISPR database for genome engineering.
Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J; Skarnes, William C; Iyer, Vivek
2015-09-15
The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for CRISPRs located in the mouse and human exomes. Scoring and display of off-target sites is simple, and intuitive, and filters can be applied to identify high-quality CRISPR sites rapidly. WGE also provides a tool for the design and display of gene targeting vectors in the same genome browser, along with gene models, protein translation and variation tracks. WGE is open, extensible and can be set up to compute and present CRISPR sites for any genome. The WGE database is freely available at www.sanger.ac.uk/htgt/wge : vvi@sanger.ac.uk or skarnes@sanger.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Cheng, Lijun; Schneider, Bryan P; Li, Lang
2016-07-01
Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug selection strategy is also fully supported by the drug screening data on TNBC cell lines in the Cancer Cell Line Encyclopedia. The proposed bioinformatics approach lays a foundation for cancer precision medicine. It supplies much needed knowledge base for the off-label cancer drug usage in clinics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis.
Perera, Dinum; Magbanua, Zenaida V; Thummasuwan, Supaphan; Mukherjee, Dipaloke; Arick, Mark; Chouvarine, Philippe; Nairn, Campbell J; Schmutz, Jeremy; Grimwood, Jane; Dean, Jeffrey F D; Peterson, Daniel G
2018-07-15
Loblolly pine (LP; Pinus taeda L.) is an economically and ecologically important tree in the southeastern U.S. To advance understanding of the loblolly pine (LP; Pinus taeda L.) genome, we sequenced and analyzed 100 BAC clones and performed a Cot analysis. The Cot analysis indicates that the genome is composed of 57, 24, and 10% highly-repetitive, moderately-repetitive, and single/low-copy sequences, respectively (the remaining 9% of the genome is a combination of fold back and damaged DNA). Although single/low-copy DNA only accounts for 10% of the LP genome, the amount of single/low-copy DNA in LP is still 14 times the size of the Arabidopsis genome. Since gene numbers in LP are similar to those in Arabidopsis, much of the single/low-copy DNA of LP would appear to be composed of DNA that is both gene- and repeat-poor. Macroarrays prepared from a LP bacterial artificial chromosome (BAC) library were hybridized with probes designed from cell wall synthesis/wood development cDNAs, and 50 of the "targeted" clones were selected for further analysis. An additional 25 clones were selected because they contained few repeats, while 25 more clones were selected at random. The 100 BAC clones were Sanger sequenced and assembled. Of the targeted BACs, 80% contained all or part of the cDNA used to target them. One targeted BAC was found to contain fungal DNA and was eliminated from further analysis. Combinations of similarity-based and ab initio gene prediction approaches were utilized to identify and characterize potential coding regions in the 99 BACs containing LP DNA. From this analysis, we identified 154 gene models (GMs) representing both putative protein-coding genes and likely pseudogenes. Ten of the GMs (all of which were specifically targeted) had enough support to be classified as intact genes. Interestingly, the 154 GMs had statistically indistinguishable (α = 0.05) distributions in the targeted and random BAC clones (15.18 and 12.61 GM/Mb, respectively), whereas the low-repeat BACs contained significantly fewer GMs (7.08 GM/Mb). However, when GM length was considered, the targeted BACs had a significantly greater percentage of their length in GMs (3.26%) when compared to random (1.63%) and low-repeat (0.62%) BACs. The results of our study provide insight into LP evolution and inform ongoing efforts to produce a reference genome sequence for LP, while characterization of genes involved in cell wall production highlights carbon metabolism pathways that can be leveraged for increasing wood production. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Therapeutic Targeting of Spliceosomal-Mutant Acquired Bone Marrow Failure Disorders
2017-05-01
we have completed both a negative selection shRNA screen and a genome-wide CRISPR dropout screen to identify genes selectively required in...level of protein. Aim 2: We have recently completed a genome-wide CRISPR dropout screen in the same cells in which the shRNA screen was performed...Project: Janine performed the CRISPR screen in Aim 2. Funding Support: US National Institutes of Health (NIH)-NHLBI grant R01 HL128239 10
Signatures of Long-Term Balancing Selection in Human Genomes
de Filippo, Cesare; Teixeira, João C; Schmidt, Joshua M; Kleinert, Philip; Meyer, Diogo; Andrés, Aida M
2018-01-01
Abstract Balancing selection maintains advantageous diversity in populations through various mechanisms. Although extensively explored from a theoretical perspective, an empirical understanding of its prevalence and targets lags behind our knowledge of positive selection. Here, we describe the Non-central Deviation (NCD), a simple yet powerful statistic to detect long-term balancing selection (LTBS) that quantifies how close frequencies are to expectations under LTBS, and provides the basis for a neutrality test. NCD can be applied to a single locus or genomic data, and can be implemented considering only polymorphisms (NCD1) or also considering fixed differences with respect to an outgroup (NCD2) species. Incorporating fixed differences improves power, and NCD2 has higher power to detect LTBS in humans under different frequencies of the balanced allele(s) than other available methods. Applied to genome-wide data from African and European human populations, in both cases using chimpanzee as an outgroup, NCD2 shows that, albeit not prevalent, LTBS affects a sizable portion of the genome: ∼0.6% of analyzed genomic windows and 0.8% of analyzed positions. Significant windows (P < 0.0001) contain 1.6% of SNPs in the genome, which disproportionally fall within exons and change protein sequence, but are not enriched in putatively regulatory sites. These windows overlap ∼8% of the protein-coding genes, and these have larger number of transcripts than expected by chance even after controlling for gene length. Our catalog includes known targets of LTBS but a majority of them (90%) are novel. As expected, immune-related genes are among those with the strongest signatures, although most candidates are involved in other biological functions, suggesting that LTBS potentially influences diverse human phenotypes. PMID:29608730
The genomic landscape of rapid repeated evolutionary ...
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch
2011-01-01
Genome targeting methods enable cost-effective capture of specific subsets of the genome for sequencing. We present here an automated, highly scalable method for carrying out the Solution Hybrid Selection capture approach that provides a dramatic increase in scale and throughput of sequence-ready libraries produced. Significant process improvements and a series of in-process quality control checkpoints are also added. These process improvements can also be used in a manual version of the protocol. PMID:21205303
Mendoza, Brian J; Trinh, Cong T
2018-01-01
Genetic diversity of non-model organisms offers a repertoire of unique phenotypic features for exploration and cultivation for synthetic biology and metabolic engineering applications. To realize this enormous potential, it is critical to have an efficient genome editing tool for rapid strain engineering of these organisms to perform novel programmed functions. To accommodate the use of CRISPR/Cas systems for genome editing across organisms, we have developed a novel method, named CRISPR Associated Software for Pathway Engineering and Research (CASPER), for identifying on- and off-targets with enhanced predictability coupled with an analysis of non-unique (repeated) targets to assist in editing any organism with various endonucleases. Utilizing CASPER, we demonstrated a modest 2.4% and significant 30.2% improvement (F-test, P < 0.05) over the conventional methods for predicting on- and off-target activities, respectively. Further we used CASPER to develop novel applications in genome editing: multitargeting analysis (i.e. simultaneous multiple-site modification on a target genome with a sole guide-RNA requirement) and multispecies population analysis (i.e. guide-RNA design for genome editing across a consortium of organisms). Our analysis on a selection of industrially relevant organisms revealed a number of non-unique target sites associated with genes and transposable elements that can be used as potential sites for multitargeting. The analysis also identified shared and unshared targets that enable genome editing of single or multiple genomes in a consortium of interest. We envision CASPER as a useful platform to enhance the precise CRISPR genome editing for metabolic engineering and synthetic biology applications. https://github.com/TrinhLab/CASPER. ctrinh@utk.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum.
Ribeiro, Jose M; Garriga, Meera; Potchen, Nicole; Crater, Anna K; Gupta, Ankit; Ito, Daisuke; Desai, Sanjay A
2018-06-12
CRISPR-Cas9 mediated genome editing is addressing key limitations in the transfection of malaria parasites. While this method has already simplified the needed molecular cloning and reduced the time required to generate mutants in the human pathogen Plasmodium falciparum, optimal selection of required guide RNAs and guidelines for successful transfections have not been well characterized, leading workers to use time-consuming trial and error approaches. We used a genome-wide computational approach to create a comprehensive and publicly accessible database of possible guide RNA sequences in the P. falciparum genome. For each guide, we report on-target efficiency and specificity scores as well as information about the genomic site relevant to optimal design of CRISPR-Cas9 transfections to modify, disrupt, or conditionally knockdown any gene. As many antimalarial drug and vaccine targets are encoded by multigene families, we also developed a new paralog specificity score that should facilitate modification of either a single family member of interest or multiple paralogs that serve overlapping roles. Finally, we tabulated features of successful transfections in our laboratory, providing broadly useful guidelines for parasite transfections. Molecular studies aimed at understanding parasite biology or characterizing drug and vaccine targets in P. falciparum should be facilitated by this comprehensive database. Published by Elsevier Ltd.
Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.
Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V
2016-12-01
Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.
Shibasaki, Masaki; Maruyama, Fumito; Sekizaki, Tsutomu; Nakagawa, Ichiro
2017-01-01
The oral bacterial species Porphyromonas gingivalis, a periodontal pathogen, has plastic genomes that may be driven by homologous recombination with exogenous deoxyribonucleic acid (DNA) that is incorporated by natural transformation and conjugation. However, bacteriophages and plasmids, both of which are main resources of exogenous DNA, do not exist in the known P. gingivalis genomes. This could be associated with an adaptive immunity system conferred by clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes in P. gingivalis as well as innate immune systems such as a restriction-modification system. In a previous study, few immune targets were predicted for P. gingivalis CRISPR/Cas. In this paper, we analyzed 51 P. gingivalis genomes, which were newly sequenced, and publicly available genomes of 13 P. gingivalis and 46 other Porphyromonas species. We detected 6 CRISPR/Cas types (classified by sequence similarity of repeat) in P. gingivalis and 12 other types in the remaining species. The Porphyromonas CRISPR spacers with potential targets in the genus Porphyromonas were approximately 23 times more abundant than those with potential targets in other genus taxa (1,720/6,896 spacers vs. 74/6,896 spacers). Porphyromonas CRISPR/Cas may be involved in genome plasticity by exhibiting selective interference against intra- and interspecies nucleic acids. PMID:28837670
USDA-ARS?s Scientific Manuscript database
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...
Kang, Yoo Kyung; Kwon, Kyu; Ryu, Jea Sung; Lee, Ha Neul; Park, Chankyu; Chung, Hyun Jung
2017-04-19
The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.
Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.
Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan
2017-08-17
Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.
High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.
Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-05-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.
High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases
Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-01-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses. PMID:24788700
RUCS: rapid identification of PCR primers for unique core sequences.
Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik; Kaya, Hülya; Lund, Ole
2017-12-15
Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs for the targets in silico. Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin resistance gene. Three of the predicted pairs were chosen for experimental validation using PCR and gel electrophoresis. All three pairs successfully produced an amplicon with the target length for the samples containing mcr-1 and no amplification products were produced for the negative samples. The novel methods presented in this manuscript can reduce the time needed to identify target sequences, and provide a quick virtual PCR validation to eliminate time wasted on ambiguously binding primers. Source code is freely available on https://bitbucket.org/genomicepidemiology/rucs. Web service is freely available on https://cge.cbs.dtu.dk/services/RUCS. mcft@cbs.dtu.dk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Zhang, Jie; Li, Yongxiang; Zheng, Jun; Zhang, Hongwei; Yang, Xiaohong; Wang, Jianhua; Wang, Guoying
2017-01-01
The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting exonic polymorphisms to identify recently selected alleles by comparing haplotypes across the maize genome. This analysis revealed evidence of selection for more than 1100 genomic regions during recent improvement, and included regulatory genes and key genes with visible mutant phenotypes. We find that selected candidate target genes in temperate maize are enriched in biosynthetic processes, and further examination of these candidates highlights two cases, sucrose flux and oil storage, in which multiple genes in a common pathway can be cooperatively selected. Finally, based on available parallel gene expression data, we hypothesize that some genes were selected for regulatory variations, resulting in altered gene expression. PMID:28099470
Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
Snelling, W M; Cushman, R A; Keele, J W; Maltecca, C; Thomas, M G; Fortes, M R S; Reverter, A
2013-02-01
Many traits affecting profitability and sustainability of meat, milk, and fiber production are polygenic, with no single gene having an overwhelming influence on observed variation. No knowledge of the specific genes controlling these traits has been needed to make substantial improvement through selection. Significant gains have been made through phenotypic selection enhanced by pedigree relationships and continually improving statistical methodology. Genomic selection, recently enabled by assays for dense SNP located throughout the genome, promises to increase selection accuracy and accelerate genetic improvement by emphasizing the SNP most strongly correlated to phenotype although the genes and sequence variants affecting phenotype remain largely unknown. These genomic predictions theoretically rely on linkage disequilibrium (LD) between genotyped SNP and unknown functional variants, but familial linkage may increase effectiveness when predicting individuals related to those in the training data. Genomic selection with functional SNP genotypes should be less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction across unrelated populations. Although the specific variants causing polygenic variation may never be known with certainty, a number of tools and resources can be used to identify those most likely to affect phenotype. Associations of dense SNP genotypes with phenotype provide a 1-dimensional approach for identifying genes affecting specific traits; in contrast, associations with multiple traits allow defining networks of genes interacting to affect correlated traits. Such networks are especially compelling when corroborated by existing functional annotation and established molecular pathways. The SNP occurring within network genes, obtained from public databases or derived from genome and transcriptome sequences, may be classified according to expected effects on gene products. As illustrated by functionally informed genomic predictions being more accurate than naive whole-genome predictions of beef tenderness, coupling evidence from livestock genotypes, phenotypes, gene expression, and genomic variants with existing knowledge of gene functions and interactions may provide greater insight into the genes and genomic mechanisms affecting polygenic traits and facilitate functional genomic selection for economically important traits.
Novel genetic tools for studying food-borne Salmonella.
Andrews-Polymenis, Helene L; Santiviago, Carlos A; McClelland, Michael
2009-04-01
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Xu, Jing; Zhu, Xing-Quan; Wang, Sheng-Yue; Xia, Chao-Ming
2012-01-01
Background Schistosomiasis japonica is a serious debilitating and sometimes fatal disease. Accurate diagnostic tests play a key role in patient management and control of the disease. However, currently available diagnostic methods are not ideal, and the detection of the parasite DNA in blood samples has turned out to be one of the most promising tools for the diagnosis of schistosomiasis. In our previous investigations, a 230-bp sequence from the highly repetitive retrotransposon SjR2 was identified and it showed high sensitivity and specificity for detecting Schistosoma japonicum DNA in the sera of rabbit model and patients. Recently, 29 retrotransposons were found in S. japonicum genome by our group. The present study highlighted the key factors for selecting a new perspective sensitive target DNA sequence for the diagnosis of schistosomiasis, which can serve as example for other parasitic pathogens. Methodology/Principal Findings In this study, we demonstrated that the key factors based on the bioinformatic analysis for selecting target sequence are the higher genome proportion, repetitive complete copies and partial copies, and active ESTs than the others in the chromosome genome. New primers based on 25 novel retrotransposons and SjR2 were designed and their sensitivity and specificity for detecting S. japonicum DNA were compared. The results showed that a new 303-bp sequence from non-long terminal repeat (LTR) retrotransposon (SjCHGCS19) had high sensitivity and specificity. The 303-bp target sequence was amplified from the sera of rabbit model at 3 d post-infection by nested-PCR and it became negative at 17 weeks post-treatment. Furthermore, the percentage sensitivity of the nested-PCR was 97.67% in 43 serum samples of S. japonicum-infected patients. Conclusions/Significance Our findings highlighted the key factors based on the bioinformatic analysis for selecting target sequence from S. japonicum genome, which provide basis for establishing powerful molecular diagnostic techniques that can be used for monitoring early infection and therapy efficacy to support schistosomiasis control programs. PMID:22479661
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2016-01-01
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.
The druggable genome and support for target identification and validation in drug development.
Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P
2017-03-29
Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.
Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.
2015-01-01
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318
Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.
Cha, Jaehyun; Kwon, Inchan
2018-02-27
Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramu, P; Kassahun, B; Senthilvel, S; Ashok Kumar, C; Jayashree, B; Folkertsma, R T; Reddy, L Ananda; Kuruvinashetti, M S; Haussmann, B I G; Hash, C T
2009-11-01
The sequencing and detailed comparative functional analysis of genomes of a number of select botanical models open new doors into comparative genomics among the angiosperms, with potential benefits for improvement of many orphan crops that feed large populations. In this study, a set of simple sequence repeat (SSR) markers was developed by mining the expressed sequence tag (EST) database of sorghum. Among the SSR-containing sequences, only those sharing considerable homology with rice genomic sequences across the lengths of the 12 rice chromosomes were selected. Thus, 600 SSR-containing sorghum EST sequences (50 homologous sequences on each of the 12 rice chromosomes) were selected, with the intention of providing coverage for corresponding homologous regions of the sorghum genome. Primer pairs were designed and polymorphism detection ability was assessed using parental pairs of two existing sorghum mapping populations. About 28% of these new markers detected polymorphism in this 4-entry panel. A subset of 55 polymorphic EST-derived SSR markers were mapped onto the existing skeleton map of a recombinant inbred population derived from cross N13 x E 36-1, which is segregating for Striga resistance and the stay-green component of terminal drought tolerance. These new EST-derived SSR markers mapped across all 10 sorghum linkage groups, mostly to regions expected based on prior knowledge of rice-sorghum synteny. The ESTs from which these markers were derived were then mapped in silico onto the aligned sorghum genome sequence, and 88% of the best hits corresponded to linkage-based positions. This study demonstrates the utility of comparative genomic information in targeted development of markers to fill gaps in linkage maps of related crop species for which sufficient genomic tools are not available.
Drug target identification in protozoan parasites.
Müller, Joachim; Hemphill, Andrew
2016-08-01
Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.
Chendeb, Mariam; Schneider, Robert; Davidson, Irwin; Fadloun, Anas
2017-01-01
In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2. PMID:28415677
Byars, Sean G.; Gray, Lesley-Ann; Ripatti, Samuli; Stearns, Stephen C.; Inouye, Michael
2017-01-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD. PMID:28640878
Efficient CRISPR/Cas9-based gene knockout in watermelon.
Tian, Shouwei; Jiang, Linjian; Gao, Qiang; Zhang, Jie; Zong, Mei; Zhang, Haiying; Ren, Yi; Guo, Shaogui; Gong, Guoyi; Liu, Fan; Xu, Yong
2017-03-01
CRISPR/Cas9 system can precisely edit genomic sequence and effectively create knockout mutations in T0 generation watermelon plants. Genome editing offers great advantage to reveal gene function and generate agronomically important mutations to crops. Recently, RNA-guided genome editing system using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been applied to several plant species, achieving successful targeted mutagenesis. Here, we report the genome of watermelon, an important fruit crop, can also be precisely edited by CRISPR/Cas9 system. ClPDS, phytoene desaturase in watermelon, was selected as the target gene because its mutant bears evident albino phenotype. CRISPR/Cas9 system performed genome editing, such as insertions or deletions at the expected position, in transfected watermelon protoplast cells. More importantly, all transgenic watermelon plants harbored ClPDS mutations and showed clear or mosaic albino phenotype, indicating that CRISPR/Cas9 system has technically 100% of genome editing efficiency in transgenic watermelon lines. Furthermore, there were very likely no off-target mutations, indicated by examining regions that were highly homologous to sgRNA sequences. Our results show that CRISPR/Cas9 system is a powerful tool to effectively create knockout mutations in watermelon.
Schrider, Daniel R.; Kern, Andrew D.
2015-01-01
The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. PMID:26590212
A novel program to design siRNAs simultaneously effective to highly variable virus genomes.
Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran
2009-07-10
A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.
Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology.
Tao, Jessica J; Schram, Alison M; Hyman, David M
2018-01-29
Understanding a tumor's detailed molecular profile has become increasingly necessary to deliver the standard of care for patients with advanced cancer. Innovations in both tumor genomic sequencing technology and the development of drugs that target molecular alterations have fueled recent gains in genome-driven oncology care. "Basket studies," or histology-agnostic clinical trials in genomically selected patients, represent one important research tool to continue making progress in this field. We review key aspects of genome-driven oncology care, including the purpose and utility of basket studies, biostatistical considerations in trial design, genomic knowledgebase development, and patient matching and enrollment models, which are critical for translating our genomic knowledge into clinically meaningful outcomes.
Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan
2018-06-01
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.
Genome organization and characteristics of soybean microRNAs
2012-01-01
Background microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development. PMID:22559273
Evolution-guided optimization of biosynthetic pathways.
Raman, Srivatsan; Rogers, Jameson K; Taylor, Noah D; Church, George M
2014-12-16
Engineering biosynthetic pathways for chemical production requires extensive optimization of the host cellular metabolic machinery. Because it is challenging to specify a priori an optimal design, metabolic engineers often need to construct and evaluate a large number of variants of the pathway. We report a general strategy that combines targeted genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare high producers. We convert the intracellular presence of the target chemical into a fitness advantage for the cell by using a sensor domain responsive to the chemical to control a reporter gene necessary for survival under selective conditions. Because artificial selection tends to amplify unproductive cheaters, we devised a negative selection scheme to eliminate cheaters while preserving library diversity. This scheme allows us to perform multiple rounds of evolution (addressing ∼10(9) cells per round) with minimal carryover of cheaters after each round. Based on candidate genes identified by flux balance analysis, we used targeted genome-wide mutagenesis to vary the expression of pathway genes involved in the production of naringenin and glucaric acid. Through up to four rounds of evolution, we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively. Naringenin production (61 mg/L) from glucose was more than double the previous highest titer reported. Whole-genome sequencing of evolved strains revealed additional untargeted mutations that likely benefit production, suggesting new routes for optimization.
Repurposing CRISPR/Cas9 for in situ functional assays.
Malina, Abba; Mills, John R; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry
2013-12-01
RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel "all-in-one" lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an "all-in-one" system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens.
Repurposing CRISPR/Cas9 for in situ functional assays
Malina, Abba; Mills, John R.; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M.; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry
2013-01-01
RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel “all-in-one” lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an “all-in-one” system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens. PMID:24298059
Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J
2016-12-01
High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K.; Mukerji, Mitali
2016-09-01
Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu’s H < -20, iHS > 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges.
Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sally A. Mackenzie
2011-04-18
A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility thatmore » had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.« less
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2014-08-15
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond
Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils
2013-01-01
Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683
Gerresheim, Gesche K; Dünnes, Nadia; Nieder-Röhrmann, Anika; Shalamova, Lyudmila A; Fricke, Markus; Hofacker, Ivo; Höner Zu Siederdissen, Christian; Marz, Manja; Niepmann, Michael
2017-02-01
We have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3' untranslated region (3'UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites. This suggests that the dynamics of miRNA/Ago2 binding not only depends on the target site itself but also on flanking sequence context to a considerable extent, in particular in a small viral genome in which strong selection constraints act on coding sequence and overlapping cis-signals and model the accessibility of cis-signals. In full-length genomes, single and combination mutations in the miR-122 target sites reveal that site 5B.2 is positively involved in regulating overall genome replication efficiency, whereas mutation of site 5B.3 showed a weaker effect. Mutation of the 3'UTR site and double or triple mutants showed no significant overall effect on genome replication, whereas in a translation reporter RNA, the 3'UTR target site inhibits translation directed by the HCV 5'UTR. Thus, the miR-122 target sites in the 3'-region of the HCV genome are involved in a complex interplay in regulating different steps of the HCV replication cycle.
Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar
2017-01-01
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I
2018-06-02
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
Reitzel, A M; Herrera, S; Layden, M J; Martindale, M Q; Shank, T M
2013-06-01
Characterization of large numbers of single-nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. The results from analyses with and without a reference genome supported similar conclusions, further highlighting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals and jellyfishes, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. © 2013 John Wiley & Sons Ltd.
Kjærner-Semb, Erik; Ayllon, Fernando; Furmanek, Tomasz; Wennevik, Vidar; Dahle, Geir; Niemelä, Eero; Ozerov, Mikhail; Vähä, Juha-Pekka; Glover, Kevin A; Rubin, Carl J; Wargelius, Anna; Edvardsen, Rolf B
2016-08-11
Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation.
Reitzel, A.M.; Herrera, S.; Layden, M.J.; Martindale, M.Q.; Shank, T.M.
2013-01-01
Characterization of large numbers of single nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. Results from analyses with and without a reference genome supported similar conclusions, further supporting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection. PMID:23473066
Azam, Syed Sikander; Shamim, Amen
2014-09-01
The discovery of novel drug targets of a genome that can bind with high affinity to drug-like compounds is a significant challenge in drug development. Streptococcus gordonii initiates dental plaque formation and endocarditis by entering into the blood stream, usually after oral trauma. The prolonged use of antibiotics is raising a problem of multi-drug resistance and lack of an optimal therapeutic regime that necessitates the drug discovery of vital importance in curing various infections. To overcome this dilemma, the in silico approach paves the way for identification and qualitative characterization of promising drug targets for S. gordonii that encompass three phases of analyses. The present study deciphers drug target genomes of S. gordonii in which 93 proteins were identified as potential drug targets and 16 proteins were found to be involved in unique metabolic pathways. Highlighted information will convincingly render to facilitate selection of S. gordonii proteins for successful entry into drug design pipelines. Copyright © 2014 Elsevier Inc. All rights reserved.
