Programming PHREEQC calculations with C++ and Python a comparative study
Charlton, Scott R.; Parkhurst, David L.; Muller, Mike
2011-01-01
The new IPhreeqc module provides an application programming interface (API) to facilitate coupling of other codes with the U.S. Geological Survey geochemical model PHREEQC. Traditionally, loose coupling of PHREEQC with other applications required methods to create PHREEQC input files, start external PHREEQC processes, and process PHREEQC output files. IPhreeqc eliminates most of this effort by providing direct access to PHREEQC capabilities through a component object model (COM), a library, or a dynamically linked library (DLL). Input and calculations can be specified through internally programmed strings, and all data exchange between an application and the module can occur in computer memory. This study compares simulations programmed in C++ and Python that are tightly coupled with IPhreeqc modules to the traditional simulations that are loosely coupled to PHREEQC. The study compares performance, quantifies effort, and evaluates lines of code and the complexity of the design. The comparisons show that IPhreeqc offers a more powerful and simpler approach for incorporating PHREEQC calculations into transport models and other applications that need to perform PHREEQC calculations. The IPhreeqc module facilitates the design of coupled applications and significantly reduces run times. Even a moderate knowledge of one of the supported programming languages allows more efficient use of PHREEQC than the traditional loosely coupled approach.
PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC
Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.
1997-01-01
PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.
NASA Astrophysics Data System (ADS)
Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge
2014-08-01
This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, Scott R.; Parkhurst, David L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, S.R.; Parkhurst, D.L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.
PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC
Parkhurst, David L.; Wissmeier, Laurin
2015-01-01
PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.
NASA Astrophysics Data System (ADS)
Wissmeier, L. C.; Barry, D. A.
2009-12-01
Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection/dispersion are introduced as irreversible reactions. An example for the coupling of PHREEQC and MATLAB for the solution of unsaturated flow and transport is provided.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia
2010-09-01
A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.
Hormann, Volker; Kirchner, Gerald
2002-04-22
For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically studied. It is shown that calculating the impacts of soil-based chemical countermeasures on soil solution chemistry using geochemical codes such as PHREEQC offers an attractive alternative to establishing these impacts by often time-consuming and site-specific experiments.
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kühn, Michael
2013-04-01
PHREEQC [1] is a widely used non-interactive open source software for speciation, batch-reactions, one-dimensional transport, and inverse geochemical caclulations. It represents the tool of choice for many researchers and practicioners for a broad set of geochemical problems, underground CO2 storage among others. Its open source nature, the flexibility to program arbitrary kinetic laws for the chemical reactions, as well as a thorough implementation of the Pitzer formalism explain its success and longevity. However, its non-interactive architecture make it cumbersome to couple PHREEQC to transport programs to achieve reactive transport simulations [2], but also to overcome the limitations of PHREEQC itself regarding the setup of large numbers of simulations - for example exploring wide ranges of conditions - and the graphical evaluation of the results. This has been the main motivation leading to the development of an interface with the high level language and environment for statistical computing and graphics GNU R [3]. The interface consists of minor modifications in PHREEQC's C source code, only affecting data I/O, plus on the R side a bunch of helper functions used to setup the simulations - basically automated manipulation of PHREEQC's input files, which are text files - and to collect and visualize the results. The most relevant subset of PHREEQC's capabilities and features are fully usable through the interface. Illustratory examples for the utility of this programmable interface were given in the framework of the research project this developement originated from: CLEAN [4], a project investigating the feasibility of enhanced gas recovery combined with CO2 storage. This interface allowed us to successfully and easily manipulate, compare and refit chemical databases, perform sensitivity analysis by combinatory variations of parameters, and all that in an environment which is both scriptable and interactive, with all results directly available for further manipulations and visualization in a powerful high level language, and benefiting from an enormous amount of third-party open source R extensions. The possibility to rapidly prototype complex algorithms involving geochemical modelling is in our opinion a huge advantage. A demonstration is given by the successful evaluation of a strategy to reduce the CPU-time needed to perform reactive transport simulations in a sequential coupling scheme. The idea is the "reduction" of the number of actual chemical simulations to perform at every time step, by searching for "duplicates" of each chemical simulations in the grid: such comparison involves typically a huge number of elements (one chemical simulation for grid element for time step) and a quite large number of variables (concentrations and mineral abundances). However, through the straightforward implementation of the prototype algorithm through the R/PHREEQC interface, we found out that the scan is extremely cost-effective in terms of CPU-time and typically allows a relevant speedup for simulations starting from a homogeneous or zone-homogeneous state. This speedup can even greatily exceed that of parallelization in some favorable but not unfrequent case. This feature should therefore be implemented in reactive transport simulators. References [1] Parkhurst D, Appelo C (1999) Users guide to PHREEQC (version 2). Tech. rep, U.S. Geological Survey. [2] Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012): Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ. Earth Sci., 67, 2, 573-588. [3] R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. [4] Kühn M, Münch U (2012) CLEAN: CO2 Large-Scale Enhanced Gas Recovery. GEOTECHNOLOGIEN Science Report No. 19. Series: Advanced. Technologies in Earth Sciences, 199 p, ISBN 978-3-642-31676-0.
NASA Astrophysics Data System (ADS)
Marin, I. S.; Molson, J. W.
2013-05-01
Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.
NASA Astrophysics Data System (ADS)
Mork, M. W.; Kracht, O.
2012-04-01
When investigating stability relations in aquatic solutions or rock-water interactions, the number of dissolved species and mineral phases involved can be overwhelming. To facilitate an overview about equilibrium relationships and how chemical elements are distributed between different aqueous ions, complexes, and solids, predominance diagrams are a widely used tool in aquatic chemistry. In the simplest approach, the predominance field boundaries can be calculated based on a set of mass action equations and log K values for the reactions between different species. Example given, for the popular redox diagram (pe-pH diagram), half cell reactions according to Nernst's equation can be used (Garrels & Christ 1965). In such case, boundaries between different species are "equal-activity" lines. However, for boundaries between solids and dissolved species a specific concentration needs to be stipulated, and the same applies if other components than those displayed in the diagram are involved in the possible reactions. In such case, the predominance field boundaries depend on the actual concentration values chosen. An alternative approach can be the computation of predominance diagrams using the full speciation obtained from a geochemical speciation program, which then needs to be coupled with an external wrapper code for appropriate control and data pre- and post-processing. In this way, the distribution of different species can be based on the consideration of complete chemical analysis obtained from laboratory investigations. We present the results of a student semester-project that aimed to develop and test an external wrapper program for the computation of pe-pH diagrams based on modeling outputs obtained with PHREEQC (Parkhurst & Appelo 1999). We have chosen PHREEQC for this core task as a geochemical calculation module, because of its capabilities to simulate a wide range of equilibrium reactions between water and minerals. Due to the intended final users, a free and extensible simulation platform was considered important. The wrapper program was created in the R environment which is freely available under the GNU General Public License (R Development Core Team 2011). The wrapper reads in analytical data in the standard PHREEQC input file format and then iterates over a systematic selection of pe and pH values. These data are transferred to PHREEQC for the calculation of a corresponding set of hydrochemical speciations based on thermodynamic equilibrium. The results of the PHREEQC simulations are subsequently analyzed by a postprocessor function in order to derive a two-dimensional representation of the dominant aquatic species in the pe-pH plane. In this step, the most abundant species at each grid point is identified as the predominant one. To investigate the utility of the program, differences in the speciation of iron were calculated from chemical compositions of water samples from one of our current field sites (Gardermoen / Øvre Romerike aquifer in S-Norway).
Zheng, Jianqiu; Thornton, Peter; Painter, Scott; Gu, Baohua; Wullschleger, Stan; Graham, David
2018-06-13
This anaerobic carbon decomposition model is developed with explicit representation of fermentation, methanogenesis and iron reduction by combining three well-known modeling approaches developed in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical model PHREEQC (V3.0). Installation of PHREEQC is required to run this model.
Parkhurst, David L.; Appelo, C.A.J.
2013-01-01
PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales. Surface complexation can be calculated with the CD-MUSIC (Charge Distribution MUltiSIte Complexation) triple-layer model in addition to the diffuse-layer model. The composition of the electrical double layer of a surface can be estimated by using the Donnan approach, which is more robust and faster than the alternative Borkovec-Westall integration. Multicomponent diffusion, diffusion in the electrostatic double layer on a surface, and transport of colloids with simultaneous surface complexation have been added to the transport module. A series of keyword data blocks has been added for isotope calculations—ISOTOPES, CALCULATE_VALUES, ISOTOPE_ALPHAS, ISOTOPE_RATIOS, and NAMED_EXPRESSIONS. Solution isotopic data can be input in conventional units (for example, permil, percent modern carbon, or tritium units) and the numbers are converted to moles of isotope by PHREEQC. The isotopes are treated as individual components (they must be defined as individual master species) so that each isotope has its own set of aqueous species, gases, and solids. The isotope-related keywords allow calculating equilibrium fractionation of isotopes among the species and phases of a system. The calculated isotopic compositions are printed in easily readable conventional units. New keywords and options facilitate the setup of input files and the interpretation of the results. Keyword data blocks can be copied (keyword COPY) and deleted (keyword DELETE). Keyword data items can be altered by using the keyword data blocks with the _MODIFY extension and a simulation can be run with all reactants of a given index number (keyword RUN_CELLS). The definition of the complete chemical state of all reactants of PHREEQC can be saved in a file in a raw data format ( DUMP and _RAW keywords). The file can be read as part of another input file with the INCLUDE$ keyword. These keywords facilitate the use of IPhreeqc, which is a module implementing all PHREEQC version 3 capabilities; the module is designed to be used in other programs that need to implement geochemical calculations; for example, transport codes. Charting capabilities have been added to some versions of PHREEQC. Charting capabilities have been added to Windows distributions of PHREEQC version 3. (Charting on Linux requires installation of Wine.) The keyword data block USER_GRAPH allows selection of data for plotting and manipulation of chart appearance. Almost any results from geochemical simulations (for example, concentrations, activities, or saturation indices) can be retrieved by using Basic language functions and specified as data for plotting in USER_GRAPH. Results of transport simulations can be plotted against distance or time. Data can be added to a chart from tab-separated-values files. All input for PHREEQC version 3 is defined in keyword data blocks, each of which may have a series of identifiers for specific types of data. This report provides a complete description of each keyword data block and its associated identifiers. Input files for 22 examples that demonstrate most of the capabilities of PHREEQC version 3 are described and the results of the example simulations are presented and discussed.
Laboratory experiments show that amorphous and poorly crystallized ferric iron hydroxides have much greater capacity to attenuate arsenic compared to clays and other aluminosilicate minerals. Studies (e.g., Lin and Qvarfort, 1996) showed that a sudden change in geochemical condit...
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
Parkhurst, D.L.
1995-01-01
PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings. A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is used to determine the thermodynamically stable set of phases in equilibrium with a solution. A more complete Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number of failures of the nunmrical method in PHREEQC relative to PHREEQE. This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calculations in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of the program's capabilities.
NASA Astrophysics Data System (ADS)
Myagkiy, Andrey; Golfier, Fabrice; Truche, Laurent; Cathelineau, Michel
2017-04-01
This research proposes a subsurface reactive geochemical transport modelling of the development of a nickel laterite profile in New Caledonia over the past few million years. Such a regolith formation from ultramafic bedrock was not yet modelled and gives new profound insights into the Ni vertical mobility, its retention processes in a soil profile and relative enrichment, that are still poorly studied. The downward progression of the lateritization front is allowed by the leaching of the soluble elements (Si, Mg and Ni) through drainage system, represented by porous column of peridotite. Particular emphasis is placed on the detailed understanding of Ni redistribution as a function of time and depth triggered by Ni-bearing silicate precipitation (i.e. garnierite) and by sorption or recrystallization process with goethite. Current work consists of the following models: i) 1-D calculations that are done at 25oC with the code PHREEQC associated with the llnl thermodynamic database and ii) 2-D model that handles coupled thermo-hydro-chemical processes and is calculated on the interface Comsol-Phreeqc (iCP, Nardi et al., 2014). The impact of i) fluid flow in fractures and ii) recharge rate along with iii) hydraulic and iv) geothermal gradients are considered here. While the first model gives profound insights into the vertical mobility of metals upon the formation of laterite (Myagkiy et al, submitted), the latter one additionally allows to describe heterogeneities of mineralizing distributions due to the influence of preferential pathways (fractures), convective flows and lateral transfers. Our long-term 1-D simulations (10 Ma) clearly demonstrate that the Ni enrichment and thickening of iron-rich zone are governed by the vertical progression of the pH front. At the same time 2-D modelling shows reactivation of Ni from oxide zone and it subsequent redistribution and concentration in saprolite. Such a model appears to be of importance in attempt of explanation Ni mineralization processes, revealing the main keys to understanding the trace elements mobility in ultramafic environment. Myagkiy A, Truche L, Cathelineau M, Golfier F. "Revealing the conditions of Ni mineralization in laterite profile of New Caledonia: insights from reactive geochemical transport modelling" Preprint submitted to Chemical Geology (September 28, 2016). Nardi A, Idiart A, Trinchero P, de Vries LM, and Molinero J. "Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry."Computers & Geosciences 69 (2014): 10-21.
Lagrangian simulation of mixing and reactions in complex geochemical systems
NASA Astrophysics Data System (ADS)
Engdahl, Nicholas B.; Benson, David A.; Bolster, Diogo
2017-04-01
Simulations of detailed geochemical systems have traditionally been restricted to Eulerian reactive transport algorithms. This note introduces a Lagrangian method for modeling multicomponent reaction systems. The approach uses standard random walk-based methods for the particle motion steps but allows the particles to interact with each other by exchanging mass of their various chemical species. The colocation density of each particle pair is used to calculate the mass transfer rate, which creates a local disequilibrium that is then relaxed back toward equilibrium using the reaction engine PhreeqcRM. The mass exchange is the only step where the particles interact and the remaining transport and reaction steps are entirely independent for each particle. Several validation examples are presented, which reproduce well-known analytical solutions. These are followed by two demonstration examples of a competitive decay chain and an acid-mine drainage system. The source code, entitled Complex Reaction on Particles (CRP), and files needed to run these examples are hosted openly on GitHub (https://github.com/nbengdahl/CRP), so as to enable interested readers to readily apply this approach with minimal modifications.
Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
Bartzas, Georgios; Komnitsas, Kostas
2010-11-15
A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
Kim, Seong Hee; Choi, Byoung-Young; Lee, Gyemin; Yun, Seong-Taek; Kim, Soon-Oh
2017-12-20
The CO 2 -rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the geochemical evolution pathways of various CSW were simulated via equilibrium phase modeling (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO 3 water type, but some samples from the KW area were classified as Na-HCO 3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO 2 , deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150 °C for the Ca-HCO 3 and Na-HCO 3 types of CSW, respectively, in the KW area; 138.9 °C for the CB CSW; and 93.0 °C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO 3 -type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO 3 -type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the geochemical evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO 2 after its geological storage and to estimate the stability and security of geologically stored CO 2 .
Experimental validation of Swy-2 clay standard's PHREEQC model
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György
2017-04-01
One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.
Cravotta, Charles A.; Parkhurst, David L.; Means, Brent P; McKenzie, Bob; Morris, Harry; Arthur, Bill
2010-01-01
Treatment with caustic chemicals typically is used to increase pH and decrease concentrations of dissolved aluminum, iron, and/or manganese in largevolume, metal-laden discharges from active coal mines. Generally, aluminum and iron can be removed effectively at near-neutral pH (6 to 8), whereas active manganese removal requires treatment to alkaline pH (~10). The treatment cost depends on the specific chemical used (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) and increases with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearly with the amount of chemical added. Consequently, the amount of caustic chemical needed to achieve a target pH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical titration data or the application of geochemical models to simulate the titration of the discharge water with caustic chemical(s). The AMDTreat computer program (http://amd.osmre.gov/ ) is widely used to compute costs for treatment of coal-mine drainage. Although AMDTreat can use results of empirical titration with industrial grade caustic chemicals to compute chemical costs for treatment of net-acidic or net-alkaline mine drainage, such data are rarely available. To improve the capability of AMDTreat to estimate (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the concentrations of dissolved metals in treated effluent, and (3) the volume of sludge produced by the treatment, a titration simulation is being developed using the geochemical program PHREEQC (wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/) that will be coupled as a module to AMDTreat. The simulated titration results can be compared with or used in place of empirical titration data to estimate chemical quantities and costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module for AMDTreat.
Implementation of the anaerobic digestion model (ADM1) in the PHREEQC chemistry engine.
Huber, Patrick; Neyret, Christophe; Fourest, Eric
2017-09-01
Anaerobic digestion is state-of-the-art technology to treat sludge and effluents from various industries. Modelling and optimisation of digestion operations can be advantageously performed using the anaerobic digestion model (ADM1) from the International Water Association. The ADM1, however, lacks a proper physico-chemical framework, which makes it difficult to consider wastewater of complex ionic composition and supersaturation phenomena. In this work, we present a direct implementation of the ADM1 within the PHREEQC chemistry engine. This makes it possible to handle ionic strength effects and ion-pairing. Thus, multiple mineral precipitation phenomena can be handled while resolving the ADM1. All these features can be accessed with very little programming effort, while retaining the full power and flexibility of PHREEQC. The distributed PHREEQC code can be easily interfaced with process simulation software for future plant-wide simulation of both wastewater and sludge treatment.
Reactive transport of metal contaminants in alluvium - Model comparison and column simulation
Brown, J.G.; Bassett, R.L.; Glynn, P.D.
2000-01-01
A comparative assessment of two reactive-transport models, PHREEQC and HYDROGEOCHEM (HGC), was done to determine the suitability of each for simulating the movement of acidic contamination in alluvium. For simulations that accounted for aqueous complexation, precipitation and dissolution, the breakthrough and rinseout curves generated by each model were similar. The differences in simulated equilibrium concentrations between models were minor and were related to (1) different units in model output, (2) different activity coefficients, and (3) ionic-strength calculations. When adsorption processes were added to the models, the rinseout pH simulated by PHREEQC using the diffuse double-layer adsorption model rose to a pH of 6 after pore volume 15, about 1 pore volume later than the pH simulated by HGC using the constant-capacitance model. In PHREEQC simulation of a laboratory column experiment, the inability of the model to match measured outflow concentrations of selected constituents was related to the evident lack of local geochemical equilibrium in the column. The difference in timing and size of measured and simulated breakthrough of selected constituents indicated that the redox and adsorption reactions in the column occurred slowly when compared with the modeled reactions. MINTEQA2 and PHREEQC simulations of the column experiment indicated that the number of surface sites that took part in adsorption reactions was less than that estimated from the measured concentration of Fe hydroxide in the alluvium.
Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.
Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P
2010-07-01
This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NetpathXL - An Excel Interface to the Program NETPATH
Parkhurst, David L.; Charlton, Scott R.
2008-01-01
NetpathXL is a revised version of NETPATH that runs under Windows? operating systems. NETPATH is a computer program that uses inverse geochemical modeling techniques to calculate net geochemical reactions that can account for changes in water composition between initial and final evolutionary waters in hydrologic systems. The inverse models also can account for the isotopic composition of waters and can be used to estimate radiocarbon ages of dissolved carbon in ground water. NETPATH relies on an auxiliary, database program, DB, to enter the chemical analyses and to perform speciation calculations that define total concentrations of elements, charge balance, and redox state of aqueous solutions that are then used in inverse modeling. Instead of DB, NetpathXL relies on Microsoft Excel? to enter the chemical analyses. The speciation calculation formerly included in DB is implemented within the program NetpathXL. A program DBXL can be used to translate files from the old DB format (.lon files) to NetpathXL spreadsheets, or to create new NetpathXL spreadsheets. Once users have a NetpathXL spreadsheet with the proper format, new spreadsheets can be generated by copying or saving NetpathXL spreadsheets. In addition, DBXL can convert NetpathXL spreadsheets to PHREEQC input files. New capabilities in PHREEQC (version 2.15) allow solution compositions to be written to a .lon file, and inverse models developed in PHREEQC to be written as NetpathXL .pat and model files. NetpathXL can open NetpathXL spreadsheets, NETPATH-format path files (.pat files), and NetpathXL-format path files (.pat files). Once the speciation calculations have been performed on a spreadsheet file or a .pat file has been opened, the NetpathXL calculation engine is identical to the original NETPATH. Development of models and viewing results in NetpathXL rely on keyboard entry as in NETPATH.
NASA Astrophysics Data System (ADS)
Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia
2017-06-01
The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.
Reactive transport modeling in the subsurface environment with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf
2015-04-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.
2014-12-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
Laabidi, Ezzeddine; Bouhlila, Rachida
2015-07-01
In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity and permeability distributions.
Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Strnad, Ladislav
2005-05-20
Two air-pollution-control (APC) residues--one from flue gas cooling with alkaline water and one from deionized water cooling--from secondary lead metallurgy were submitted to two different standardized short-term leaching protocols: US EPA toxicity characteristic leaching procedure (TCLP) and static leaching according to Czech/European norm EN 12457-2. The experimental procedure was coupled with detailed mineralogical investigation of the solid material (SEM, XRPD) and speciation-solubility calculations using the PHREEQC-2 geochemical code. Both types of residues were considered as hazardous materials exhibiting substantial leaching of Pb (up to 7130 mg/l) and other inorganic contaminants. However, the APC residue produced by flue gas cooling with alkaline water (sample B) exhibits more favourable leaching and environmental characteristics than that produced by simple deionised water cooling (sample A). At pH < 5, primary caracolite (Na3Pb2(SO4)3Cl) and potassium lead chloride (KCl.2PbCl2) are completely or partially dissolved and transformed to residual anglesite (PbSO4), cotunnite (PbCl2) and laurionite (Pb(OH)Cl). At pH 5-6, anglesite is still the principal residual product, whereas at pH > 6, phosgenite (PbCl2.PbCO3) became the dominant secondary phase. The results are consistent with the mineralogical and geochemical studies focused on acidic forest soils highly polluted by smelter emissions, where anglesite, as a unique Pb-bearing phase, has been detected. From the technological point of view, the mixing of APC residue with alkaline water, followed by an increase in the suspension pH and equilibration with atmospheric CO2, may be used to ensure the precipitation of less soluble Pb carbonates, which are more easily recycled in the Pb recovery process in the metallurgical plant.
Cravotta, Charles A.; Means, Brent P; Arthur, Willam; McKenzie, Robert M; Parkhurst, David L.
2015-01-01
Alkaline chemicals are commonly added to discharges from coal mines to increase pH and decrease concentrations of acidity and dissolved aluminum, iron, manganese, and associated metals. The annual cost of chemical treatment depends on the type and quantities of chemicals added and sludge produced. The AMDTreat computer program, initially developed in 2003, is widely used to compute such costs on the basis of the user-specified flow rate and water quality data for the untreated AMD. Although AMDTreat can use results of empirical titration of net-acidic or net-alkaline effluent with caustic chemicals to accurately estimate costs for treatment, such empirical data are rarely available. A titration simulation module using the geochemical program PHREEQC has been incorporated with AMDTreat 5.0+ to improve the capability of AMDTreat to estimate: (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the chemical composition of the treated effluent, and (3) the volume of sludge produced by the treatment. The simulated titration results for selected caustic chemicals (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) without aeration or with pre-aeration can be compared with or used in place of empirical titration data to estimate chemical quantities, treated effluent composition, sludge volume (precipitated metals plus unreacted chemical), and associated treatment costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module with the new AMDTreat 5.0+ computer program available at http://www.amd.osmre.gov/.
Declercq, J.; Dypvik, H.; Aagaard, Per; Jahren, J.; Ferrell, R.E.; Horton, J. Wright
2009-01-01
The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.
Distributed All-Optical Sensor to Detect dCO2 in Aqueous Environments
NASA Astrophysics Data System (ADS)
Bhatia, S.; Coelho, J.; Melo, L.; Davies, B.; Ahmed, F.; Bao, B.; Wild, P.; Risk, D. A.; Sinton, D.; Jun, M.
2012-12-01
Already a proven technology for temperature and stress measurements, an all-optical sensor to detect dCO2 is being developed for deployment in challenging environments. Optical sensors function under high pressure, do not require electronics and therefore experience no magnetic interference. They are also able to transmit signals over long distances with minimal losses. The dCO2 sensor's principal application is in measurement monitoring and verification of carbon capture and storage sites; however, it could also be useful in ocean, fresh water, and transition environments. The objective for the first phase of development was to detect a CO2 signal in laboratory tests. The developmental program incorporated experiments to detect CO2 under high pressure (1400 psi) in aqueous environments. Laboratory testing involved a custom pressure cell, off-the-shelf and custom long period gratings written in SMF125 fiber. Femptosecond laser micromachining was used to test alternative long period grating (LPG) and cutout shapes to maximize evanescent field interaction with the environment. A comprehensive program of geochemical modeling using PHREEQC 2 was used to identify the diversity of species in environments of interest that could exert confounding influence. Purchased UV-LPG responded to changes in concentration of scCO2 in brine at high pressure. Signal differences between CO2-saturated brine and pure brine were also noted under the same, high pressure conditions. Geochemical modeling software, PHREEQC 2, revealed a diversity of species in environments of interest whose concentrations varied strongly with temperature and pH. The modeling program's detailed characterization of environments informed work currently being undertaken as part of Phase 2, to develop a CO2-selective membrane to filter out measurement artifact.
NASA Astrophysics Data System (ADS)
Picot-Colbeaux, Géraldine; Devau, Nicolas; Thiéry, Dominique; Pettenati, Marie; Surdyk, Nicolas; Parmentier, Marc; Amraoui, Nadia; Crastes de Paulet, François; André, Laurent
2016-04-01
Chalk aquifer is the main water resource for domestic water supply in many parts in northern France. In same basin, groundwater is frequently affected by quality problems concerning nitrates. Often close to or above the drinking water standards, nitrate concentration in groundwater is mainly due to historical agriculture practices, combined with leakage and aquifer recharge through the vadose zone. The complexity of processes occurring into such an environment leads to take into account a lot of knowledge on agronomy, geochemistry and hydrogeology in order to understand, model and predict the spatiotemporal evolution of nitrate content and provide a decision support tool for the water producers and stakeholders. To succeed in this challenge, conceptual and numerical models representing accurately the Chalk aquifer specificity need to be developed. A multidisciplinary approach is developed to simulate storage and transport from the ground surface until groundwater. This involves a new agronomic module "NITRATE" (NItrogen TRansfer for Arable soil to groundwaTEr), a soil-crop model allowing to calculate nitrogen mass balance in arable soil, and the "PHREEQC" numerical code for geochemical calculations, both coupled with the 3D transient groundwater numerical code "MARTHE". Otherwise, new development achieved on MARTHE code allows the use of dual porosity and permeability calculations needed in the fissured Chalk aquifer context. This method concerning the integration of existing multi-disciplinary tools is a real challenge to reduce the number of parameters by selecting the relevant equations and simplifying the equations without altering the signal. The robustness and the validity of these numerical developments are tested step by step with several simulations constrained by climate forcing, land use and nitrogen inputs over several decades. In the first time, simulations are performed in a 1D vertical unsaturated soil column for representing experimental nitrates vertical soil profiles (0-30m depth experimental measurements in Somme region). In the second time, this approach is used to simulate with a 3D model a drinking water catchment area in order to compared nitrate contents time series calculated and measured in the domestic water pumping well since 1995 (field in northern France - Avre Basin region). This numerical tool will help the decision-making in all activities in relation with water uses.
NASA Astrophysics Data System (ADS)
Maqueda, A.; Renard, P.; Cornaton, F. J.
2014-12-01
Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.
NASA Astrophysics Data System (ADS)
Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.
2003-12-01
The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
NASA Astrophysics Data System (ADS)
Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean
2016-03-01
The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.
NASA Astrophysics Data System (ADS)
Henocq, Pierre
2017-06-01
In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.
2010-01-01
The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, exchangers, surfaces, gases, kinetic reactants, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a format suitable for exporting to spreadsheets and postprocessing programs; and in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST.
Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.
2004-01-01
The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a format suitable for exporting to spreadsheets and post-processing programs; or in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST. Operator splitting of the flow, transport, and geochemical equations is used to separate the three processes into three sequential calculations. No iterations between transport and reaction calculations are implemented. A three-dimensional Cartesian coordinate system and finite-difference techniques are used for the spatial and temporal discretization of the flow and transport equations. The non-linear chemical equilibrium equations are solved by a Newton-Raphson method, and the kinetic reaction equations are solved by a Runge-Kutta or an implicit method for integrating ordinary differential equations. The PHAST simulator may require large amounts of memory and long Central Processing Unit (CPU) times. To reduce the long CPU times, a parallel version of PHAST has been developed that runs on a multiprocessor computer or on a collection of computers that are networked. The parallel version requires Message Passing Interface, which is currently (2004) freely available. The parallel version is effective in reducing simulation times. This report documents the use of the PHAST simulator, including running the simulator, preparing the input files, selecting the output files, and visualizing the results. It also presents four examples that verify the numerical method and demonstrate the capabilities of the simulator. PHAST requires three input files. Only the flow and transport file is described in detail in this report. The other two files, the chemistry data file and the database file, are identical to PHREEQC files and the detailed description of these files is found in the PHREEQC documentation.
Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite
NASA Astrophysics Data System (ADS)
Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien
2017-04-01
Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters is spatially controlled by the hydrology of the system and is localized around mixing zones between Ca-type with Mg-type waters. Residence time of discharging waters in the ponds before mixing has an impact on fluid chemistry as it influences the equilibration time with the atmosphere. Acicular aragonite is the main textural type in hyper-alkaline Ca-type waters, acting as a substratum for the growth of calcite and brucite crystals. Low crystallinity, dumbbell shaped and double pyramid aragonite dominates in Mix-type water precipitates. Rate of supersaturation is essential for precipitation intensity and textural variation among the mineral assemblages in the different water types. Low S/ S˚ ratios in Mg-type and Ca-type waters (<1) reveal limited precipitation. Chemical reactions that lead to rapid mineral formation are enhanced in cases of Mix-type waters characterized by higher S/ S˚ ratios (>1.2). Detailed investigation of individual spring sites allowed the determination of geochemical and hydrological factors controlling the phases and textures of mineralogical assemblages in active, serpentinization-related, alkaline environments. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n˚ 608001.
Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA
Rattray, Gordon W.
2015-01-01
Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.
Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals
NASA Astrophysics Data System (ADS)
Welch, N.; Crawshaw, J.
2017-12-01
Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.
NASA Astrophysics Data System (ADS)
Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.
2017-12-01
About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water-Rock Interaction (Brantley et al., eds.), Springer, New York.[4] Edson et al. (2012) Astrobiology 12, 562-571.[5] Parkhurst & Appelo (2013) USGS Techniques and Methods 6-A43.[6] Palandri & Kharaka (2008) USGS Report 2004-1068.[7] Kite et al. (2009) ApJ 700, 1732-1749.
Reactive transport codes for subsurface environmental simulation
Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...
2014-09-26
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less
Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming
2009-02-01
Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.
PHT3D-UZF: A reactive transport model for variably-saturated porous media
Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.
2016-01-01
A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.
NASA Astrophysics Data System (ADS)
Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia
2014-08-01
A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.
Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik
2014-11-01
Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.
Assessing the efficiency of a coastal Managed Aquifer Recharge (MAR) system in Cyprus.
Tzoraki, Ourania; Dokou, Zoi; Christodoulou, George; Gaganis, Petros; Karatzas, George
2018-06-01
Managed Aquifer Recharge (MAR) is becoming an attractive water management option, with more than 223 sites operating in European countries. The quality of the produced water, available for drinking or irrigation processes is strongly depended on the aquifer's hydrogeochemical characteristics and on the MAR system design and operation. The objective of this project is the assessment of the operation efficiency of a MAR system in Cyprus. The coupling of alternative methodologies is used such as water quality monitoring, micro-scale sediment sorption experiments, simulation of groundwater flow and phosphate and copper transport in the subsurface using the FEFLOW model and evaluation of the observed change in the chemical composition of water due to mixing using the geochemical model PHREEQC. The above methodology is tested in the Ezousa MAR project in Cyprus, where treated effluent from the Paphos Waste Water Treatment Plant, is recharged into the aquifer through five sets of artificial ponds along the riverbed. Additionally, groundwater is pumped for irrigation purposes from wells located nearby. A slight attenuation of nutrients is observed, whereas copper in groundwater is overcoming the EPA standards. The FEFLOW simulations reveal no effective mixing in some intermediate infiltration ponds, which is validated by the inverse modeling simulation of the PHREEQC model. Based on the results, better control of the infiltration capacity of some of the ponds and increased travel times are some suggestions that could improve the efficiency of the system. Copyright © 2018 Elsevier B.V. All rights reserved.
Toxicity assessment and geochemical model of chromium leaching from AOD slag.
Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming
2016-02-01
AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali
2014-05-01
In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to formation damage in ATES systems. We would like to present preliminary results of the structural reservoir model and the hydraulic-thermal-chemical coupling for the demonstration site. Literature: Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software 26, 210-218.
NASA Astrophysics Data System (ADS)
Toride, N.; Matsuoka, K.
2017-12-01
In order to predict the fate and transport of nitrogen in a reduced paddy field as a result of decomposition of organic matter, we implemented within the PHREEQC program a modified coupled carbon and nitrogen cycling model based on the LEACHM code. SOM decay processes from organic carbon (Org-C) to biomass carbon (Bio-C), humus carbon (Hum-C), and carbon dioxide (CO2) were described using first-order kinetics. Bio-C was recycled into the organic pool. When oxygen was available in an aerobic condition, O2 was used to produce CO2 as an electron accepter. When O2 availability is low, other electron acceptors such as NO3-, Mn4+, Fe3+, SO42-, were used depending on the redox potential. Decomposition of Org-N was related to the carbon cycle using the C/N ratio. Mineralization and immobilization were determined based on available NH4-N and the nitrogen demand for the formation of biomass and humus. Although nitrification was independently described with the first-order decay process, denitrification was linked with the SOM decay since NO3- was an electron accepter for the CO2 production. Proton reactions were coupled with the nitrification from NH4+ to NO3-, and the ammonium generation from NH3 to NH4+. Furthermore, cation and anion exchange reactions were included with the permanent negative charges and the pH dependent variable charges. The carbon and nitrogen cycling model described with PHREEQC was linked with HYDRUS-1D using the HP1 code. Various nitrogen and carbon transport scenarios were demonstrated for the application of organic matter to a saturated paddy soil.
Jia, Yu; Stahre, Nanna; Mäkitalo, Maria; Maurice, Christian; Öhlander, Björn
2017-09-01
Sealing layers made of two alkaline paper mill by-products, fly ash and green liquor dregs, were placed on top of 50-year-old sulfide-containing tailings as a full-scale remediation approach. The performance and effectiveness of the sealing layers with high water content for an oxygen barrier and low hydraulic conductivity for a sealing layer in preventing the formation of acid rock drainage were evaluated 5 years after the remediation. The leaching behavior of the covered tailings was studied using batch leaching tests (L/S ratio 10 L/kg). The leaching results revealed that, in general, the dregs- and ash-covered tailings released relatively lower concentrations of many elements contained in acid rock drainage compared to those from the uncovered tailings. A change in the chemical composition and mineralogical state of the tailings was observed for the tailings beneath the covers. The increase in pH caused by the alkaline materials promoted metal precipitation. Geochemical modeling using PHREEQC confirmed most of the geochemical changes of the covered tailings. Both the ash and dregs showed potential to function as sealing materials in terms of their geochemical properties. However, mobilization of Zn and Ni from the lower part of the dregs-covered tailings was observed. The same phenomenon was observed for the lower part of the ash-covered tailings. Ash showed advantages over dregs as a cover material; based on geochemical studies, the ash immobilized more elements than the dregs did. Lysimeters were installed below the sealing layers, and infiltrating water chemistry and hydrology were studied to monitor the amount and quality of the leachate percolating through.
Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia
NASA Astrophysics Data System (ADS)
Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska
2017-04-01
Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.
Geochemical and radionuclide profile of Tuzla geothermal field, Turkey.
Baba, Alper; Deniz, Ozan; Ozcan, Hasan; Erees, Serap F; Cetiner, S Ziya
2008-10-01
Tuzla geothermal basin is situated in north-western Turkey on the Biga Peninsula, which is located at the west end of the Northern Anatolian Fault system. Soil and water samples were collected between August 2003 and June 2004 to initiate development of a geochemical profile of surface and subsurface waters in the geothermal basin and radionuclide concentrations in soils. All water samples were found to fall within Turkish Water Quality Class 4, meaning they were remarkably contaminated for any water consumption sector (industrial, human use or agricultural) based on sodium and chloride ions. Such waters could be used only after appropriate water treatment. The water samples are of the chloride type in terms of geochemical evaluation. Preliminary geochemical evidence shows that the N-S flowing part of the Tuzla River acts as a natural barrier within the basin. Heavy metal concentrations in the soil samples show slight elevations, especially those obtained from the east part of the basin where thermal springs are dominant. Geochemical calculations were carried out with PHREEQC software to determine equilibrium concentration of chemical species and saturation indices, by which it is suggested that chloride is the most important ligand to mobilize the heavy metals in the studied system. In addition, the activity concentration and gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides were determined in the soil using gamma-ray spectrometry. The soil activity ranged from 42.77 to 988.66 Bq kg(-1) (averaging 138 Bq kg(-1)) for ( 238 )U, 13.27 to 106.31 Bq kg(-1) (averaging 32.42 Bq kg(-1)) for ( 232 )Th, and 99.28 to 935.36 Bq kg(-1) (averaging 515.44 Bq kg(-1)) for ( 40 )K. The highest value of ( 238 )U was found in the soil samples obtained from an area close to the hot spring.
Chemical considerations for an updated National assessment of brackish groundwater resources
McMahon, Peter B.; Böhlke, John Karl; Dahm, Katharine; Parkhurst, David L.; Anning, David W.; Stanton, Jennifer S.
2016-01-01
Brackish groundwater (BGW) is increasingly used for water supplies where fresh water is scarce, but the distribution and availability of such resources have not been characterized at the national scale in the United States since the 1960s. Apart from its distribution and accessibility, BGW usability is a function of the chemical requirements of the intended use, chemical characteristics of the resource, and treatment options to make the resource compatible with the use. Here, we discuss relations between these three chemical factors using national-scale examples and local case studies. In a preliminary compilation of BGW data in the United States, five water types accounted for the major-ion composition of 70% of samples. PHREEQC calculations indicate that 57–77% of samples were oversaturated with respect to barite, calcite, or chalcedony. In the study, 5–14% of samples had concentrations of arsenic, fluoride, nitrate, or uranium that exceeded drinking-water standards. In case studies of the potential use of BGW for drinking water, irrigation, and hydraulic fracturing, PHREEQC simulations of a hypothetical treatment process resembling reverse osmosis (RO) showed that BGW had the potential to form various assemblages of mineral deposits (scale) during treatment that could adversely affect RO membranes. Speciation calculations showed that most boron in the irrigation example occurred as boric acid, which has relatively low removal efficiency by RO. Results of this preliminary study indicate that effective national or regional assessments of BGW resources should include geochemical characterizations that are guided in part by specific use and treatment requirements.
Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.
2006-01-01
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.
Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.
Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary
2005-10-17
A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.
Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho
Rattray, Gordon W.; Ginsbach, Michael L.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of solutes in the Mud Lake-Dubois area. Oxidation-reduction reactions are important influences on the chemistry of groundwater at Camas Meadows and the Camas National Wildlife Refuge. In addition, mixing of different groundwaters or surface water with groundwater appears to be an important physical process influencing groundwater geochemistry in much of the study area, and evaporation may be an important physical process influencing the groundwater geochemistry of the Camas National Wildlife Refuge. The mass-balance modeling results from this study provide an explanation of the natural geochemistry of groundwater in the ESRP aquifer northeast of the INL, and thus provide a starting point for evaluating the natural and anthropogenic geochemistry of groundwater at the INL.
Modeling low-temperature geochemical processes: Chapter 2
Nordstrom, D. Kirk; Campbell, Kate M.
2014-01-01
This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.
Richards, Laura A; Magnone, Daniel; Sovann, Chansopheaktra; Kong, Chivuth; Uhlemann, Sebastian; Kuras, Oliver; van Dongen, Bart E; Ballentine, Christopher J; Polya, David A
2017-07-15
Arsenic contamination of groundwaters in South and Southeast Asia is a major threat to public health. In order to better understand the geochemical controls on the mobility of arsenic in a heavily arsenic-affected aquifer in northern Kandal Province, Cambodia, key changes in inorganic aqueous geochemistry have been monitored at high vertical and lateral resolution along dominant groundwater flow paths along two distinct transects. The two transects are characterized by differing geochemical, hydrological and lithological conditions. Arsenic concentrations in groundwater are highly heterogenous, and are broadly positively associated with iron and negatively associated with sulfate and dissolved oxygen. The observed correlations are generally consistent with arsenic mobilization by reductive-dissolution of iron (hydr)oxides. Key redox zones, as identified using groupings of the PHREEQC model equilibrium electron activity of major redox couples (notably ammonium/nitrite; ammonium/nitrate; nitrite/nitrate; dissolved oxygen/water) have been identified and vary with depth, site and season. Mineral saturation is also characterized. Seasonal changes in groundwater chemistry were observed in areas which were (i) sandy and of high permeability; (ii) in close proximity to rivers; and/or (iii) in close proximity to ponds. Such changes are attributed to monsoonal-driven surface-groundwater interactions and are consistent with the separate provenance of recharge sources as identified using stable isotope mixing models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
André, Laurent; Christov, Christomir; Lassin, Arnault; Azaroual, Mohamed
2018-03-01
The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.
NASA Astrophysics Data System (ADS)
Slama, Fairouz; Bouhlila, Rachida
2017-11-01
Groundwater sampling and piezometric measurements were carried out along two flow paths (corresponding to two transects) in Korba coastal plain (Northeast of Tunisia). The study aims to identify hydrochemical processes occurring when seawater and freshwater mix. Those processes can be used as indicators of seawater intrusion progression and freshwater flushing into seawater accompanying Submarine Groundwater Discharge (SGD). Seawater fractions in the groundwater were calculated using the chloride concentration. Hierarchical cluster analysis (HCA) was applied to isolate wells potentially affected by seawater. In addition, PHREEQC was used to simulate the theoretical mixing between two end members: seawater and a fresh-brackish groundwater sample. Geochemical conventional diagrams showed that the groundwater chemistry is explained by a mixing process between two end members. Results also revealed the presence of other geochemical processes, correlated to the hydrodynamic flow paths. Direct cation exchange was linked to seawater intrusion, and reverse cation exchange was associated to the freshwater flushing into seawater. The presence of these processes indicated that seawater intrusion was in progress. An excess of Ca, that could not be explained by only cation exchange processes, was observed in both transects. Dedolomitization combined to gypsum leaching is the possible explanation of the groundwater Ca enrichment. Finally, redox processes were also found to contribute to the groundwater composition along flow paths.
NASA Astrophysics Data System (ADS)
Ledesma-Ruiz, Rogelio; Pastén-Zapata, Ernesto; Parra, Roberto; Harter, Thomas; Mahlknecht, Jürgen
2015-02-01
Zona Citrícola is an important area for Mexico due to its citriculture activity. Situated in a sub-humid to humid climate adjacent to the Sierra Madre Oriental, this valley hosts an aquifer system that represents sequences of shales, marls, conglomerates, and alluvial deposits. Groundwater flows from mountainous recharge areas to the basin-fill deposits and provides base flows to supply drinking water to the adjacent metropolitan area of Monterrey. Recent studies examining the groundwater quality of the study area urge the mitigation of groundwater pollution. The objective of this study was to characterize the physical and chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. Correlation was used to identify associations among various geochemical constituents. Factor analysis was applied to identify the water's chemical characteristics that were responsible for generating most of the variability within the dataset. Hierarchical cluster analysis was employed in combination with a post-hoc analysis of variance to partition the water samples into hydrochemical water groups: recharge waters (Ca-HCO3), transition zone waters (Ca-HCO3-SO4 to Ca-SO4-HCO3) and discharge waters (Ca-SO4). Inverse geochemical models of these groups were developed and constrained using PHREEQC to elucidate the chemical reactions controlling the water's chemistry between an initial (recharge) and final water. The primary reactions contributing to salinity were the following: (1) water-rock interactions, including the weathering of evaporitic rocks and dedolomitization; (2) dissolution of soil gas carbon dioxide; and (3) input from animal/human wastewater and manure in combination with by denitrification processes. Contributions from silicate weathering to salinity ranged from less important to insignificant. The findings suggest that it may not be cost-effective to regulate manure application to mitigate groundwater pollution.
CO2 outgassing in a combined fracture and conduit karst aquifer near lititz spring, Pennsylvania
Toran, L.; Roman, E.
2006-01-01
Lititz Spring in southeastern Pennsylvania and a nearby domestic well were sampled for 9 months. Although both locations are connected to conduits (as evidenced by a tracer test), most of the year they were saturated with respect to calcite, which is more typical of matrix flow. Geochemical modeling (PHREEQC) was used to explain this apparent paradox and to infer changes in matrix and conduit contribution to flow. The saturation index varied from 0.5 to 0 most of the year, with a few samples in springtime dropping below saturation. The log PCO2 value varied from -2.5 to -1.7. Lower log PCO2 values (closer to the atmospheric value of -3.5) were observed when the solutions were at or above saturation with respect to calcite. In contrast, samples collected in the springtime had high PCO2, low saturation indices, and high water levels. Geochemical modeling showed that when outgassing occurs from a water with initially high PCO2, the saturation index of calcite increases. In the Lititz Spring area, the recharge water travels through the soil zone, where it picks up CO2 from soil gas, and excess CO 2 subsequently is outgassed when this recharge water reaches the conduit. At times of high water level (pipe full), recharge with excess CO 2 enters the system but the outgassing does not occur. Instead the recharge causes dilution, reducing the calcite saturation index. Understanding the temporal and spatial variation in matrix and conduit flow in karst aquifers benefited here by geochemical modeling and calculation of PCO2 values. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.
2017-09-01
The geophysical evolution of many icy moons and dwarf planets seems to have provided opportunities for interaction between liquid water and rock (silicate and organic solids). Here, we explore two ways by which water-rock interaction can feed back on geophysical evolution: the production or consumption of antifreeze compounds, which affect the persistence and abundance of cold liquid; and the potential leaching into the fluid of lithophile radionuclides, affecting the distribution of a long-term heat source. We compile, validate, and use a numerical model, implemented with the PHREEQC code, of the interaction of chondritic rock with pure water and with C, N, S-bearing cometary fluid, thought to be the materials initially accreted by icy worlds, and describe the resulting equilibrium fluid and rock assemblages at temperatures, pressures, and water-to-rock ratios of 0-200 ° C, 1-1000 bar, and 0.1-10 by mass, respectively. Our findings suggest that water-rock interaction can strongly alter the nature and amount of antifreezes, resulting in solutions rich in reduced nitrogen and carbon, and sometimes dissolved H2, with additional sodium, calcium, chlorine, and/or oxidized carbon. Such fluids can remain partially liquid down to 176 K if NH3 is present. The prominence of Cl in solution seems to hinge on its primordial supply in ices, which is unconstrained by the meteoritical record. Equilibrium assemblages, rich in serpentine and saponite clays, retain thorium and uranium radionuclides unless U-Cl or U-HCO3 complexing, which was not modeled, significantly enhances U solubility. However, the radionuclide 40 K can be leached at high water:rock ratio and/or low temperature at which K is exchanged with ammonium in minerals. We recommend the inclusion of these effects in future models of the geophysical evolution of ocean-bearing icy worlds. Our simulation products match observations of chloride salts on Europa and Enceladus; CI chondrites mineralogies; the observation of serpentines, NH4-phyllosilicates, and carbonates on Ceres' surface; and of Na and NH4-carbonate and chloride in Ceres' bright spots. They also match results from previous modeling studies with similar assumptions, and systematically expand these results to heretofore unexplored physico-chemical conditions. This work involved the compilation and careful validation of a comprehensive PHREEQC database, which combines the advantages of the default databases phreeqc.dat (carefully vetted data, molar volumes) and llnl.dat (large diversity of species), and should be of broad use to anyone seeking to model aqueous geochemistry at pressures that differ from 1 bar with PHREEQC.
Impact of the volume of gaseous phase in closed reactors on ANC results and modelling
NASA Astrophysics Data System (ADS)
Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise
2016-04-01
The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.
Module-oriented modeling of reactive transport with HYTEC
NASA Astrophysics Data System (ADS)
van der Lee, Jan; De Windt, Laurent; Lagneau, Vincent; Goblet, Patrick
2003-04-01
The paper introduces HYTEC, a coupled reactive transport code currently used for groundwater pollution studies, safety assessment of nuclear waste disposals, geochemical studies and interpretation of laboratory column experiments. Based on a known permeability field, HYTEC evaluates the groundwater flow paths, and simulates the migration of mobile matter (ions, organics, colloids) subject to geochemical reactions. The code forms part of a module-oriented structure which facilitates maintenance and improves coding flexibility. In particular, using the geochemical module CHESS as a common denominator for several reactive transport models significantly facilitates the development of new geochemical features which become automatically available to all models. A first example shows how the model can be used to assess migration of uranium from a sub-surface source under the effect of an oxidation front. The model also accounts for alteration of hydrodynamic parameters (local porosity, permeability) due to precipitation and dissolution of mineral phases, which potentially modifies the migration properties in general. The second example illustrates this feature.
New insight into unstable hillslopes hydrology from hydrogeochemical modelling.
NASA Astrophysics Data System (ADS)
Bertrand, C.; Marc, V.; Malet, J.-P.
2010-05-01
In the black marl outcrops of the French South Alps, sub surface flow conditions are considered as the main triggering factor for initiation and reactivation of landslides. The problem is traditionally addressed in term of hydrological processes (how does percolation to the water table occur?) but in some cases the origin of water is also in question. Direct rainfall is generally assumed as the only water source for groundwater recharge in shallow hillslope aquifers. The bedrock is also supposed impervious and continuous. Yet the geological environment of the study area is very complex owing to the geological history of this alpine sector. The autochthonous callovo-oxfordian black marl bedrock is highly tectonized (Maquaire et al., 2003) and may be affected by large, possibly draining discontinuities. A deep water inflow at the slip surface may at least locally result in increase the pore pressure and decrease the effective shearing resistance of the landslide material. In the active slow-moving landslide of Super-Sauze (Malet and Maquaire, 2003), this question has been addressed using hydrochemical investigations. The groundwater was sampled during five field campaigns uniformly spread out over the year from a network of boreholes. Water chemistry data were completed by geochemical and mineralogical analyses of the marl material. The major hydro-geochemical processes over area proved (1) mixing processes, (2) pyrite alteration, (3) dissolution/precipitation of carbonates and (4) cations exchange (de Montety et al., 2007). A geochemical modelling was carried out using the model Phreeqc (Parkhurst and Appelo, version 2.15, 2008) to check how suitable was observed water chemistry with the reservoir characteristics. The modelling exercise was based on a kinetics approach of soil-water interactions. The model simulates the rock alteration by the dissolution of the primary minerals and the precipitation of new phases. Initial parameters were obtained from geochemical and mineralogical analyses or from the literature (kinetics constants). The simulations showed that pH, sulphate and calcium concentrations in groundwater could be reproduced from reasonable assumptions. However, the observed high concentrations in magnesium and sodium were not correctly simulated by the model. Furthermore, a particular anomaly in the Na+ concentration was observed in the most active part of the landslide. Lastly, isotopic investigation showed that groundwater 3H content in this sector was significantly lower than groundwater content in the other parts of the landslide and lower than the mean rainwater content. This result showed that the mean groundwater age in the active part was probably higher than elsewhere in the landslide. All these arguments led us to conclude that groundwater was locally recharged with saline waters from areas outside the watershed, coming up through the bedrock using major discontinuities. This assumption is in agreement with the geological context. de Montety, V., V. Marc, C. Emblanch, J.-P. Malet, C. Bertrand, O. Maquaire, and T. A. Bogaard, 2007, Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey.: Earth Surface Processes and Landforms, v. 32, p. 32-48. Malet, J.-P. and Maquaire, O., 2003. Black marl earthflows mobility and long-term seasonal dynamic in southeastern France. In: Picarelli, L. (Ed). Proceedings of the International Conference on Fast Slope Movements: Prediction and Prevention for Risk Mitigation. Patron Editore, Bologna: 333-340. Maquaire, O., Malet, J.-P., Remaître, A., Locat, J., Klotz, S. and Guillon, J., 2003. Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Bassin, South East France. Engineering Geology, 70(1-2): 109-130. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's guide to PHREEQC (version 2)--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 p.
GoPhast: a graphical user interface for PHAST
Winston, Richard B.
2006-01-01
GoPhast is a graphical user interface (GUI) for the USGS model PHAST. PHAST simulates multicomponent, reactive solute transport in three-dimensional, saturated, ground-water flow systems. PHAST can model both equilibrium and kinetic geochemical reactions. PHAST is derived from HST3D (flow and transport) and PHREEQC (geochemical calculations). The flow and transport calculations are restricted to constant fluid density and constant temperature. The complexity of the input required by PHAST makes manual construction of its input files tedious and error-prone. GoPhast streamlines the creation of the input file and helps reduce errors. GoPhast allows the user to define the spatial input for the PHAST flow and transport data file by drawing points, lines, or polygons on top, front, and side views of the model domain. These objects can have up to two associated formulas that define their extent perpendicular to the view plane, allowing the objects to be three-dimensional. Formulas are also used to specify the values of spatial data (data sets) both globally and for individual objects. Objects can be used to specify the values of data sets independent of the spatial and temporal discretization of the model. Thus, the grid and simulation periods for the model can be changed without respecifying spatial data pertaining to the hydrogeologic framework and boundary conditions. This report describes the operation of GoPhast and demonstrates its use with examples. GoPhast runs on Windows 2000, Windows XP, and Linux operating systems.
NASA Astrophysics Data System (ADS)
Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai
2007-12-01
Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).
NASA Astrophysics Data System (ADS)
Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe
2017-04-01
Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.
Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming
2017-01-01
AOD (argon oxygen decarburization) slag, which is the by-product of the stainless steel refining process, is a recyclable slag because of its high content of calcium and silicon. The leaching toxicity cannot be ignored in the recycling process because the slag contains a certain amount of Cr. In this study, the mineral analysis, batch leaching tests and thermodynamic and kinetic modeling by PHREEQC combined with FactSage software were performed to explore the influence of the dissolution of primary minerals and the precipitation of secondary minerals on the elution of Cr from AOD slag. The results indicated that the main minerals in the original AOD slag are larnite, merwinite, pyroxene and periclase. Cr was dispersed in the mineral phases mentioned above. The simulation of Cr leaching controlled by Cr(III)-hydroxide corresponded better to the batch leaching tests, while the Cr leaching controlled by chromite or double control was underestimated. Increasing the L/S ratio enhances the pH of the leachate and restrains the elution of Cr from the AOD slag. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface complexation modeling of americium sorption onto volcanic tuff.
Ding, M; Kelkar, S; Meijer, A
2014-10-01
Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.
Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-12-01
Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.
NASA Astrophysics Data System (ADS)
Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.
2015-12-01
Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.
Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.