Mäkinen, H S; Cano, J M; Merilä, J
2008-08-01
Natural selection is expected to leave an imprint on the neutral polymorphisms at the adjacent genomic regions of a selected gene. While directional selection tends to reduce within-population genetic diversity and increase among-population differentiation, the reverse is expected under balancing selection. To identify targets of natural selection in the three-spined stickleback (Gasterosteus aculeatus) genome, 103 microsatellite and two indel markers including expressed sequence tags (EST) and quantitative trait loci (QTL)-associated loci, were genotyped in four freshwater and three marine populations. The results indicated that a high proportion of loci (14.7%) might be affected by balancing selection and a lower proportion (2.8%) by directional selection. The strongest signatures of directional selection were detected in a microsatellite locus and two indel markers located in the intronic regions of the Eda-gene coding for the number of lateral plates. Yet, other microsatellite loci previously found to be informative in QTL-mapping studies revealed no signatures of selection. Two novel microsatellite loci (Stn12 and Stn90) located in chromosomes I and VIII, respectively, showed signals of directional selection and might be linked to genomic regions containing gene(s) important for adaptive divergence. Although the coverage of the total genomic content was relatively low, the predominance of balancing selection signals is in agreement with the contention that balancing, rather than directional selection is the predominant mode of selection in the wild.
Sunflower Hybrid Breeding: From Markers to Genomic Selection
Dimitrijevic, Aleksandra; Horn, Renate
2018-01-01
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071
2013-01-01
Background Drug resistance to anti-malarial compounds remains a serious problem, with resistance to newer pharmaceuticals developing at an alarming rate. The development of new anti-malarials remains a priority, and the rational selection of putative targets is a key element of this process. Discovery-2 is an update of the original Discovery in silico resource for the rational selection of putative drug target proteins, enabling researchers to obtain information for a protein which may be useful for the selection of putative drug targets, and to perform advanced filtering of proteins encoded by the malaria genome based on a series of molecular properties. Methods An updated in silico resource has been developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein properties used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions. Newly added features include drugability measures from ChEMBL, automated literature relations and links to clinical trial information. Searching by chemical structure is also available. Results The updated functionality of the Discovery-2 resource is presented, together with a detailed case study of the Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH) protein. A short example of a chemical search with pyrimethamine is also illustrated. Conclusion The updated Discovery-2 resource allows researchers to obtain detailed properties of proteins from the malaria genome, which may be of interest in the target selection process, and to perform advanced filtering and selection of proteins based on a relevant range of molecular characteristics. PMID:23537208
Fernandez, Ronan; Berro, Julien
2017-01-01
Fission yeast is a powerful model organism that has provided insights into important cellular processes thanks to the ease of its genome editing by homologous recombination. However, creation of strains with a large number of targeted mutations or containing plasmids has been challenging because only a very small number of selection markers is available in Schizosaccharomyces pombe. In this paper, we identify two fission yeast fluoride exporter channels (Fex1p and Fex2p) and describe the development of a new strategy using Fex1p as a selection marker for transformants in rich media supplemented with fluoride. To our knowledge this is the first positive selection marker identified in S. pombe that does not use auxotrophy or drug resistance and that can be used for plasmids transformation or genomic integration in rich media. We illustrate the application of our new marker by significantly accelerating the protocol for genome edition using CRISPR/Cas9 in S. pombe. PMID:27327046
Genome Engineering in Bacillus anthracis Using Cre Recombinase
Pomerantsev, Andrei P.; Sitaraman, Ramakrishnan; Galloway, Craig R.; Kivovich, Violetta; Leppla, Stephen H.
2006-01-01
Genome engineering is a powerful method for the study of bacterial virulence. With the availability of the complete genomic sequence of Bacillus anthracis, it is now possible to inactivate or delete selected genes of interest. However, many current methods for disrupting or deleting more than one gene require use of multiple antibiotic resistance determinants. In this report we used an approach that temporarily inserts an antibiotic resistance marker into a selected region of the genome and subsequently removes it, leaving the target region (a single gene or a larger genomic segment) permanently mutated. For this purpose, a spectinomycin resistance cassette flanked by bacteriophage P1 loxP sites oriented as direct repeats was inserted within a selected gene. After identification of strains having the spectinomycin cassette inserted by a double-crossover event, a thermo-sensitive plasmid expressing Cre recombinase was introduced at the permissive temperature. Cre recombinase action at the loxP sites excised the spectinomycin marker, leaving a single loxP site within the targeted gene or genomic segment. The Cre-expressing plasmid was then removed by growth at the restrictive temperature. The procedure could then be repeated to mutate additional genes. In this way, we sequentially mutated two pairs of genes: pepM and spo0A, and mcrB and mrr. Furthermore, loxP sites introduced at distant genes could be recombined by Cre recombinase to cause deletion of large intervening regions. In this way, we deleted the capBCAD region of the pXO2 plasmid and the entire 30 kb of chromosomal DNA between the mcrB and mrr genes, and in the latter case we found that the 32 intervening open reading frames were not essential to growth. PMID:16369025
USDA-ARS?s Scientific Manuscript database
The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in non-model species. While the difficulty of going from a s...
Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney
2015-09-22
Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.
Targeted gene insertion for molecular medicine.
Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán
2008-11-01
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò
2018-01-01
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data
Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.
2009-01-01
Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435
Cas9-Guide RNA Directed Genome Editing in Soybean[OPEN
Li, Zhongsen; Liu, Zhan-Bin; Xing, Aiqiu; Moon, Bryan P.; Koellhoffer, Jessica P.; Huang, Lingxia; Ward, R. Timothy; Clifton, Elizabeth; Falco, S. Carl; Cigan, A. Mark
2015-01-01
Recently discovered bacteria and archaea adaptive immune system consisting of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) endonuclease has been explored in targeted genome editing in different species. Streptococcus pyogenes Cas9-guide RNA (gRNA) was successfully applied to generate targeted mutagenesis, gene integration, and gene editing in soybean (Glycine max). Two genomic sites, DD20 and DD43 on chromosome 4, were mutagenized with frequencies of 59% and 76%, respectively. Sequencing randomly selected transgenic events confirmed that the genome modifications were specific to the Cas9-gRNA cleavage sites and consisted of small deletions or insertions. Targeted gene integrations through homology-directed recombination were detected by border-specific polymerase chain reaction analysis for both sites at callus stage, and one DD43 homology-directed recombination event was transmitted to T1 generation. T1 progenies of the integration event segregated according to Mendelian laws and clean homozygous T1 plants with the donor gene precisely inserted at the DD43 target site were obtained. The Cas9-gRNA system was also successfully applied to make a directed P178S mutation of acetolactate synthase1 gene through in planta gene editing. PMID:26294043
Drug target identification in protozoan parasites
Müller, Joachim; Hemphill, Andrew
2016-01-01
Introduction Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Areas covered Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Expert opinion Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses. PMID:27238605
Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome.
Manzardo, A M; Butler, M G
2016-01-01
Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. None. Percentage methylation and the methylation index. The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.
Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome
Manzardo, AM; Butler, MG
2016-01-01
Context Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Objective Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Design Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Setting Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Participants Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). Results A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. Intervention None. Main outcome measures Percentage methylation and the methylation index. Conclusion The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology. PMID:28111641
Barrett, Craig F; Wicke, Susann; Sass, Chodon
2018-05-01
Heterotrophic plants provide excellent opportunities to study the effects of altered selective regimes on genome evolution. Plastid genome (plastome) studies in heterotrophic plants are often based on one or a few highly divergent species or sequences as representatives of an entire lineage, thus missing important evolutionary-transitory events. Here, we present the first infraspecific analysis of plastome evolution in any heterotrophic plant. By combining genome skimming and targeted sequence capture, we address hypotheses on the degree and rate of plastome degradation in a complex of leafless orchids (Corallorhiza striata) across its geographic range. Plastomes provide strong support for relationships and evidence of reciprocal monophyly between C. involuta and the endangered C. bentleyi. Plastome degradation is extensive, occurring rapidly over a few million years, with evidence of differing rates of genomic change among the two principal clades of the complex. Genome skimming and targeted sequence capture differ widely in coverage depth overall, with depth in targeted sequence capture datasets varying immensely across the plastome as a function of GC content. These findings will help to fill a knowledge gap in models of heterotrophic plastid genome evolution, and have implications for future studies in heterotrophs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Watanabe, Satoshi; Sakurai, Takayuki; Nakamura, Shingo; Miyoshi, Kazuchika; Sato, Masahiro
2018-04-04
Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 ( hCas9 ) gene, or Clostridium perfringens -derived endo-β-galactosidase C ( EndoGalC ) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B₄ lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.
Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B
2016-09-28
A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.
Gieß, Mario; Witte, Anna; Jasper, Julia; Koch, Oliver; Summerer, Daniel
2018-05-09
5-Methylcytosine (5mC) and its oxidized derivatives are regulatory elements of mammalian genomes involved in development and disease. These nucleobases do not selectively modulate Watson-Crick pairing, preventing their programmable targeting and analysis by traditional hybridization probes. Transcription-activator-like effectors (TALEs) can be engineered for use as programmable probes with epigenetic nucleobase selectivity. However, only partial selectivities for oxidized 5mC have been achieved so far, preventing unambiguous target binding. We overcome this limitation by destroying and re-inducing nucleobase selectivity in TALEs via protein engineering and chemoselective nucleobase blocking. We engineer cavities in TALE repeats and identify a cavity that accommodates all eight human DNA nucleobases. We then introduce substituents with varying size, flexibility, and branching degree at each oxidized 5mC. Depending on the nucleobase, substituents with distinct properties effectively block TALE-binding and induce full nucleobase selectivity in the universal repeat. Successful transfer to affinity enrichment in a human genome background indicates that this approach enables the fully selective detection of each oxidized 5mC in complex DNA by programmable probes.
Park, Jeongbin; Bae, Sangsu
2018-03-15
Following the type II CRISPR-Cas9 system, type V CRISPR-Cpf1 endonucleases have been found to be applicable for genome editing in various organisms in vivo. However, there are as yet no web-based tools capable of optimally selecting guide RNAs (gRNAs) among all possible genome-wide target sites. Here, we present Cpf1-Database, a genome-wide gRNA library design tool for LbCpf1 and AsCpf1, which have DNA recognition sequences of 5'-TTTN-3' at the 5' ends of target sites. Cpf1-Database provides a sophisticated but simple way to design gRNAs for AsCpf1 nucleases on the genome scale. One can easily access the data using a straightforward web interface, and using the powerful collections feature one can easily design gRNAs for thousands of genes in short time. Free access at http://www.rgenome.net/cpf1-database/. sangsubae@hanyang.ac.kr.
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelson, Tarjei; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng
2014-01-03
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-01-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
A CRISPR/molecular beacon hybrid system for live-cell genomic imaging.
Wu, Xiaotian; Mao, Shiqi; Yang, Yantao; Rushdi, Muaz N; Krueger, Christopher J; Chen, Antony K
2018-04-30
The clustered regularly interspersed short palindromic repeat (CRISPR) gene-editing system has been repurposed for live-cell genomic imaging, but existing approaches rely on fluorescent protein reporters, making sensitive and continuous imaging difficult. Here, we present a fluorophore-based live-cell genomic imaging system that consists of a nuclease-deactivated mutant of the Cas9 protein (dCas9), a molecular beacon (MB), and an engineered single-guide RNA (sgRNA) harboring a unique MB target sequence (sgRNA-MTS), termed CRISPR/MB. Specifically, dCas9 and sgRNA-MTS are first co-expressed to target a specific locus in cells, followed by delivery of MBs that can then hybridize to MTS to illuminate the target locus. We demonstrated the feasibility of this approach for quantifying genomic loci, for monitoring chromatin dynamics, and for dual-color imaging when using two orthogonal MB/MTS pairs. With flexibility in selecting different combinations of fluorophore/quencher pairs and MB/MTS sequences, our CRISPR/MB hybrid system could be a promising platform for investigating chromatin activities.
Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma.
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah; Liu, Yang; Maron, Steven; Islam, Mirazul; Alpert, Lindsay; Kwak, Heewon; Kindler, Hedy; Polite, Blase; Sharma, Manish R; Allen, Kenisha; O'Day, Emily; Lomnicki, Samantha; Maranto, Melissa; Kanteti, Rajani; Fitzpatrick, Carrie; Weber, Christopher; Setia, Namrata; Xiao, Shu-Yuan; Hart, John; Nagy, Rebecca J; Kim, Kyoung-Mee; Choi, Min-Gew; Min, Byung-Hoon; Nason, Katie S; O'Keefe, Lea; Watanabe, Masayuki; Baba, Hideo; Lanman, Rick; Agoston, Agoston T; Oh, David J; Dunford, Andrew; Thorner, Aaron R; Ducar, Matthew D; Wollison, Bruce M; Coleman, Haley A; Ji, Yuan; Posner, Mitchell C; Roggin, Kevin; Turaga, Kiran; Chang, Paul; Hogarth, Kyle; Siddiqui, Uzma; Gelrud, Andres; Ha, Gavin; Freeman, Samuel S; Rhoades, Justin; Reed, Sarah; Gydush, Greg; Rotem, Denisse; Davison, Jon; Imamura, Yu; Adalsteinsson, Viktor; Lee, Jeeyun; Bass, Adam J; Catenacci, Daniel V
2018-01-01
Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy. Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR. See related commentary by Sundar and Tan, p. 14 See related article by Janjigian et al., p. 49 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.
Liu, Zhaohua; Ji, Zhibin; Wang, Guizhi; Chao, Tianle; Hou, Lei; Wang, Jianmin
2016-11-03
Throughout a long period of adaptation and selection, sheep have thrived in a diverse range of ecological environments. Mongolian sheep is the common ancestor of the Chinese short fat-tailed sheep. Migration to different ecoregions leads to changes in selection pressures and results in microevolution. Mongolian sheep and its subspecies differ in a number of important traits, especially reproductive traits. Genome-wide intraspecific variation is required to dissect the genetic basis of these traits. This research resequenced 3 short fat-tailed sheep breeds with a 43.2-fold coverage of the sheep genome. We report more than 17 million single nucleotide polymorphisms and 2.9 million indels and identify 143 genomic regions with reduced pooled heterozygosity or increased genetic distance to each other breed that represent likely targets for selection during the migration. These regions harbor genes related to developmental processes, cellular processes, multicellular organismal processes, biological regulation, metabolic processes, reproduction, localization, growth and various components of the stress responses. Furthermore, we examined the haplotype diversity of 3 genomic regions involved in reproduction and found significant differences in TSHR and PRL gene regions among 8 sheep breeds. Our results provide useful genomic information for identifying genes or causal mutations associated with important economic traits in sheep and for understanding the genetic basis of adaptation to different ecological environments.
Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna
2016-04-07
DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.
Structural Genomics and Drug Discovery for Infectious Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.F.
The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging,more » or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.« less
Franchini, Paolo; Xiong, Peiwen; Fruciano, Carmelo; Meyer, Axel
2016-01-01
Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3′-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3′-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids. PMID:27189980
Manunza, A.; Cardoso, T. F.; Noce, A.; Martínez, A.; Pons, A.; Bermejo, L. A.; Landi, V.; Sànchez, A.; Jordana, J.; Delgado, J. V.; Adán, S.; Capote, J.; Vidal, O.; Ugarte, E.; Arranz, J. J.; Calvo, J. H.; Casellas, J.; Amills, M.
2016-01-01
The goals of the current work were to analyse the population structure of 11 Spanish ovine breeds and to detect genomic regions that may have been targeted by selection. A total of 141 individuals were genotyped with the Infinium 50 K Ovine SNP BeadChip (Illumina). We combined this dataset with Spanish ovine data previously reported by the International Sheep Genomics Consortium (N = 229). Multidimensional scaling and Admixture analyses revealed that Canaria de Pelo and, to a lesser extent, Roja Mallorquina, Latxa and Churra are clearly differentiated populations, while the remaining seven breeds (Ojalada, Castellana, Gallega, Xisqueta, Ripollesa, Rasa Aragonesa and Segureña) share a similar genetic background. Performance of a genome scan with BayeScan and hapFLK allowed us identifying three genomic regions that are consistently detected with both methods i.e. Oar3 (150–154 Mb), Oar6 (4–49 Mb) and Oar13 (68–74 Mb). Neighbor-joining trees based on polymorphisms mapping to these three selective sweeps did not show a clustering of breeds according to their predominant productive specialization (except the local tree based on Oar13 SNPs). Such cryptic signatures of selection have been also found in the bovine genome, posing a considerable challenge to understand the biological consequences of artificial selection. PMID:27272025
Manunza, A; Cardoso, T F; Noce, A; Martínez, A; Pons, A; Bermejo, L A; Landi, V; Sànchez, A; Jordana, J; Delgado, J V; Adán, S; Capote, J; Vidal, O; Ugarte, E; Arranz, J J; Calvo, J H; Casellas, J; Amills, M
2016-06-07
The goals of the current work were to analyse the population structure of 11 Spanish ovine breeds and to detect genomic regions that may have been targeted by selection. A total of 141 individuals were genotyped with the Infinium 50 K Ovine SNP BeadChip (Illumina). We combined this dataset with Spanish ovine data previously reported by the International Sheep Genomics Consortium (N = 229). Multidimensional scaling and Admixture analyses revealed that Canaria de Pelo and, to a lesser extent, Roja Mallorquina, Latxa and Churra are clearly differentiated populations, while the remaining seven breeds (Ojalada, Castellana, Gallega, Xisqueta, Ripollesa, Rasa Aragonesa and Segureña) share a similar genetic background. Performance of a genome scan with BayeScan and hapFLK allowed us identifying three genomic regions that are consistently detected with both methods i.e. Oar3 (150-154 Mb), Oar6 (4-49 Mb) and Oar13 (68-74 Mb). Neighbor-joining trees based on polymorphisms mapping to these three selective sweeps did not show a clustering of breeds according to their predominant productive specialization (except the local tree based on Oar13 SNPs). Such cryptic signatures of selection have been also found in the bovine genome, posing a considerable challenge to understand the biological consequences of artificial selection.
Hoffmann, Thomas J; Zhan, Yiping; Kvale, Mark N; Hesselson, Stephanie E; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H; Smethurst, David; Somkin, Carol P; Van den Eeden, Stephen K; Walter, Larry; Webster, Teresa; Whitmer, Rachel A; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil
2011-12-01
Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. Copyright © 2011 Elsevier Inc. All rights reserved.
A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells.
Zhang, Haiwei; Zhang, Xixi; Fan, Cunxian; Xie, Qun; Xu, Chengxian; Zhao, Qun; Liu, Yongbo; Wu, Xiaoxia; Zhang, Haibing
2016-03-18
CRISPR-Cas9 mediated genome editing system has been developed as a powerful tool for elucidating the function of genes through genetic engineering in multiple cells and organisms. This system takes advantage of a single guide RNA (sgRNA) to direct the Cas9 endonuclease to a specific DNA site to generate mutant alleles. Since the targeting efficiency of sgRNAs to distinct DNA loci can vary widely, there remains a need for a rapid, simple and efficient sgRNA selection method to overcome this limitation of the CRISPR-Cas9 system. Here we report a novel system to select sgRNA with high efficacy for DNA sequence modification by a luciferase assay. Using this sgRNAs selection system, we further demonstrated successful examples of one sgRNA for generating one gene knockout cell lines where the targeted genes are shown to be functionally defective. This system provides a potential application to optimize the sgRNAs in different species and to generate a powerful CRISPR-Cas9 genome-wide screening system with minimum amounts of sgRNAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Huateng; Rabosky, Daniel L
2015-09-16
Sexual dichromatism is the tendency for sexes to differ in color pattern and represents a striking form of within-species morphological variation. Conspicuous intersexual differences in avian plumage are generally thought to result from Darwinian sexual selection, to the extent that dichromatism is often treated as a surrogate for the intensity of sexual selection in phylogenetic comparative studies. Intense sexual selection is predicted to leave a footprint on genetic evolution by reducing the relative genetic diversity on sex chromosome to that on the autosomes. In this study, we test the association between plumage dichromatism and sex-linked genetic diversity using eight species pairs with contrasting levels of dichromatism. We estimated Z-linked and autosomal genetic diversity for these non-model avian species using restriction-site associated (RAD) loci that covered ~3 % of the genome. We find that monochromatic birds consistently have reduced sex-linked genomic variation relative to phylogenetically-paired dichromatic species and this pattern is robust to mutational biases. Our results are consistent with several interpretations. If present-day sexual selection is stronger in dichromatic birds, our results suggest that its impact on sex-linked genomic variation is offset by other processes that lead to proportionately lower Z-linked variation in monochromatic species. We discuss possible factors that may contribute to this discrepancy between phenotypes and genomic variation. Conversely, it is possible that present-day sexual selection -- as measured by the variance in male reproductive success -- is stronger in the set of monochromatic taxa we have examined, potentially reflecting the importance of song, behavior and other non-plumage associated traits as targets of sexual selection. This counterintuitive finding suggests that the relationship between genomic variation and sexual selection is complex and highlights the need for a more comprehensive survey of genomic variation in avian taxa that vary markedly in social and genetic mating systems.
Detecting Signatures of Positive Selection along Defined Branches of a Population Tree Using LSD.
Librado, Pablo; Orlando, Ludovic
2018-06-01
Identifying the genomic basis underlying local adaptation is paramount to evolutionary biology, and bears many applications in the fields of conservation biology, crop, and animal breeding, as well as personalized medicine. Although many approaches have been developed to detect signatures of positive selection within single populations and population pairs, the increasing wealth of high-throughput sequencing data requires improved methods capable of handling multiple, and ideally large number of, populations in a single analysis. In this study, we introduce LSD (levels of exclusively shared differences), a fast and flexible framework to perform genome-wide selection scans, along the internal and external branches of a given population tree. We use forward simulations to demonstrate that LSD can identify branches targeted by positive selection with remarkable sensitivity and specificity. We illustrate a range of potential applications by analyzing data from the 1000 Genomes Project and uncover a list of adaptive candidates accompanying the expansion of anatomically modern humans out of Africa and their spread to Europe.
Sato, Masahiro; Miyoshi, Kazuchika; Nakamura, Shingo; Ohtsuka, Masato; Sakurai, Takayuki; Watanabe, Satoshi; Kawaguchi, Hiroaki; Tanimoto, Akihide
2017-12-04
The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B₄ isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.
Genome Pool Strategy for Structural Coverage of Protein Families
Jaroszewski, Lukasz; Slabinski, Lukasz; Wooley, John; Deacon, Ashley M.; Lesley, Scott A.; Wilson, Ian. A.; Godzik, Adam
2010-01-01
As noticed by generations of structural biologists, closely homologous proteins may have substantially different crystallization properties and propensities. These observations can be used to systematically introduce additional dimensionality into crystallization trials by targeting homologous proteins from multiple genomes in a “genome pool” strategy. Through extensive use of our recently introduced “crystallization feasibility score” (Slabinski et al., 2007a), we can explain that the genome pool strategy works well because the crystallization feasibility scores are surprisingly broad within families of homologous proteins, with most families containing a range of optimal to very difficult targets. We also show that some families can be regarded as relatively “easy”, where a significant number of proteins are predicted to have optimal crystallization features, and others are “very difficult”, where almost none are predicted to result in a crystal structure. Thus, the outcome of such variable distributions of such crystallizability' preferences leads to uneven structural coverage of known families, with “easier” or “optimal” families having several times more solved structures than “very difficult” ones. Nevertheless, this latter category can be successfully targeted by increasing the number of genomes that are used to select targets from a given family. On average, adding 10 new genomes to the “genome pool” provides more promising targets for 7 “very difficult” families. In contrast, our crystallization feasibility score does not indicate that any specific microbial genomes can be readily classified as “easier” or “very difficult” with respect to providing suitable candidates for crystallization and structure determination. Finally, our analyses show that specific physicochemical properties of the protein sequence favor successful outcomes for structure determination and, hence, the group of proteins with known 3D structures is systematically different from the general pool of known proteins. We, therefore, assess the structural consequences of these differences in protein sequence and protein biophysical properties. PMID:19000818
Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.
2014-01-01
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364
Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis.
Song, Jae-Hoon; Ko, Kwan Soo; Lee, Ji-Young; Baek, Jin Yang; Oh, Won Sup; Yoon, Ha Sik; Jeong, Jin-Yong; Chun, Jongsik
2005-06-30
To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.
[Tale nucleases--new tool for genome editing].
Glazkova, D V; Shipulin, G A
2014-01-01
The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com; Hall, Matthew D.; Hasan, Samiul
Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of themore » Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.« less
High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.
Variation block-based genomics method for crop plants.
Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon
2014-06-15
In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
An integrated clinical and genomic information system for cancer precision medicine.
Jang, Yeongjun; Choi, Taekjin; Kim, Jongho; Park, Jisub; Seo, Jihae; Kim, Sangok; Kwon, Yeajee; Lee, Seungjae; Lee, Sanghyuk
2018-04-20
Increasing affordability of next-generation sequencing (NGS) has created an opportunity for realizing genomically-informed personalized cancer therapy as a path to precision oncology. However, the complex nature of genomic information presents a huge challenge for clinicians in interpreting the patient's genomic alterations and selecting the optimum approved or investigational therapy. An elaborate and practical information system is urgently needed to support clinical decision as well as to test clinical hypotheses quickly. Here, we present an integrated clinical and genomic information system (CGIS) based on NGS data analyses. Major components include modules for handling clinical data, NGS data processing, variant annotation and prioritization, drug-target-pathway analysis, and population cohort explorer. We built a comprehensive knowledgebase of genes, variants, drugs by collecting annotated information from public and in-house resources. Structured reports for molecular pathology are generated using standardized terminology in order to help clinicians interpret genomic variants and utilize them for targeted cancer therapy. We also implemented many features useful for testing hypotheses to develop prognostic markers from mutation and gene expression data. Our CGIS software is an attempt to provide useful information for both clinicians and scientists who want to explore genomic information for precision oncology.
Piotrowski, Jeff S; Nagarajan, Saisubramanian; Kroll, Evgueny; Stanbery, Alison; Chiotti, Kami E; Kruckeberg, Arthur L; Dunn, Barbara; Sherlock, Gavin; Rosenzweig, Frank
2012-04-02
Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution, underscoring the importance of the ecological theatre in determining the outcome of the evolutionary play.
Hu, Peinan; Zhao, Xueying; Zhang, Qinghua; Li, Weiming; Zu, Yao
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites (tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system. PMID:29295818
A multi-landing pad DNA integration platform for mammalian cell engineering
Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron
2018-01-01
Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.
Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L
2014-01-28
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions, what remains elusive is a generalized and programmable strategy that can distinguish between even closely related microorganisms and that allows for fine control over the composition of a microbial population. This study demonstrates that RNA-directed immune systems in bacteria and archaea called CRISPR-Cas systems can provide such a strategy. These systems can be employed to selectively and quantitatively remove individual bacterial strains based purely on sequence information, creating opportunities in the treatment of multidrug-resistant infections, the control of industrial fermentations, and the study of microbial consortia.
Identification of genomic variants putatively targeted by selection during dog domestication.
Cagan, Alex; Blass, Torsten
2016-01-12
Dogs [Canis lupus familiaris] were the first animal species to be domesticated and continue to occupy an important place in human societies. Recent studies have begun to reveal when and where dog domestication occurred. While much progress has been made in identifying the genetic basis of phenotypic differences between dog breeds we still know relatively little about the genetic changes underlying the phenotypes that differentiate all dogs from their wild progenitors, wolves [Canis lupus]. In particular, dogs generally show reduced aggression and fear towards humans compared to wolves. Therefore, selection for tameness was likely a necessary prerequisite for dog domestication. With the increasing availability of whole-genome sequence data it is possible to try and directly identify the genetic variants contributing to the phenotypic differences between dogs and wolves. We analyse the largest available database of genome-wide polymorphism data in a global sample of dogs 69 and wolves 7. We perform a scan to identify regions of the genome that are highly differentiated between dogs and wolves. We identify putatively functional genomic variants that are segregating or at high frequency [> = 0.75 Fst] for alternative alleles between dogs and wolves. A biological pathways analysis of the genes containing these variants suggests that there has been selection on the 'adrenaline and noradrenaline biosynthesis pathway', well known for its involvement in the fight-or-flight response. We identify 11 genes with putatively functional variants fixed for alternative alleles between dogs and wolves. The segregating variants in these genes are strong candidates for having been targets of selection during early dog domestication. We present the first genome-wide analysis of the different categories of putatively functional variants that are fixed or segregating at high frequency between a global sampling of dogs and wolves. We find evidence that selection has been strongest around non-synonymous variants. Strong selection in the initial stages of dog domestication appears to have occurred on multiple genes involved in the fight-or-flight response, particularly in the catecholamine synthesis pathway. Different alleles in some of these genes have been associated with behavioral differences between modern dog breeds, suggesting an important role for this pathway at multiple stages in the domestication process.
Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects
Chen, Xi; Liu, Peng; Chou, Hui-Hsien
2013-01-01
Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018
In silico MCMV Silencing Concludes Potential Host-Derived miRNAs in Maize
Iqbal, Muhammad Shahzad; Jabbar, Basit; Sharif, Muhammad Nauman; Ali, Qurban; Husnain, Tayyab; Nasir, Idrees A.
2017-01-01
Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded from sgRNA1, located at the 3′end of the genome and sgRNA2 is located at the extremity of the 3′genome end. The objective of this study is to locate the possible attachment sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase (miRNA database) and were tested for hybridization of MCMV genome. These algorithms considered the parameters of seed pairing, minimum free energy, target site accessibility, multiple target sites, pattern recognition and folding energy for attachment. Out of 321 miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results of this study can hence act as the first step towards the development of MCMV resistant transgenic Maize plants through expression of the selected miRNAs. PMID:28400775
Bletz, Stefan; Janezic, Sandra; Harmsen, Dag; Rupnik, Maja; Mellmann, Alexander
2018-06-01
Clostridium difficile , recently renamed Clostridioides difficile , is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping ( n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange. Copyright © 2018 American Society for Microbiology.
Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.
Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A
2015-04-01
Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.
Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.
Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less
Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes
Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...
2014-01-01
Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less
Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin
2013-01-01
The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.
Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis
2016-01-01
Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513
Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana
2016-07-01
The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-01-01
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design. PMID:27958331
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-12-13
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.
Clinical Implementation of Integrated Genomic Profiling in Patients with Advanced Cancers.
Borad, Mitesh J; Egan, Jan B; Condjella, Rachel M; Liang, Winnie S; Fonseca, Rafael; Ritacca, Nicole R; McCullough, Ann E; Barrett, Michael T; Hunt, Katherine S; Champion, Mia D; Patel, Maitray D; Young, Scott W; Silva, Alvin C; Ho, Thai H; Halfdanarson, Thorvardur R; McWilliams, Robert R; Lazaridis, Konstantinos N; Ramanathan, Ramesh K; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Cuyugan, Lori; McDonald, Jacquelyn; Adkins, Jonathan; Mastrian, Stephen D; Valdez, Riccardo; Jaroszewski, Dawn E; Von Hoff, Daniel D; Craig, David W; Stewart, A Keith; Carpten, John D; Bryce, Alan H
2016-12-23
DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1-3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.
2013-01-01
Background Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Results Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (FST = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r2) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Conclusions Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits. PMID:23647851
Soto-Cerda, Braulio J; Diederichsen, Axel; Ragupathy, Raja; Cloutier, Sylvie
2013-05-06
Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (F(ST) = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r²) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits.
Epigenomics of Development in Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Steve; Freitag, Michael; Mockler, Todd
2013-01-10
We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from elevenmore » target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue dedifferentiation and redifferentiation in vitro.« less
Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G
2014-11-19
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.
Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.
2014-01-01
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197
A multiplex primer design algorithm for target amplification of continuous genomic regions.
Ozturk, Ahmet Rasit; Can, Tolga
2017-06-19
Targeted Next Generation Sequencing (NGS) assays are cost-efficient and reliable alternatives to Sanger sequencing. For sequencing of very large set of genes, the target enrichment approach is suitable. However, for smaller genomic regions, the target amplification method is more efficient than both the target enrichment method and Sanger sequencing. The major difficulty of the target amplification method is the preparation of amplicons, regarding required time, equipment, and labor. Multiplex PCR (MPCR) is a good solution for the mentioned problems. We propose a novel method to design MPCR primers for a continuous genomic region, following the best practices of clinically reliable PCR design processes. On an experimental setup with 48 different combinations of factors, we have shown that multiple parameters might effect finding the first feasible solution. Increasing the length of the initial primer candidate selection sequence gives better results whereas waiting for a longer time to find the first feasible solution does not have a significant impact. We generated MPCR primer designs for the HBB whole gene, MEFV coding regions, and human exons between 2000 bp to 2100 bp-long. Our benchmarking experiments show that the proposed MPCR approach is able produce reliable NGS assay primers for a given sequence in a reasonable amount of time.
Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development
Mahmoudi Saber, Morteza
2017-01-01
Abstract Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes. PMID:28633494
Predicting selective drug targets in cancer through metabolic networks
Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer
2011-01-01
The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718
A genome-wide scan for signatures of directional selection in domesticated pigs.
Moon, Sunjin; Kim, Tae-Hun; Lee, Kyung-Tai; Kwak, Woori; Lee, Taeheon; Lee, Si-Woo; Kim, Myung-Jick; Cho, Kyuho; Kim, Namshin; Chung, Won-Hyong; Sung, Samsun; Park, Taesung; Cho, Seoae; Groenen, Martien Am; Nielsen, Rasmus; Kim, Yuseob; Kim, Heebal
2015-02-25
Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication. Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an F ST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness. We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.
Mahardika, Gusti N
2018-01-01
Abstract To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24–63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification. PMID:29514313
Franchini, Paolo; Xiong, Peiwen; Fruciano, Carmelo; Meyer, Axel
2016-06-03
Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3'-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3'-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing
2014-01-01
binding domain mutations in ESR1 ) were identified. Analysis is currently underway to further elucidate causes of resistance in those cases where the... ESR1 , the gene that encodes the estrogen receptor (Wagle, Garraway, and Arteaga, unpublished results). Given the potential importance of ESR...translocations in ER+ breast cancer, we have further modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two
A Knock-in Reporter for a Novel AR-Targeted Therapy
2016-05-01
of this research is to explore a possibility whether the CRISPR -Cas9 technology, an emerging genome-editing approach, could be applied to develop a...in this report that the CRISPR -Cas9 system could indeed mediate high-efficient insertion of a selection gene into a site immediately downstream of...inhibitory for AR expression. 15. SUBJECT TERMS Androgen receptor, high-throughput drug screening assay, reporter gene assay, CRISPR -Cas9, genome editing
Progress towards mapping the universe of protein folds
Grant, Alastair; Lee, David; Orengo, Christine
2004-01-01
Although the precise aims differ between the various international structural genomics initiatives currently aiming to illuminate the universe of protein folds, many selectively target protein families for which the fold is unknown. How well can the current set of known protein families and folds be used to estimate the total number of folds in nature, and will structural genomics initiatives yield representatives for all the major protein families within a reasonable time scale? PMID:15128436
Ignarski, Michael; Singh, Aditi; Swart, Estienne C; Arambasic, Miroslav; Sandoval, Pamela Y; Nowacki, Mariusz
2014-10-29
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
A statistical approach to selecting and confirming validation targets in -omics experiments
2012-01-01
Background Genomic technologies are, by their very nature, designed for hypothesis generation. In some cases, the hypotheses that are generated require that genome scientists confirm findings about specific genes or proteins. But one major advantage of high-throughput technology is that global genetic, genomic, transcriptomic, and proteomic behaviors can be observed. Manual confirmation of every statistically significant genomic result is prohibitively expensive. This has led researchers in genomics to adopt the strategy of confirming only a handful of the most statistically significant results, a small subset chosen for biological interest, or a small random subset. But there is no standard approach for selecting and quantitatively evaluating validation targets. Results Here we present a new statistical method and approach for statistically validating lists of significant results based on confirming only a small random sample. We apply our statistical method to show that the usual practice of confirming only the most statistically significant results does not statistically validate result lists. We analyze an extensively validated RNA-sequencing experiment to show that confirming a random subset can statistically validate entire lists of significant results. Finally, we analyze multiple publicly available microarray experiments to show that statistically validating random samples can both (i) provide evidence to confirm long gene lists and (ii) save thousands of dollars and hundreds of hours of labor over manual validation of each significant result. Conclusions For high-throughput -omics studies, statistical validation is a cost-effective and statistically valid approach to confirming lists of significant results. PMID:22738145
Reisch, Christopher R; Prather, Kristala L J
2017-01-05
The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a "guide" RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, E. coli lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting E. coli chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in E. coli, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-10-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genome engineering and gene expression control for bacterial strain development.
Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup
2015-01-01
In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F
2015-02-01
Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2014-01-01
Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862
Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin
2014-01-01
Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.
Gardner, Shea N.; Hall, Barry G.
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125
Gardner, Shea N; Hall, Barry G
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.
Zhang, Bo; Zhang, Lin; Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming
2013-01-01
Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.
Neurogenomics and the role of a large mutational target on rapid behavioral change.
Stanley, Craig E; Kulathinal, Rob J
2016-11-08
Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast, the large mutational target hypothesis places genomic architecture and a larger allelic pool at the forefront of rapid evolutionary change, particularly in genetic systems that are polygenic and regulatory in nature. Genomic data from brain and neural tissues in mammals as well as a preliminary survey of neurogenic genes from comparative genomic data support this hypothesis while rejecting both positive and relaxed selection on proteins or higher mutation rates. In mammals and invertebrates, neurogenic genes harbor larger protein-coding regions and possess a richer regulatory repertoire of miRNA targets and transcription factor binding sites. Overall, neurogenic genes cover a disproportionately large genomic fraction, providing a sizeable substrate for evolutionary, genetic, and molecular mechanisms to act upon. Readily available comparative and functional genomic data provide unexplored opportunities to test whether a distinct neurogenomic architecture can promote rapid behavioral change via several mechanisms unique to large genes, and which components of this large footprint are uniquely metazoan. The large mutational target hypothesis highlights the eminent roles of mutation and functional genomic architecture in generating rapid developmental and evolutionary change. It has broad implications on our understanding of the genetics of complex adaptive traits such as behavior by focusing on the importance of mutational input, from SNPs to alternative transcripts to transposable elements, on driving evolutionary rates of functional systems. Such functional divergence has important implications in promoting behavioral isolation across short- and long-term timescales. Due to genome-scaled polygenic adaptation, the large target effect also contributes to our inability to identify adapted behavioral candidate genes. The presence of large neurogenic genes, particularly in the mammalian brain and other neural tissues, further offers emerging insight into the etiology of neurodevelopmental and neurodegenerative diseases. The well-known correlation between neurological spectrum disorders in children and paternal age may simply be a direct result of aging fathers accumulating mutations across these large neurodevelopmental genes. The large mutational target hypothesis can also explain the rapid evolution of other functional systems covering a large genomic fraction such as male fertility and its preferential association with hybrid male sterility among closely related taxa. Overall, a focus on mutational potential may increase our power in understanding the genetic basis of complex phenotypes such as behavior while filling a general gap in understanding their evolution.
Farasat, Iman; Salis, Howard M.
2016-01-01
The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432
Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes
NASA Astrophysics Data System (ADS)
Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan
Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.
2012-01-01
Background Identification of genomic regions that have been targets of selection for phenotypic traits is one of the most important and challenging areas of research in animal genetics. However, currently there are relatively few genomic regions identified that have been subject to positive selection. In this study, a genome-wide scan using ~50,000 Single Nucleotide Polymorphisms (SNPs) was performed in an attempt to identify genomic regions associated with fat deposition in fat-tail breeds. This trait and its modification are very important in those countries grazing these breeds. Results Two independent experiments using either Iranian or Ovine HapMap genotyping data contrasted thin and fat tail breeds. Population differentiation using FST in Iranian thin and fat tail breeds revealed seven genomic regions. Almost all of these regions overlapped with QTLs that had previously been identified as affecting fat and carcass yield traits in beef and dairy cattle. Study of selection sweep signatures using FST in thin and fat tail breeds sampled from the Ovine HapMap project confirmed three of these regions located on Chromosomes 5, 7 and X. We found increased homozygosity in these regions in favour of fat tail breeds on chromosome 5 and X and in favour of thin tail breeds on chromosome 7. Conclusions In this study, we were able to identify three novel regions associated with fat deposition in thin and fat tail sheep breeds. Two of these were associated with an increase of homozygosity in the fat tail breeds which would be consistent with selection for mutations affecting fat tail size several thousand years after domestication. PMID:22364287
Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace
2017-03-01
Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.
Effects of HBV Genetic Variability on RNAi Strategies
Panjaworayan, Nattanan; Brown, Chris M.
2011-01-01
RNAi strategies present promising antiviral strategies against HBV. RNAi strategies require base pairing between short RNAi effectors and targets in the HBV pregenome or other RNAs. Natural variation in HBV genotypes, quasispecies variation, or mutations selected by the RNAi strategy could potentially make these strategies less effective. However, current and proposed antiviral strategies against HBV are being, or could be, designed to avoid this. This would involve simultaneous targeting of multiple regions of the genome, or regions in which variation or mutation is not tolerated. RNAi strategies against single genotypes or against variable regions of the genome would need to have significant other advantages to be part of robust therapies. PMID:21760994
Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing
2016-03-01
recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two papers from the Broad Institute published in...with PIK3CA mutations, 23% with ESR1 ligand-binding domain mutations, 9% with ERBB2 mutations, 9% with FGFR1/2 amplifications, and 1% with
Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming
2018-05-07
Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.
Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales
NASA Astrophysics Data System (ADS)
Qian, Long; Kussell, Edo
The composition of genomes with respect to short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. The underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, which we detect in all species across domains of life. We hypothesize that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Alternative contributions may come from interference of protein-DNA binding with replication and mutational repair processes, which operates with similar rates. We conclude that genome-wide word compositions have been molded by DNA binding proteins through tiny evolutionary steps over timescales spanning millions of generations.
Agúndez, Leticia; González-Prieto, Coral; Machón, Cristina; Llosa, Matxalen
2012-01-01
Background Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering. Methodology/Principal Findings We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome. Conclusions/Significance The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells. PMID:22292089
DNA aptamers against FokI nuclease domain for genome editing applications.
Nishio, Maui; Matsumoto, Daisuke; Kato, Yoshio; Abe, Koichi; Lee, Jinhee; Tsukakoshi, Kaori; Yamagishi, Ayana; Nakamura, Chikashi; Ikebukuro, Kazunori
2017-07-15
Genome editing with site-specific nucleases (SSNs) can modify only the target gene and may be effective for gene therapy. The main limitation of genome editing for clinical use is off-target effects; excess SSNs in the cells and their longevity can contribute to off-target effects. Therefore, a controlled delivery system for SSNs is necessary. FokI nuclease domain (FokI) is a common DNA cleavage domain in zinc finger nuclease (ZFN) and transcription activator-like effector nuclease. Previously, we reported a zinc finger protein delivery system that combined aptamer-fused, double-strand oligonucleotides and nanoneedles. Here, we report the development of DNA aptamers that bind to the target molecules, with high affinity and specificity to the FokI. DNA aptamers were selected in six rounds of systematic evolution of ligands by exponential enrichment. Aptamers F6#8 and #71, which showed high binding affinity to FokI (K d =82nM, 74nM each), showed resistance to nuclease activity itself and did not inhibit nuclease activity. We immobilized the ZFN-fused GFP to nanoneedles through these aptamers and inserted the nanoneedles into HEK293 cells. We observed the release of ZFN-fused GFP from the nanoneedles in the presence of cells. Therefore, these aptamers are useful for genome editing applications such as controlled delivery of SSNs. Copyright © 2016 Elsevier B.V. All rights reserved.
2018-01-01
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736
Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V
2016-12-01
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino
2015-11-01
The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.
Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases
Straimer, Judith; Lee, Marcus CS; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A
2013-01-01
Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene deletion parasites with unprecedented speed (two weeks), both with and without direct selection. ZFNs engineered against the endogenous parasite gene pfcrt, responsible for chloroquine treatment escape, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. The efficiency, versatility and precision of this method will enable a diverse array of genome editing approaches to interrogate this human pathogen. PMID:22922501
The challenges of tumor genetic diversity.
Mroz, Edmund A; Rocco, James W
2017-05-15
The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Shi, Junwei; Wang, Eric; Milazzo, Joseph P; Wang, Zihua; Kinney, Justin B; Vakoc, Christopher R
2015-06-01
CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds.
Mokhber, Mahdi; Moradi-Shahrbabak, Mohammad; Sadeghi, Mostafa; Moradi-Shahrbabak, Hossein; Stella, Alessandra; Nicolzzi, Ezequiel; Rahmaninia, Javad; Williams, John L
2018-06-11
Identification of genomic regions that have been targets of selection may shed light on the genetic history of livestock populations and help to identify variation controlling commercially important phenotypes. The Azeri and Kuzestani buffalos are the most common indigenous Iranian breeds which have been subjected to divergent selection and are well adapted to completely different regions. Examining the genetic structure of these populations may identify genomic regions associated with adaptation to the different environments and production goals. A set of 385 water buffalo samples from Azeri (N = 262) and Khuzestani (N = 123) breeds were genotyped using the Axiom® Buffalo Genotyping 90 K Array. The unbiased fixation index method (F ST ) was used to detect signatures of selection. In total, 13 regions with outlier F ST values (0.1%) were identified. Annotation of these regions using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the selected regions. Putative candidate genes identified include FBXO9, NDFIP1, ACTR3, ARHGAP26, SERPINF2, BOLA-DRB3, BOLA-DQB, CLN8, and MYOM2. Candidate genes identified in regions potentially under selection were associated with physiological pathways including milk production, cytoskeleton organization, growth, metabolic function, apoptosis and domestication-related changes include immune and nervous system development. The QTL identified are involved in economically important traits in buffalo related to milk composition, udder structure, somatic cell count, meat quality, and carcass and body weight.
Beyond the standard plate count: genomic views into microbial food ecology
USDA-ARS?s Scientific Manuscript database
Food spoilage is a complex process that involves multiple species with specific niches and metabolic processes; bacterial culturing techniques are the traditional methods for identifying the microbes responsible. These culture-dependent methods may be considered selective, targeting the isolation of...
Genomic analyses inform on migration events during the peopling of Eurasia
NASA Astrophysics Data System (ADS)
Pagani, Luca; Lawson, Daniel John; Jagoda, Evelyn; Mörseburg, Alexander; Eriksson, Anders; Mitt, Mario; Clemente, Florian; Hudjashov, Georgi; Degiorgio, Michael; Saag, Lauri; Wall, Jeffrey D.; Cardona, Alexia; Mägi, Reedik; Sayres, Melissa A. Wilson; Kaewert, Sarah; Inchley, Charlotte; Scheib, Christiana L.; Järve, Mari; Karmin, Monika; Jacobs, Guy S.; Antao, Tiago; Iliescu, Florin Mircea; Kushniarevich, Alena; Ayub, Qasim; Tyler-Smith, Chris; Xue, Yali; Yunusbayev, Bayazit; Tambets, Kristiina; Mallick, Chandana Basu; Saag, Lehti; Pocheshkhova, Elvira; Andriadze, George; Muller, Craig; Westaway, Michael C.; Lambert, David M.; Zoraqi, Grigor; Turdikulova, Shahlo; Dalimova, Dilbar; Sabitov, Zhaxylyk; Sultana, Gazi Nurun Nahar; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Isakova, Jainagul; Damba, Larisa D.; Gubina, Marina; Nymadawa, Pagbajabyn; Evseeva, Irina; Atramentova, Lubov; Utevska, Olga; Ricaut, François-Xavier; Brucato, Nicolas; Sudoyo, Herawati; Letellier, Thierry; Cox, Murray P.; Barashkov, Nikolay A.; Škaro, Vedrana; Mulaha´, Lejla; Primorac, Dragan; Sahakyan, Hovhannes; Mormina, Maru; Eichstaedt, Christina A.; Lichman, Daria V.; Abdullah, Syafiq; Chaubey, Gyaneshwer; Wee, Joseph T. S.; Mihailov, Evelin; Karunas, Alexandra; Litvinov, Sergei; Khusainova, Rita; Ekomasova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Marjanović, Damir; Yepiskoposyan, Levon; Behar, Doron M.; Balanovska, Elena; Metspalu, Andres; Derenko, Miroslava; Malyarchuk, Boris; Voevoda, Mikhail; Fedorova, Sardana A.; Osipova, Ludmila P.; Lahr, Marta Mirazón; Gerbault, Pascale; Leavesley, Matthew; Migliano, Andrea Bamberg; Petraglia, Michael; Balanovsky, Oleg; Khusnutdinova, Elza K.; Metspalu, Ene; Thomas, Mark G.; Manica, Andrea; Nielsen, Rasmus; Villems, Richard; Willerslev, Eske; Kivisild, Toomas; Metspalu, Mait
2016-10-01
High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.
Genomic analyses inform on migration events during the peopling of Eurasia.
Pagani, Luca; Lawson, Daniel John; Jagoda, Evelyn; Mörseburg, Alexander; Eriksson, Anders; Mitt, Mario; Clemente, Florian; Hudjashov, Georgi; DeGiorgio, Michael; Saag, Lauri; Wall, Jeffrey D; Cardona, Alexia; Mägi, Reedik; Wilson Sayres, Melissa A; Kaewert, Sarah; Inchley, Charlotte; Scheib, Christiana L; Järve, Mari; Karmin, Monika; Jacobs, Guy S; Antao, Tiago; Iliescu, Florin Mircea; Kushniarevich, Alena; Ayub, Qasim; Tyler-Smith, Chris; Xue, Yali; Yunusbayev, Bayazit; Tambets, Kristiina; Mallick, Chandana Basu; Saag, Lehti; Pocheshkhova, Elvira; Andriadze, George; Muller, Craig; Westaway, Michael C; Lambert, David M; Zoraqi, Grigor; Turdikulova, Shahlo; Dalimova, Dilbar; Sabitov, Zhaxylyk; Sultana, Gazi Nurun Nahar; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Isakova, Jainagul; Damba, Larisa D; Gubina, Marina; Nymadawa, Pagbajabyn; Evseeva, Irina; Atramentova, Lubov; Utevska, Olga; Ricaut, François-Xavier; Brucato, Nicolas; Sudoyo, Herawati; Letellier, Thierry; Cox, Murray P; Barashkov, Nikolay A; Skaro, Vedrana; Mulahasanovic, Lejla; Primorac, Dragan; Sahakyan, Hovhannes; Mormina, Maru; Eichstaedt, Christina A; Lichman, Daria V; Abdullah, Syafiq; Chaubey, Gyaneshwer; Wee, Joseph T S; Mihailov, Evelin; Karunas, Alexandra; Litvinov, Sergei; Khusainova, Rita; Ekomasova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Marjanović, Damir; Yepiskoposyan, Levon; Behar, Doron M; Balanovska, Elena; Metspalu, Andres; Derenko, Miroslava; Malyarchuk, Boris; Voevoda, Mikhail; Fedorova, Sardana A; Osipova, Ludmila P; Lahr, Marta Mirazón; Gerbault, Pascale; Leavesley, Matthew; Migliano, Andrea Bamberg; Petraglia, Michael; Balanovsky, Oleg; Khusnutdinova, Elza K; Metspalu, Ene; Thomas, Mark G; Manica, Andrea; Nielsen, Rasmus; Villems, Richard; Willerslev, Eske; Kivisild, Toomas; Metspalu, Mait
2016-10-13
High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.