2008-01-01
Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Owen, R.; Day, C. C.; Henderson, G. M.
2016-12-01
Speleothem palaeoclimate records are widely used but are often difficult to interpret due to the geochemical complexity of the soil-karst-cave system. Commonly analysed proxies (e.g. δ18O, δ13C and Mg/Ca) may be affected by multiple processes along the water flow path from atmospheric moisture source through to the cave drip site. Controls on speleothem chemistry include rainfall and aerosol chemistry, bedrock chemistry, temperature, soil pCO2, the degree of open-system dissolution and prior calcite precipitation. Disentangling the effects of these controls is necessary to fully interpret speleothem palaeoclimate records. To quantify the effects of these processes, we have developed an isotope-enabled numerical model based on the geochemical modelling software PHREEQC. The model calculates dripwater chemistry and isotopes through equilibrium bedrock dissolution and subsequent iterative CO2 degassing and calcite precipitation. This approach allows forward modelling of dripwater and speleothem proxies, both chemical (e.g. Ca concentration, pH, Mg/Ca and Sr/Ca ratios) and isotopic (e.g. δ18O, δ13C, δ44Ca and radiocarbon content), in a unified framework. Potential applications of this model are varied and the model may be readily expanded to include new isotope systems or processes. Here we focus on calculated proxy co-variation due to changes in model parameters. Examples include: - The increase in Ca concentration, decrease in δ13C and increase in radiocarbon content as bedrock dissolution becomes more open-system. - Covariation between δ13C, δ44Ca and trace metal proxies (e.g. Mg/Ca) predicted by changing prior calcite precipitation. - The effect of temperature change on all proxies through the soil-karst-cave system. Separating the impact of soil and karst processes on geochemical proxies allows more quantitative reconstruction of the past environment, and greater understanding in modern cave monitoring studies.
How the Geothermal Community Upped the Game for Computer Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.
Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong
2018-06-01
The geochemical model PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7 mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Haefner, Ralph J.
2002-01-01
An abandoned coal mine in eastern Ohio was reclaimed with 125 tons per acre of pressurized fluidized bed combustion (PFBC) by-product. Water quality at the site (known as the Fleming site) was monitored for 7 years after reclamation; samples included water from soil-suction lysimeters (interstitial water), wells, and spring sites established downgradient of the application area. This report presents a summary of data collected at the Fleming site during the period September 1994 through June 2001. Additionally, results of geochemical modeling are included in this report to evaluate the potential fate of elements derived from the PFBC by-product. Chemical analyses of samples of interstitial waters within the PFBC by-product application area indicated elevated levels of pH and specific conductance and elevated concentrations of boron, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate compared to water samples collected in a control area where traditional reclamation methods were used. Magnesium-to-calcium (Mg:Ca) mole ratios and sulfur-isotope ratios were used to trace the PFBC by-product leachate and showed that little, if any, leachate reached ground water. Concentrations of most constituents in interstitial waters in the application-area decreased during the seven sampling rounds and approached background concentrations observed in the control area; however, median pH in the application area remained above 6, indicating that some acid-neutralizing capacity was still present. Although notable changes in water quality were observed in interstitial waters during the study period, quality of ground water and spring water remained poor. Water from the Fleming site was not potable, given exceedances of primary and secondary Maximum Contaminant Levels (MCLs) for inorganic constituents in drinking water set by the U.S. Environmental Protection Agency. Only fluoride and sulfate, which were found in higher concentrations in application-area interstitial waters than in control-area interstitial waters, could be related to the PFBC by-product. Concentrations of arsenic, lead, and selenium typically were at or below the detection limits (generally 1 or 2 micrograms per liter). Elements detected at elevated concentrations in PFBC by-product application-area interstitial waters were not evident in downgradient ground water or spring water. Dilution of leachate by ground water was confirmed with a mixing model generated by the computer code NETPATH. Additionally, thermodynamic modeling of the chemical composition of water samples by use of the computer code PHREEQC indicated favorable conditions for precipitation of secondary minerals in the unsaturated zone and in aquifer materials. Because of low application rates of PFBC by-product and precipitation and sorption of elements in the unsaturated zone, it is improbable that concentrations of any toxic elements of concern (arsenic, lead, or selenium) will exceed drinking-water standards at this site or other sites where similar volumes of PFBC by-products are used.
Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.
2011-01-01
The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Arning, Esther T.; van Berk, Wolfgang; Schulz, Hans-Martin
2012-12-01
Early diagenetic processes in Peruvian shelf and slope sediments are numerically reproduced by applying chemical thermodynamics in a complex, universal approach using the PHREEQC (version 2) computer code. The reaction kinetics of organic carbon remineralization are integrated into a set of equilibrium reactions by defining the type and the amount of converted organic matter in a certain time step. We calculate the most intense remineralization of organic carbon for present-day shelf sites, and the final carbon pool is dominated by secondary carbonates. This serves to highlight the influence of organic matter degradation and anaerobic oxidation of methane (AOM) on diagenetic mineral formation. The enrichment of aqueous methane and the formation of methane hydrate only takes place in slope sediments with high sedimentation rates that prevent diffusive loss of methane (e.g., Sites 682 and 688). Moreover, AOM prevents the diffusion of dissolved methane into overlying seawater. Throughout the Miocene period, these sites were located on a former shelf and the total carbon loss from the sediments was significantly higher in comparison with the present-day. Compared with the present-day shelf site, organic matter remineralization is high, and methane is produced but not stored within the sediments. Our model calculations rule out the possibility of present-day and former shelf site sediments off the coast of Peru as methane reservoirs. Remineralized TOC has to be considered, particularly in older sediments, when interpreting TOC profiles and calculating mass accumulation rates of total organic carbon (MARTOC). The more organic matter has been remineralized during the depositional history, the larger the difference between MARTOC calculated from measured TOC data, and from the sum of modeled and measured TOC data. Consequently, most reliable primary productivity calculations are based on the sum of measured relict TOC and the amount of remineralized organic carbon determined by modeling.
NASA Astrophysics Data System (ADS)
Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.
2014-12-01
Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from Hessian Ried, an important groundwater resource for the densely populated Rhine-Main region in Germany.
How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?
NASA Astrophysics Data System (ADS)
Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György
2017-04-01
Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an unexpectedly high proportion of total amount of CO2. Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO2 mineral trapping process.
Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle
NASA Astrophysics Data System (ADS)
Neveu, M.; Desch, S. J.
2015-12-01
Ceres is a geophysical puzzle: observations with the Dawn spacecraft have revealed a seemingly old surface saturated with craters, and a shape close to that determined by [1] suggestive of a homogeneous, unevolved interior. These findings strongly contrast with pre-Dawn observations of products of aqueous alteration on Ceres' surface [2], and of water vapor emanating from Ceres [3], as well as with Dawn images of bright regions on the surface, all suggestive of past and ongoing geological activity. We present a model of Ceres' interior that may reconcile these observations. Following [4], we assume that Ceres accreted ice and chondritic rock (both micron-sized rock fines and millimeter-sized chondrules), and that micron-sized fines stayed suspended in liquid. We have carried out geophysical and thermal evolution simulations using a code modified from [5,6], whose outcomes suggest that aqueously altered grains were emplaced on Ceres' surface during the first tens of Myr of its evolution. We have also performed geochemical simulations using the PHREEQC code [7] of the interaction between pure liquid water and assemblages of chondritic elemental and mineral composition [8,9]. Their outcomes suggest that Ceres' unusual surface mineralogy is consistent with aqueous alteration at T ≥ 200oC. This requires an early ocean formed by heating from 26Al decay. Thermal evolution simulations, including insulating fines, yield present-day temperatures at the core-mantle boundary of 240-250 K, just warm enough for chloride brines to persist and be freezing today [10]. Ongoing freezing may over-pressurize brine pockets, driving cryovolcanic outflow whose surface expression may have been observed by Dawn at Ceres' 'bright spots'. These outflows may be contributing to the water vapor being produced at Ceres. [1] Drummond et al. (2014) Icarus 236, 28-37 [2] Milliken & Rivkin (2009) Nat. Geosc. 2, 258-261 [3] Küppers et al. (2014) Nature 505, 525-527 [4] Travis et al. (2015) 46th LPSC, abstract 2360 [5] Desch et al. (2009) Icarus 202, 694-714 [6] Neveu et al. (2015) JGR:Planets 120, 123-154 [7] Parkhurst & Appelo (2013) http://pubs.usgs.gov/tm/06/a43 [8] Wasson & Kallemeyn (1988) Proc. R. Soc. Lond. A 325, 535-544 [9] Howard et al. (2011) GCA 75, 2735-2751 [10] Barduhn & Manudhane (1979) Desalination 28, 233-241
Sequential analysis of hydrochemical data for watershed characterization.
Thyne, Geoffrey; Güler, Cüneyt; Poeter, Eileen
2004-01-01
A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.
Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions
Wong, C.I.; Mahler, B.J.; Musgrove, M.; Banner, J.L.
2012-01-01
Understanding the sources and processes that control groundwater compositions and the timing and magnitude of groundwater vulnerability to potential surface-water contamination under varying meteorologic conditions is critical to informing groundwater protection policies and practices. This is especially true in karst terrains, where infiltrating surface water can rapidly affect groundwater quality. We analyzed the evolution of groundwater compositions (major ions and Sr isotopes) during the transition from extreme drought to wetconditions, and used inverse geochemical modeling (PHREEQC) to constrain controls on groundwater compositions during this evolution. Spring water and groundwater from two wells dominantly receiving diffuse and conduit flow (termed diffuse site and conduit site, respectively) in the Barton Springs segment of the Edwards aquifer (central Texas, USA) and surface water from losing streams that recharge the aquifer were sampled every 3–4 weeks during November 2008–March 2010. During this period, water compositions at the spring and conduit sites changed rapidly but there was no change at the diffuse site, illustrating the dual nature (i.e., diffuse vs. conduit) of flow in this karst system. Geochemical modeling demonstrated that, within a month of the onset of wetconditions, the majority of spring water and groundwater at the conduit site was composed of surface water, providing quantitative information on the timing and magnitude of the vulnerability of groundwater to potential surface-water contamination. The temporal pattern of increasing spring discharge and changing pattern of covariation between spring discharge and surface-water (steam) recharge indicates that that there were two modes of aquifer response—one with a small amount of storage and a second that accommodates more storage.
Hejazian, Mehrdad; Gurdak, Jason J.; Swarzenski, Peter W.; Odigie, Kingsley; Storlazzi, Curt
2017-01-01
Freshwater resources on low-lying atoll islands are highly vulnerable to climate change and sea-level rise. In addition to rainwater catchment, groundwater in the freshwater lens is a critically important water resource on many atoll islands, especially during drought. Although many atolls have high annual rainfall rates, dense natural vegetation and high evapotranspiration rates can limit recharge to the freshwater lens. Here we evaluate the effects of land-use/land-cover change and managed aquifer recharge on the hydrogeochemistry and supply of groundwater on Roi-Namur Island, Republic of the Marshall Islands. Roi-Namur is an artificially conjoined island that has similar hydrogeology on the Roi and Namur lobes, but has contrasting land-use/land-cover and managed aquifer recharge only on Roi. Vegetation removal and managed aquifer recharge operations have resulted in an estimated 8.6 x 105 m3 of potable groundwater in the freshwater lens on Roi, compared to only 1.6 x 104 m3 on Namur. We use groundwater samples from a suite of 33 vertically nested monitoring wells, statistical testing, and geochemical modeling using PHREEQC to show that the differences in land-use/land-cover and managed aquifer recharge on Roi and Namur have a statistically significant effect on several groundwater-quality parameters and the controlling geochemical processes. Results also indicate a seven-fold reduction in the dissolution of carbonate rock in the freshwater lens and overlying vadose zone of Roi compared to Namur. Mixing of seawater and the freshwater lens is a more dominant hydrogeochemical process on Roi because of the greater recharge and flushing of the aquifer with freshwater as compared to Namur. In contrast, equilibrium processes and dissolution-precipitation non-equilibrium reactions are more dominant on Namur because of the longer residence times relative to the rate of geochemical reactions. Findings from Roi-Namur Island support selective land-use/land-cover change and managed aquifer recharge as a promising management approach for communities on other low-lying atoll islands to increase the resilience of their groundwater supplies and help them adapt to future climate change related stresses.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
NASA Astrophysics Data System (ADS)
McGuire, J. T.; Phanikumar, M. S.; Long, D. T.; Hyndman, D. W.
2003-12-01
Hydrogeological, microbiological, and geochemical processes operating in a shallow sandy aquifer contaminated by waste fuels and chlorinated solvents were integrated using high-resolution mechanistic models. A 3-D, transient, reactive transport model was developed to quantitatively describe coupled processes via thermodynamic and kinetic arguments. The model was created by linking the hydrodynamic model MODFLOW (McDonald and Harbaugh, 1988), with advection, dispersion and user defined kinetic reactions based on RT3D 2.0, (Clement and Jones, 1998) and geochemical model PHREEQC (Parkhurst and Appelo, 1999). This model, BGTK3D 2.0, describes 1) the biodegradation of organic matter based on the influence of transport processes on microbial growth, 2) the complex suite of biogeochemical reactions operating in the aquifer, and 3) sharp chemical gradients. Some key features of this model are an ability to incorporate realistic solid phases to test hypotheses regarding mineral-water interactions, and an ability to accurately describe small-scale biogeochemical cycling (cm variability) observed in the field without oscillations or excessive numerical damping. BGTK3D was used to test hypotheses regarding the evolution of redox chemistry in a contaminated aquifer. The conceptual model that terminal electron accepting processes (TEAPs) distribute themselves sequentially into redox zones down flow path in aqueous systems is often used to interpret how and at what rates organic compounds will be degraded in the environment. Geochemical and microbiological data collected from a mixed contaminant plume at the former Wurtsmith AFB in Oscoda, Michigan suggests that under steady-state, mature plume conditions, traditional redox zonation may not be a realistic model of the distribution of TEAPs and therefore may not be the best model to evaluate the potential degradation of organic compounds. Based on these data, a conceptual model of TEAP evolution in contaminated systems was established. This model proposes that during initial plume development terminal electron acceptors O2, Fe3+, NO3, and SO4, are consumed sequentially based on thermodynamic arguments until a balance between organic degradation rates and source inputs and thus a stable plume length can be achieved. Once this "mature" state has been achieved, distinct redox zones can no longer be sustained and methanogenesis will dominate except in portions of the aquifer impacted by recharge water and diffusion of TEAs from all sides. Under these conditions, TEAPs will not proceed sequentially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginn, Timothy R.; Weathers, Tess
Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less
Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew
2012-01-01
This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav
2013-11-01
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Markušovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation-equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 μg/L Cu, <0.1-0.3 μg/L Hg, 5.0-16 μg/L As, and 5.0-43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.
Hartman, M.D.; Baron, Jill S.; Ojima, D.S.
2007-01-01
Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.
Preliminary study of a potential CO2 reservoir area in Hungary
NASA Astrophysics Data System (ADS)
Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória
2014-05-01
Since the first international agreement in 1997 (the Kyoto Protocol) the reduction of greenhouse gas emission has a key role in the European Union's energy and climate change policy. Following the Directive 2009/31/EC we are experiencing a significant change in the Hungarian national activity. Since the harmonization procedure, which was completed in May 2012, the national regulation obligates the competent authority to collect and regularly update all geological complexes that are potential for CO2 geological storage. In Hungary the most abundant potential storage formations are mostly saline aquifers of the Great Hungarian Plain (SE-Hungary), with sandstone reservoir and clayey caprock. The Neogene basin of the Great Hungarian Plain was subsided and then filled by a prograding delta system from NW and NE during the Late Miocene, mostly in the Pannonian time. The most potential storage rock was formed as a fine-grained sandy turbidite interlayered by thin argillaceous beds in the deepest part of the basin. It has relatively high porosity, depth and more than 1000 m thickness. Providing a regional coverage for the sandy turbidite, a 400-500 m thick argillaceous succession was formed in the slope environment. The composition, thickness and low permeability is expected to make it a suitable, leakage-safe caprock of the storage system. This succession is underlain by argillaceous rocks that were formed in the basin, far from sediment input and overlain by interfingering siltstone, sandstone and claystone succession formed in delta and shoreline environments and in the alluvial plain. Core samples have been collected from the potential reservoir rock and its cap rock in the Great Hungarian Plain's succession. The water compositions of the studied depth were known from well-log database. Using the information, acquired from these archive documents, we have constructed input data for geochemical modeling in order to to study the effect of pCO2 injection in the potential CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.
NASA Astrophysics Data System (ADS)
Kim, Ji-Hyun; Kim, Kyoung-Ho; Thao, Nguyen Thi; Batsaikhan, Bayartungalag; Yun, Seong-Taek
2017-06-01
In this study, we evaluated the water quality status (especially, salinity problems) and hydrogeochemical processes of an alluvial aquifer in a floodplain of the Red River delta, Vietnam, based on the hydrochemical and isotopic data of groundwater samples (n = 23) from the Kien Xuong district of the Thai Binh province. Following the historical inundation by paleo-seawater during coastal progradation, the aquifer has been undergone progressive freshening and land reclamation to enable settlements and farming. The hydrochemical data of water samples showed a broad hydrochemical change, from Na-Cl through Na-HCO3 to Ca-HCO3 types, suggesting that groundwater was overall evolved through the freshening process accompanying cation exchange. The principal component analysis (PCA) of the hydrochemical data indicates the occurrence of three major hydrogeochemical processes occurring in an aquifer, namely: 1) progressive freshening of remaining paleo-seawater, 2) water-rock interaction (i.e., dissolution of silicates), and 3) redox process including sulfate reduction, as indicated by heavy sulfur and oxygen isotope compositions of sulfate. To quantitatively assess the hydrogeochemical processes, the end-member mixing analysis (EMMA) and the forward mixing modeling using PHREEQC code were conducted. The EMMA results show that the hydrochemical model with the two-dimensional mixing space composed of PC 1 and PC 2 best explains the mixing in the study area; therefore, we consider that the groundwater chemistry mainly evolved by mixing among three end-members (i.e., paleo-seawater, infiltrating rain, and the K-rich groundwater). The distinct depletion of sulfate in groundwater, likely due to bacterial sulfate reduction, can also be explained by EMMA. The evaluation of mass balances using geochemical modeling supports the explanation that the freshening process accompanying direct cation exchange occurs through mixing among three end-members involving the K-rich groundwater. This study shows that the multiple end-members mixing model is useful to more successfully assess complex hydrogeochemical processes occurring in a salinized aquifer under freshening, as compared to the conventional interpretation using the theoretical mixing line based on only two end-members (i.e., seawater and rainwater).