A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.
HisB as novel selection marker for gene targeting approaches in Aspergillus niger.
Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera
2017-03-08
For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.
Hu, Peinan; Zhao, Xueying; Zhang, Qinghua; Li, Weiming; Zu, Yao
2018-03-02
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites ( tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system. Copyright © 2018 Hu et al.
Diopere, Eveline; Hellemans, Bart; Volckaert, Filip A M; Maes, Gregory E
2013-03-01
Genomic methodologies applied in evolutionary and fisheries research have been of great benefit to understand the marine ecosystem and the management of natural resources. Although single nucleotide polymorphisms (SNPs) are attractive for the study of local adaptation, spatial stock management and traceability, and investigating the effects of fisheries-induced selection, they have rarely been exploited in non-model organisms. This is partly due to difficulties in finding and validating SNPs in species with limited or no genomic resources. Complementary to random genome-scan approaches, a targeted candidate gene approach has the potential to unveil pre-selected functional diversity and provides more in depth information on the action of selection at specific genes. For example genes can be under selective pressure due to climate change and sustained periods of heavy fishing pressure. In this study, we applied a candidate gene approach in sole (Solea solea L.), an important member of the demersal ecosystem. As consumption flatfish it is heavy exploited and has experienced associated life-history changes over the last 60years. To discover novel genetic polymorphisms in or around genes linked to important life history traits in sole, we screened a total of 76 candidate genes related to growth and maturation using a targeted resequencing approach. We identified in total 86 putative SNPs in 22 genes and validated 29 SNPs using a multiplex single-base extension genotyping assay. We found 22 informative SNPs, of which two represent non-synonymous mutations, potentially of functional relevance. These novel markers should be rapidly and broadly applicable in analyses of natural sole populations, as a measure of the evolutionary signature of overfishing and for initiatives on marker assisted selection. Copyright © 2012 Elsevier B.V. All rights reserved.
Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.
Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J
2015-07-01
It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Locating Sequence on FPC Maps and Selecting a Minimal Tiling Path
Engler, Friedrich W.; Hatfield, James; Nelson, William; Soderlund, Carol A.
2003-01-01
This study discusses three software tools, the first two aid in integrating sequence with an FPC physical map and the third automatically selects a minimal tiling path given genomic draft sequence and BAC end sequences. The first tool, FSD (FPC Simulated Digest), takes a sequenced clone and adds it back to the map based on a fingerprint generated by an in silico digest of the clone. This allows verification of sequenced clone positions and the integration of sequenced clones that were not originally part of the FPC map. The second tool, BSS (Blast Some Sequence), takes a query sequence and positions it on the map based on sequence associated with the clones in the map. BSS has multiple uses as follows: (1) When the query is a file of marker sequences, they can be added as electronic markers. (2) When the query is draft sequence, the results of BSS can be used to close gaps in a sequenced clone or the physical map. (3) When the query is a sequenced clone and the target is BAC end sequences, one may select the next clone for sequencing using both sequence comparison results and map location. (4) When the query is whole-genome draft sequence and the target is BAC end sequences, the results can be used to select many clones for a minimal tiling path at once. The third tool, pickMTP, automates the majority of this last usage of BSS. Results are presented using the rice FPC map, BAC end sequences, and whole-genome shotgun from Syngenta. PMID:12915486
Genomic Tools in Groundnut Breeding Program: Status and Perspectives
Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.
2016-01-01
Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312
Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.
2013-01-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624
Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C
2013-04-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Varshney, Rajeev K; Saxena, Rachit K; Upadhyaya, Hari D; Khan, Aamir W; Yu, Yue; Kim, Changhoon; Rathore, Abhishek; Kim, Dongseon; Kim, Jihun; An, Shaun; Kumar, Vinay; Anuradha, Ghanta; Yamini, Kalinati Narasimhan; Zhang, Wei; Muniswamy, Sonnappa; Kim, Jong-So; Penmetsa, R Varma; von Wettberg, Eric; Datta, Swapan K
2017-07-01
Pigeonpea (Cajanus cajan), a tropical grain legume with low input requirements, is expected to continue to have an important role in supplying food and nutritional security in developing countries in Asia, Africa and the tropical Americas. From whole-genome resequencing of 292 Cajanus accessions encompassing breeding lines, landraces and wild species, we characterize genome-wide variation. On the basis of a scan for selective sweeps, we find several genomic regions that were likely targets of domestication and breeding. Using genome-wide association analysis, we identify associations between several candidate genes and agronomically important traits. Candidate genes for these traits in pigeonpea have sequence similarity to genes functionally characterized in other plants for flowering time control, seed development and pod dehiscence. Our findings will allow acceleration of genetic gains for key traits to improve yield and sustainability in pigeonpea.
Genomics education in nursing in the United States.
Calzone, Kathleen A; Jenkins, Jean
2011-01-01
Discovery of the genetics/genomics underpinnings of health, risk for disease, sickness, and treatment response have the prospects of improving recognition and management of at risk individuals; improving screening, prognostics, and therapeutic decision-making; expanding targeted therapies; and improving the accuracy of medication dosing and selection based on drug metabolism genetic variation. Thus, genetics/genomics science, information, and technologies influence the entire health care continuum and are fundamental to the nursing profession. Translating the benefits of genetics and genomics into health care requires that nurses are knowledgeable about and able to integrate this information and technology into their practice. This chapter explores the development of essential nursing competences in genetics and genomics and outcome indicators. Included is an overview of projects aimed at measuring and/or supporting adoption and integration of such competencies. Included as well is an update reviewing current evidence of the state of genomics nursing education in the United States and recommendations for next steps.
A high-resolution map of the three-dimensional chromatin interactome in human cells.
Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing
2013-11-14
A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.
Mak, Wai Shun; Tran, Stephen; Marcheschi, Ryan; Bertolani, Steve; Thompson, James; Baker, David; Liao, James C; Siegel, Justin B
2015-11-24
The ability to biosynthetically produce chemicals beyond what is commonly found in Nature requires the discovery of novel enzyme function. Here we utilize two approaches to discover enzymes that enable specific production of longer-chain (C5-C8) alcohols from sugar. The first approach combines bioinformatics and molecular modelling to mine sequence databases, resulting in a diverse panel of enzymes capable of catalysing the targeted reaction. The median catalytic efficiency of the computationally selected enzymes is 75-fold greater than a panel of naively selected homologues. This integrative genomic mining approach establishes a unique avenue for enzyme function discovery in the rapidly expanding sequence databases. The second approach uses computational enzyme design to reprogramme specificity. Both approaches result in enzymes with >100-fold increase in specificity for the targeted reaction. When enzymes from either approach are integrated in vivo, longer-chain alcohol production increases over 10-fold and represents >95% of the total alcohol products.
Small molecules targeting viral RNA.
Hermann, Thomas
2016-11-01
Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Ifeonu, Olukemi O.; Simon, Raphael; Tennant, Sharon M.; Sheoran, Abhineet S.; Daly, Maria C.; Felix, Victor; Kissinger, Jessica C.; Widmer, Giovanni; Levine, Myron M.; Tzipori, Saul; Silva, Joana C.
2016-01-01
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL: http://cryptogc.igs.umaryland.edu PMID:28095366
Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J
2018-05-07
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing
2015-08-05
To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.
Genome-wide signatures of complex introgression and adaptive evolution in the big cats
Figueiró, Henrique V.; Li, Gang; Trindade, Fernanda J.; Assis, Juliana; Pais, Fabiano; Fernandes, Gabriel; Santos, Sarah H. D.; Hughes, Graham M.; Komissarov, Aleksey; Antunes, Agostinho; Trinca, Cristine S.; Rodrigues, Maíra R.; Linderoth, Tyler; Bi, Ke; Silveira, Leandro; Azevedo, Fernando C. C.; Kantek, Daniel; Ramalho, Emiliano; Brassaloti, Ricardo A.; Villela, Priscilla M. S.; Nunes, Adauto L. V.; Teixeira, Rodrigo H. F.; Morato, Ronaldo G.; Loska, Damian; Saragüeta, Patricia; Gabaldón, Toni; Teeling, Emma C.; O’Brien, Stephen J.; Nielsen, Rasmus; Coutinho, Luiz L.; Oliveira, Guilherme; Murphy, William J.; Eizirik, Eduardo
2017-01-01
The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages. PMID:28776029
Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids.
Meier, Joana Isabel; Marques, David Alexander; Wagner, Catherine Elise; Excoffier, Laurent; Seehausen, Ole
2018-06-01
The genetic basis of parallel evolution of similar species is of great interest in evolutionary biology. In the adaptive radiation of Lake Victoria cichlid fishes, sister species with either blue or red-back male nuptial coloration have evolved repeatedly, often associated with shallower and deeper water, respectively. One such case is blue and red-backed Pundamilia species, for which we recently showed that a young species pair may have evolved through "hybrid parallel speciation". Coalescent simulations suggested that the older species P. pundamilia (blue) and P. nyererei (red-back) admixed in the Mwanza Gulf and that new "nyererei-like" and "pundamilia-like" species evolved from the admixed population. Here, we use genome scans to study the genomic architecture of differentiation, and assess the influence of hybridization on the evolution of the younger species pair. For each of the two species pairs, we find over 300 genomic regions, widespread across the genome, which are highly differentiated. A subset of the most strongly differentiated regions of the older pair are also differentiated in the younger pair. These shared differentiated regions often show parallel allele frequency differences, consistent with the hypothesis that admixture-derived alleles were targeted by divergent selection in the hybrid population. However, two-thirds of the genomic regions that are highly differentiated between the younger species are not highly differentiated between the older species, suggesting independent evolutionary responses to selection pressures. Our analyses reveal how divergent selection on admixture-derived genetic variation can facilitate new speciation events.
Gutierrez, Jahir M; Lewis, Nathan E
2015-07-01
Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Demeure, Michael J; Aziz, Meraj; Rosenberg, Richard; Gurley, Steven D; Bussey, Kimberly J; Carpten, John D
2014-06-01
Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In radioiodine resistant aggressive papillary thyroid cancers, there remain few effective therapeutic options. A 62-year-old man who underwent multiple operations for papillary thyroid cancer and whose metastases progressed despite standard treatments provided tumor tissue. We analyzed tumor and whole blood DNA by whole genome sequencing, achieving 80× or greater coverage over 94 % of the exome and 90 % of the genome. We determined somatic mutations and structural alterations. We found a total of 57 somatic mutations in 55 genes of the cancer genome. There was notably a lack of mutations in NRAS and BRAF, and no RET/PTC rearrangement. There was a mutation in the TRAPP oncogene and a loss of heterozygosity of the p16, p18, and RB1 tumor suppressor genes. The oncogenic driver for this tumor is a translocation involving the genes for anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4). The EML4-ALK translocation has been reported in approximately 5 % of lung cancers, as well as in pediatric neuroblastoma, and is a therapeutic target for crizotinib. This is the first report of the whole genomic sequencing of a papillary thyroid cancer in which we identified an EML4-ALK translocation of a TRAPP oncogene mutation. These findings suggest that this tumor has a more distinct oncogenesis than BRAF mutant papillary thyroid cancer. Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.
Genome Editing with CRISPR-Cas9: Can It Get Any Better?
Haeussler, Maximilian; Concordet, Jean-Paul
2017-01-01
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage. PMID:27210042
Steele, Katherine A; Quinton-Tulloch, Mark J; Amgai, Resham B; Dhakal, Rajeev; Khatiwada, Shambhu P; Vyas, Darshna; Heine, Martin; Witcombe, John R
2018-01-01
Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on > 18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.
Upper tract urothelial carcinoma topical issue 2016: treatment of metastatic cancer.
Pham, M N; Apolo, A B; De Santis, M; Galsky, M D; Leibovich, B C; Pisters, L L; Siefker-Radtke, A O; Sonpavde, G; Steinberg, G D; Sternberg, C N; Tagawa, S T; Weizer, A Z; Woods, M E; Milowsky, M I
2017-03-01
To review the management of metastatic upper tract urothelial carcinoma (UTUC) including recent advances in targeted and immune therapies as an update to the 2014 joint international consultation on UTUC, co-sponsored by the Société Internationale d'Urologie and International Consultation on Urological Diseases. A PubMed database search was performed between January 2013 and May 2016 related to the treatment of metastatic UTUC, and 54 studies were selected for inclusion. The management of patients with metastatic UTUC is primarily an extrapolation from evidence guiding the management of metastatic urothelial carcinoma of the bladder. The first-line therapy for metastatic UTUC is platinum-based combination chemotherapy. Standard second-line therapies are limited and ineffective. Patients with UTUC who progress following platinum-based chemotherapy are encouraged to participate in clinical trials. Recent advances in genomic profiling present exciting opportunities to guide the use of targeted therapy. Immunotherapy with checkpoint inhibitors has demonstrated extremely promising results. Retrospective studies provide support for post-chemotherapy surgery in appropriately selected patients. The management of metastatic UTUC requires a multi-disciplinary approach. New insights from genomic profiling using targeted therapies, novel immunotherapies, and surgery represent promising avenues for further therapeutic exploration.
Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M
2017-08-01
Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.
Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames.
Behrens, R; Hayles, J; Nurse, P
2000-12-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames
Behrens, Ralf; Hayles, Jacky; Nurse, Paul
2000-01-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681
Rolf, Megan M; Taylor, Jeremy F; Schnabel, Robert D; McKay, Stephanie D; McClure, Matthew C; Northcutt, Sally L; Kerley, Monty S; Weaber, Robert L
2010-04-19
Molecular estimates of breeding value are expected to increase selection response due to improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into breeding value estimation have been proposed, however, most studies have utilized simulated data in which the generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and average daily gain) recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship matrix was evaluated in this population. Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and breeding value accuracies were similar for AFI and RFI using the numerator and genomic relationship matrices despite fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust estimation of genomic relationship matrices in cattle. This research shows that breeding values and their accuracies may be estimated for commercially important sires for traits recorded in experimental populations without the need for pedigree data to establish identity by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available for the generation of a genomic relationship matrix.
Walsh, Christopher T
2017-07-01
Antibiotics are a therapeutic class that, once deployed, select for resistant bacterial pathogens and so shorten their useful life cycles. As a consequence new versions of antibiotics are constantly needed. Among the antibiotic natural products, morphed peptide scaffolds, converting conformationally mobile, short-lived linear peptides into compact, rigidified small molecule frameworks, act on a wide range of bacterial targets. Advances in bacterial genome mining, biosynthetic gene cluster prediction and expression, and mass spectroscopic structure analysis suggests many more peptides, modified both in side chains and peptide backbones, await discovery. Such molecules may turn up new bacterial targets and be starting points for combinatorial or semisynthetic manipulations to optimize activity and pharmacology parameters.
2017-01-01
ABSTRACT The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particularly when complex assays are used. Furthermore, pooled libraries are not suitable for microscopy-based high-content screens or for systematic interrogation of protein function. To overcome these limitations and exploit CRISPR-based technologies to comprehensively investigate epigenetic mechanisms, we have generated a focused sgRNA library targeting 450 epigenetic regulators with multiple sgRNAs in human cells. The lentiviral library is available both in an arrayed and pooled format and allows temporally-controlled induction of gene knock-out. Characterization of the library showed high editing activity of most sgRNAs and efficient knock-out at the protein level in polyclonal populations. The sgRNA library can be used for both selection and high-content screens, as well as for targeted investigation of selected proteins without requiring isolation of knock-out clones. Using a variety of functional assays we show that the library is suitable for both in vitro and in vivo applications, representing a unique resource to study epigenetic mechanisms in physiological and pathological conditions. PMID:29327641
In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.
Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori
2014-04-23
The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.
NASA Astrophysics Data System (ADS)
Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.
2017-03-01
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.
Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-01-19
Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.
TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.
Bajaj, Deepak; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66–85%) and broader natural allelic diversity (6–64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools. PMID:26208313
Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K
2016-01-01
In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. © 2015 John Wiley & Sons Ltd.
2011-01-01
Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus. PMID:21492434
Exome sequencing of a multigenerational human pedigree.
Hedges, Dale J; Hedges, Dale; Burges, Dan; Powell, Eric; Almonte, Cherylyn; Huang, Jia; Young, Stuart; Boese, Benjamin; Schmidt, Mike; Pericak-Vance, Margaret A; Martin, Eden; Zhang, Xinmin; Harkins, Timothy T; Züchner, Stephan
2009-12-14
Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.
Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut
2017-01-01
Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578
CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool
del Sol Keyer, Maria; Wittbrodt, Joachim; Mateo, Juan L.
2015-01-01
Engineering of the CRISPR/Cas9 system has opened a plethora of new opportunities for site-directed mutagenesis and targeted genome modification. Fundamental to this is a stretch of twenty nucleotides at the 5’ end of a guide RNA that provides specificity to the bound Cas9 endonuclease. Since a sequence of twenty nucleotides can occur multiple times in a given genome and some mismatches seem to be accepted by the CRISPR/Cas9 complex, an efficient and reliable in silico selection and evaluation of the targeting site is key prerequisite for the experimental success. Here we present the CRISPR/Cas9 target online predictor (CCTop, http://crispr.cos.uni-heidelberg.de) to overcome limitations of already available tools. CCTop provides an intuitive user interface with reasonable default parameters that can easily be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate sgRNA target sites according to their off-target quality and displays full documentation. CCTop was experimentally validated for gene inactivation, non-homologous end-joining as well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for the rapid and efficient identification of high quality target sites. PMID:25909470
Fritz, Megan L; DeYonke, Alexandra M; Papanicolaou, Alexie; Micinski, Stephen; Westbrook, John; Gould, Fred
2018-01-01
Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed. © 2017 John Wiley & Sons Ltd.
Kuhn, Alexandre; Ong, Yao Min; Cheng, Ching-Yu; Wong, Tien Yin; Quake, Stephen R; Burkholder, William F
2014-06-03
Insertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs. However, L1 variants were only partially captured by SNPs on standard SNP arrays, so that their potential phenotypic impact would be frequently missed by SNP array-based genome-wide association studies. We next identified potential phenotypic effects of L1s by looking for signatures of natural selection linked to L1 insertions; significant extended haplotype homozygosity was detected around several L1 insertions. This finding suggests that some of these L1 insertions may have been the target of recent positive selection.
Chaturvedi, Anurag; Raeymaekers, Joost A M; Volckaert, Filip A M
2014-07-01
An intriguing question in biology is how the evolution of gene regulation is shaped by natural selection in natural populations. Among the many known regulatory mechanisms, regulation of gene expression by microRNAs (miRNAs) is of critical importance. However, our understanding of their evolution in natural populations is limited. Studying the role of miRNAs in three-spined stickleback, an important natural model for speciation research, may provide new insights into adaptive polymorphisms. However, lack of annotation of miRNA genes in its genome is a bottleneck. To fill this research gap, we used the genome of three-spined stickleback to predict miRNAs and their targets. We predicted 1486 mature miRNAs using the homology-based miRNA prediction approach. We then performed functional annotation and enrichment analysis of these targets, which identified over-represented motifs. Further, a database resource (GAmiRdb) has been developed for dynamically searching miRNAs and their targets exclusively in three-spined stickleback. Finally, the database was used in two case studies focusing on freshwater adaptation in natural populations. In the first study, we found 44 genomic regions overlapping with predicted miRNA targets. In the second study, we identified two SNPs altering the MRE seed site of sperm-specific glyceraldehyde-3-phosphate gene. These findings highlight the importance of the GAmiRdb knowledge base in understanding adaptive evolution. © 2014 John Wiley & Sons Ltd.
Conservative site-specific and single-copy transgenesis in human LINE-1 elements
Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter
2016-01-01
Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed attH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes. PMID:26673710
Emerman, Amy B; Bowman, Sarah K; Barry, Andrew; Henig, Noa; Patel, Kruti M; Gardner, Andrew F; Hendrickson, Cynthia L
2017-07-05
Next-generation sequencing (NGS) is a powerful tool for genomic studies, translational research, and clinical diagnostics that enables the detection of single nucleotide polymorphisms, insertions and deletions, copy number variations, and other genetic variations. Target enrichment technologies improve the efficiency of NGS by only sequencing regions of interest, which reduces sequencing costs while increasing coverage of the selected targets. Here we present NEBNext Direct ® , a hybridization-based, target-enrichment approach that addresses many of the shortcomings of traditional target-enrichment methods. This approach features a simple, 7-hr workflow that uses enzymatic removal of off-target sequences to achieve a high specificity for regions of interest. Additionally, unique molecular identifiers are incorporated for the identification and filtering of PCR duplicates. The same protocol can be used across a wide range of input amounts, input types, and panel sizes, enabling NEBNext Direct to be broadly applicable across a wide variety of research and diagnostic needs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Xie, Weibo; Wang, Gongwei; Yuan, Meng; Yao, Wen; Lyu, Kai; Zhao, Hu; Yang, Meng; Li, Pingbo; Zhang, Xing; Yuan, Jing; Wang, Quanxiu; Liu, Fang; Dong, Huaxia; Zhang, Lejing; Li, Xinglei; Meng, Xiangzhou; Zhang, Wan; Xiong, Lizhong; He, Yuqing; Wang, Shiping; Yu, Sibin; Xu, Caiguo; Luo, Jie; Li, Xianghua; Xiao, Jinghua; Lian, Xingming; Zhang, Qifa
2015-01-01
Intensive rice breeding over the past 50 y has dramatically increased productivity especially in the indica subspecies, but our knowledge of the genomic changes associated with such improvement has been limited. In this study, we analyzed low-coverage sequencing data of 1,479 rice accessions from 73 countries, including landraces and modern cultivars. We identified two major subpopulations, indica I (IndI) and indica II (IndII), in the indica subspecies, which corresponded to the two putative heterotic groups resulting from independent breeding efforts. We detected 200 regions spanning 7.8% of the rice genome that had been differentially selected between IndI and IndII, and thus referred to as breeding signatures. These regions included large numbers of known functional genes and loci associated with important agronomic traits revealed by genome-wide association studies. Grain yield was positively correlated with the number of breeding signatures in a variety, suggesting that the number of breeding signatures in a line may be useful for predicting agronomic potential and the selected loci may provide targets for rice improvement. PMID:26358652
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLoughlin, Kevin
2016-01-11
This report describes the design and implementation of an algorithm for estimating relative microbial abundances, together with confidence limits, using data from metagenomic DNA sequencing. For the background behind this project and a detailed discussion of our modeling approach for metagenomic data, we refer the reader to our earlier technical report, dated March 4, 2014. Briefly, we described a fully Bayesian generative model for paired-end sequence read data, incorporating the effects of the relative abundances, the distribution of sequence fragment lengths, fragment position bias, sequencing errors and variations between the sampled genomes and the nearest reference genomes. A distinctive featuremore » of our modeling approach is the use of a Chinese restaurant process (CRP) to describe the selection of genomes to be sampled, and thus the relative abundances. The CRP component is desirable for fitting abundances to reads that may map ambiguously to multiple targets, because it naturally leads to sparse solutions that select the best representative from each set of nearly equivalent genomes.« less
Molluscan Evolutionary Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simison, W. Brian; Boore, Jeffrey L.
2005-12-01
In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the earlymore » 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.« less
Genome-wide scan for selection signatures in six cattle breeds in South Africa.
Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; Taylor, Jerry F; Makgahlela, Mahlako L; Maiwashe, Azwihangwisi
2015-11-26
The detection of selection signatures in breeds of livestock species can contribute to the identification of regions of the genome that are, or have been, functionally important and, as a consequence, have been targeted by selection. This study used two approaches to detect signatures of selection within and between six cattle breeds in South Africa, including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31) and Holstein (n = 29). The first approach was based on the detection of genomic regions in which haplotypes have been driven towards complete fixation within breeds. The second approach identified regions of the genome that had very different allele frequencies between populations (F ST). Forty-seven candidate genomic regions were identified as harbouring putative signatures of selection using both methods. Twelve of these candidate selected regions were shared among the breeds and ten were validated by previous studies. Thirty-three of these regions were successfully annotated and candidate genes were identified. Among these genes the keratin genes (KRT222, KRT24, KRT25, KRT26, and KRT27) and one heat shock protein gene (HSPB9) on chromosome 19 between 42,896,570 and 42,897,840 bp were detected for the Nguni breed. These genes were previously associated with adaptation to tropical environments in Zebu cattle. In addition, a number of candidate genes associated with the nervous system (WNT5B, FMOD, PRELP, and ATP2B), immune response (CYM, CDC6, and CDK10), production (MTPN, IGFBP4, TGFB1, and AJAP1) and reproductive performance (ADIPOR2, OVOS2, and RBBP8) were also detected as being under selection. The results presented here provide a foundation for detecting mutations that underlie genetic variation of traits that have economic importance for cattle breeds in South Africa.
USDA-ARS?s Scientific Manuscript database
Many studies leverage targeted whole genome sequencing (WGS) experiments in order to identify rare and causal variants within populations. As a natural consequence of experimental design, many of these surveys tend to sequence redundant haplotype segments due to high frequency in the base population...
New genetic tools to improve citrus fruit quality and drive consumer demand
USDA-ARS?s Scientific Manuscript database
Chemical and genomic dissection of important components underlying fruit quality has led toward the development of new tools to make the creation and selection of citrus cultivars improved in quality attributes more targeted and efficient. The use of SNP platforms and other technologies have resulte...
MADS-box genes in maize: Frequent targets of selection during domestication
USDA-ARS?s Scientific Manuscript database
MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...
Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data
Petersen, Jessica L.; Mickelson, James R.; Cothran, E. Gus; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Distl, Ottmar; Felicetti, Michela; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Silvestrelli, Maurizio; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; M. Wade, Claire; McCue, Molly E.
2013-01-01
Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection. PMID:23383025
Human evolutionary genomics: ethical and interpretive issues.
Vitti, Joseph J; Cho, Mildred K; Tishkoff, Sarah A; Sabeti, Pardis C
2012-03-01
Genome-wide computational studies can now identify targets of natural selection. The unique information about humans these studies reveal, and the media attention they attract, indicate the need for caution and precision in communicating results. This need is exacerbated by ways in which evolutionary and genetic considerations have been misapplied to support discriminatory policies, by persistent misconceptions of these fields and by the social sensitivity surrounding discussions of racial ancestry. We discuss the foundations, accomplishments and future directions of human evolutionary genomics, attending to ways in which the interpretation of good science can go awry, and offer suggestions for researchers to prevent misapplication of their work. Copyright © 2011 Elsevier Ltd. All rights reserved.
Draft Genome Sequence of Mycobacterium chimaera Type ...
We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-0169T possesses unique virulence genes. Evidence suggests that M. avium, M. intracellulare, and M. chimaera are differently virulent and a comparative genomic analysis is critically needed to identify diagnostic targets that reliably differentiate species of MAC. With treatment costs for Mycobacterium infections estimated to be >$1.8 B annually in the U.S., correct species identification will result in improved treatment selection, lower costs, and improved patient outcomes.
A genomic perspective on the generation and maintenance of genetic diversity in herbivorous insects
Gloss, Andrew D.; Groen, Simon C.; Whiteman, Noah K.
2017-01-01
Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales—from variation within populations to divergence among populations—to form a comprehensive view of adaptation in herbivorous insects. PMID:28736510
The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.
Aleza, Pablo; Juárez, José; Hernández, María; Pina, José A; Ollitrault, Patrick; Navarro, Luis
2009-08-22
In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.
Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul
2018-01-01
Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are used for the docking studies of the known and new ligands (unpublished data). Our study will be an effective framework for drug target identifications of pathogenic microbial strains and development of new therapies against the infections they cause.
E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update
Horn, Thomas; Boutros, Michael
2010-01-01
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files. PMID:20444868
In vivo genome editing of the albumin locus as a platform for protein replacement therapy
Sharma, Rajiv; Anguela, Xavier M.; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C.; Sproul, Scott; Paschon, David E.; Miller, Jeffrey C.; Davidson, Robert J.; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D.; Holmes, Michael C.; Rebar, Edward J.
2015-01-01
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) –mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. PMID:26297739
Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids.
Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth
2018-05-30
In Metazoa, mitochondrial markers are the most commonly used targets for inferring species-level molecular phylogenies due to their extremely low rate of recombination, maternal inheritance, ease of use and fast substitution rate in comparison to nuclear DNA. The mitochondrial control region (CR) is the main non-coding area of the mitochondrial genome and contains the mitochondrial origin of replication and transcription. While sequences of the cytochrome oxidase subunit 1 (COI) and 16S rRNA genes are the prime mitochondrial markers in phylogenetic studies, the highly variable CR is typically ignored and not targeted in such analyses. However, the higher substitution rate of the CR can be harnessed to infer the phylogeny of closely related species, and the use of a non-coding region alleviates biases resulting from both directional and purifying selection. Additionally, complete mitochondrial genome assemblies utilizing next generation sequencing (NGS) data often show exceptionally low coverage at specific regions, including the CR. This can only be resolved by targeted sequencing of this region. Here we provide novel sequence data for the echinoid mitochondrial control region in over 40 species across the echinoid phylogenetic tree. We demonstrate the advantages of directly targeting the CR and adjacent tRNAs to facilitate complementing low coverage NGS data from complete mitochondrial genome assemblies. Finally, we test the performance of this region as a phylogenetic marker both in the lab and in phylogenetic analyses, and demonstrate its superior performance over the other available mitochondrial markers in echinoids. Our target region of the mitochondrial CR (1) facilitates the first thorough investigation of this region across a wide range of echinoid taxa, (2) provides a tool for complementing missing data in NGS experiments, and (3) identifies the CR as a powerful, novel marker for phylogenetic inference in echinoids due to its high variability, lack of selection, and high compatibility across the entire class, outperforming conventional mitochondrial markers.
Genetic transformation protocols using zygotic embryos as explants: an overview.
Tahir, Muhammad; Waraich, Ejaz A; Stasolla, Claudio
2011-01-01
Genetic transformation of plants is an innovative research tool which has practical significance for the development of new and improved genotypes or cultivars. However, stable introduction of genes of interest into nuclear genomes depends on several factors such as the choice of target tissue, the method of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged in the literature which have been optimized for various plant species in terms of transformation methods and selection procedures for transformed plants. This article summarizes the recent advances in plant transformation using zygotic embryos as explants.
Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes
Kirkpatrick, Mark; Guerrero, Rafael F.
2014-01-01
Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352
Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.
Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee
2015-05-10
Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.
Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad
2018-01-05
Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Primer-Free Aptamer Selection Using A Random DNA Library
Pan, Weihua; Xin, Ping; Patrick, Susan; Dean, Stacey; Keating, Christine; Clawson, Gary
2010-01-01
Aptamers are highly structured oligonucleotides (DNA or RNA) that can bind to targets with affinities comparable to antibodies 1. They are identified through an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX) to recognize a wide variety of targets, from small molecules to proteins and other macromolecules 2-4. Aptamers have properties that are well suited for in vivo diagnostic and/or therapeutic applications: Besides good specificity and affinity, they are easily synthesized, survive more rigorous processing conditions, they are poorly immunogenic, and their relatively small size can result in facile penetration of tissues. Aptamers that are identified through the standard SELEX process usually comprise ~80 nucleotides (nt), since they are typically selected from nucleic acid libraries with ~40 nt long randomized regions plus fixed primer sites of ~20 nt on each side. The fixed primer sequences thus can comprise nearly ~50% of the library sequences, and therefore may positively or negatively compromise identification of aptamers in the selection process 3, although bioinformatics approaches suggest that the fixed sequences do not contribute significantly to aptamer structure after selection 5. To address these potential problems, primer sequences have been blocked by complementary oligonucleotides or switched to different sequences midway during the rounds of SELEX 6, or they have been trimmed to 6-9 nt 7, 8. Wen and Gray 9 designed a primer-free genomic SELEX method, in which the primer sequences were completely removed from the library before selection and were then regenerated to allow amplification of the selected genomic fragments. However, to employ the technique, a unique genomic library has to be constructed, which possesses limited diversity, and regeneration after rounds of selection relies on a linear reamplification step. Alternatively, efforts to circumvent problems caused by fixed primer sequences using high efficiency partitioning are met with problems regarding PCR amplification 10. We have developed a primer-free (PF) selection method that significantly simplifies SELEX procedures and effectively eliminates primer-interference problems 11, 12. The protocols work in a straightforward manner. The central random region of the library is purified without extraneous flanking sequences and is bound to a suitable target (for example to a purified protein or complex mixtures such as cell lines). Then the bound sequences are obtained, reunited with flanking sequences, and re-amplified to generate selected sub-libraries. As an example, here we selected aptamers to S100B, a protein marker for melanoma. Binding assays showed Kd s in the 10-7 - 10-8 M range after a few rounds of selection, and we demonstrate that the aptamers function effectively in a sandwich binding format. PMID:20689511
NASA Astrophysics Data System (ADS)
Talyzina, A. A.; Agapova, Yu. K.; Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Rakitina, T. V.
2017-11-01
DNA-Binding HU proteins are essential for the maintenance of genomic DNA supercoiling and compaction in prokaryotic cells and are promising pharmacological targets for the design of new antibacterial agents. The virtual screening for low-molecular-weight compounds capable of specifically interacting with the DNA-recognition loop of the HU protein from the mycoplasma Spiroplasma melliferum was performed. The ability of the initially selected ligands to form stable complexes with the protein target was assessed by molecular dynamics simulation. One compound, which forms an unstable complex, was eliminated by means of a combination of computational methods, resulting in a decrease in the number of compounds that will pass to the experimental test phase. This approach can be used to solve a wide range of problems related to the search for and validation of low-molecular-weight inhibitors specific for a particular protein target.
Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L
2018-02-21
Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.
Sweeney, T; Hanrahan, J P; Ryan, M T; Good, B
2016-09-01
Gastrointestinal nematode (GIN) infection of ruminants represents a major health and welfare challenge for livestock producers worldwide. The emergence of anthelmintic resistance in important GIN species and the associated animal welfare concerns have stimulated interest in the development of alternative and more sustainable strategies aimed at the effective management of the impact of GINs. These integrative strategies include selective breeding using genetic/genomic tools, grazing management, biological control, nutritional supplementation, vaccination and targeted selective treatment. In this review, the logic of selecting for "resistance" to GIN infection as opposed to "resilience" or "tolerance" is discussed. This is followed by a review of the potential application of immunogenomics to genetic selection for animals that have the capacity to withstand the impact of GIN infection. Advances in relevant genomic technologies are highlighted together with how these tools can be advanced to support the integration of immunogenomic information into ruminant breeding programmes. © 2016 John Wiley & Sons Ltd.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding. PMID:29619035
Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.
Steemers, F J; Ferguson, J A; Walt, D R
2000-01-01
We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.
Gonen, Serap; Jenko, Janez; Gorjanc, Gregor; Mileham, Alan J; Whitelaw, C Bruce A; Hickey, John M
2017-01-04
This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome. We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance [Formula: see text], rate of change in inbreeding ([Formula: see text]), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles. Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain. Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding.
Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela
2014-01-01
High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088
Garrels, Wiebke; Mátés, Lajos; Holler, Stephanie; Dalda, Anna; Taylor, Ulrike; Petersen, Björn; Niemann, Heiner; Izsvák, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A.
2011-01-01
Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases. PMID:21897845
USDA-ARS?s Scientific Manuscript database
An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture is derived from the West Nile Virus (WNV) RNA genome and was selected on the basis of exhibiting minimal seco...
Evolutionary genomics of dog domestication.
Wayne, Robert K; vonHoldt, Bridgett M
2012-02-01
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.
Forward and reverse mutagenesis in C. elegans
Kutscher, Lena M.; Shaham, Shai
2014-01-01
Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699
Kohzuma, Kaori; Chiba, Motoko; Nagano, Soichiro; Anai, Toyoaki; Ueda, Miki U.; Oguchi, Riichi; Shirai, Kazumasa; Hanada, Kousuke; Hikosaka, Kouki; Fujii, Nobuharu
2017-01-01
Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BC1M1 line, that is, progenies of M1 plants crossed with wild-type, and the second step is performed to identify BC1M1 individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six RBCS genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BC1M1 lines using our newly developed TILLING strategy and obtained six mutant lines for the six RsRBCS genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements. PMID:28744180
Potential pitfalls of CRISPR/Cas9-mediated genome editing.
Peng, Rongxue; Lin, Guigao; Li, Jinming
2016-04-01
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. © 2015 FEBS.
Exome capture from the spruce and pine giga-genomes.
Suren, H; Hodgins, K A; Yeaman, S; Nurkowski, K A; Smets, P; Rieseberg, L H; Aitken, S N; Holliday, J A
2016-09-01
Sequence capture is a flexible tool for generating reduced representation libraries, particularly in species with massive genomes. We used an exome capture approach to sequence the gene space of two of the dominant species in Canadian boreal and montane forests - interior spruce (Picea glauca x engelmanii) and lodgepole pine (Pinus contorta). Transcriptome data generated with RNA-seq were coupled with draft genome sequences to design baits corresponding to 26 824 genes from pine and 28 649 genes from spruce. A total of 579 samples for spruce and 631 samples for pine were included, as well as two pine congeners and six spruce congeners. More than 50% of targeted regions were sequenced at >10× depth in each species, while ~12% captured near-target regions within 500 bp of a bait position were sequenced to a depth >10×. Much of our read data arose from off-target regions, which was likely due to the fragmented and incomplete nature of the draft genome assemblies. Capture in general was successful for the related species, suggesting that baits designed for a single species are likely to successfully capture sequences from congeners. From these data, we called approximately 10 million SNPs and INDELs in each species from coding regions, introns, untranslated and flanking regions, as well as from the intergenic space. Our study demonstrates the utility of sequence capture for resequencing in complex conifer genomes, suggests guidelines for improving capture efficiency and provides a rich resource of genetic variants for studies of selection and local adaptation in these species. © 2016 John Wiley & Sons Ltd.
Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus.
Lu, Yao; Deng, Jingyuan; Rhodes, Judith C; Lu, Hui; Lu, Long Jason
2014-06-01
Aspergillus fumigatus (Af) is a ubiquitous and opportunistic pathogen capable of causing acute, invasive pulmonary disease in susceptible hosts. Despite current therapeutic options, mortality associated with invasive Af infections remains unacceptably high, increasing 357% since 1980. Therefore, there is an urgent need for the development of novel therapeutic strategies, including more efficacious drugs acting on new targets. Thus, as noted in a recent review, "the identification of essential genes in fungi represents a crucial step in the development of new antifungal drugs". Expanding the target space by rapidly identifying new essential genes has thus been described as "the most important task of genomics-based target validation". In previous research, we were the first to show that essential gene annotation can be reliably transferred between distantly related four Prokaryotic species. In this study, we extend our machine learning approach to the much more complex Eukaryotic fungal species. A compendium of essential genes is predicted in Af by transferring known essential gene annotations from another filamentous fungus Neurospora crassa. This approach predicts essential genes by integrating diverse types of intrinsic and context-dependent genomic features encoded in microbial genomes. The predicted essential datasets contained 1674 genes. We validated our results by comparing our predictions with known essential genes in Af, comparing our predictions with those predicted by homology mapping, and conducting conditional expressed alleles. We applied several layers of filters and selected a set of potential drug targets from the predicted essential genes. Finally, we have conducted wet lab knockout experiments to verify our predictions, which further validates the accuracy and wide applicability of the machine learning approach. The approach presented here significantly extended our ability to predict essential genes beyond orthologs and made it possible to predict an inventory of essential genes in Eukaryotic fungal species, amongst which a preferred subset of suitable drug targets may be selected. By selecting the best new targets, we believe that resultant drugs would exhibit an unparalleled clinical impact against a naive pathogen population. Additional benefits that a compendium of essential genes can provide are important information on cell function and evolutionary biology. Furthermore, mapping essential genes to pathways may also reveal critical check points in the pathogen's metabolism. Finally, this approach is highly reproducible and portable, and can be easily applied to predict essential genes in many more pathogenic microbes, especially those unculturable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica
2017-07-01
Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.
Schwartz, John C; Gibson, Mark S; Heimeier, Dorothea; Koren, Sergey; Phillippy, Adam M; Bickhart, Derek M; Smith, Timothy P L; Medrano, Juan F; Hammond, John A
2017-04-01
Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.
Advances in plant gene-targeted and functional markers: a review
2013-01-01
Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated. PMID:23406322
Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.
Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge
2016-12-01
Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales
NASA Astrophysics Data System (ADS)
Qian, Long; Kussell, Edo
2016-10-01
The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.
2011-01-01
Background BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. Results This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. Conclusions Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed. PMID:21794110
Feltus, Frank A; Saski, Christopher A; Mockaitis, Keithanne; Haiminen, Niina; Parida, Laxmi; Smith, Zachary; Ford, James; Staton, Margaret E; Ficklin, Stephen P; Blackmon, Barbara P; Cheng, Chun-Huai; Schnell, Raymond J; Kuhn, David N; Motamayor, Juan-Carlos
2011-07-27
BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed.
Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide
2017-07-27
The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nguyen, Dinh-Duc; Lee, Dong Gyu; Kim, Sinae; Kang, Keunsoo; Rhee, Je-Keun; Chang, Suhwan
2018-05-14
BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes ( MEIS2 , CKS1B and FADD ) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.
Molecular profiling of sarcomas: new vistas for precision medicine.
Al-Zaid, Tariq; Wang, Wei-Lien; Somaiah, Neeta; Lazar, Alexander J
2017-08-01
Sarcoma is a large and heterogeneous group of malignant mesenchymal neoplasms with significant histological overlap. Accurate diagnosis can be challenging yet important for selecting the appropriate treatment approach and prognosis. The currently torrid pace of new genomic discoveries aids our classification and diagnosis of sarcomas, understanding of pathogenesis, development of new medications, and identification of alterations that predict prognosis and response to therapy. Unfortunately, demonstrating effective targets for precision oncology has been elusive in most sarcoma types. The list of potential targets greatly outnumbers the list of available inhibitors at the present time. This review will discuss the role of molecular profiling in sarcomas in general with emphasis on selected entities with particular clinical relevance.
Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar
2014-03-01
Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Flores-Ponce, Mitzi; Vallebueno-Estrada, Miguel; González-Orozco, Eduardo; Ramos-Aboites, Hilda E; García-Chávez, J Noé; Simões, Nelson; Montiel, Rafael
2017-04-26
The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as "arms race", new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as"trench warfare", persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V. To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima's D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima's D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan. Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions.
Efficient Breeding by Genomic Mating.
Akdemir, Deniz; Sánchez, Julio I
2016-01-01
Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.
A genome-wide scan for signatures of differential artificial selection in ten cattle breeds.
Rothammer, Sophie; Seichter, Doris; Förster, Martin; Medugorac, Ivica
2013-12-21
Since the times of domestication, cattle have been continually shaped by the influence of humans. Relatively recent history, including breed formation and the still enduring enormous improvement of economically important traits, is expected to have left distinctive footprints of selection within the genome. The purpose of this study was to map genome-wide selection signatures in ten cattle breeds and thus improve the understanding of the genome response to strong artificial selection and support the identification of the underlying genetic variants of favoured phenotypes. We analysed 47,651 single nucleotide polymorphisms (SNP) using Cross Population Extended Haplotype Homozygosity (XP-EHH). We set the significance thresholds using the maximum XP-EHH values of two essentially artificially unselected breeds and found up to 229 selection signatures per breed. Through a confirmation process we verified selection for three distinct phenotypes typical for one breed (polledness in Galloway, double muscling in Blanc-Bleu Belge and red coat colour in Red Holstein cattle). Moreover, we detected six genes strongly associated with known QTL for beef or dairy traits (TG, ABCG2, DGAT1, GH1, GHR and the Casein Cluster) within selection signatures of at least one breed. A literature search for genes lying in outstanding signatures revealed further promising candidate genes. However, in concordance with previous genome-wide studies, we also detected a substantial number of signatures without any yet known gene content. These results show the power of XP-EHH analyses in cattle to discover promising candidate genes and raise the hope of identifying phenotypically important variants in the near future. The finding of plausible functional candidates in some short signatures supports this hope. For instance, MAP2K6 is the only annotated gene of two signatures detected in Galloway and Gelbvieh cattle and is already known to be associated with carcass weight, back fat thickness and marbling score in Korean beef cattle. Based on the confirmation process and literature search we deduce that XP-EHH is able to uncover numerous artificial selection targets in subpopulations of domesticated animals.
Genome-assisted Breeding For Drought Resistance
Khan, Awais; Sovero, Valpuri; Gemenet, Dorcus
2016-01-01
Drought stress caused by unpredictable precipitation poses a major threat to food production worldwide, and its impact is only expected to increase with the further onset of climate change. Understanding the effect of drought stress on crops and plants' response is critical for developing improved varieties with stable high yield to fill a growing food gap from an increasing population depending on decreasing land and water resources. When a plant encounters drought stress, it may use multiple response types, depending on environmental conditions, drought stress intensity and duration, and the physiological stage of the plant. Drought stress responses can be divided into four broad types: drought escape, drought avoidance, drought tolerance, and drought recovery, each characterized by interacting mechanisms, which may together be referred to as drought resistance mechanisms. The complex nature of drought resistance requires a multi-pronged approach to breed new varieties with stable and enhanced yield under drought stress conditions. High throughput genomics and phenomics allow marker-assisted selection (MAS) and genomic selection (GS), which offer rapid and targeted improvement of populations and identification of parents for rapid genetic gains and improved drought-resistant varieties. Using these approaches together with appropriate genetic diversity, databases, analytical tools, and well-characterized drought stress scenarios, weather and soil data, new varieties with improved drought resistance corresponding to grower preferences can be introduced into target regions rapidly. PMID:27499682
Lopez-Sanchez, Maria-José; Sauvage, Elisabeth; Da Cunha, Violette; Clermont, Dominique; Ratsima Hariniaina, Elisoa; Gonzalez-Zorn, Bruno; Poyart, Claire; Rosinski-Chupin, Isabelle; Glaser, Philippe
2012-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population. © 2012 Blackwell Publishing Ltd.
Validation of isoleucine utilization targets in Plasmodium falciparum
Istvan, Eva S.; Dharia, Neekesh V.; Bopp, Selina E.; Gluzman, Ilya; Winzeler, Elizabeth A.; Goldberg, Daniel E.
2011-01-01
Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development. PMID:21205898
Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.
Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne
2018-06-08
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Ranganathan, Vinod; Wahlin, Karl; Maruotti, Julien; Zack, Donald J
2014-08-08
The repurposed CRISPR-Cas9 system has recently emerged as a revolutionary genome-editing tool. Here we report a modification in the expression of the guide RNA (gRNA) required for targeting that greatly expands the targetable genome. gRNA expression through the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription, thus constraining genomic-targeting sites to GN19NGG. We demonstrate the ability to modify endogenous genes using H1 promoter-expressed gRNAs, which can be used to target both AN19NGG and GN19NGG genomic sites. AN19NGG sites occur ~15% more frequently than GN19NGG sites in the human genome and the increase in targeting space is also enriched at human genes and disease loci. Together, our results enhance the versatility of the CRISPR technology by more than doubling the number of targetable sites within the human genome and other eukaryotic species.
Rochus, Christina Marie; Tortereau, Flavie; Plisson-Petit, Florence; Restoux, Gwendal; Moreno-Romieux, Carole; Tosser-Klopp, Gwenola; Servin, Bertrand
2018-01-23
One of the approaches to detect genetics variants affecting fitness traits is to identify their surrounding genomic signatures of past selection. With established methods for detecting selection signatures and the current and future availability of large datasets, such studies should have the power to not only detect these signatures but also to infer their selective histories. Domesticated animals offer a powerful model for these approaches as they adapted rapidly to environmental and human-mediated constraints in a relatively short time. We investigated this question by studying a large dataset of 542 individuals from 27 domestic sheep populations raised in France, genotyped for more than 500,000 SNPs. Population structure analysis revealed that this set of populations harbour a large part of European sheep diversity in a small geographical area, offering a powerful model for the study of adaptation. Identification of extreme SNP and haplotype frequency differences between populations listed 126 genomic regions likely affected by selection. These signatures revealed selection at loci commonly identified as selection targets in many species ("selection hotspots") including ABCG2, LCORL/NCAPG, MSTN, and coat colour genes such as ASIP, MC1R, MITF, and TYRP1. For one of these regions (ABCG2, LCORL/NCAPG), we could propose a historical scenario leading to the introgression of an adaptive allele into a new genetic background. Among selection signatures, we found clear evidence for parallel selection events in different genetic backgrounds, most likely for different mutations. We confirmed this allelic heterogeneity in one case by resequencing the MC1R gene in three black-faced breeds. Our study illustrates how dense genetic data in multiple populations allows the deciphering of evolutionary history of populations and of their adaptive mutations.
Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun
2017-08-29
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia
2011-01-01
Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation. PMID:21909358
Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic.
Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou; Coe, Kathryn A; Rajagopal, Mithila; Do, Truc; Hennessen, Fabienne; Srisuknimit, Veerasak; Müller, Rolf; Meredith, Timothy C; Walker, Suzanne
2018-06-01
Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.
Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.
2015-01-01
Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385
GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research
Zhang, Hao; van Diepeningen, Anne D.; van der Lee, Theo A. J.; Waalwijk, Cees; de Hoog, G. Sybren
2016-01-01
GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID:27308864
GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research.
Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren
2016-06-01
GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).
Genome Editing with CRISPR-Cas9: Can It Get Any Better?
Haeussler, Maximilian; Concordet, Jean-Paul
2016-05-20
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Euler, Chad W.; Juncosa, Barbara; Ryan, Patricia A.; Deutsch, Douglas R.; McShan, W. Michael; Fischetti, Vincent A.
2016-01-01
Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and further elucidate how the presence of prophage may affect overall streptococcal survival, pathogenicity, and evolution. PMID:26756207
Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David
2018-04-11
Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.
The Effect of Molecular Diagnostics on the Treatment of Glioma.
Bush, Nancy Ann Oberheim; Butowski, Nicholas
2017-04-01
This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.
Recent progress in the genetics of spontaneously hypertensive rats.
Pravenec, M; Křen, V; Landa, V; Mlejnek, P; Musilová, A; Šilhavý, J; Šimáková, M; Zídek, V
2014-01-01
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN-Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as accumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene expression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including efficient transgenesis and gene targeting, will enable in vivo functional analyses of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiangbo; Zhang, Lu; Ding, Nianhua
2015-05-29
Epigenetic inactivation of genes plays a critical role in many important human diseases, especially in cancer. A core mechanism for epigenetic inactivation of the genes is methylation of CpG islands in genome DNA, which is catalyzed by DNA methyltransferases (DNMTs). The inhibition of DNMTs may lead to demethylation and expression of the silenced tumor suppressor genes. Although DNMT inhibitors are currently being developed as potential anticancer agents, only limited success is achieved due to substantial toxicity. Here, we utilized a multiplex selection system to generate efficient RNA-cleaving DNAzymes targeting DNMT1. The lead molecule from the selection was shown to possessmore » efficient kinetic profiles and high efficiency in inhibiting the enzyme activity. Transfection of the DNAzyme caused significant down-regulation of DNMT1 expression and reactivation of p16 gene, resulting in reduced cell proliferation of bladder cancers. This study provides an alternative for targeting DNMTs for potential cancer therapy. - Highlights: • Identified DNMT1-targeted DNAzymes by multiplex selection system. • Biochemically characterized a lead DNAzyme with high kinetic efficiency. • Validated DNMT1-targeted DNAzyme in its enzymatic and cellular activities.« less
Rubinstein, M; Japón, M A; Low, M J
1993-06-11
The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes.
Rubinstein, M; Japón, M A; Low, M J
1993-01-01
The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes. Images PMID:8392702
Weetman, David; Mitchell, Sara N; Wilding, Craig S; Birks, Daniel P; Yawson, Alexander E; Essandoh, John; Mawejje, Henry D; Djogbenou, Luc S; Steen, Keith; Rippon, Emily J; Clarkson, Christopher S; Field, Stuart G; Rigden, Daniel J; Donnelly, Martin J
2015-01-01
Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine–serine substitution at codon 119 of the Ace-1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace-1 119S haplotype, whereas 119G diversity was high overall but very low at non-synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace-1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace-1 gene, whereas 119G alleles were unduplicated. Ace-1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace-1, emphasizing the need to integrate CNV analysis into genome scans for selection. PMID:25865270
Dutoit, Ludovic; Burri, Reto; Nater, Alexander; Mugal, Carina F; Ellegren, Hans
2017-07-01
Properly estimating genetic diversity in populations of nonmodel species requires a basic understanding of how diversity is distributed across the genome and among individuals. To this end, we analysed whole-genome resequencing data from 20 collared flycatchers (genome size ≈1.1 Gb; 10.13 million single nucleotide polymorphisms detected). Genomewide nucleotide diversity was almost identical among individuals (mean = 0.00394, range = 0.00384-0.00401), but diversity levels varied extensively across the genome (95% confidence interval for 200-kb windows = 0.0013-0.0053). Diversity was related to selective constraint such that in comparison with intergenic DNA, diversity at fourfold degenerate sites was reduced to 85%, 3' UTRs to 82%, 5' UTRs to 70% and nondegenerate sites to 12%. There was a strong positive correlation between diversity and chromosome size, probably driven by a higher density of targets for selection on smaller chromosomes increasing the diversity-reducing effect of linked selection. Simulations exploring the ability of sequence data from a small number of genetic markers to capture the observed diversity clearly demonstrated that diversity estimation from finite sampling of such data is bound to be associated with large confidence intervals. Nevertheless, we show that precision in diversity estimation in large outbred population benefits from increasing the number of loci rather than the number of individuals. Simulations mimicking RAD sequencing showed that this approach gives accurate estimates of genomewide diversity. Based on the patterns of observed diversity and the performed simulations, we provide broad recommendations for how genetic diversity should be estimated in natural populations. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Behind Every Good Metabolite there is a Great Enzyme (and perhaps a structure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Phan, Isabelle; Cron, Lisabeth
Today, due to great technological advancements, it is possible to study everything at the same time. This ability has given birth to “totality” studies in the fields of genomics, transcriptomics, proteomics, and metabolomics. In turn, the combined study of all these global analyses gave birth to the field of systems biology. Another “totality” field brought to life with new emerging technologies is structural genomics, an effort to determine the three-dimensional structure of every protein encoded in a genome. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a specialized structural genomics effort composed of academic (University of Washington), governmentmore » (Pacific Northwest National Laboratory), not-for-profit (Seattle BioMed), and commercial (Emerald BioStructures) institutions that is funded by the National Institute of Allergy and Infectious Diseases (Federal Contract: HHSN272200700057C and HHSN27220120025C) to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging disease. In five years over 540 structures have been deposited into the Protein Data Bank (PDB) by SSGICD. About one third of all SSGCID structures contain bound ligands, many of which are metabolites or metabolite analogues present in the cell. These proteins structures are the blueprints for the structure-based design of the next generation of drugs against bacterial pathogens and other infectious diseases. Many of the selected SSGCID targets are annotated enzymes from known metabolomic pathways essential to cellular vitality since selectively “knocking-out” one of the enzymes in an important pathway with a drug may be fatal to the organism. One reason metabolomic pathways are important is because of the small molecules, or metabolites, produced at various steps in these pathways and identified by metabolomic studies. Unlike genomics, transcriptomics, and proteomics that may be influenced by epigenetic, post-transcriptional, and post-translational modifications, respectively, the metabolites present in the cell at any one time represent downstream biochemical endproducts, and therefore, metabolite profiles may be most closely associated with a phenotype and provide valuable information for infectious disease research. Metabolomic data would be even more useful if it could be linked to the vast amount of structural genomics data. Towards this goal SSGCID has created an automated website (http://apps.sbri.org/SSGCIDTargetStatus/Pathway) that assigns selected SSGCID target proteins to MetaCyc pathways (http://metacyc.org/). Details of this website will be provided here. The SSGCID-Pathway website represents a first big step towards linking metabolites and metabolic pathways to structural genomic data with the goal of accelerating the discovery of new agents to battle infectious diseases.« less
Tsetsarkin, Konstantin A.; Liu, Guangping; Shen, Kui; Pletnev, Alexander G.
2016-01-01
Insertion of microRNA target sequences into the flavivirus genome results in selective tissue-specific attenuation and host-range restriction of live attenuated vaccine viruses. However, previous strategies for miRNA-targeting did not incorporate a mechanism to prevent target elimination under miRNA-mediated selective pressure, restricting their use in vaccine development. To overcome this limitation, we developed a new approach for miRNA-targeting of tick-borne flavivirus (Langat virus, LGTV) in the duplicated capsid gene region (DCGR). Genetic stability of viruses with DCGR was ensured by the presence of multiple cis-acting elements within the N-terminal capsid coding region, including the stem-loop structure (5′SL6) at the 3′ end of the promoter. We found that the 5′SL6 functions as a structural scaffold for the conserved hexanucleotide motif at its tip and engages in a complementary interaction with the region present in the 3′ NCR to enhance viral RNA replication. The resulting kissing-loop interaction, common in tick-borne flaviviruses, supports a single pair of cyclization elements (CYC) and functions as a homolog of the second pair of CYC that is present in the majority of mosquito-borne flaviviruses. Placing miRNA targets into the DCGR results in superior attenuation of LGTV in the CNS and does not interfere with development of protective immunity in immunized mice. PMID:26850640
Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses
Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L
2012-01-01
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722
The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers.
The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers.
Win, Joe; Kamoun, Sophien
2008-04-01
Plant pathogenic microbes deliver effector proteins inside host cells to modulate plant defense circuitry and enable parasitic colonization. As genome sequences from plant pathogens become available, genome-wide evolutionary analyses will shed light on how pathogen effector genes evolved and adapted to the cellular environment of their host plants. In the August 2007 issue of Plant Cell, we described adaptive evolution (positive selection) in the cytoplasmic RXLR effectors of three recently sequenced oomycete plant pathogens. Here, we summarize our findings and describe additional data that further validate our approach.
Regis, David P.; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L.; Stefaniak, Maureen E.; Campo, Joseph J.; Carucci, Daniel J.; Roth, David A.; He, Huaping; Felgner, Philip L.; Doolan, Denise L.
2009-01-01
We have evaluated a technology called Transcriptionally Active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data. PMID:18164079
Regis, David P; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L; Stefaniak, Maureen E; Campo, Joseph J; Carucci, Daniel J; Roth, David A; He, Huaping; Felgner, Philip L; Doolan, Denise L
2008-03-01
We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data.
Saving the spandrels? Adaptive genomic variation in conservation and fisheries management.
Pearse, D E
2016-12-01
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Xue, Haipeng; Wu, Jianbo; Li, Shenglan; Rao, Mahendra S; Liu, Ying
2016-01-01
Genetic modification is an indispensable tool to study gene function in normal development and disease. The recent breakthrough of creating human induced pluripotent stem cells (iPSCs) by defined factors (Takahashi et al., Cell 131:861-872, 2007) provides a renewable source of patient autologous cells that not only retain identical genetic information but also give rise to many cell types of the body including neurons and glia. Meanwhile, the rapid advancement of genome modification tools such as gene targeting by homologous recombination (Capecchi, Nat Rev Genet 6:507-512, 2005) and genome editing tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system, TALENs (Transcription activator-like effector nucleases), and ZFNs (Zinc finger nucleases) (Wang et al., Cell 153:910-918, 2013; Mali et al., Science 339:823-826, 2013; Hwang et al., Nat Biotechnol 31:227-229, 2013; Friedland et al., Nat Methods 10(8):741-743, 2013; DiCarlo et al., Nucleic Acids Res 41:4336-4343, 2013; Cong et al., Science 339:819-823, 2013) has greatly accelerated the development of human genome manipulation at the molecular level. This chapter describes the protocols for making neural lineage reporter lines using homologous recombination and the CRISPR/Cas system-mediated genome editing, including construction of targeting vectors, guide RNAs, transfection into hPSCs, and selection and verification of successfully targeted clones. This method can be applied to various needs of hPSC genetic engineering at high efficiency and high reliability.
Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.
2013-01-01
Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296
Extreme selective sweeps independently targeted the X chromosomes of the great apes
Nam, Kiwoong; Munch, Kasper; Hobolth, Asger; Dutheil, Julien Yann; Veeramah, Krishna R.; Woerner, August E.; Hammer, Michael F.; Mailund, Thomas; Schierup, Mikkel Heide
2015-01-01
The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis. PMID:25941379
Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.
Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang
2012-11-01
The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Keller, J.; Rousseau-Gueutin, M.; Martin, G.E.; Morice, J.; Boutte, J.; Coissac, E.; Ourari, M.; Aïnouche, M.; Salmon, A.; Cabello-Hurtado, F.
2017-01-01
Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. PMID:28338826
Lennen, Rebecca M.; Nilsson Wallin, Annika I.; Pedersen, Margit; Bonde, Mads; Luo, Hao; Herrgård, Markus J.; Sommer, Morten O. A.
2016-01-01
Homologous recombination of single-stranded oligonucleotides is a highly efficient process for introducing precise mutations into the genome of E. coli and other organisms when mismatch repair (MMR) is disabled. This can result in the rapid accumulation of off-target mutations that can mask desired phenotypes, especially when selections need to be employed following the generation of combinatorial libraries. While the use of inducible mutator phenotypes or other MMR evasion tactics have proven useful, reported methods either require non-mobile genetic modifications or costly oligonucleotides that also result in reduced efficiencies of replacement. Therefore a new system was developed, Transient Mutator Multiplex Automated Genome Engineering (TM-MAGE), that solves problems encountered in other methods for oligonucleotide-mediated recombination. TM-MAGE enables nearly equivalent efficiencies of allelic replacement to the use of strains with fully disabled MMR and with an approximately 12- to 33-fold lower off-target mutation rate. Furthermore, growth temperatures are not restricted and a version of the plasmid can be readily removed by sucrose counterselection. TM-MAGE was used to combinatorially reconstruct mutations found in evolved salt-tolerant strains, enabling the identification of causative mutations and isolation of strains with up to 75% increases in growth rate and greatly reduced lag times in 0.6 M NaCl. PMID:26496947
In vivo genome editing of the albumin locus as a platform for protein replacement therapy.
Sharma, Rajiv; Anguela, Xavier M; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C; Sproul, Scott; Paschon, David E; Miller, Jeffrey C; Davidson, Robert J; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D; Holmes, Michael C; Rebar, Edward J; High, Katherine A
2015-10-08
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. © 2015 by The American Society of Hematology.
Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
Paix, Alexandre; Folkmann, Andrew; Seydoux, Geraldine
2017-05-15
The ability to introduce targeted edits in the genome of model organisms is revolutionizing the field of genetics. State-of-the-art methods for precision genome editing use RNA-guided endonucleases to create double-strand breaks (DSBs) and DNA templates containing the edits to repair the DSBs. Following this strategy, we have developed a protocol to create precise edits in the C. elegans genome. The protocol takes advantage of two innovations to improve editing efficiency: direct injection of CRISPR-Cas9 ribonucleoprotein complexes and use of linear DNAs with short homology arms as repair templates. The protocol requires no cloning or selection, and can be used to generate base and gene-size edits in just 4days. Point mutations, insertions, deletions and gene replacements can all be created using the same experimental pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
CRISPR/Cas9 and genome editing in Drosophila.
Bassett, Andrew R; Liu, Ji-Long
2014-01-20
Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S
2017-02-01
Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer.
Takai, Erina; Totoki, Yasushi; Nakamura, Hiromi; Morizane, Chigusa; Nara, Satoshi; Hama, Natsuko; Suzuki, Masami; Furukawa, Eisaku; Kato, Mamoru; Hayashi, Hideyuki; Kohno, Takashi; Ueno, Hideki; Shimada, Kazuaki; Okusaka, Takuji; Nakagama, Hitoshi; Shibata, Tatsuhiro; Yachida, Shinichi
2015-12-16
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. The genomic landscape of the PDAC genome features four frequently mutated genes (KRAS, CDKN2A, TP53, and SMAD4) and dozens of candidate driver genes altered at low frequency, including potential clinical targets. Circulating cell-free DNA (cfDNA) is a promising resource to detect and monitor molecular characteristics of tumors. In the present study, we determined the mutational status of KRAS in plasma cfDNA using multiplex picoliter-droplet digital PCR in 259 patients with PDAC. We constructed a novel modified SureSelect-KAPA-Illumina platform and an original panel of 60 genes. We then performed targeted deep sequencing of cfDNA and matched germline DNA samples in 48 patients who had ≥1% mutant allele frequencies of KRAS in plasma cfDNA. Importantly, potentially targetable somatic mutations were identified in 14 of 48 patients (29.2%) examined by targeted deep sequencing of cfDNA. We also analyzed somatic copy number alterations based on the targeted sequencing data using our in-house algorithm, and potentially targetable amplifications were detected. Assessment of mutations and copy number alterations in plasma cfDNA may provide a prognostic and diagnostic tool to assist decisions regarding optimal therapeutic strategies for PDAC patients.
Yu, Ron X.; Liu, Jie; True, Nick; Wang, Wei
2008-01-01
A major challenge in the post-genome era is to reconstruct regulatory networks from the biological knowledge accumulated up to date. The development of tools for identifying direct target genes of transcription factors (TFs) is critical to this endeavor. Given a set of microarray experiments, a probabilistic model called TRANSMODIS has been developed which can infer the direct targets of a TF by integrating sequence motif, gene expression and ChIP-chip data. The performance of TRANSMODIS was first validated on a set of transcription factor perturbation experiments (TFPEs) involving Pho4p, a well studied TF in Saccharomyces cerevisiae. TRANSMODIS removed elements of arbitrariness in manual target gene selection process and produced results that concur with one's intuition. TRANSMODIS was further validated on a genome-wide scale by comparing it with two other methods in Saccharomyces cerevisiae. The usefulness of TRANSMODIS was then demonstrated by applying it to the identification of direct targets of DAF-16, a critical TF regulating ageing in Caenorhabditis elegans. We found that 189 genes were tightly regulated by DAF-16. In addition, DAF-16 has differential preference for motifs when acting as an activator or repressor, which awaits experimental verification. TRANSMODIS is computationally efficient and robust, making it a useful probabilistic framework for finding immediate targets. PMID:18350157
Inhibition of HIV-1 by a peptide ligand of the genomic RNA packaging signal Psi.
Dietz, Julia; Koch, Joachim; Kaur, Ajit; Raja, Chinnappan; Stein, Stefan; Grez, Manuel; Pustowka, Anette; Mensch, Sarah; Ferner, Jan; Möller, Lars; Bannert, Norbert; Tampé, Robert; Divita, Gilles; Mély, Yves; Schwalbe, Harald; Dietrich, Ursula
2008-05-01
The interaction of the nucleocapsid NCp7 of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein with the RNA packaging signal Psi ensures specific encapsidation of the dimeric full length viral genome into nascent virus particles. Being an essential step in the HIV-1 replication cycle, specific genome encapsidation represents a promising target for therapeutic intervention. We previously selected peptides binding to HIV-1 Psi-RNA or stem loops (SL) thereof by phage display. Herein, we describe synthesis of peptide variants of the consensus HWWPWW motif on membrane supports to optimize Psi-RNA binding. The optimized peptide, psi-pepB, was characterized in detail with respect to its conformation and binding properties for the SL3 of the Psi packaging signal by NMR and tryptophan fluorescence quenching. Functional analysis revealed that psi-pepB caused a strong reduction of virus release by infected cells as monitored by reduced transduction efficiencies, capsid p24 antigen levels, and electron microscopy. Thus, this peptide shows antiviral activity and could serve as a lead compound to develop new drugs targeting HIV-1.
Evolutionary Genomics of Peach and Almond Domestication
Velasco, Dianne; Hough, Josh; Aradhya, Mallikarjuna; Ross-Ibarra, Jeffrey
2016-01-01
The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide FST values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species. PMID:27707802
Gayk, Zach G; Le Duc, Diana; Horn, Jeffrey; Lindsay, Alec R
2018-04-27
The common loon (Gavia immer) is one of five species that comprise the avian order Gaviiformes. Loons are specialized divers, reaching depths up to 60 m while staying submerged for intervals up to three minutes. In this study we used comparative genomics to investigate the genetic basis of the common loon adaptations to its ecological niche. We used Illumina short read DNA sequence data from a female bird to produce a draft assembly of the common loon (Gavia immer) genome. We identified 14,169 common loon genes, which based on well-resolved avian genomes, represent approximately 80.7% of common loon genes. Evolutionary analyses between common loon and Adelie penguin (Pygoscelis adeliae), red-throated loon (Gavia stellata), chicken (Gallus gallus), northern fulmar (Fulmarus glacialis), and rock pigeon (Columba livia) show 164 positively selected genes in common and red-throated loons. These genes were enriched for a number of protein classes, including those involved in muscle tissue development, immunoglobulin function, hemoglobin iron binding, G-protein coupled receptors, and ATP metabolism. Signatures of positive selection in these areas suggest the genus Gavia may have adapted for underwater diving by modulating their oxidative and metabolic pathways. While more research is required, these adaptations likely result in (1) compensations in oxygen respiration and energetic metabolism, (2) low-light visual acuity, and (3) elevated solute exchange. This work represents the first effort to understand the genomic adaptations of the common loon as well as other Gavia and may have implications for subsequent studies that target particular genes for loon population genetic, ecological or conservation studies.
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.
Cutter, Asher D
2008-03-01
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.
2012-01-01
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599
Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds
Petersen, Jessica L.; Mickelson, James R.; Rendahl, Aaron K.; Valberg, Stephanie J.; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Capomaccio, Stefano; Cappelli, Katia; Cothran, E. Gus; Distl, Ottmar; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T.; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; Wade, Claire M.; McCue, Molly E.
2013-01-01
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. PMID:23349635
Signatures of sex-antagonistic selection on recombining sex chromosomes.
Kirkpatrick, Mark; Guerrero, Rafael F
2014-06-01
Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.
Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics1
Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron
2014-01-01
• Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. • Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. PMID:25225629
Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar
2014-01-01
Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299
Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H
2018-06-01
Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.
Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors
Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A. J.; Nuciforo, P.; Tabernero, J.
2014-01-01
The fibroblast growth factor receptor (FGFR) cascade plays crucial roles in tumor cell proliferation, angiogenesis, migration and survival. Accumulating evidence suggests that in some tumor types, FGFRs are bona fide oncogenes to which cancer cells are addicted. Because FGFR inhibition can reduce proliferation and induce cell death in a variety of in vitro and in vivo tumor models harboring FGFR aberrations, a growing number of research groups have selected FGFRs as targets for anticancer drug development. Multikinase FGFR/vascular endothelial growth factor receptor (VEGFR) inhibitors have shown promising activity in breast cancer patients with FGFR1 and/or FGF3 amplification. Early clinical trials with selective FGFR inhibitors, which may overcome the toxicity constraints raised by multitarget kinase inhibition, are recruiting patients with known FGFR(1–4) status based on genomic screens. Preliminary signs of antitumor activity have been demonstrated in some tumor types, including squamous cell lung carcinomas. Rational combination of targeted therapies is expected to further increase the efficacy of selective FGFR inhibitors. Herein, we discuss unsolved questions in the clinical development of these agents and suggest guidelines for management of hyperphosphatemia, a class-specific mechanism-based toxicity. In addition, we propose standardized definitions for FGFR1 and FGFR2 gene amplification based on in situ hybridization methods. Extended access to next-generation sequencing platforms will facilitate the identification of diseases in which somatic FGFR(1–4) mutations, amplifications and fusions are potentially driving cancer cell viability, further strengthening the role of FGFR signaling in cancer biology and providing more possibilities for the therapeutic application of FGFR inhibitors. PMID:24265351
Manku, H K; Dhanoa, J K; Kaur, S; Arora, J S; Mukhopadhyay, C S
2017-10-01
MicroRNAs (miRNAs) are small (19-25 base long), non-coding RNAs that regulate post-transcriptional gene expression by cleaving targeted mRNAs in several eukaryotes. The miRNAs play vital roles in multiple biological and metabolic processes, including developmental timing, signal transduction, cell maintenance and differentiation, diseases and cancers. Experimental identification of microRNAs is expensive and lab-intensive. Alternatively, computational approaches for predicting putative miRNAs from genomic or exomic sequences rely on features of miRNAs viz. secondary structures, sequence conservation, minimum free energy index (MFEI) etc. To date, not a single miRNA has been identified in bubaline (Bubalus bubalis), which is an economically important livestock. The present study aims at predicting the putative miRNAs of buffalo using comparative computational approach from buffalo whole genome shotgun sequencing data (INSDC: AWWX00000000.1). The sequences were blasted against the known mammalian miRNA. The obtained miRNAs were then passed through a series of filtration criteria to obtain the set of predicted (putative and novel) bubaline miRNA. Eight miRNAs were selected based on lowest E-value and validated by real time PCR (SYBR green chemistry) using RNU6 as endogenous control. The results from different trails of real time PCR shows that out of selected 8 miRNAs, only 2 (hsa-miR-1277-5p; bta-miR-2285b) are not expressed in bubaline PBMCs. The potential target genes based on their sequence complementarities were then predicted using miRanda. This work is the first report on prediction of bubaline miRNA from whole genome sequencing data followed by experimental validation. The finding could pave the way to future studies in economically important traits in buffalo. Copyright © 2017 Elsevier Ltd. All rights reserved.
MEGANTE: A Web-Based System for Integrated Plant Genome Annotation
Numa, Hisataka; Itoh, Takeshi
2014-01-01
The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon–intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/. PMID:24253915
Recurrent DNA inversion rearrangements in the human genome
Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia; Domínguez-Vidaña, Rocío; Zepeda, Cinthya; Yañez, Omar; Gutiérrez, María; Lemus, Tzitziki; Valle, David; Avila, Ma. Carmen; Blanco, Daniel; Medina-Ruiz, Sofía; Meza, Karla; Ayala, Erandi; García, Delfino; Bustos, Patricia; González, Víctor; Girard, Lourdes; Tusie-Luna, Teresa; Dávila, Guillermo; Palacios, Rafael
2007-01-01
Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard to human genomic variation is discussed. PMID:17389356
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options.
Gay, Laurie M; Kim, Sungeun; Fedorchak, Kyle; Kundranda, Madappa; Odia, Yazmin; Nangia, Chaitali; Battiste, James; Colon-Otero, Gerardo; Powell, Steven; Russell, Jeffery; Elvin, Julia A; Vergilio, Jo-Anne; Suh, James; Ali, Siraj M; Stephens, Philip J; Miller, Vincent A; Ross, Jeffrey S
2017-07-01
Esthesioneuroblastoma (ENB), also known as olfactory neuroblastoma, is a rare malignant neoplasm of the olfactory mucosa. Despite surgical resection combined with radiotherapy and adjuvant chemotherapy, ENB often relapses with rapid progression. Current multimodality, nontargeted therapy for relapsed ENB is of limited clinical benefit. We queried whether comprehensive genomic profiling (CGP) of relapsed or refractory ENB can uncover genomic alterations (GA) that could identify potential targeted therapies for these patients. CGP was performed on formalin-fixed, paraffin-embedded sections from 41 consecutive clinical cases of ENBs using a hybrid-capture, adaptor ligation based next-generation sequencing assay to a mean coverage depth of 593X. The results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes (amplifications and homozygous deletions). Clinically relevant GA (CRGA) were defined as GA linked to drugs on the market or under evaluation in clinical trials. A total of 28 ENBs harbored GA, with a mean of 1.5 GA per sample. Approximately half of the ENBs (21, 51%) featured at least one CRGA, with an average of 1 CRGA per sample. The most commonly altered gene was TP53 (17%), with GA in PIK3CA , NF1 , CDKN2A , and CDKN2C occurring in 7% of samples. We report comprehensive genomic profiles for 41 ENB tumors. CGP revealed potential new therapeutic targets, including targetable GA in the mTOR, CDK and growth factor signaling pathways, highlighting the clinical value of genomic profiling in ENB. Comprehensive genomic profiling of 41 relapsed or refractory ENBs reveals recurrent alterations or classes of mutation, including amplification of tyrosine kinases encoded on chromosome 5q and mutations affecting genes in the mTOR/PI3K pathway. Approximately half of the ENBs (21, 51%) featured at least one clinically relevant genomic alteration (CRGA), with an average of 1 CRGA per sample. The most commonly altered gene was TP53 (17%), and alterations in PIK3CA , NF1 , CDKN2A , or CDKN2C were identified in 7% of samples. Responses to treatment with the kinase inhibitors sunitinib, everolimus, and pazopanib are presented in conjunction with tumor genomics. © AlphaMed Press 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, Tetsuro; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575; Will, Hans
2016-04-22
Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions asmore » well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.« less
Macchiaroli, Natalia; Maldonado, Lucas L; Zarowiecki, Magdalena; Cucher, Marcela; Gismondi, María Inés; Kamenetzky, Laura; Rosenzvit, Mara Cecilia
2017-06-01
MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in biological processes such as development. MiRNAs silence target mRNAs by binding to complementary sequences in the 3'untranslated regions (3'UTRs). The parasitic helminths of the genus Echinococcus are the causative agents of echinococcosis, a zoonotic neglected disease. In previous work, we performed a comprehensive identification and characterization of Echinococcus miRNAs. However, current knowledge about their targets is limited. Since target prediction algorithms rely on complementarity between 3'UTRs and miRNA sequences, a major limitation is the lack of accurate sequence information of 3'UTR for most species including parasitic helminths. We performed RNA-seq and developed a pipeline that integrates the transcriptomic data with available genomic data of this parasite in order to identify 3'UTRs of Echinococcus canadensis. The high confidence set of 3'UTRs obtained allowed the prediction of miRNA targets in Echinococcus through a bioinformatic approach. We performed for the first time a comparative analysis of miRNA targets in Echinococcus and Taenia. We found that many evolutionarily conserved target sites in Echinococcus and Taenia may be functional and under selective pressure. Signaling pathways such as MAPK and Wnt were among the most represented pathways indicating miRNA roles in parasite growth and development. Genome-wide identification and characterization of miRNA target genes in Echinococcus provide valuable information to guide experimental studies in order to understand miRNA functions in the parasites biology. miRNAs involved in essential functions, especially those being absent in the host or showing sequence divergence with respect to host orthologs, might be considered as novel therapeutic targets for echinococcosis control. Copyright © 2017 Elsevier B.V. All rights reserved.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.