Coulombic interactions during advection-dominated transport of ions in porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo
2017-04-01
Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport problem with the geochemical code PHREEQC has been developed and used to quantitatively interpret the experimental results. References [1] Rolle M., Muniruzzaman M., Haberer C.M. and P. Grathwohl (2013). Geochim. Cosmochim. Acta 120, 195-205. [2] Muniruzzaman M., Haberer C.M., Grathwohl P. and M. Rolle (2014). Geochim. Cosmochim. Acta 141, 656-669. [3] Muniruzzaman M. and M. Rolle (2017). Water Resour. Res. (in press). [4] Muniruzzaman M. and M. Rolle (2016). Adv. Water Resour. 98, 1-15.
NASA Astrophysics Data System (ADS)
Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto
2016-04-01
One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the characterization of both aquifers and the comprehension of the interaction between the shallow one and deep one. The first results of geochemical and hydrological analyses in nine piezometer, seven in the shallow aquifer and two in the deep one, permit to identify a general characterization of groundwater: the waters of both the aquifers are calcium bicarbonate, with discontinuous enrichment in sulphate and silicate. The conductibility values are higher in the shallow aquifer then in the deep aquifer, this is an indication of the high flow rate of the deep one and of the higher level of vulnerability of the shallow water respect the urban pollutant. Particular is also the relatively high temperature for the deep water (15.5°C to 16.1°C). The next steps of work are an increase of geochemical analysis, with trace element, and the correlation with hydro-chemical surface water.
Walton-Day, Katherine; Mills, Taylor J.
2015-01-01
The Dinero mine drainage tunnel is an abandoned, draining mine adit near Leadville, Colorado, that has an adverse effect on downstream water quality and aquatic life. In 2009, a bulkhead was constructed (creating a mine pool and increasing water-table elevations behind the tunnel) to limit drainage from the tunnel and improve downstream water quality. The goal of this study was to document changes to hydrology and water quality resulting from bulkhead emplacement, and to understand post-bulkhead changes in source water and geochemical processes that control mine-tunnel discharge and water quality. Comparison of pre-and post-bulkhead hydrology and water quality indicated that tunnel discharge and zinc and manganese loads decreased by up to 97 percent at the portal of Dinero tunnel and at two downstream sites (LF-537 and LF-580). However, some water-quality problems persisted at LF-537 and LF-580 during high-flow events and years, indicating the effects of the remaining mine waste in the area. In contrast, post-bulkhead water quality degraded at three upstream stream sites and a draining mine tunnel (Nelson tunnel). Water-quality degradation in the streams likely occurred from increased contributions of mine-pool groundwater to the streams. In contrast, water-quality degradation in the Nelson tunnel was likely from flow of mine-pool water along a vein that connects the Nelson tunnel to mine workings behind the Dinero tunnel bulkhead. Principal components analysis, mixing analysis, and inverse geochemical modeling using PHREEQC indicated that mixing and geochemical reactions (carbonate dissolution during acid weathering, precipitation of goethite and birnessite, and sorption of zinc) between three end-member water types generally explain the pre-and post-bulkhead water composition at the Dinero and Nelson tunnels. The three end members were (1) a relatively dilute groundwater having low sulfate and trace element concentrations; (2) mine pool water, and (3) water that flowed from a structure in front of the bulkhead after bulkhead emplacement. Both (2) and (3) had high sulfate and trace element concentrations. These results indicate how analysis of monitoring information can be used to understand hydrogeochemical changes resulting from bulkhead emplacement. This understanding, in turn, can help inform future decisions on the disposition of the remaining mine waste and water-quality problems in the area.
Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada
Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R.
2005-01-01
An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water sources in the area ranged from 0.27 to 742 ??g/l. Ground water in which W concentrations exceed 50 ??g/l principally occurs SE of Fallon in a geothermal area. The principal sources of W in ground water are natural and include erosion of W-bearing mineral deposits in the Carson River watershed upstream of Fallon, and, possibly, upwelling geothermal waters. Ground water in the Fallon area is strongly reducing and reductive dissolution of Fe and Mn oxyhydroxides may be releasing W; however, direct evidence that the metal oxides contain W is not available. Although W and Cl concentrations in the Carson River, a lake, and water from many wells, appear to be controlled by evaporative concentration, evaporation alone cannot explain the elevated W concentrations found in water from some of the wells. Concentrations of W exceeding 50 ??g/l are exclusively associated with Na-HCO3 and Na-Cl water types and pH > 8.0; in these waters, geochemical modeling indicates that W exhibits <10% adsorption. Tungsten concentrations are strongly and positively correlated with As, B, F, and P, indicating either common sources or common processes controlling their concentrations. Geochemical modeling indicates W concentrations are consistent with pH-controlled adsorption of W. The geochemical model PHREEQC was used to calculate IAP values, which were compared with published Ksp values for primary W minerals. FeWO4, MnWO4, Na2WO4, and MgWO4 were undersaturated and CaWO4 and SrWO 4 were approaching saturation. These conclusions are tentative because of uncertainty in the thermodynamic data. The similar behavior of As and W observed in this study suggests ground water in areas where elevated As concentrations are present also may contain elevated W concentrations, particularly if there is a mineral or geothermal source of W and reducing conditions develop in the aquifer.
Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Elskens, Marc; Phrommavanh, Vannapha; Descostes, Michael
2016-03-24
The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 μm, 0.2 μm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool. Copyright © 2016 Elsevier B.V. All rights reserved.
A modeling study of the long-term mineral trapping in deep saline marine sands aquifers (Invited)
NASA Astrophysics Data System (ADS)
Aagaard, P.; Pham, V.; Hellevang, H.
2009-12-01
Simulation of geochemical processes due to CO2 injection and storage are dependent on sediment petrography and the kinetics of mineral fluid reactions. Mineral trapping of CO2 in the Utsira sand and similar marine sand reservoirs have been revisited based on critical review of rate data and geochemical constraints on formation waters. Reaction paths calculations were done with the PHREEQC modeling software at relevant reservoir conditions covering a temperature range of 30-100 °C and corresponding reservoir pressures. Initial CO2 saturation was determined by the fluid fugacity corresponding with reservoir conditions. The mineral dissolution kinetics was expressed with a chemical affinity term (Aagaard & Helgeson,1982) while a critical super-saturation for mineral growth was included in the precipitation rate expression. The redox conditions and the H2S fugacity in the simulations were constrained by the acetic/propionic acid buffer trend and the magnetite-pyrite buffer (Aagaard et al. 2001) respectively. We used a revised mineralogical composition for the Utsira sand also performed a sensitivity analyses with respect to mineral content. The simulations were run over a period of 10000 years. The main simulation results included dissolution of glauconite, smectite, pyrite, muscovite and albite, with precipitation of the carbonates siderite, ankerite, and minor dawsonite, as well as kaolinite, silica (either chalcedony or quartz), and K-feldspar. The uncertainties in the simulations are specially connected with initial mineral abundances. The effect of critical super-saturation and reactive surface area for precipitation needs to be further evaluated and tested. Aagaard, P. and H.C. Helgeson (1982). Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions. I. Theoretical Considerations. Am. J. Sci., v. 282, p. 257-285. P. Aagaard, J. Jahren & S.N. Ehrenberg (2001) H2S controling reactions in clastic hydrocarbon reservoirs from the Norwegian Shelf and Gulf Coast, in Cidu, R.(ed) Water-Rock Interaction, WRI-10, Balkema, p. 129-132.
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
NASA Astrophysics Data System (ADS)
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.
2009-12-01
Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
NASA Astrophysics Data System (ADS)
Burghardt, D.; Simon, E.; Knöller, K.; Kassahun, A.
2007-12-01
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in Eh, a pH increase and H 2 evolution. Decreasing sulphate concentrations and 34S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.
Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.
2014-01-01
Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng–Robinson equations are readily available in the literature.The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.
NASA Astrophysics Data System (ADS)
Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.
2014-01-01
Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng-Robinson equations are readily available in the literature. The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.
Modeling Low-temperature Geochemical Processes
NASA Astrophysics Data System (ADS)
Nordstrom, D. K.
2003-12-01
Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for modeling groundwater chemistry: (i) "forward modeling," which predicts water compositions from hypothesized reactions and user assumptions and (ii) "inverse modeling," which uses water, mineral, and isotopic compositions to constrain hypothesized reactions. These approaches simply reflect the amount of information one has to work with. With minimal information on a site, a modeler is forced to rely on forward modeling. Optimal information would include detailed mineralogy on drill cores or well cuttings combined with detailed water analyses at varying depths and sufficient spatial distribution to follow geochemical reactions and mixing of waters along defined flow paths. With optimal information, a modeler will depend on inverse modeling.This chapter outlines the main concepts and key developments in the field of geochemical modeling for low-temperature environments and illustrates their use with examples. It proceeds with a short discussion of what modeling is, continues with concepts and definitions commonly used, and follows with a short history of geochemical models, a discussion of databases, the codes that embody models, and recent examples of how these codes have been used in water-rock interactions. An important new stage of development seems to have been reached in this field with questions of reliability and validity of models. Future work will be obligated to document ranges of certainty and sources of uncertainty, sensitivity of models and codes to parameter errors and assumptions, propagation of errors, and delineation of the range of applicability.
NASA Astrophysics Data System (ADS)
Nyenje, P. M.; Havik, J. C. N.; Foppen, J. W.; Muwanga, A.; Kulabako, R.
2014-08-01
We hypothesized that wastewater leaching from on-site sanitation systems to alluvial aquifers underlying informal settlements (or slums) may end up contributing to high nutrient loads to surface water upon groundwater exfiltration. Hence, we conducted a hydro-geochemical study in a shallow sandy aquifer in Bwaise III parish, an urban slum area in Kampala, Uganda, to assess the geochemical processes controlling the transport and fate of dissolved nutrients (NO3, NH4 and PO4) released from on-site sanitation systems to groundwater. Groundwater was collected from 26 observation wells. The samples were analyzed for major ions (Ca, Mg, Na, Mg, Fe, Mn, Cl and SO4) and nutrients (o-PO4, NO3 and NH4). Data was also collected on soil characteristics, aquifer conductivity and hydraulic heads. Geochemical modeling using PHREEQC was used to determine the level of o-PO4 control by mineral solubility and sorption. Groundwater below the slum area was anoxic and had near neutral pH values, high values of EC (average of 1619 μS/cm) and high concentrations of Cl (3.2 mmol/L), HCO3 (11 mmol/L) and nutrients indicating the influence from wastewater leachates especially from pit latrines. Nutrients were predominantly present as NH4 (1-3 mmol/L; average of 2.23 mmol/L). The concentrations of NO3 and o-PO4 were, however, low: average of 0.2 mmol/L and 6 μmol/L respectively. We observed a contaminant plume along the direction of groundwater flow (NE-SW) characterized by decreasing values of EC and Cl, and distinct redox zones. The redox zones transited from NO3-reducing in upper flow areas to Fe-reducing in the lower flow areas. Consequently, the concentrations of NO3 decreased downgradient of the flow path due to denitrification. Ammonium leached directly into the alluvial aquifer was also partially removed because the measured concentrations were less than the potential input from pit latrines (3.2 mmol/L). We attributed this removal (about 30%) to anaerobic ammonium oxidation (anammox) given that the cation exchange capacity of the aquifer was low (< 6 meq/100 g) to effectively adsorb NH4. Phosphate transport was, on the other hand, greatly retarded and our results showed that this was due to the adsorption of P to calcite and the co-precipitation of P with calcite and rhodochrosite. Our findings suggest that shallow alluvial sandy aquifers underlying urban slum areas are an important sink of excessive nutrients leaching from on-site sanitation systems.
OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads
NASA Astrophysics Data System (ADS)
Kosakowski, G.; Kulik, D. A.; Shao, H.
2012-04-01
OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite element nodes with calls to GEMS3K and consecutive calculations of changed material parameters. In a first step the existing MPI implementation was utilized to parallelize this loop. Calculations were split between the MPI processes and afterwards data was synchronized by using MPI communication routines. Furthermore, multi-threaded calculation of the loop was implemented with help of the boost thread library (http://www.boost.org). This implementation provides a flexible environment to distribute calculations between several threads. For each MPI process at least one and up to several dozens of worker threads are spawned. These threads do not replicate the complete OGS-GEM data structure and use only a limited amount of memory. Calculation of the central geochemical loop is shared between all threads. Synchronization between the threads is done by barrier commands. The overall number of local threads times MPI processes should match the number of available computing nodes. The combination of multi-threading and MPI provides an effective and flexible environment to speed up OGS-GEMS calculations while limiting the required memory use. Test calculations on different hardware show that for certain types of applications tremendous speedups are possible.
NASA Astrophysics Data System (ADS)
Pandey, S.; Rajaram, H.
2015-12-01
This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.
Ball, J.W.; Nordstrom, D. Kirk; Zachmann, D.W.
1987-01-01
A FORTRAN 77 version of the PL/1 computer program for the geochemical model WATEQ2, which computes major and trace element speciation and mineral saturation for natural waters has been developed. The code (WATEQ4F) has been adapted to execute on an IBM PC or compatible microcomputer. Two versions of the code are available, one operating with IBM Professional FORTRAN and an 8087 or 89287 numeric coprocessor, and one which operates without a numeric coprocessor using Microsoft FORTRAN 77. The calculation procedure is identical to WATEQ2, which has been installed on many mainframes and minicomputers. Limited data base revisions include the addition of the following ions: AlHS04(++), BaS04, CaHS04(++), FeHS04(++), NaF, SrC03, and SrHCO3(+). This report provides the reactions and references for the data base revisions, instructions for program operation, and an explanation of the input and output files. Attachments contain sample output from three water analyses used as test cases and the complete FORTRAN source listing. U.S. Geological Survey geochemical simulation program PHREEQE and mass balance program BALANCE also have been adapted to execute on an IBM PC or compatible microcomputer with a numeric coprocessor and the IBM Professional FORTRAN compiler. (Author 's abstract)
Naval Research Laboratory Arctic Initiatives
2011-06-01
Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial
NASA Astrophysics Data System (ADS)
Azaroual, M. M.; Parmentier, M.; Andre, L.; Croiset, N.; Pettenati, M.; Kremer, S.
2010-12-01
Microbial processes interact closely with abiotic geochemical reactions and mineralogical transformations in several hydrogeochemical systems. Reactive transport models are aimed to analyze these complex mechanisms integrating as well as the degradation of organic matter as the redox reactions involving successive terminal electron acceptors (TEAPs) mediated by microbes through the continuum of unsaturated zone (soil) - saturated zone (aquifer). The involvement of microbial processes in reactive transport in soil and subsurface geologic greatly complicates the mastery of the major mechanisms and the numerical modelling of these systems. The introduction of kinetic constraints of redox reactions in aqueous phase requires the decoupling of equilibrium reactions and the redefinition of mass balance of chemical elements including the concept of basis species and secondary species of thermodynamic databases used in geochemical modelling tools. An integrated methodology for modelling the reactive transport has been developed and implemented to simulate the transfer of arsenic, denitrification processes and the role of metastable aqueous sulfur species with pyrite and organic matter as electron donors entities. A mechanistic rate law of microbial respiration in various geochemical environments was used to simulate reactive transport of arsenic, nitrate and organic matter combined to the generalized rate law of mineral dissolution - precipitation reactions derived from the transition state theory was used for dissolution - precipitation of silica, aluminosilicate, carbonate, oxyhydroxide, and sulphide minerals. The kinetic parameters are compiled from the literature measurements based on laboratory constrained experiments and field observations. Numerical simulations, using the geochemical software PHREEQC, were performed aiming to identify the key reactions mediated by microbes in the framework of in the first hand the concept of the unsaturated - saturated zones of an artificial recharge of deep aquifers system and in a second hand an acid mine drainage system. A large amount of data is available on the old mine site of Cheni (France). This field data on acid mine drainage are compared to a thermokinetic model including biological kinetics, precipitation-dissolution kinetics and surface complexation on ferrihydrite. The kinetic parameters are from literature and from a fitting on batch biological experiments. The integrated approach combining reaction kinetics and biogeochemical thermodynamic constraints is successfully applied to denitrification experiments in the presence of acetate and pyrite conducted in the laboratory for batch and column systems. The powerful of this coupled approach allows a fine description of the different transition species from nitrate to nitrogen. The fitted kinetic parameters established for modelling these laboratory results are thus extended to simulate the denitrification processes in a field case where organic matter and pyrite FeS2 are the electron donors and O2, NO3, Fe(OH)3, SO4 are the electron acceptors in the framework of a continuum UZ - SZ aiming to identify the stabilized redox zones of acid mine drainage. The detailed results obtained on two actual case studies will be presented.
NASA Astrophysics Data System (ADS)
Driba, D. L.; De Lucia, M.; Peiffer, S.
2014-12-01
Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in this simulation reveals that, porosity and permeability near the wellbore are enhanced after injection. This is chiefly due to the dissolution of calcite near the injection well and less extent by dolomite The porosity is improved by more than 14% at the injection well, but then decreases away from the well.
Ranalli, Anthony J.; Yager, Douglas B.
2016-01-01
This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3− + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.
Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald
2016-01-01
Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magu, M. M.; Govender, P. P.; Ngila, J. C.
2016-04-01
Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.
Assessment of the hazard posed by metal forms in water and sediments.
Wojtkowska, Małgorzata; Bogacki, Jan; Witeska, Anna
2016-05-01
This study aimed to describe the prevalence heavy metals (Zn, Cu, Pb, and Cd) forms in the ecosystem of the Utrata river in order to determine the mobile forms and bioavailability of metals. To extract the dissolved forms of metals in the water of the Utrata PHREEQC2 geochemical speciation model was used. The river waters show a high percentage of mobile and eco-toxic forms of Zn, Cu and Pb. The percentage of carbonate forms for all the studied metals was low (<1%). The content of carbonates in the water and the prevailing physical and chemical conditions (pH, hardness, alkalinity) reduce the share of toxic metal forms, which precipitate as hardly soluble carbonate salts of Zn, Cu, Cd and Pb. Cu in the water in 90% of cases appeared in the form of hydroxyl compounds. To identify the forms of metal occurrence in the sediments Tessier's sequential extraction was used, allowing to assay bound metals in five fractions (ion exchange, carbonate, adsorption, organic, residual), whose nature and bioavailability varies in aquatic environments. The study has shown a large share of metals in labile and bioavailable forms. The speciation analysis revealed an absolute dominance of the organic fraction in the binding of Cu and Pb. Potent affinity for this fraction was also exhibited by Cd. The rations of exchangeable Zn and Cu forms in the sediments were similar. Both these metals had the lowest share in the most mobile ion exchange fraction. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin
2016-07-01
The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia, ODP Leg 175, Site 1082. The application demonstrates that the modelling platform PEaCH4 v.2.0 provides a user-friendly, but complex scientific tool that delivers retraceable information about early diagenetic processes and products in marine sediments.