Varshney, Rajeev K; Song, Chi; Saxena, Rachit K; Azam, Sarwar; Yu, Sheng; Sharpe, Andrew G; Cannon, Steven; Baek, Jongmin; Rosen, Benjamin D; Tar'an, Bunyamin; Millan, Teresa; Zhang, Xudong; Ramsay, Larissa D; Iwata, Aiko; Wang, Ying; Nelson, William; Farmer, Andrew D; Gaur, Pooran M; Soderlund, Carol; Penmetsa, R Varma; Xu, Chunyan; Bharti, Arvind K; He, Weiming; Winter, Peter; Zhao, Shancen; Hane, James K; Carrasquilla-Garcia, Noelia; Condie, Janet A; Upadhyaya, Hari D; Luo, Ming-Cheng; Thudi, Mahendar; Gowda, C L L; Singh, Narendra P; Lichtenzveig, Judith; Gali, Krishna K; Rubio, Josefa; Nadarajan, N; Dolezel, Jaroslav; Bansal, Kailash C; Xu, Xun; Edwards, David; Zhang, Gengyun; Kahl, Guenter; Gil, Juan; Singh, Karam B; Datta, Swapan K; Jackson, Scott A; Wang, Jun; Cook, Douglas R
2013-03-01
Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea--desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.
Selfish drive can trump function when animal mitochondrial genomes compete.
Ma, Hansong; O'Farrell, Patrick H
2016-07-01
Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.
Selfish drive can trump function when animal mitochondrial genomes compete
Ma, Hansong; O’Farrell, Patrick H.
2016-01-01
Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106
Sternburg, Erin L; Dias, Kristen C; Karginov, Fedor V
2017-06-16
The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.
The enemy within: Targeting host–parasite interaction for antileishmanial drug discovery
Späth, Gerald F.; Rachidi, Najma; Prina, Eric
2017-01-01
The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites’ intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host–parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival. PMID:28594938
The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery.
Lamotte, Suzanne; Späth, Gerald F; Rachidi, Najma; Prina, Eric
2017-06-01
The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites' intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host-parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival.
The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers
Sahl, Jason W.; Vazquez, Adam J.; Hall, Carina M.; Busch, Joseph D.; Tuanyok, Apichai; Mayo, Mark; Schupp, James M.; Lummis, Madeline; Pearson, Talima; Shippy, Kenzie; Allender, Christopher J.; Theobald, Vanessa; Hutcheson, Alex; Korlach, Jonas; LiPuma, John J.; Ladner, Jason; Lovett, Sean; Koroleva, Galina; Palacios, Gustavo; Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Wongsuwan, Gumphol; Currie, Bart J.
2016-01-01
ABSTRACT Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives. PMID:27651357
Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer.
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
Richardson, Kris; Schnitzler, Gavin R; Lai, Chao-Qiang; Ordovas, Jose M
2015-12-01
Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator-activated receptor γ (PPARγ) that is involved in lipid and glucose metabolism and maintenance of metabolic homeostasis. We used a functional genomics methodology to interrogate human chromatin immunoprecipitation-sequencing, genome-wide association studies, and expression quantitative trait locus data to inform selection of candidate functional single nucleotide polymorphisms (SNPs) falling in PPARγ motifs. We derived 27 328 chromatin immunoprecipitation-sequencing peaks for PPARγ in human adipocytes through meta-analysis of 3 data sets. The PPARγ consensus motif showed greatest enrichment and mapped to 8637 peaks. We identified 146 SNPs in these motifs. This number was significantly less than would be expected by chance, and Inference of Natural Selection from Interspersed Genomically coHerent elemenTs analysis indicated that these motifs are under weak negative selection. A screen of these SNPs against genome-wide association studies for cardiometabolic traits revealed significant enrichment with 16 SNPs. A screen against the MuTHER expression quantitative trait locus data revealed 8 of these were significantly associated with altered gene expression in human adipose, more than would be expected by chance. Several SNPs fall close, or are linked by expression quantitative trait locus to lipid-metabolism loci including CYP26A1. We demonstrated the use of functional genomics to identify SNPs of potential function. Specifically, that SNPs within PPARγ motifs that bind PPARγ in adipocytes are significantly associated with cardiometabolic disease and with the regulation of transcription in adipose. This method may be used to uncover functional SNPs that do not reach significance thresholds in the agnostic approach of genome-wide association studies. © 2015 American Heart Association, Inc.
Mechanism of foreign DNA selection in a bacterial adaptive immune system
Sashital, Dipali G.; Wiedenheft, Blake; Doudna, Jennifer A.
2012-01-01
Summary In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary “non-self” DNA sequences for destruction, while avoiding binding to “self” sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for non-self target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved 3-base pair motif that is required for non-self target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade. PMID:22521690
Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication
Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra
2017-01-01
Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262
Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair
2017-08-01
We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Identification of coding and non-coding mutational hotspots in cancer genomes.
Piraino, Scott W; Furney, Simon J
2017-01-05
The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from likely passenger regions susceptible to somatic mutation.
Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics
Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron Liston
2014-01-01
⢠Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. ⢠Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...
Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho
2013-01-01
Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428
Biswas, B; Mukherjee, D; Mattingly-Napier, B L; Dutta, S K
1991-10-01
Genomic amplification by the polymerase chain reaction (PCR) was used to identify a unique genomic sequence of Ehrlichia risticii directly in DNA isolated from peripheral-blood buffy coat cells of E. risticii-infected horses (Potomac horse fever) and from infected cell cultures. A specific primer pair, selected from a cloned, species-specific, 1-kb DNA fragment of the E. risticii genome as a template, was used for the amplification of the target DNA of 247 bp. The optimal number of 40 PCR cycles, determined by analyzing an amplification profile obtained with a constant Taq polymerase concentration, was used to achieve maximum amplification of the E. risticii DNA segment. Efficient amplification of target DNA was achieved with specimens processed by either the phenol extraction or rapid lysis method. The specificity of the amplified DNA product was confirmed by the proper size (247 bp) and appropriate restriction enzyme cleavage pattern of the amplified target DNA, as well as by the specific hybridization signal obtained by using a PCR-amplified 185-bp internal DNA probe. A 10(5)- to 10(6)-fold amplification of target DNA, which allowed detection of E. risticii from as few as two to three infected cells in culture and from a very small volume of buffy coat cells from infected horses, was achieved. This PCR amplification procedure was found to be highly specific and sensitive for the detection of E. risticii for the study of Potomac horse fever.
Ensembl Genomes 2013: scaling up access to genome-wide data.
Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael
2014-01-01
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.
Horizon scanning for new genomic tests.
Gwinn, Marta; Grossniklaus, Daurice A; Yu, Wei; Melillo, Stephanie; Wulf, Anja; Flome, Jennifer; Dotson, W David; Khoury, Muin J
2011-02-01
The development of health-related genomic tests is decentralized and dynamic, involving government, academic, and commercial entities. Consequently, it is not easy to determine which tests are in development, currently available, or discontinued. We developed and assessed the usefulness of a systematic approach to identifying new genomic tests on the Internet. We devised targeted queries of Web pages, newspaper articles, and blogs (Google Alerts) to identify new genomic tests. We finalized search and review procedures during a pilot phase that ended in March 2010. Queries continue to run daily and are compiled weekly; selected data are indexed in an online database, the Genomic Applications in Practice and Prevention Finder. After the pilot phase, our scan detected approximately two to three new genomic tests per week. Nearly two thirds of all tests (122/188, 65%) were related to cancer; only 6% were related to hereditary disorders. Although 88 (47%) of the tests, including 2 marketed directly to consumers, were commercially available, only 12 (6%) claimed United States Food and Drug Administration licensure. Systematic surveillance of the Internet provides information about genomic tests that can be used in combination with other resources to evaluate genomic tests. The Genomic Applications in Practice and Prevention Finder makes this information accessible to a wide group of stakeholders.
USDA-ARS?s Scientific Manuscript database
A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...
The goal of this project is to use small molecules and RNAi to functionally define subtypes of non-small cell lung cancer (NSCLC) using a panel of cell lines prepared and molecularly annotated by Drs. John Minna and Adi Gazdar. Experimental Approaches Lung Cancer Natural Products Screening/Chemical Library Screening
The goal of this project is to use small molecules and RNAi to functionally define subtypes of non-small cell lung cancer (NSCLC) using a panel of cell lines prepared and molecularly annotated by Drs. John Minna and Adi Gazdar. Experimental Approaches Lung Cancer Natural Products Screening/Chemical Library Screening
Genetic engineering of Pichia stipitis for fermentation of xylose
Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath
1998-01-01
A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...
The genomic signature of dog domestication reveals adaptation to a starch-rich diet.
Axelsson, Erik; Ratnakumar, Abhirami; Arendt, Maja-Louise; Maqbool, Khurram; Webster, Matthew T; Perloski, Michele; Liberg, Olof; Arnemo, Jon M; Hedhammar, Ake; Lindblad-Toh, Kerstin
2013-03-21
The domestication of dogs was an important episode in the development of human civilization. The precise timing and location of this event is debated and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencing of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication. Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.
Plastid primers for angiosperm phylogenetics and phylogeography.
Prince, Linda M
2015-06-01
PCR primers are available for virtually every region of the plastid genome. Selection of which primer pairs to use is second only to selection of the genic region. This is particularly true for research at the species/population interface. Primer pairs for 130 regions of the chloroplast genome were evaluated in 12 species distributed across the angiosperms. Likelihood of amplification success was inferred based upon number and location of mismatches to target sequence. Intraspecific sequence variability was evaluated under three different criteria in four species. Many published primer pairs should work across all taxa sampled, with the exception of failure due to genomic reorganization events. Universal barcoding primers were the least likely to work (65% success). The list of most variable regions for use within species has little in common with the lists identified in prior studies. Published primer sequences should amplify a diversity of flowering plant DNAs, even those designed for specific taxonomic groups. "Universal" primers may have extremely limited utility. There was little consistency in likelihood of amplification success for any given publication across lineages or within lineage across publications.
The scope and strength of sex-specific selection in genome evolution
Wright, A E; Mank, J E
2013-01-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. PMID:23848139
Santo, Evan E; Paik, Jihye
2018-06-17
The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach. Copyright © 2018. Published by Elsevier B.V.
Structural insights into ligand recognition and selectivity for class A, B, and C GPCRs
Lee, Sang-Min; Booe, Jason M.; Pioszak, Augen A.
2015-01-01
The G protein-coupled receptor (GPCR) superfamily constitutes the largest collection of cell surface signaling proteins with approximately 800 members in the human genome. GPCRs regulate virtually all aspects of physiology and they are an important class of drug targets with ~30% of drugs on the market targeting a GPCR. Breakthroughs in GPCR structural biology in recent years have significantly expanded our understanding of GPCR structure and function and ushered in a new era of structure-based drug design for GPCRs. Crystal structures for nearly thirty distinct GPCRs are now available including receptors from each of the major classes, A, B, C, and F. These structures provide a foundation for understanding the molecular basis of GPCR pharmacology. Here, we review structural mechanisms of ligand recognition and selectivity of GPCRs with a focus on selected examples from classes A, B, and C, and we highlight major unresolved questions for future structural studies. PMID:25981303
Rathi, Preeti; Witte, Anna; Summerer, Daniel
2017-11-08
Transcription activator-like effectors (TALEs) are DNA major-groove binding proteins widely used for genome targeting. TALEs contain an N-terminal region (NTR) and a central repeat domain (CRD). Repeats of the CRD selectively recognize each one DNA nucleobase, offering programmability. Moreover, repeats with selectivity for 5-methylcytosine (5mC) and its oxidized derivatives can be designed for analytical applications. However, both TALE domains also nonspecifically interact with DNA phosphates via basic amino acids. To enhance the 5mC selectivity of TALEs, we aimed to decrease the nonselective binding energy of TALEs. We substituted basic amino acids with alanine in the NTR and identified TALE mutants with increased selectivity. We then analysed conserved, DNA phosphate-binding KQ diresidues in CRD repeats and identified further improved mutants. Combination of mutations in the NTR and CRD was highly synergetic and resulted in TALE scaffolds with up to 4.3-fold increased selectivity in genomic 5mC analysis via affinity enrichment. Moreover, transcriptional activation in HEK293T cells by a TALE-VP64 construct based on this scaffold design exhibited a 3.5-fold increased 5mC selectivity. This provides perspectives for improved 5mC analysis and for the 5mC-conditional control of TALE-based editing constructs in vivo.
Bohra, Abhishek; Singh, Narendra P
2015-08-01
Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.
Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D
2017-04-07
Bacterial CRISPR-Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR-Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR-Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification.
Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D.
2017-01-01
Bacterial CRISPR–Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR–Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR–Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification. PMID:28387220
Quantifying Selection with Pool-Seq Time Series Data.
Taus, Thomas; Futschik, Andreas; Schlötterer, Christian
2017-11-01
Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Enhancers Are Major Targets for Murine Leukemia Virus Vector Integration
De Ravin, Suk See; Su, Ling; Theobald, Narda; Choi, Uimook; Macpherson, Janet L.; Poidinger, Michael; Symonds, Geoff; Pond, Susan M.; Ferris, Andrea L.; Hughes, Stephen H.
2014-01-01
ABSTRACT Retroviral vectors have been used in successful gene therapies. However, in some patients, insertional mutagenesis led to leukemia or myelodysplasia. Both the strong promoter/enhancer elements in the long terminal repeats (LTRs) of murine leukemia virus (MLV)-based vectors and the vector-specific integration site preferences played an important role in these adverse clinical events. MLV integration is known to prefer regions in or near transcription start sites (TSS). Recently, BET family proteins were shown to be the major cellular proteins responsible for targeting MLV integration. Although MLV integration sites are significantly enriched at TSS, only a small fraction of the MLV integration sites (<15%) occur in this region. To resolve this apparent discrepancy, we created a high-resolution genome-wide integration map of more than one million integration sites from CD34+ hematopoietic stem cells transduced with a clinically relevant MLV-based vector. The integration sites form ∼60,000 tight clusters. These clusters comprise ∼1.9% of the genome. The vast majority (87%) of the integration sites are located within histone H3K4me1 islands, a hallmark of enhancers. The majority of these clusters also have H3K27ac histone modifications, which mark active enhancers. The enhancers of some oncogenes, including LMO2, are highly preferred targets for integration without in vivo selection. IMPORTANCE We show that active enhancer regions are the major targets for MLV integration; this means that MLV preferentially integrates in regions that are favorable for viral gene expression in a variety of cell types. The results provide insights for MLV integration target site selection and also explain the high risk of insertional mutagenesis that is associated with gene therapy trials using MLV vectors. PMID:24501411
Shi, Chang-Xin; Kortüm, K Martin; Zhu, Yuan Xiao; Bruins, Laura A; Jedlowski, Patrick; Votruba, Patrick G; Luo, Moulun; Stewart, Robert A; Ahmann, Jonathan; Braggio, Esteban; Stewart, A Keith
2017-12-01
Bortezomib is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. Consequently, we employed CRISPR targeting 19,052 human genes to identify unbiased targets that contribute to bortezomib resistance. Specifically, we engineered an RPMI8226 multiple myeloma cell line to express Cas9 infected by lentiviral vector CRISPR library and cultured derived cells in doses of bortezomib lethal to parental cells. Sequencing was performed on surviving cells to identify inactivated genes responsible for drug resistance. From two independent whole-genome screens, we selected 31 candidate genes and constructed a second CRISPR sgRNA library, specifically targeting each of these 31 genes with four sgRNAs. After secondary screening for bortezomib resistance, the top 20 "resistance" genes were selected for individual validation. Of these 20 targets, the proteasome regulatory subunit PSMC6 was the only gene validated to reproducibly confer bortezomib resistance. We confirmed that inhibition of chymotrypsin-like proteasome activity by bortezomib was significantly reduced in cells lacking PSMC6. We individually investigated other members of the PSMC group (PSMC1 to 5) and found that deficiency in each of those subunits also imparts bortezomib resistance. We found 36 mutations in 19S proteasome subunits out of 895 patients in the IA10 release of the CoMMpass study (https://themmrf.org). Our findings demonstrate that the PSMC6 subunit is the most prominent target required for bortezomib sensitivity in multiple myeloma cells and should be examined in drug-refractory populations. Mol Cancer Ther; 16(12); 2862-70. ©2017 AACR . ©2017 American Association for Cancer Research.
Uddin, Reaz; Jamil, Faiza
2018-06-01
Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that has the capability to acquire resistance under hostile conditions and become a threat worldwide. It is involved in nosocomial infections. In the current study, potential novel drug targets against P. aeruginosa have been identified using core proteomic analysis and Protein-Protein Interactions (PPIs) studies. The non-redundant reference proteome of 68 strains having complete genome and latest assembly version of P. aeruginosa were downloaded from ftp NCBI RefSeq server in October 2016. The standalone CD-HIT tool was used to cluster ortholog proteins (having >=80% amino acid identity) present in all strains. The pan-proteome was clustered in 12,380 Clusters of Orthologous Proteins (COPs). By using in-house shell scripts, 3252 common COPs were extracted out and designated as clusters of core proteome. The core proteome of PAO1 strain was selected by fetching PAO1's proteome from common COPs. As a result, 1212 proteins were shortlisted that are non-homologous to the human but essential for the survival of the pathogen. Among these 1212 proteins, 321 proteins are conserved hypothetical proteins. Considering their potential as drug target, those 321 hypothetical proteins were selected and their probable functions were characterized. Based on the druggability criteria, 18 proteins were shortlisted. The interacting partners were identified by investigating the PPIs network using STRING v10 database. Subsequently, 8 proteins were shortlisted as 'hub proteins' and proposed as potential novel drug targets against P. aeruginosa. The study is interesting for the scientific community working to identify novel drug targets against MDR pathogens particularly P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.
BAC-pool sequencing and analysis confirms growth-associated QTLs in the Asian seabass genome.
Shen, Xueyan; Ngoh, Si Yan; Thevasagayam, Natascha May; Prakki, Sai Rama Sridatta; Bhandare, Pranjali; Tan, Andy Wee Kiat; Tan, Gui Quan; Singh, Siddharth; Phua, Norman Chun Han; Vij, Shubha; Orbán, László
2016-11-08
The Asian seabass is an important marine food fish that has been cultured for several decades in Asia Pacific. However, the lack of a high quality reference genome has hampered efforts to improve its selective breeding. A 3D BAC pool set generated in this study was screened using 22 SSR markers located on linkage group 2 which contains a growth-related QTL region. Seventy-two clones corresponding to 22 FPC contigs were sequenced by Illumina MiSeq technology. We co-assembled the MiSeq-derived scaffolds from each FPC contig with error-corrected PacBio reads, resulting in 187 sequences covering 9.7 Mb. Eleven genes annotated within this region were found to be potentially associated with growth and their tissue-specific expression was investigated. Correlation analysis demonstrated that SNPs in ctsb, skp1 and ppp2ca can be potentially used as markers for selecting fast-growing fingerlings. Conserved syntenies between seabass LG2 and five other teleosts were identified. This study i) provided a 10 Mb targeted genome assembly; ii) demonstrated NGS of BAC pools as a potential approach for mining candidates underlying QTLs of this species; iii) detected eleven genes potentially responsible for growth in the QTL region; and iv) identified useful SNP markers for selective breeding programs of Asian seabass.
Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel
2016-01-11
The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.
Oyebola, Kolapo M; Idowu, Emmanuel T; Olukosi, Yetunde A; Awolola, Taiwo S; Amambua-Ngwa, Alfred
2017-06-29
The burden of falciparum malaria is especially high in sub-Saharan Africa. Differences in pressure from host immunity and antimalarial drugs lead to adaptive changes responsible for high level of genetic variations within and between the parasite populations. Population-specific genetic studies to survey for genes under positive or balancing selection resulting from drug pressure or host immunity will allow for refinement of interventions. We performed a pooled sequencing (pool-seq) of the genomes of 100 Plasmodium falciparum isolates from Nigeria. We explored allele-frequency based neutrality test (Tajima's D) and integrated haplotype score (iHS) to identify genes under selection. Fourteen shared iHS regions that had at least 2 SNPs with a score > 2.5 were identified. These regions code for genes that were likely to have been under strong directional selection. Two of these genes were the chloroquine resistance transporter (CRT) on chromosome 7 and the multidrug resistance 1 (MDR1) on chromosome 5. There was a weak signature of selection in the dihydrofolate reductase (DHFR) gene on chromosome 4 and MDR5 genes on chromosome 13, with only 2 and 3 SNPs respectively identified within the iHS window. We observed strong selection pressure attributable to continued chloroquine and sulfadoxine-pyrimethamine use despite their official proscription for the treatment of uncomplicated malaria. There was also a major selective sweep on chromosome 6 which had 32 SNPs within the shared iHS region. Tajima's D of circumsporozoite protein (CSP), erythrocyte-binding antigen (EBA-175), merozoite surface proteins - MSP3 and MSP7, merozoite surface protein duffy binding-like (MSPDBL2) and serine repeat antigen (SERA-5) were 1.38, 1.29, 0.73, 0.84 and 0.21, respectively. We have demonstrated the use of pool-seq to understand genomic patterns of selection and variability in P. falciparum from Nigeria, which bears the highest burden of infections. This investigation identified known genomic signatures of selection from drug pressure and host immunity. This is evidence that P. falciparum populations explore common adaptive strategies that can be targeted for the development of new interventions.
Hassan, Syed S.; Jamal, Syed B.; Radusky, Leandro G.; Tiwari, Sandeep; Ullah, Asad; Ali, Javed; Behramand; de Carvalho, Paulo V. S. D.; Shams, Rida; Khan, Sabir; Figueiredo, Henrique C. P.; Barh, Debmalya; Ghosh, Preetam; Silva, Artur; Baumbach, Jan; Röttger, Richard; Turjanski, Adrián G.; Azevedo, Vasco A. C.
2018-01-01
Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the “pocketome druggability.” To this end, we first computed the “modelome” (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines. PMID:29487617
Jeltsch, Albert
2018-01-01
Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation. PMID:29434619
Quantifying on- and off-target genome editing.
Hendel, Ayal; Fine, Eli J; Bao, Gang; Porteus, Matthew H
2015-02-01
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. While the ability to make precise and controlled changes at specified sites throughout the genome has grown tremendously in recent years, we still lack a comprehensive and standardized battery of assays for measuring the different genome editing outcomes created at endogenous genomic loci. Here we review the existing assays for quantifying on- and off-target genome editing and describe their utility in advancing the technology. We also highlight unmet assay needs for quantifying on- and off-target genome editing outcomes and discuss their importance for the genome editing field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra
2016-05-10
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
NASA Astrophysics Data System (ADS)
Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra
2016-05-01
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
BAC sequencing using pooled methods.
Saski, Christopher A; Feltus, F Alex; Parida, Laxmi; Haiminen, Niina
2015-01-01
Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.
Mechanism of tissue-selective drug action in the cardiovascular system.
Barrett, Terrance D; Triggle, David J; Walker, Michael J A; Maurice, Donald H
2005-04-01
Analysis of the human genome project tells us that there may be as few as 3000 genes that are likely to be good drug targets. Although the number of targets is still very large, these data have been interpreted by some to mean that the pharmaceutical industry may someday run out of novel drug targets. Despite the doom and gloom of such analysis, there is considerable reason for optimism. Drugs may exhibit selectivity of action beyond that predicted by target expression alone. Drugs that act at a single molecular target may have very different pharmacology and, as a result, different therapeutic uses. Three well-characterized model systems are highlighted to illustrate this point. The first model system is exemplified by nifedipine and verapamil, both of which act on L-type calcium channels. Both drugs are used to treat hypertension, but only verapamil can be used to produce atrioventricular block in patients with atrial fibrillation. The second model system describes the therapeutic exploitation of unusual conditions that occur in the ischemic myocardium to produce drugs that are more effective for suppressing ischemia-induced arrhythmias. The third model system discusses the mechanisms through which phosphodiesterase-5 (PDE5) inhibitors act selectively to facilitate penile erection while having little effect in the non-penile vasculature that also expresses PDE5.
Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats
Botcheva, Krassimira; McCorkle, Sean R.
2014-11-21
The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less
Bohlin, Jon; Eldholm, Vegard; Pettersson, John H O; Brynildsrud, Ola; Snipen, Lars
2017-02-10
The core genome consists of genes shared by the vast majority of a species and is therefore assumed to have been subjected to substantially stronger purifying selection than the more mobile elements of the genome, also known as the accessory genome. Here we examine intragenic base composition differences in core genomes and corresponding accessory genomes in 36 species, represented by the genomes of 731 bacterial strains, to assess the impact of selective forces on base composition in microbes. We also explore, in turn, how these results compare with findings for whole genome intragenic regions. We found that GC content in coding regions is significantly higher in core genomes than accessory genomes and whole genomes. Likewise, GC content variation within coding regions was significantly lower in core genomes than in accessory genomes and whole genomes. Relative entropy in coding regions, measured as the difference between observed and expected trinucleotide frequencies estimated from mononucleotide frequencies, was significantly higher in the core genomes than in accessory and whole genomes. Relative entropy was positively associated with coding region GC content within the accessory genomes, but not within the corresponding coding regions of core or whole genomes. The higher intragenic GC content and relative entropy, as well as the lower GC content variation, observed in the core genomes is most likely associated with selective constraints. It is unclear whether the positive association between GC content and relative entropy in the more mobile accessory genomes constitutes signatures of selection or selective neutral processes.
Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions.
Hocking, P M
2014-02-01
1. Genetic theory leads to the expectation that unexpected consequences of genetic selection for production traits will inevitably occur and that these changes are likely to be undesirable. 2. Both artificial selection for production efficiency and "natural" selection for adaptation to the production environment result in selection sweeps that increase the frequencies of rare recessive alleles that have a negative effect on fitness. 3. Fitness is broadly defined as any trait that affects the ability to survive, reproduce and contribute to the next generation, such as musculoskeletal disease in growing broiler chickens and multiple ovulation in adult broiler parents. 4. Welfare concerns about the negative effects of genetic selection on bird welfare are sometimes exaggerated but are nevertheless real. Breeders have paid increasing attention to these traits over several decades and have demonstrated improvement in pedigree flocks. There is an urgent need to monitor changes in commercial flocks to ensure that genetic change is accompanied by improvements in that target population. 5. New technologies for trait measurement, whole genome selection and targeted genetic modification hold out the promise of efficient and rapid improvement of welfare traits in future breeding of broiler chickens and turkeys. The potential of targeted genetic modification for enhancing welfare traits is considerable, but the goal of achieving public acceptability for the progeny of transgenic poultry will be politically challenging.
Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A
2017-08-01
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
The 24th Annual Prostate Cancer Foundation scientific retreat report.
Miyahira, Andrea K; Soule, Howard R
2018-05-15
The 24th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held from October 5-7, 2017, at the Omni Shoreham Hotel in Washington, DC. The PCF Scientific Retreat is a scientific conference that specifically focuses on cutting edge research deemed to have significant promise for accelerating advances in prostate cancer biology and treatment. Themes highlighted at this year's meeting included: (i) new understandings in prostate cancer biology and disease progression; (ii) new mechanisms and treatment targets in advanced prostate cancer; (iii) advances in precision medicine genomics, germline genetics, and selection of targeted therapies; (iv) PSMA-targeted agents for PET imaging and radionuclide therapy; (v) approaches for improving the efficacy of immunotherapy in prostate cancer; (vi) applications of 3D Genomics in prostate cancer research; and (vii) potential applications of artificial intelligence in prostate cancer. This article reviews the research presented at the PCF Scientific Retreat, in order to improve understanding of the current state of prostate cancer research, encourage discourse and exchange of novel ideas, and stimulate new basic, translational, and clinical research that will ultimately improve the lives of patients. © 2018 Wiley Periodicals, Inc.
Tsimberidou, Apostolia-Maria
In the last decade, breakthroughs in technology have improved our understanding of genomic, transcriptional, proteomic, epigenetic aberrations and immune mechanisms in carcinogenesis. Genomics and model systems have enabled the validation of novel therapeutic strategies. Based on these developments, in 2007, we initiated the IMPACT (Initiative for Molecular Profiling and Advanced Cancer Therapy) study, the first personalized medicine program for patients with advanced cancer at The University of Texas MD Anderson Cancer Center. We demonstrated that in patients referred for Phase I clinical trials, the use of tumor molecular profiling and treatment with matched targeted therapy was associated with encouraging rates of response, progression-free survival and overall survival compared to non-matched therapy. We are currently conducting IMPACT2, a randomized study evaluating molecular profiling and targeted agents in patients with metastatic cancer. Optimization of innovative biomarker-driven clinical trials that include targeted therapy and/or immunotherapeutic approaches for carefully selected patients will accelerate the development of novel drugs and the implementation of precision medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
A comparative analysis of exome capture.
Parla, Jennifer S; Iossifov, Ivan; Grabill, Ian; Spector, Mona S; Kramer, Melissa; McCombie, W Richard
2011-09-29
Human exome resequencing using commercial target capture kits has been and is being used for sequencing large numbers of individuals to search for variants associated with various human diseases. We rigorously evaluated the capabilities of two solution exome capture kits. These analyses help clarify the strengths and limitations of those data as well as systematically identify variables that should be considered in the use of those data. Each exome kit performed well at capturing the targets they were designed to capture, which mainly corresponds to the consensus coding sequences (CCDS) annotations of the human genome. In addition, based on their respective targets, each capture kit coupled with high coverage Illumina sequencing produced highly accurate nucleotide calls. However, other databases, such as the Reference Sequence collection (RefSeq), define the exome more broadly, and so not surprisingly, the exome kits did not capture these additional regions. Commercial exome capture kits provide a very efficient way to sequence select areas of the genome at very high accuracy. Here we provide the data to help guide critical analyses of sequencing data derived from these products.
Genomic selection in plant breeding
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...
CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
Wang, Xiao; Raghavan, Avanthi; Chen, Tao; Qiao, Lyon; Zhang, Yongxian; Ding, Qiurong; Musunuru, Kiran
2016-05-01
Although early proof-of-concept studies of somatic in vivo genome editing of the mouse ortholog of proprotein convertase subtilisin/kexin type 9 (Pcsk9) in mice have established its therapeutic potential for the prevention of cardiovascular disease, the unique nature of genome-editing technology-permanent alteration of genomic DNA sequences-mandates that it be tested in vivo against human genes in normal human cells with human genomes to give reliable preclinical insights into the efficacy (on-target mutagenesis) and safety (lack of off-target mutagenesis) of genome-editing therapy before it can be used in patients. We used a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) 9 genome-editing system to target the human PCSK9 gene in chimeric liver-humanized mice bearing human hepatocytes. We demonstrated high on-target mutagenesis (approaching 50%), greatly reduced blood levels of human PCSK9 protein, and minimal off-target mutagenesis. This work yields important information on the efficacy and safety of CRISPR-Cas9 therapy targeting the human PCSK9 gene in human hepatocytes in vivo, and it establishes humanized mice as a useful platform for the preclinical assessment of applications of somatic in vivo genome editing. © 2016 American Heart Association, Inc.
The scope and strength of sex-specific selection in genome evolution.
Wright, A E; Mank, J E
2013-09-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
McNeil, Leslie Klis; Reich, Claudia; Aziz, Ramy K; Bartels, Daniela; Cohoon, Matthew; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Hwang, Kaitlyn; Kubal, Michael; Margaryan, Gohar Rem; Meyer, Folker; Mihalo, William; Olsen, Gary J; Olson, Robert; Osterman, Andrei; Paarmann, Daniel; Paczian, Tobias; Parrello, Bruce; Pusch, Gordon D; Rodionov, Dmitry A; Shi, Xinghua; Vassieva, Olga; Vonstein, Veronika; Zagnitko, Olga; Xia, Fangfang; Zinner, Jenifer; Overbeek, Ross; Stevens, Rick
2007-01-01
The National Microbial Pathogen Data Resource (NMPDR) (http://www.nmpdr.org) is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of approximately 50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-01-01
Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-03-01
Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.
Systems genetics for drug target discovery
Penrod, Nadia M.; Cowper-Sal_lari, Richard; Moore, Jason H.
2011-01-01
The collection and analysis of genomic data has the potential to reveal novel druggable targets by providing insight into the genetic basis of disease. However, the number of drugs, targeting new molecular entities, approved by the US Food and Drug Administration (FDA) has not increased in the years since the collection of genomic data has become commonplace. The paucity of translatable results can be partly attributed to conventional analysis methods that test one gene at a time in an effort to identify disease-associated factors as candidate drug targets. By disengaging genetic factors from their position within the genetic regulatory system, much of the information stored within the genomic data set is lost. Here we discuss how genomic data is used to identify disease-associated genes or genomic regions, how disease-associated regions are validated as functional targets, and the role network analysis can play in bridging the gap between data generation and effective drug target identification. PMID:21862141
Cooper, Tara E.; Krause, David J.
2013-01-01
Sulfolobus species have become the model organisms for studying the unique biology of the crenarchaeal division of the archaeal domain. In particular, Sulfolobus islandicus provides a powerful opportunity to explore natural variation via experimental functional genomics. To support these efforts, we further expanded genetic tools for S. islandicus by developing a stringent positive selection for agmatine prototrophs in strains in which the argD gene, encoding arginine decarboxylase, has been deleted. Strains with deletions in argD were shown to be auxotrophic for agmatine even in nutrient-rich medium, but growth could be restored by either supplementation of exogenous agmatine or reintroduction of a functional copy of the argD gene from S. solfataricus P2 into the ΔargD host. Using this stringent selection, a robust targeted gene knockout system was established via an improved next generation of the MID (marker insertion and unmarked target gene deletion) method. Application of this novel system was validated by targeted knockout of the upsEF genes involved in UV-inducible cell aggregation formation. PMID:23835176
Stable plastid transformation in Scoparia dulcis L.
Muralikrishna, Narra; Srinivas, Kota; Kumar, Kalva Bharath; Sadanandam, Abbagani
2016-10-01
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR / t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.
Retroviral integration: Site matters
Demeulemeester, Jonas; De Rijck, Jan
2015-01-01
Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co‐opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine‐grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success. PMID:26293289
Liang, Chao; Li, Fangfei; Wang, Luyao; Zhang, Zong-Kang; Wang, Chao; He, Bing; Li, Jie; Chen, Zhihao; Shaikh, Atik Badshah; Liu, Jin; Wu, Xiaohao; Peng, Songlin; Dang, Lei; Guo, Baosheng; He, Xiaojuan; Au, D W T; Lu, Cheng; Zhu, Hailong; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge
2017-12-01
Osteosarcoma (OS) is a highly aggressive pediatric cancer, characterized by frequent lung metastasis and pathologic bone destruction. Vascular endothelial growth factor A (VEGFA), highly expressed in OS, not only contributes to angiogenesis within the tumor microenvironment via paracrine stimulation of vascular endothelial cells, but also acts as an autocrine survival factor for tumor cell themselves, thus making it a promising therapeutic target for OS. CRISPR/Cas9 is a versatile genome editing technology and holds tremendous promise for cancer treatment. However, a major bottleneck to achieve the therapeutic potential of the CRISPR/Cas9 is the lack of in vivo tumor-targeted delivery systems. Here, we screened an OS cell-specific aptamer (LC09) and developed a LC09-functionalized PEG-PEI-Cholesterol (PPC) lipopolymer encapsulating CRISPR/Cas9 plasmids encoding VEGFA gRNA and Cas9. Our results demonstrated that LC09 facilitated selective distribution of CRISPR/Cas9 in both orthotopic OS and lung metastasis, leading to effective VEGFA genome editing in tumor, decreased VEGFA expression and secretion, inhibited orthotopic OS malignancy and lung metastasis, as well as reduced angiogenesis and bone lesion with no detectable toxicity. The delivery system simultaneously restrained autocrine and paracrine VEGFA signaling in tumor cells and could facilitate translating CRISPR-Cas9 into clinical cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna
2018-05-16
MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.
O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C; Benson, Joshua A; Luke, Cliff J; Miedel, Mark T; Hale, Pamela; Perlmutter, David H; Bahar, Ivet; Silverman, Gary A; Pak, Stephen C
2014-10-01
α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Comparative analysis of protein evolution in the genome of pre-epidemic and epidemic Zika virus.
Ramaiah, Arunachalam; Dai, Lei; Contreras, Deisy; Sinha, Sanjeev; Sun, Ren; Arumugaswami, Vaithilingaraja
2017-07-01
Zika virus (ZIKV) causes microcephaly in congenital infection, neurological disorders, and poor pregnancy outcome and no vaccine is available for use in humans or approved. Although ZIKV was first discovered in 1947, the exact mechanism of virus replication and pathogenesis remains unknown. Recent outbreaks of Zika virus in the Americas clearly suggest a human-mosquito cycle or urban cycle of transmission. Understanding the conserved and adaptive features in the evolution of ZIKV genome will provide a hint on the mechanism of ZIKV adaptation to a new cycle of transmission. Here, we show comprehensive analysis of protein evolution of ZIKV strains including the current 2015-16 outbreak. To identify the constraints on ZIKV evolution, selection pressure at individual codons, immune epitopes and co-evolving sites were analyzed. Phylogenetic trees show that the ZIKV strains of the Asian genotype form distinct cluster and share a common ancestor with African genotype. The TMRCA (Time to the Most Recent Common Ancestor) for the Asian lineage and the subsequently evolved Asian human strains was calculated at 88 and 34years ago, respectively. The proteome of current 2015/16 epidemic ZIKV strains of Asian genotype was found to be genetically conserved due to genome-wide negative selection, with limited positive selection. We identified a total of 16 amino acid substitutions in the epidemic and pre-epidemic strains from human, mosquito, and monkey hosts. Negatively selected amino acid sites of Envelope protein (E-protein) (positions 69, 166, and 174) and NS5 (292, 345, and 587) were located in central dimerization domains and C-terminal RNA-directed RNA polymerase regions, respectively. The predicted 137 (92 CD4 TCEs; 45 CD8 TCEs) immunogenic peptide chains comprising negatively selected amino acid sites can be considered as suitable target for sub-unit vaccine development, as these sites are less likely to generate immune-escape variants due to strong functional constrains operating on them. The targeted changes at the amino acid level may contribute to better adaptation of ZIKV strains to human-mosquito cycle or urban cycle of transmission. Copyright © 2017. Published by Elsevier B.V.
Vu, Michael M. K.; Jameson, Nora E.; Masuda, Stuart J.; Lin, Dana; Larralde-Ridaura, Rosa; Lupták, Andrej
2012-01-01
SUMMARY Aptamers are structured macromolecules in vitro evolved to bind molecular targets, whereas in nature they form the ligand-binding domains of riboswitches. Adenosine aptamers of a single structural family were isolated several times from random pools but they have not been identified in genomic sequences. We used two unbiased methods, structure-based bioinformatics and human genome-based in vitro selection, to identify aptamers that form the same adenosine-binding structure in a bacterium, and several vertebrates, including humans. Two of the human aptamers map to introns of RAB3C and FGD3 genes. The RAB3C aptamer binds ATP with dissociation constants about ten times lower than physiological ATP concentration, while the minimal FGD3 aptamer binds ATP only co-transcriptionally. PMID:23102219
Barbet, Anthony F.; Al-Khedery, Basima; Stuen, Snorre; Granquist, Erik G.; Felsheim, Roderick F.; Munderloh, Ulrike G.
2013-01-01
The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species. PMID:25437207
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Akgöl, Batuhan; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2017-02-01
Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.
Genome-wide detection and characterization of positive selection in human populations.
Sabeti, Pardis C; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H; McCarroll, Steven A; Gaudet, Rachelle; Schaffner, Stephen F; Lander, Eric S; Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Johnson, Todd A; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John
2007-10-18
With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.
Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops
Migicovsky, Zoë; Myles, Sean
2017-01-01
Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095
Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops.
Migicovsky, Zoë; Myles, Sean
2017-01-01
Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops.
Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee
2015-10-21
The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.
Genomic Variation in Natural Populations of Drosophila melanogaster
Langley, Charles H.; Stevens, Kristian; Cardeno, Charis; Lee, Yuh Chwen G.; Schrider, Daniel R.; Pool, John E.; Langley, Sasha A.; Suarez, Charlyn; Corbett-Detig, Russell B.; Kolaczkowski, Bryan; Fang, Shu; Nista, Phillip M.; Holloway, Alisha K.; Kern, Andrew D.; Dewey, Colin N.; Song, Yun S.; Hahn, Matthew W.; Begun, David J.
2012-01-01
This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5′- and 3′-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species. PMID:22673804
Galloway, Alison; Ahlfors, Helena; Turner, Martin
2016-01-01
The RNA binding proteins Zfp36l1 and Zfp36l2 act redundantly to enforce the β-selection checkpoint during thymopoiesis, yet their molecular targets remain largely unknown. Here, we identify these targets on a genome wide scale in primary mouse thymocytes and show that Zfp36l1/l2 regulate DNA damage response and cell cycle transcripts to ensure proper β-selection. DN3 thymocytes lacking Zfp36l1/l2 share a gene expression profile with post-selected DN3b cells despite the absence of intracellular TCRβ and reduced IL-7 signaling. Our findings show that in addition to controlling the timing of proliferation at β-selection post-transcriptional control by Zfp36l1/l2 limits DNA damage responses which are known to promote thymocyte differentiation. Zfp36l1/l2 therefore act as post-transcriptional safeguards against chromosomal instability and replication stress by integrating pre-TCR and IL-7 signaling with DNA damage and cell cycle control. PMID:27566829
Biological effects of simple changes in functionality on rhodium metalloinsertors
Weidmann, Alyson G.; Komor, Alexis C.; Barton, Jacqueline K.
2013-01-01
DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors–bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex–our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-deficient cells, that is, those that have a propensity for cancerous transformation. Rhodium metalloinsertors display inhibitory effects selectively in cells that are deficient in the MMR machinery, consistent with this strategy. However, a highly sensitive structure–function relationship is emerging with the development of new complexes that highlights the importance of subcellular localization. We have found that small structural modifications, for example a hydroxyl versus a methyl functional group, can yield profound differences in biological function. Despite similar binding affinities and selectivities for DNA mismatches, only one metalloinsertor shows selective inhibition of cellular proliferation in MMR-deficient versus -proficient cells. Studies of whole-cell, nuclear and mitochondrial uptake reveal that this selectivity depends upon targeting DNA mismatches in the cell nucleus. PMID:23776288
Klug, Aaron
2010-02-01
A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the power of the method was published in 1994 when a three-finger protein was constructed to block the expression of a human oncogene transformed into a mouse cell line. The same paper also described how a reporter gene was activated by targeting an inserted 9-base pair (bp) sequence, which acts as the promoter. Thus, by fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off or on. It was also suggested that, by combining zinc fingers with other effector or functional domains, e.g. from nucleases or integrases, to form chimaeric proteins, genomes could be manipulated or modified. Several applications of such engineered ZFPs are described here, including some of therapeutic importance, and also their adaptation for breeding improved crop plants.
Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi
2017-07-11
Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.
Advances and Challenges in Genomic Selection for Disease Resistance.
Poland, Jesse; Rutkoski, Jessica
2016-08-04
Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens, becomes a tractable and powerful approach in breeding programs.
Nature and function of insulator protein binding sites in the Drosophila genome
Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo
2012-01-01
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387
GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith
2014-01-01
CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782
Partial DNA-guided Cas9 enables genome editing with reduced off-target activity
Yin, Hao; Song, Chun-Qing; Suresh, Sneha; Kwan, Suet-Yan; Wu, Qiongqiong; Walsh, Stephen; Ding, Junmei; Bogorad, Roman L; Zhu, Lihua Julie; Wolfe, Scot A; Koteliansky, Victor; Xue, Wen; Langer, Robert; Anderson, Daniel G
2018-01-01
CRISPR–Cas9 is a versatile RNA-guided genome editing tool. Here we demonstrate that partial replacement of RNA nucleotides with DNA nucleotides in CRISPR RNA (crRNA) enables efficient gene editing in human cells. This strategy of partial DNA replacement retains on-target activity when used with both crRNA and sgRNA, as well as with multiple guide sequences. Partial DNA replacement also works for crRNA of Cpf1, another CRISPR system. We find that partial DNA replacement in the guide sequence significantly reduces off-target genome editing through focused analysis of off-target cleavage, measurement of mismatch tolerance and genome-wide profiling of off-target sites. Using the structure of the Cas9–sgRNA complex as a guide, the majority of the 3′ end of crRNA can be replaced with DNA nucleotide, and the 5 - and 3′-DNA-replaced crRNA enables efficient genome editing. Cas9 guided by a DNA–RNA chimera may provide a generalized strategy to reduce both the cost and the off-target genome editing in human cells. PMID:29377001
Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.
Ding, Qiurong; Strong, Alanna; Patel, Kevin M; Ng, Sze-Ling; Gosis, Bridget S; Regan, Stephanie N; Cowan, Chad A; Rader, Daniel J; Musunuru, Kiran
2014-08-15
Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease. The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo. We used adenovirus to express CRISPR-associated 9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that <3 to 4 days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and decreased plasma cholesterol levels (by 35-40%). No off-target mutagenesis was detected in 10 selected sites. Genome editing with the CRISPR-CRISPR-associated 9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans. © 2014 American Heart Association, Inc.
Rapid molecular evolution across amniotes of the IIS/TOR network
McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.
2015-01-01
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861
Rapid molecular evolution across amniotes of the IIS/TOR network.
McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S
2015-06-02
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
Chen, Kun-Tze; Lu, Chin Lung
2018-05-04
CSAR-web is a web-based tool that allows the users to efficiently and accurately scaffold (i.e. order and orient) the contigs of a target draft genome based on a complete or incomplete reference genome from a related organism. It takes as input a target genome in multi-FASTA format and a reference genome in FASTA or multi-FASTA format, depending on whether the reference genome is complete or incomplete, respectively. In addition, it requires the users to choose either 'NUCmer on nucleotides' or 'PROmer on translated amino acids' for CSAR-web to identify conserved genomic markers (i.e. matched sequence regions) between the target and reference genomes, which are used by the rearrangement-based scaffolding algorithm in CSAR-web to order and orient the contigs of the target genome based on the reference genome. In the output page, CSAR-web displays its scaffolding result in a graphical mode (i.e. scalable dotplot) allowing the users to visually validate the correctness of scaffolded contigs and in a tabular mode allowing the users to view the details of scaffolds. CSAR-web is available online at http://genome.cs.nthu.edu.tw/CSAR-web.
CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup
2017-07-01
Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi
2017-01-01
CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.
Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing
Lu, Jia; Zhao, Chen; Zhao, Yingze; Zhang, Jingfang; Zhang, Yue; Chen, Li; Han, Qiyuan; Ying, Yue; Peng, Shuai; Ai, Runna; Wang, Yu
2018-01-01
Abstract Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes. PMID:29237052
Perkhofer, Lukas; Schmitt, Anna; Romero Carrasco, Maria Carolina; Ihle, Michaela; Hampp, Stephanie; Ruess, Dietrich Alexander; Hessmann, Elisabeth; Russell, Ronan; Lechel, André; Azoitei, Ninel; Lin, Qiong; Liebau, Stefan; Hohwieler, Meike; Bohnenberger, Hanibal; Lesina, Marina; Algül, Hana; Gieldon, Laura; Schröck, Evelin; Gaedcke, Jochen; Wagner, Martin; Wiesmüller, Lisa; Sipos, Bence; Seufferlein, Thomas; Reinhardt, Hans Christian; Frappart, Pierre-Olivier; Kleger, Alexander
2017-10-15
Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR . ©2017 American Association for Cancer Research.
CRISPR-based screening of genomic island excision events in bacteria.
Selle, Kurt; Klaenhammer, Todd R; Barrangou, Rodolphe
2015-06-30
Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats-CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac(-) survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling.
Sethi, Isha; Gluck, Christian; Zhou, Huiqing
2017-01-01
Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs. PMID:28505376
Genomic selection in plant breeding.
Newell, Mark A; Jannink, Jean-Luc
2014-01-01
Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.
Frequent genomic imbalances suggest commonly altered tumour genes in human hepatocarcinogenesis
Niketeghad, F; Decker, H J; Caselmann, W H; Lund, P; Geissler, F; Dienes, H P; Schirmacher, P
2001-01-01
Hepatocellular carcinoma (HCC) is one of the most frequent-occurring malignant tumours worldwide, but molecular changes of tumour DNA, with the exception of viral integrations and p53 mutations, are poorly understood. In order to search for common macro-imbalances of genomic tumour DNA, 21 HCCs and 3 HCC-cell lines were characterized by comparative genomic hybridization (CGH), subsequent database analyses and in selected cases by fluorescence in situ hybridization (FISH). Chromosomal subregions of 1q, 8q, 17q and 20q showed frequent gains of genomic material, while losses were most prevalent in subregions of 4q, 6q, 13q and 16q. Deleted regions encompass tumour suppressor genes, like RB-1 and the cadherin gene cluster, some of them previously identified as potential target genes in HCC development. Several potential growth- or transformation-promoting genes located in chromosomal subregions showed frequent gains of genomic material. The present study provides a basis for further genomic and expression analyses in HCCs and in addition suggests chromosome 4q to carry a so far unidentified tumour suppressor gene relevant for HCC development. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11531255