Reactive transport modeling in fractured rock: A state-of-the-science review
NASA Astrophysics Data System (ADS)
MacQuarrie, Kerry T. B.; Mayer, K. Ulrich
2005-10-01
The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.
COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS
BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...
Palandri, James L.; Kharaka, Yousif K.
2004-01-01
Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.
Data collection handbook to support modeling the impacts of radioactive material in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; Cheng, J.J.; Jones, L.G.
1993-04-01
A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.
NETPATH-WIN: an interactive user version of the mass-balance model, NETPATH
El-Kadi, A. I.; Plummer, Niel; Aggarwal, P.
2011-01-01
NETPATH-WIN is an interactive user version of NETPATH, an inverse geochemical modeling code used to find mass-balance reaction models that are consistent with the observed chemical and isotopic composition of waters from aquatic systems. NETPATH-WIN was constructed to migrate NETPATH applications into the Microsoft WINDOWS® environment. The new version facilitates model utilization by eliminating difficulties in data preparation and results analysis of the DOS version of NETPATH, while preserving all of the capabilities of the original version. Through example applications, the note describes some of the features of NETPATH-WIN as applied to adjustment of radiocarbon data for geochemical reactions in groundwater systems.
Nyenje, P M; Havik, J C N; Foppen, J W; Muwanga, A; Kulabako, R
2014-08-01
We hypothesized that wastewater leaching from on-site sanitation systems to alluvial aquifers underlying informal settlements (or slums) may end up contributing to high nutrient loads to surface water upon groundwater exfiltration. Hence, we conducted a hydro-geochemical study in a shallow sandy aquifer in Bwaise III parish, an urban slum area in Kampala, Uganda, to assess the geochemical processes controlling the transport and fate of dissolved nutrients (NO3, NH4 and PO4) released from on-site sanitation systems to groundwater. Groundwater was collected from 26 observation wells. The samples were analyzed for major ions (Ca, Mg, Na, Mg, Fe, Mn, Cl and SO4) and nutrients (o-PO4, NO3 and NH4). Data was also collected on soil characteristics, aquifer conductivity and hydraulic heads. Geochemical modeling using PHREEQC was used to determine the level of o-PO4 control by mineral solubility and sorption. Groundwater below the slum area was anoxic and had near neutral pH values, high values of EC (average of 1619μS/cm) and high concentrations of Cl (3.2mmol/L), HCO3 (11mmol/L) and nutrients indicating the influence from wastewater leachates especially from pit latrines. Nutrients were predominantly present as NH4 (1-3mmol/L; average of 2.23mmol/L). The concentrations of NO3 and o-PO4 were, however, low: average of 0.2mmol/L and 6μmol/L respectively. We observed a contaminant plume along the direction of groundwater flow (NE-SW) characterized by decreasing values of EC and Cl, and distinct redox zones. The redox zones transited from NO3-reducing in upper flow areas to Fe-reducing in the lower flow areas. Consequently, the concentrations of NO3 decreased downgradient of the flow path due to denitrification. Ammonium leached directly into the alluvial aquifer was also partially removed because the measured concentrations were less than the potential input from pit latrines (3.2mmol/L). We attributed this removal (about 30%) to anaerobic ammonium oxidation (anammox) given that the cation exchange capacity of the aquifer was low (<6meq/100g) to effectively adsorb NH4. Phosphate transport was, on the other hand, greatly retarded and our results showed that this was due to the adsorption of P to calcite and the co-precipitation of P with calcite and rhodochrosite. Our findings suggest that shallow alluvial sandy aquifers underlying urban slum areas are an important sink of excessive nutrients leaching from on-site sanitation systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Papazotos, Panagiotis; Koumantakis, Ioannis; Kallioras, Andreas; Vasileiou, Eleni; Perraki, Maria
2017-04-01
Determining the hydrogeochemical processes has always been a challenge for scientists. The aim of this work is the study of the principal hydrogeochemical processes controlling groundwater quality in the Marathon coastal plain, Greece, with emphasis on the origin of the solutes. Various physicochemical parameters and major ions of twenty-five groundwater samples were analyzed. The hydrogeochemical data of groundwater were studied in order to determine the major factors controlling the chemical composition and hydrogeochemical evolution. In the Marathon coastal plain, three different zones of the alluvial granular aquifer system have been detected, considering the geochemical processes and recharge, which affect its hydrochemical characteristics. The alluvial granular aquifer system is divided eastwards into three zones: a) the natural recharge zone, b) the reverse ion exchange zone and c) the diffusion sea water zone. Cl-is the dominant anion and Na+and Ca2+ are the dominant cations, as determined by plotting the analyses on the respective Piper diagram. Near the coastline high concentrations of Na+ and Cl- were observed indicating a zone of seawater intrusion. On the other hand, westward there is increasing concentration of HCO3- with simultaneous decrease of Na+is indication of a recharge zone from karstic aquifers of the study area. Between the aforementioned zones there is an intermediate one, where reverse ion exchange takes place due to high concentrations of dissolved Na+ and Ca2+ adsorption. The saturation indices (SI) were calculated using the geochemical modeling software PHREEQC. Mineral phases of halite, sylvite, gypsum and anhydrite were estimated to be undersaturated in the water samples, suggesting these phases are minor or absent in the host rock. On the other hand, calcite, aragonite and dolomite are close to equilibrium; these minerals are present in the host rocks or in the unsaturated zone, possibly increasing the Ca2+, Mg2+ and HCO3- concentrations when carbonates are dissolved. The analyses of the bivariate scatter plots, the ionic ratios, the Indices of Base Exchange (IBE), the Gibbs diagram and the dissolution/precipitation reactions show that evaporation and water-rock interaction mechanisms such as dissolution of carbonates, followed by reverse ion exchange, have affected the groundwater chemistry in the study area. The results revealed that groundwater chemistry and therefore the origin of the solutes in the coastal alluvial granular aquifer system of the Marathon coastal plain is primarily affected by a number of factors such as groundwater and mineral equilibrium, seawater intrusion, reverse ion exchange and nitrate concentration. A possible future research could focus on the interaction among hydrogeochemistry, mineral phases and chemical thermodynamic modeling.
NASA Astrophysics Data System (ADS)
O'Connell, M. T.; Macko, S. A.
2017-12-01
Reactive modeling of sources and processes affecting the concentration of NO3- and NH4+ in natural and anthropogenically influenced surface water can reveal unexpected characteristics of the systems. A distributed hydrologic model, TREX, is presented that provides opportunities to study multiscale effects of nitrogen inputs, outputs, and changes. The model is adapted to run on parallel computing architecture and includes the geochemical reaction module PhreeqcRM, which enables calculation of δ15N and δ18O from biologically mediated transformation reactions in addition to mixing and equilibration. Management practices intended to attenuate nitrate in surface and subsurface waters, in particular the establishment of riparian buffer zones, are variably effective due to spatial heterogeneity of soils and preferential flow through buffers. Accounting for this heterogeneity in a fully distributed biogeochemical model allows for more efficient planning and management practices. Highly sensitive areas within a watershed can be identified based on a number of spatially variable parameters, and by varying those parameters systematically to determine conditions under which those areas are under more or less critical stress. Responses can be predicted at various scales to stimuli ranging from local changes in cropping regimes to global shifts in climate. This work presents simulations of conditions showing low antecedent nitrogen retention versus significant contribution of old nitrate. Nitrogen sources are partitioned using dual isotope ratios and temporally varying concentrations. In these two scenarios, we can evaluate the efficiency of source identification based on spatially explicit information, and model effects of increasing urban land use on N biogeochemical cycling.
NASA Astrophysics Data System (ADS)
Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.
2004-12-01
Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.
User’s guide for GcClust—An R package for clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.
2016-04-08
GcClust is a software package developed by the U.S. Geological Survey for statistical clustering of regional geochemical data, and similar data such as regional mineralogical data. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of the user’s guide are bundled together in R’s unit of sharable code, which is called a “package.” The user’s guide includes step-by-step instructions showing how the functions are used to cluster data and to evaluate the clustering results. These functions are demonstrated in this report using test data, which are included in the package.
NASA Astrophysics Data System (ADS)
Jacques, Diederik
2017-04-01
As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different environmental and geo-engineering applications. SeSBench will organize new workshops to add new benchmarks in a new special issue. Steefel, C. I., et al. (2015). "Reactive transport codes for subsurface environmental simulation." Computational Geosciences 19: 445-478.
Van Praagh, M; Persson, K M
2008-08-01
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, T.J.
1992-09-14
EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.
2007-12-01
This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.
NASA Astrophysics Data System (ADS)
Chae, Gi-Tak; Yun, Seong-Taek; Kim, Kangjoo; Mayer, Bernhard
2006-04-01
The Pocheon spa-land area, South Korea occurs in a topographically steep, fault-bounded basin and is characterized by a hydraulic upwelling flow zone of thermal water (up to 44 °C) in its central part. Hydrogeochemical and environmental isotope data for groundwater in the study area suggested the occurrence of two distinct water types, a Ca-HCO 3 type and a Na-HCO 3 type. The former water type is characterized by relatively high concentrations of Ca, SO 4 and NO 3, which show significant temporal variation indicating a strong influence by surface processes. In contrast, the Na-HCO 3 type waters have high and temporally constant temperature, pH, TDS, Na, Cl, HCO 3 and F, indicating the attainment of a chemical steady state with respect to the host rocks (granite and gneiss). Oxygen, hydrogen and tritium isotope data also indicate the differences in hydrologic conditions between the two groups: the relatively lower δ 18O, δD and tritium values for Na-HCO 3 type waters suggest that they recharged at higher elevations and have comparatively long mean residence times. Considering the geologic and hydrogeologic conditions of the study area, Na-HCO 3 type waters possibly have evolved from Ca-HCO 3 type waters. Mass balance modeling revealed that the chemistry of Na-HCO 3 type water was regulated by dissolution of silicates and carbonates and concurrent ion exchange. Particularly, low Ca concentrations in Na-HCO 3 water was mainly caused by cation exchange. Multivariate mixing and mass balance modeling (M3 modeling) was performed to evaluate the hydrologic mixing and mass transfer between discrete water masses occurring in the shallow peripheral part of the central spa-land area, where hydraulic upwelling occurs. Based on Q-mode factor analysis and mixing modeling using PHREEQC, an ideal mixing among three major water masses (surface water, shallow groundwater of Ca-HCO 3 type, deep groundwater of Na-HCO 3 type) was proposed. M3 modeling suggests that all the groundwaters in the spa area can be described as mixtures of these end-members. After mixing, the net mole transfer by geochemical reaction was less than that without mixing. Therefore, it is likely that in the hydraulic mixing zone geochemical reactions are of minor importance and, therefore, that mixing regulates the groundwater geochemistry.
Quantity and quality of groundwater discharge in a hypersaline lake environment
Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.
2014-01-01
Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area indicates that under chemically reducing conditions, arsenic- (As) bearing minerals could dissolve while Se-bearing minerals will likely precipitate out of solution, possibly explaining why the shallow groundwater below and within the mirabilite salt layer contains low concentrations of Se (0.9–2.3 μg/L).
Hydrochemical study of an arsenic-contaminated plain in Guandu, north Taiwan
NASA Astrophysics Data System (ADS)
Hsiao, Yu-Hsiang
2015-04-01
Arsenic pollution in Guandu Plain, north Taiwan is a critical issue due to highly developed anthropogenic activities. It was considered that arsenic was carried in by surface water system. Two major rivers, Huanggang Creek and South Huang Greek, flow through Guandu Plain. Both creeks originate from Tatung Volcano Group, which is extensively active in post-volcanic activities. In this study, the hydrochemistry along the two major rivers was studied for tracing the source of arsenic pollution in Guandu Plain. The pH values in the upstream water are in the range from 6 to 8 but dramatically decrease down to 2-4.5 in the downstream area. It can be concluded that the creeks are recharged with very low pH geothermal water. In addition, arsenic shows a different spatial distribution. In Huanggang Creek, arsenic concentration is much higher, about 200 ppb to 500 ppb, in the downstream than in the upstream while arsenic concentration is extremely low, below 1 ppb, in the downstream of South Huang Greek. The geochemical results show that rare earth elements (REEs) are depleted in the upstream both in Huanggang creek and South Huang creek, and the NASC-normalized ratios of heavy to light REE (Lu/La) in the upstream are very close to 1. This demonstrates that the upstream water is geochemically dominated by the interaction between water and sedimentary rock. In the downstream, the NASC-normalized REE pattern shows a quit different type which is depleted in light REEs (much higher Lu/La ratio). It is well known that igneous rock is depleted in light REEs; therefore, arsenic is possibly volcanic origin. In this study, PHREEQC, a thermodynamic modeling program, was also utilized to calculate the saturation index (SI) of hydrous ferric oxide (HFO), which can effectively scavenge arsenic in water. The results demonstrate that SI of HFO is mainly controlled by pH in this study. When pH is greater than 3.5, HFO start to precipitate and remove arsenic from water. Therefore, it is believed that the arsenic pollution in Guandu Plain could result from HFO co-precipitation due to the increase of pH when Huanggang creek and South Huang creek flow through the land.
Savage, Kaye S.; Ashley, Roger P.; Bird, Dennis K.
2009-01-01
The Harvard orebody at the Jamestown gold mine, located along the Melones fault zone in the southern Mother Lode gold district, California, was mined in an open-pit operation from 1987 to 1994. Dewatering during mining produced a hydrologic cone of depression; recovery toward the premining ground-water configuration produced a monomictic pit lake with alkaline Ca-Mg-HCO3-SO4–type pit water, concentrations of As up to 1,200 μg/L, and total dissolved solids (TDS) up to 2,000 mg/L. In this study, pit-wall rocks were mapped and chemically analyzed to provide a context for evaluating observed variability in the composition of the pit-lake waters in relationship to seasonal weather patterns. An integrated hydrogeochemical model of pit-lake evolution based on observations of pit-lake volume, water composition (samples collected between 1998–2000, 2004), and processes occurring on pit walls was developed in three stages using the computer code PHREEQC. Stage 1 takes account of seasonally variable water fluxes from precipitation, evaporation, springs, and ground water, as well as lake stratification and mixing processes. Stage 2 adds CO2fluxes and wall-rock interactions, and stage 3 assesses the predictive capability of the model.Two major geologic units in fault contact comprise the pit walls. The hanging wall is composed of interlayered slate, metavolcanic and metavolcaniclastic rocks, and schists; the footwall rocks are chlorite-actinolite and talc-tremolite schists generated by metasomatism of greenschist-facies mafic and ultramafic igneous rocks. Alteration in the ore zone provides evidence for mineralizing fluids that introduced CO2, S, and K2O, and redistributed SiO2. Arsenian pyrite associated with the alteration weathers to produce goethite and jarosite on pit walls and in joints, as well as copiapite and hexahydrite efflorescences that accumulate on wall-rock faces during dry California summers. All of these pyrite weathering products incorporate arsenic at concentrations from <100 up to 1,200 ppm. In the pit lake, pH and TDS reach seasonal highs in the summer epilimnion; pH is lowest in the summer hypolimnion. Arsenic and bicarbonate covary in the hypolimnion, rising as stratification proceeds and declining during winter rains. The computational model suggests that water fluxes alone do not account for this seasonal variability. Loss of CO2 to the atmosphere, interaction with pit walls including washoff of efflorescent salts during the first flush and seasonal rainfall, and arsenic sorption appear to contribute to the observed pit-lake characteristics.
NASA Astrophysics Data System (ADS)
Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex
2017-07-01
In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
NASA Astrophysics Data System (ADS)
Fowler, S. J.; Driesner, T.; Hingerl, F. F.; Kulik, D. A.; Wagner, T.
2011-12-01
We apply a new, C++-based computational model for hydrothermal fluid-rock interaction and scale formation in geothermal reservoirs. The model couples the Complex System Modelling Platform (CSMP++) code for fluid flow in porous and fractured media (Matthai et al., 2007) with the Gibbs energy minimization numerical kernel GEMS3K of the GEM-Selektor (GEMS3) geochemical modelling package (Kulik et al., 2010) in a modular fashion. CSMP++ includes interfaces to commercial file formats, accommodating complex geometry construction using CAD (Rhinoceros) and meshing (ANSYS) software. The CSMP++ approach employs finite element-finite volume spatial discretization, implicit or explicit time discretization, and operator splitting. GEMS3K can calculate complex fluid-mineral equilibria based on a variety of equation of state and activity models. A selection of multi-electrolyte aqueous solution models, such as extended Debye-Huckel, Pitzer (Harvie et al., 1984), EUNIQUAC (Thomsen et al., 1996), and the new ELVIS model (Hingerl et al., this conference), makes it well-suited for application to a wide range of geothermal conditions. An advantage of the GEMS3K solver is simultaneous consideration of complex solid solutions (e.g., clay minerals), gases, fluids, and aqueous solutions. Each coupled simulation results in a thermodynamically-based description of the geochemical and physical state of a hydrothermal system evolving along a complex P-T-X path. The code design allows efficient, flexible incorporation of numerical and thermodynamic database improvements. We demonstrate the coupled code workflow and applicability to compositionally and physically complex natural systems relevant to enhanced geothermal systems, where temporally and spatially varying chemical interactions may take place within diverse lithologies of varying geometry. Engesgaard, P. & Kipp, K. L. (1992). Water Res. Res. 28: 2829-2843. Harvie, C. E.; Møller, N. & Weare, J. H. (1984). Geochim. Cosmochim. Acta 48: 723-751. Kulik, D. A., Wagner, T., Dmytrieva S. V, et al. (2010). GEM-Selektor home page, Paul Scherrer Institut. Available at http://gems.web.psi.ch. Matthäi, S. K., Geiger, S., Roberts, S. G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T. & Heinrich C. A. (2007). Geol. Soc. London, Spec. Publ. 292: 405-429. Thomsen, K. Rasmussen, P. & Gani, R. (1996). Chem. Eng. Sci. 51: 3675-3683.
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György
2017-04-01
Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
NASA Astrophysics Data System (ADS)
Han, Weon Shik; Watson, Z. T.; Kampman, Niko; Grundl, Tim; Graham, Jack P.; Keating, Elizabeth H.
2017-07-01
Crystal geyser is a CO2-driven cold-water geyser which was originally drilled in the late 1930's in Green River, Utah. Utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and was composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0-44% even though the degree of changes for individual ions are different. Generally, Na+, K+, Cl- and SO42- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. Conversely, Ca2+, Mg2+, Fe2+ and Sr2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62-65%, 36-33% and 1-2%, respectively. During the MEP, the contribution shifted to 53-56%, 45-42% and 1-2% for the Navajo, Entrada and Paradox Formation brine, respectively. The changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.
Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann
2012-08-01
Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cabestrero, Óscar; del Buey, Pablo; Sanz-Montero, M. Esther
2018-04-01
Seasonal desiccation of Mg2+-(Na+)-(Ca2+)-SO42--(Cl-) saline lakes in La Mancha (Central Spain) that host microbial mats led to the precipitation of hydrated Na-Mg sulphates and gypsum. Sulphates precipitated in the submerged conditions form extensive biolaminites, whilst in marginal areas they produce thin crusts. Sedimentological, mineralogical, petrographic and high resolution textural studies reveal that the crusts were formed within the benthic microbial mats that thrive at salinities ranging from 160 to 340 g·L-1. The minerals of the crusts are primary bloedite (Na2Mg(SO4)2·4H2O), epsomite (MgSO4·7H2O), gypsum (CaSO4·2H2O) and mirabilite (Na2SO4·10H2O), as well as secondary hexahydrite (MgSO4·6H2O) and thenardite (Na2SO4). Primary bloedite crystals, which form the framework of surficial and submerged crusts are seen to nucleate subaqueously and grow incorporatively within the matgrounds. Displacive and incorporative epsomite grows on previous bloedite crystals and also on the ground. Mirabilite is precipitated rapidly at the brine-air interface over bloedite and epsomite. Hexahydrite and thenardite are formed due to dehydration of epsomite and mirabilite, respectively. Hydrochemical modeling with PHREEQC indicated that evaporitic biolaminites are forming from brines undersaturated with respect to bloedite, epsomite and mirabilite, which suggests that the microorganisms contribute to the heterogeneous nucleation of the sulphates in the microbial mats. Unlike carbonates, the influence of microbes on the growth and morphology of complicated double salts such as bloedite has not been documented previously and provides a new perspective on the formation of hydrated sulphate minerals that are common on Earth as well as other planets.
Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra
NASA Astrophysics Data System (ADS)
Zheng, J.
2016-12-01
Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.
A Uranium Bioremediation Reactive Transport Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin
A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introducesmore » acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.« less
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.
2011-12-01
Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By contrast, during the dry year infiltration and subsequent displacement of stored water that has had longer contact time with minerals and therefore has become more geochemically evolved to produce a greater difference between snowmelt and catchment outlet hydrochemistry. The results for EMD show little distinction between albite weathering for wet and dry years (55.9g and 66.0g, relatively). A hypothesis for this lack of difference in mineral phase changes may be due to less subsurface storage capacity in EMD relative to GL4. The spatial distribution of snowmelt has also been shown to influence the integrated watershed response, and future work includes using the Alpine Hydrochemical Model (AHM) to further investigate catchment response to these spatial data. The AHM will also provide further insight of surface-groundwater interactions through a more integrated model which includes hydrochemical, biological and physical processes to elucidate catchment response to changes in snowmelt dynamics.
Siegel, M.D.; Anderholm, S.
1994-01-01
The Culebra Dolomite Member of the Rustler Formation, a thin (10 m) fractured dolomite aquifer, lies approximately 450 m above the repository horizon of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Salinities of water in the Culebra range roughly from 10,000 to 200,000 mg/L within the WIPP site. A proposed model for the post-Pleistocene hydrochemical evolution of the Culebra tentatively identifies the major sources and sinks for many of the groundwater solutes. Reaction-path simulations with the PHRQPITZ code suggest that the Culebra dolomite is a partial chemical equilibrium system whose composition is controlled by an irreversible process (dissolution of evaporites) and equilibrium with gypsum and calcite. Net geochemical reactions along postulated modern flow paths, calculated with the NETPATH code, include dissolution of halite, carbonate and evaporite salts, and ion exchange. R-mode principal component analysis revealed correlations among the concentrations of Si, Mg, pH, Li, and B that are consistent with several clay-water reactions. The results of the geochemical calculations and mineralogical data are consistent with the following hydrochemical model: 1. (1) solutes are added to the Culebra by dissolution of evaporite minerals 2. (2) the solubilities of gypsum and calcite increase as the salinity increases; these minerals dissolve as chemical equilibrium is maintained between them and the groundwater 3. (3) equilibrium is not maintained between the waters and dolomite; sufficient Mg is added to the waters by dissolution of accessory carnallite or polyhalite such that the degree of dolomite supersaturation increases with ionic strength 4. (4) clays within the fractures and rock matrix exert some control on the distribution of Li, B, Mg, and Si via sorption, ion exchange, and dissolution. ?? 1994.
An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0
Plummer, Niel; Prestemon, Eric C.; Parkhurst, David L.
1994-01-01
NETPATH is an interactive Fortran 77 computer program used to interpret net geochemical mass-balance reactions between an initial and final water along a hydrologic flow path. Alternatively, NETPATH computes the mixing proportions of two to five initial waters and net geochemical reactions that can account for the observed composition of a final water. The program utilizes previously defined chemical and isotopic data for waters from a hydrochemical system. For a set of mineral and (or) gas phases hypothesized to be the reactive phases in the system, NETPATH calculates the mass transfers in every possible combination of the selected phases that accounts for the observed changes in the selected chemical and (or) isotopic compositions observed along the flow path. The calculations are of use in interpreting geochemical reactions, mixing proportions, evaporation and (or) dilution of waters, and mineral mass transfer in the chemical and isotopic evolution of natural and environmental waters. Rayleigh distillation calculations are applied to each mass-balance model that satisfies the constraints to predict carbon, sulfur, nitrogen, and strontium isotopic compositions at the end point, including radiocarbon dating. DB is an interactive Fortran 77 computer program used to enter analytical data into NETPATH, and calculate the distribution of species in aqueous solution. This report describes the types of problems that can be solved, the methods used to solve problems, and the features available in the program to facilitate these solutions. Examples are presented to demonstrate most of the applications and features of NETPATH. The codes DB and NETPATH can be executed in the UNIX or DOS1 environment. This report replaces U.S. Geological Survey Water-Resources Investigations Report 91-4078, by Plummer and others, which described the original release of NETPATH, version 1.0 (dated December, 1991), and documents revisions and enhancements that are included in version 2.0. 1 The use of trade, brand or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.
Abrams , Robert H.; Loague, Keith
2000-01-01
This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and geochemical codes. The companion paper [Abrams and Loague, this issue] presents examples of the application of COMPTRAN to field‐scale problems.
NASA Astrophysics Data System (ADS)
Ackerer, Julien; Chabaux, François; Lucas, Yann; Pierret, Marie Claire; Viville, Daniel; Fritz, Bertrand; Clement, Alain; Beaulieu, Emilie; Negrel, Philippe
2017-04-01
Regular analysis of the major element concentrations in waters from springs emerging on the Strengbach catchment is made for more than 20 years (OHGE, Observatoire Hydro-Géochimique de l'Environnement). These data confirm the spatial variability of geochemical characteristics of the Strengbach springs linked, at least partly, to the lithological variability of the substratum (Pierret et al., 2014). The data also indicate that at the first order, the geochemical fluxes exported from each spring are mainly linked to the spring discharges, without significant variations of the relationships linking these two parameters between 1990 and 2010. There is also no observation of significant variations for the dissolved silica and for most of the cationic concentrations with time. Only a significant decrease of the Ca concentrations is observed for the Strengbach springs from 1990 to 2010. Numerical simulations, performed with the KIRMAT hydro-geochemical code, show that such a decrease can be considered as the response in the "bedrock" of the water-rock interactions to the variations of the soil solution chemical compositions recorded over the last 20 years, marked by a significant increase of pH and decrease of Ca concentrations. In particular, the modeling results show that the Ca concentration decrease is controlled by the couple apatite/clays, and that significant modifications of the apatite dissolution rate and clay compositions occurred between 1990 and 2010. This study shows that the temporal evolution of the Strengbach spring chemistry cannot be explained by the only variations of the clay mineral compositions, i.e. a modification of the chemical composition of the precipitated clays or a modification of the ionic exchange capacity of the clay minerals, but that it is definitely the interrelations between the apatite and the clay minerals that are involved.
Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.
2005-10-19
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal
2006-02-01
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...
2017-08-18
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
Colman, John A.; Sanzolone, R.F.
1991-01-01
Geochemical data are presented from a synoptic survey of 46 elements in fine-fraction streambed sediments of the Upper Illinois River Basin during the fall of 1987. The survey was a component study of the Illinois pilot project of the U.S. Geological Survey's National Water-Quality Assessment program. Most of the sampling sites were randomly chosen--135 on main stems of rivers and 238 on first- and second-order streams. In addition, 196 samples were collected for quality-assurance and special-study purposes. The report includes element concentration data and summary-statistics tables of percentiles, nested analysis of variance, and correlation coefficients. All concentration data are included in tabular form and can be selected by map reference number, latitude and longitude, or remark code indicating purpose for collecting sample.
The Hydrochemical Evolution of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM
NASA Astrophysics Data System (ADS)
Premo, E.; Crossey, L. J.
2013-12-01
Bitter Lake National Wildlife Refuge in Roswell, NM houses one of the most ecologically significant wetlands in the US-SW including approximately 52 water-filled sinkholes each supporting a unique biological assemblage, including several endangered and endemic species (e.g., Pecos pupfish and Noel's amphipod, respectively). Forming in the karst landscape adjacent to the Pecos River where the regional dual-aquifer system discharges through a network of springs and seeps, these sinkholes are recharged by saline groundwater that is subject to anthropogenic withdrawals for irrigation and hydrocarbon production and chemically altered by a complex series of evaporation-precipitation reactions after discharge. This study investigates the hydrochemical differences among these sinkholes while considering the evolutionary processes affecting water column structure, geochemical mixing and ecological sustainability. Two major sampling suites, pre- and post-irrigation, yielded waters from 1.0m increments along the water columns of 10 representative sinkholes. Samples were analyzed for major ions, stable isotopes [δ18O, δD ], and dissolved gases; PHREEQc was used to model mineral saturation and speciation. An in-situ mineral precipitation experiment provided growth rate and mineral morphological (SEM) data. Source water is chemically similar to shallow springs found at the Refuge (Sago Spring). Sinkholes exhibit bimodal water column structure (well-mixed or stratified) organized in response to water density (with ~1.035 g/cm3 forming the modal transition threshold). By measuring the density, TDS or conductivity at sinkhole surface it is possible to predict modality of water column structure. Sinkhole waters - regardless of depth or season - fall along a common isotopic evaporation trajectory (δ D = 3.387*δ18O - 19.38), and adopt a Na-Cl chemical endmember facies. Driven primarily by physical sinkhole geometry (e.g., depth and surface area), sinkhole water follows a predictable evolutionary progression from spring-like well-mixed ('young'), to moderately saline well-mixed ('transitional'), to saline and stratified ('old' or 'evolved'), based on the relative volume of water that has entered and subsequently evaporated from the system. Simple geochemical models reveal calcium- and sulfate-bearing minerals (calcite, gypsum) precipitate early in the reaction while halite and magnesium-containing minerals precipitate late, rendering increased Cl- and Mg+ concentrations in fluids subjected to prolonged evaporation. This water is also high in CO2 content and may contain traces of He, suggesting emergent water is a combination of groundwater (dominant) and deeply sourced fluids (minor). Both PO4 and NH4 are present in biologically-significant concentrations in sinkholes with chemically controlled water columns, and photosynthetic bacteria were found to organize at the bottom of the photic zone. High NH4 and CO2 accompanying low O2 dissolved gas values confirm the increased biological control in stratified sinkholes. Resident fish populations are affected by water chemistry which reduces reproductive success or exceed the survivable range of habitable conditions. Results of this study serve as a geochemical baseline survey of Refuge sinkholes and may be used to both aid with biological resource management and predict stratified conditions using measurable proxies.
NASA Astrophysics Data System (ADS)
Ziegler, A. C.; Jacobs, M.; Ary, D.; Kelly, B.
2013-12-01
Data collection and interpretation using statistical, geochemical, and numerical simulation tools are essential parts of a long-term cooperative study between the city of Wichita, U.S. Geological Survey, and others to describe water quantity and quality conditions in a 165 square-mile part of the Equus Beds aquifer and Arkansas and Little Arkansas Rivers. The Equus Beds aquifer, eastern part of the High Plains Aquifer in south-central Kansas, is a vital water resource for agriculture and city of Wichita. Withdrawals for public supply began in the 1940s and agricultural irrigation began in the 1950-60s. These withdrawals led to water-level declines of up to 40 feet (historic low in 1993), a storage loss of 250,000 acre feet compared to predevelopment, and may enhance movement of chloride contamination from a past oilfield disposal area near Burrton and from natural chloride along the Arkansas River. Monitoring data and modeling show chloride near Burrton moved about 3 miles in 45 years, is about 1 mile away from the nearest public supply wells, and will continue to move for decades to centuries making the water unusable for irrigation or water supply without treatment. These concerns led to development of Wichita's 1993 integrated local water-supply plan that increased use of Cheney Reservoir and implemented aquifer storage and recovery (ASR) within the aquifer using high flows from the Little Arkansas River. ASR benefits include replacing depleted storage and slowing chloride movement. Decreased withdrawals, increased precipitation, and artificial recharge increased water levels and added 100,000 acre feet of storage through 2010, but drought since 2011 has increased withdrawals. A calibrated model will be used to simulate transport of chloride under several withdrawal scenarios using MODFLOW coupled with SEAWAT. Since 1995, water-quality data collection for more than 400 organic and inorganic compounds in surface water, treated source water for artificial recharge, and groundwater identified indicator bacteria, atrazine, chloride, sodium, nitrate, arsenic, iron, and manganese as constituents of concern exceeding water-quality criteria in baseline samples. Techniques were developed to estimate Little Arkansas River water quality in real-time for treatment. Geochemical modeling using PHREEQC and PHAST shows that groundwater quality is not changed if groundwater and recharge water are of similar redox potential. If different, calcite or metal hydroxides may precipitate and decrease water infiltration. A network of 38 locations with shallow and deep wells characterizes the recharge quantities and qualities for the city of Wichita to withdraw when needed from storage. Through 2013, the Demonstration project and Phase 1 and 2 facilities (capacity 40 MGD) have artificially recharged about 2 billion gallons. Total construction costs are about $300,000,000. Data-collection, interpretative geochemical and numerical simulations and water-quality transport modeling tools developed in the past 70 years are a scientific foundation to effectively and objectively manage this aquifer system.
Predictive Analysis of Geochemical Controls in an Alpine Stream
NASA Astrophysics Data System (ADS)
Jochems, A. P.; Sherson, L. R.; Crossey, L. J.; Karlstrom, K. E.
2010-12-01
Alpine watersheds are increasingly relied upon for use in the American West, necessitating a more complete understanding of annual hydrologic patterns and geologic influences on water chemistry. The Jemez River is a fifth order stream in central New Mexico that flows from its source in the Jemez Mountains to its confluence with the Rio Grande north of the town of Bernalillo. Designated uses of the Jemez River include domestic water supply, recreation, and agriculture. Geothermal uses are currently being considered as well. The river recharges shallow aquifer waters used by several communities, including tribal lands of the Jemez Pueblo. The hydrogeology of the Jemez system is characterized by geothermal inputs from the Baca hydrothermal system associated with the 1.2Ma Valles caldera, as well as groundwater and surface water interactions. Freshwater input from the Rio Guadalupe and several ephemeral tributaries also influences the water chemistry of the Jemez system. Fifteen sites along a 35 km reach of the river were sampled between 2006 and 2010. Discharge of the Jemez River ranged from 10-876 cfs over the study period. The annual hydrograph is affected by annual snowmelt in the Jemez Mountains as well as surges due to monsoonal rains in July and August. Geochemical data collected over this period include temperature, conductivity, pH, dissolved oxygen (D.O.), major ions, trace elements, and stable isotopes. Continuous records of temperature, conductivity, pH, D.O. and turbidity data were collected from a water quality sonde installed in March 2010. Geochemical modeling and time series analysis were performed using PHREEQC, Geochemist’s Workbench, and MATLAB. Empirical data collected during this study gave rise to several models describing the hydrology and geochemistry of the Jemez system. Our data suggest that springs are the primary contributors to dissolved load, and that solute loading from geothermal inputs is intensified by low flows observed on hydrographs during late winter, as well as on the falling limb of flow during summer. Cation and anion concentrations experience significant declines during periods of high flow, though loadings remain high. Solute concentrations were found to increase downstream regardless of season. Downstream increases take place abruptly where the river crosses fault systems that localize discharge of hot spring brines from the hydrothermal system. Analyses completed during the spring of 2010 indicate that arsenic greatly exceeds EPA drinking water standards at low flows (<30 cfs). TDS and sulfate concentrations in the Jemez also exceed these standards at similar discharge. Stable isotope analyses demonstrate contributions from geothermal systems, with isotopically enriched values of δ18O for thermal waters, and near-meteoric values for most river waters. A model predicting solute concentrations as a function of snowmelt demonstrates that the Jemez River is susceptible to significant degradation of water quality under scenarios of decreasing snowpack. Fluctuations in water chemistries of this system directly affect recreational use and water quality of the Jemez River and shallow aquifer recharge, and must be considered for any proposed domestic or municipal use in the future.
NASA Astrophysics Data System (ADS)
Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.
2009-12-01
The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database for both Pitzer ion-interaction parameters and thermodynamic equilibrium constants. The reliability of the parameters is as important as the accuracy of the modelling tool. For this purpose the project THEREDA (www.thereda.de)was set up. The project aims at a comprehensive and internally consistent thermodynamic reference database for geochemical modelling of near and far-field processes occurring in repositories for radioactive wastes in various host rock formations. In the framework of the project all data necessary to perform thermodynamic equilibrium calculations for elevated temperature in the system of oceanic salts are under revision, and it is expected that related data will be available for download by 2010-03. In this paper the geochemical issues that can play an essential role for the transport of radioactive contaminants within and around waste repositories are discussed. Some generic calculations are given to illustrate the geochemical interactions and their probable effects on the transport properties around HLW emplacements and on CO2 generating and/or containing repository systems.
A 1-D evolutionary model for icy satellites, applied to Enceladus
NASA Astrophysics Data System (ADS)
Prialnik, Dina; Malamud, Uri
2015-11-01
A 1-D long-term evolution code for icy satellites is presented, which couples multiple processes: water migration, geochemical reactions, water and silicate phase transitions, crystallization, compaction by self-gravity, and ablation. The code takes into account various energy sources: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy, and insolation. It includes heat transport by conduction, convection, and advection.The code is applied to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, and adopting a homogeneous initial structure. Assuming that the satellite has been losing water continually along its evolution, it follows that it was formed as a more massive, more ice-rich and more porous object, and gradually transformed into its present day state, due to sustained tidal heating. Several initial compositions and evolution scenarios are considered, and the evolution is simulated for the age of the Solar System. The results corresponding to the present configuration are confronted with the available observational constraints. The present configuration is shown to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock in the central part and hydrated rock in the outer part. Such a differentiated structure is obtained not only for Enceladus, but for other medium size ice-rich bodies as well.Predictions for Enceladus are a higher rock/ice mass ratio than previously assumed, and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the 1-D model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Charley; Kamboj, Sunita; Wang, Cheng
2015-09-01
This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less
Yager, Richard M.; Misut, Paul E.; Langevin, Christian D.; Parkhurst, David L.
2009-01-01
The Retsof salt mine in upstate New York was flooded from 1994 to 1996 after two roof collapses created rubble chimneys in overlying bedrock that intersected a confined aquifer in glacial sediments. The mine now contains about 60 billion liters of saturated halite brine that is slowly being displaced as the weight of overlying sediments causes the mine cavity to close, a process that could last several hundred years. Saline water was detected in the confined aquifer in 2002, and a brine-mitigation project that includes pumping followed by onsite desalination was implemented in 2006 to prevent further migration of saline water from the collapse area. A study was conducted by the U.S. Geological Survey using geochemical and variable-density flow modeling to determine sources of salinity in the confined aquifer and to assess (1) processes that control movement and mixing of waters in the collapse area, (2) the effect of pumping on salinity, and (3) the potential for anhydrite dissolution and subsequent land subsidence resulting from mixing of waters induced by pumping. The primary source of salinity in the collapse area is halite brine that was displaced from the flooded mine and transported upward by advection and dispersion through the rubble chimneys and surrounding deformation zone. Geochemical and variable-density modeling indicate that salinity in the upper part of the collapse area is partly derived from inflow of saline water from bedrock fracture zones during water-level recovery (January 1996 through August 2006). The lateral diversion of brine into bedrock fracture zones promoted the upward migration of mine water through mixing with lower density waters. The relative contributions of mine water, bedrock water, and aquifer water to the observed salinity profile within the collapse area are controlled by the rates of flow to and from bedrock fracture zones. Variable-density simulations of water-level recovery indicate that saline water has probably not migrated beyond the collapse area, while simulations of pumping indicate that further upward migration of brine and saline water is now prevented by groundwater withdrawals under the brine-mitigation project. Geochemical modeling indicates that additional land subsidence as a result of anhydrite dissolution in the collapse area is not a concern, as long as the rate of brine pumping is less than the rate of upward flow of brine from the flooded mine. The collapse area above the flooded salt mine is within a glacially scoured bedrock valley that is filled with more than 150 meters of glacial drift. A confined aquifer at the bottom of the glacial sediments (referred to as the lower confined aquifer, or LCA) was the source of most of the water that flooded the mine. Two rubble chimneys that formed above the roof collapses in 1994 hydraulically connect the flooded mine to the LCA through 180 meters of sedimentary rock. From 1996 through 2006, water levels in the aquifer system recovered and the brine-displacement rate ranged from 4.4 to 1.6 liters per second, as estimated from land-surface subsidence above the mine. A zone of fracturing within the bedrock (the deformation zone) formed around the rubble chimneys as rock layers sagged toward the mine cavity after the roof collapses. Borehole geophysical surveys have identified three saline-water-bearing fracture zones in the bedrock: at stratigraphic contacts between the Onondaga and Bertie Limestones (O/B-FZ) and the Bertie Limestone and the Camillus Shale (B/C-FZ), and in the Syracuse Formation (Syr-FZ). The only outlets for brine displaced from the mine are through the rubble chimneys, but some of the brine could be diverted laterally into fracture zones in the rocks that lie between the mine and the LCA. Inverse geochemical models developed using PHREEQC indicate that halite brine in the flooded mine is derived from a mixture of freshwater from the LCA (81 percent), saline water from bedrock fracture zones (16 per
Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1994-04-15
These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)
NASA Technical Reports Server (NTRS)
Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)
1997-01-01
Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.
1987-03-01
available. Kincaid et al. (221 provide an overview of the geochemical code history (up to 1983) in which they group models into four major families...plant. The *Ixample is adapted from a study by Morel ,’t al. 1291 for Los Angeles County. It is prv.ented in four ;ections: I ’ Problem statement, ý2...presents environmentally important priperty dJata for several groups of elements or compcui’ds. The data include, for Pxrimpie, precal- culated
Reactive Transport Modeling of Subsurface Arsenic Removal Systems in Rural Bangladesh
NASA Astrophysics Data System (ADS)
Bakker, M.; Rahman, M. M.; van Breukelen, B. M.; Ahmed, K. M.
2014-12-01
Elevated concentrations of arsenic (As) in the groundwater of the shallow aquifers of Bangladesh are a major public health concern. Subsurface Arsenic Removal (SAR) is a relatively new treatment option that can potentially be a cost effective method for arsenic removal for community-based drinking water supplies. The basic idea of SAR is to extract water, aerate it, and re-inject it, after which groundwater with reduced arsenic concentrations may be extracted. The main process for As reduction is sorption to Hydrous Ferric Oxides (HFO) that forms after injection of the aerated water. The purpose of this poster is to investigate the major geochemical processes responsible for the (im)mobilization of As during SAR operation. SAR was applied at a test site in Muradnagar upazila in Comilla district about 100 km southeast of Dhaka in Bangladesh. Multiple extraction/aeration/re-injection cycles were performed and water samples were analyzed. A PHREEQC reactive transport model (RTM) was used in a radial flow setting to try to reproduce the measurements. Kinetic oxidation/dissolution reactions, cation exchange, and surface complexation were simulated. The simulation of different reactions enables the possibility to discern the reaction parameters involved in the im(mobilization) of As. The model fit has reasonable agreement with the observed data for major ions and trace elements. The model suggests an increasing sorption capacity due to the gradual development of HFO precipitates resulting from the injection phases. Modeled breakthrough curves of As, Fe(II), and Mn, match the measured increase of As, Fe(II), and Mn removal with successive cycles. The model illustrates that the pH of groundwater during SAR operation has a great impact on As sorption in the subsurface. The surface complexation modeling suggests that competitive displacement of As by H4SiO4 is an important factor limiting As removal during SAR operation.
Hansen, Jeffrey; Jurgens, Bryant; Fram, Miranda S.
2018-01-01
Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (< 50 m) wells surrounded predominantly by agricultural land uses, while premodern (pre-1950) groundwater from deeper wells, and recently recharged groundwater from wells surrounded by mainly urban, natural, and mixed land uses had lower TDS concentrations, approaching the TDS concentrations in the Historic groundwater. For the NESJV and SESJV, inverse geochemical modeling with PHREEQC indicated that weathering of primary silicate minerals accounted for the majority of the increase in TDS concentrations, contributing more than nitrate from fertilizers and sulfate from soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale.
Hansen, Jeffrey A; Jurgens, Bryant C; Fram, Miranda S
2018-06-09
Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (<50 m) wells surrounded predominantly by agricultural land uses, while premodern (pre-1950) groundwater from deeper wells, and recently recharged groundwater from wells surrounded by mainly urban, natural, and mixed land uses had lower TDS concentrations, approaching the TDS concentrations in the Historic groundwater. For the NESJV and SESJV, inverse geochemical modeling with PHREEQC indicated that weathering of primary silicate minerals accounted for the majority of the increase in TDS concentrations, contributing more than nitrate from fertilizers and sulfate from soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO 2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.
2017-12-01
The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
Han, Weon Shik; Watson, Z. T.; Kampman, Niko; ...
2017-04-20
Crystal geyser is a CO 2-driven cold-water geyser which was originally drilled in the late 1930’s in Green River, Utah. By utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and wasmore » composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0–44% even though the degree of changes for individual ions are different. Generally, Na +, K +, Cl -and SO 4 2- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. In contrast, Ca 2+, Mg 2+, Fe 2+ and Sr 2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62–65%, 36–33% and 1–2%, respectively. During the MEP, the contribution shifted to 53–56%, 45–42% and 1–2% for the Navajo, Entrada and Paradox Formation brine, respectively. Finally, these changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.« less
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weon Shik; Watson, Z. T.; Kampman, Niko
Crystal geyser is a CO 2-driven cold-water geyser which was originally drilled in the late 1930’s in Green River, Utah. By utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and wasmore » composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0–44% even though the degree of changes for individual ions are different. Generally, Na +, K +, Cl -and SO 4 2- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. In contrast, Ca 2+, Mg 2+, Fe 2+ and Sr 2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62–65%, 36–33% and 1–2%, respectively. During the MEP, the contribution shifted to 53–56%, 45–42% and 1–2% for the Navajo, Entrada and Paradox Formation brine, respectively. Finally, these changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.« less
Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...
2017-11-21
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yongqiang; Xie, Quan; Sari, Ahmad
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia
2015-07-01
The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.
Decreasing Kd uncertainties through the application of thermodynamic sorption models.
Domènech, Cristina; García, David; Pękala, Marek
2015-09-15
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (Kd) is often used to represent radionuclide retention, because analytical solutions to the classic advection-diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the Kd approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that Kd values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the Kd outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate Kd values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating Kd values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide Kd values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide Kd values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in geochemistry on Kd values. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.
The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and geochemical heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. Model simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the model recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose
Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS < 1000 mg/l) of Ca-HCO3- type. Groundwater is of low mineralisation which did not show statistically significant variations with respect to depth of shallow wells and boreholes, location and seasonality at 5% significance level. Groundwater from Karonga District was largely oversaturated with respect to both calcite and dolomite, where as that from Rumphi District was undersaturated with respect to both calcite and dolomite. However, the calculated PCO2 values suggested that the groundwater system was open to soil CO2 and that there was possibility of degassing of CO2 during flow, which could increase the pH and subsequently result in the oversaturation of calcite in both districts. Groundwater water samples were stable towards calcite and kaolinite stability field. This suggested that equilibrium of the groundwater with silicates is an important indicator of the hydrogeochemical processes behind groundwater quality in the study area. The calculated values of SAR, KR and % Na+ indicated good and permissible quality of water for irrigation uses. However, samples with doubtful RSC (6% from Karonga district), unsuitable PI (5% and 3% from Karonga and Rumphi, respectively) and a high salinity hazard (56.2% and 20.3% from Karonga and Rumphi, respectively) values restrict the suitability of the groundwater for agricultural purposes, and plants with good salt tolerance should be selected for such groundwaters. A detailed hydro-geochemical investigation and integrated water management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.
Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars
NASA Astrophysics Data System (ADS)
Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.
2010-12-01
Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron minerals were not included as no iron was detected in solution. Results compared well with evaporation of solutions generated by simulating chemical weathering of minerals found in the basalt; this approach allowed iron minerals to precipitate during evaporation because minerals in the basalt contained iron. The minerals modeled upon evaporation included the minerals observed in the actual deposits - hematite, calcite, and quartz. Na-minerals neared saturation in simulations but were normally not saturated, leaving open the question of their origin. One possible explanation for the presence of Na-minerals could be seasonal ice formation in the caves followed by sublimation, leaving more concentrated solutions behind than were sampled here. A seasonal model for mineral deposition in caves could be relevant to deposits in martian caves. While the formation mechanism for the secondary minerals at COM is not completely understood, the presence of secondary minerals that harbor organic compounds in a cave environment that may be analogous to Mar has implications for where to search for signs of martian life.
Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer
2016-01-01
One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the impact of climate change on this important complex of ecosystems.
Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.
Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W
2014-06-01
This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
NASA Astrophysics Data System (ADS)
Sali, D.; Fritz, B.; Clément, C.; Michau, N.
2003-04-01
Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita
2017-04-01
Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a steam source at a pressure of 6 bar and at a temperature of least 165 °C. The geophysical images combined with the geochemical data allowed us to build up a multiphase fluid flow model of the Bocca Grande and and Bocca Nuova fumaroles using the TOUGH 2 code. Our results show that the distinct resistivity structure, temperature, and water content of the both fumaroles are due to the particular geometry of the condensate flow that intersects and contaminates the Bocca Nuova but not the Bocca Grande fumarole. These results indicate the necessity to combine geophysical and geochemical approaches in order to better apprehend the structure complexity and the dynamics of fumaroles and hydrothermal systems.
Chemical modeling for precipitation from hypersaline hydrofracturing brines.
Zermeno-Motante, Maria I; Nieto-Delgado, Cesar; Cannon, Fred S; Cash, Colin C; Wunz, Christopher C
2016-10-15
Hypersaline hydrofracturing brines host very high salt concentrations, as high as 120,000-330,000 mg/L total dissolved solids (TDS), corresponding to ionic strengths of 2.1-5.7 mol/kg. This is 4-10 times higher than for ocean water. At such high ionic strengths, the conventional equations for computing activity coefficients no longer apply; and the complex ion-interactive Pitzer model must be invoked. The authors herein have used the Pitzer-based PHREEQC computer program to compute the appropriate activity coefficients when forming such precipitates as BaSO4, CaSO4, MgSO4, SrSO4, CaCO3, SrCO3, and BaCO3 in hydrofracturing waters. The divalent cation activity coefficients (γM) were computed in the 0.1 to 0.2 range at 2.1 mol/kg ionic strength, then by 5.7 mol/kg ionic strength, they rose to 0.2 for Ba(2+), 0.6 for Sr(2+), 0.8 for Ca(2+), and 2.1 for Mg(2+). Concurrently, the [Formula: see text] was 0.02-0.03; and [Formula: see text] was 0.01-0.02. While employing these Pitzer-derived activity coefficients, the authors then used the PHREEQC model to characterize precipitation of several of these sulfates and carbonates from actual hydrofracturing waters. Modeled precipitation matched quite well with actual laboratory experiments and full-scale operations. Also, the authors found that SrSO4 effectively co-precipitated radium from hydrofracturing brines, as discerned when monitoring (228)Ra and other beta-emitting species via liquid scintillation; and also when monitoring gamma emissions from (226)Ra. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This paper applies a multiscale hydro-geochemical-mechanical approach to analyze faulted CO 2 reservoirs using the STOMP-CO 2-R code that is coupled to the ABAQUS® finite element package. STOMP-CO 2-R models the reactive transport of CO 2 causing mineral volume fraction changes that are captured by an Eshelby-Mori-Tanka model implemented in ABAQUS®. A three-dimensional (3D) STOMP-CO 2-R model for a reservoir containing an inclined fault was built to analyze a formation containing a reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D finite element mesh that exactly maps the STOMP-CO 2-R grid is developed for coupled hydro-geochemical-mechanicalmore » analyses. The model contains alternating sandstone and shale layers. The impact of reactive transport of CO 2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that affect their geomechanical responses. Simulations assuming extensional and compressional stress regimes with and without coupled geochemistry are performed to study the stress regime effect on the risk of hydraulic fracture. The tendency for the fault to slip is examined in terms of stress regime, geomechanical and geochemical-mechanical effects as well as fault inclination. The results show that mineralogical changes due to long-term injection of CO 2 reduce the permeability and elastic modulus of the reservoir, leading to increased risk of hydraulic fracture in the injection location and at the caprock seal immediately above the injection zone. Fault slip is not predicted to occur. However, fault inclination and stress regime have an important impact on the slip tendency factor.« less
Lassabatere, Laurent; Spadini, Lorenzo; Delolme, Cécile; Février, Laureline; Galvez Cloutier, Rosa; Winiarski, Thierry
2007-11-01
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1
Webb, Richard M.T.; Parkhurst, David L.
2017-02-08
The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of varying inputs, mixing, and evaporation. This manual describes the WEBMOD input and output files, along with the algorithms and procedures used to simulate the hydrology and water quality in a watershed. Examples are presented that demonstrate hydrologic processes, weathering reactions, and isotopic evolution in an alpine watershed and the effect of irrigation on water flows and salinity in an intensively farmed agricultural area.
Experimental study of the caprock / cement interface under CO2 geological storage conditions
NASA Astrophysics Data System (ADS)
Jobard, Emmanuel; Sterpenich, Jérôme; Pironon, Jacques; Randi, Aurélien; Caumon, Marie-Camille
2013-04-01
In the framework of CO2 geological storage, one of the critical point leading to possible massive CO2 leakages is the behavior of the interfaces crossed by the injection well. The lack of relevant data on the behavior of these interfaces (rock/well materials) in the presence of CO2 under high pressure and temperature conditions led to the development of a new experimental model called "Sandwich". These batch experiments consisted in putting a caprock (Callovo-Oxfordian claystone of the Paris Basin) in contact with cement (Portland class G) in the presence of supercritical CO2 with or without aqueous solution. The new experimental device was designed in order to follow the evolution of a clayey caprock, a Portland cement and their interface submitted to the acidic attack of carbonic acid through a study of the initial and final states. This model should help to document the behavior of interfaces in the proximal zone at the injection site. After one month of ageing at 80° C under 100 bar of CO2 pressure, the caprock, the cement and the interface between caprock and cement are investigated thanks to SEM, cathodoluminescence and Raman spectrometry. The main results reveal i) the influence of the presence of an aqueous solution since the carbonation mechanisms are quite different under dry and wet atmospheres, ii) the good cohesion of the different interfaces despite the carbonation of the cement, iii) the precipitation of different carbonate phases, which relates the changes in the chemistry of the solution to time, iv) the enrichment of silica in the cement phase submitted to the action of CO2 putting into evidence new mechanisms of in situ silica re-condensation, v) the very good behavior of the caprock despite the alkaline flux from cement and the acidic attack from the dissolved CO2. These experimental results will be compared to those obtained by geochemical simulations performed with PHREEQC. This study was financially supported by the French agency ANR (ANR-08-PCO2-006).
NASA Astrophysics Data System (ADS)
Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.
2010-12-01
This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous acidification of the studied waters.
Equilibrium, kinetic, and reactive transport models for plutonium
NASA Astrophysics Data System (ADS)
Schwantes, Jon Michael
Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive transport model; (2) a simulation of the effects of dissolution of PuO2 solid and radiolysis on the behavior of Pu diffusing out of a confined pore space; and (3) application of a steady-state three phase reactive transport model to groundwater at the Nevada Test Site.
Subsurface Transport Over Multiple Phases Demonstration Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-01-05
The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less
A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.
2015-12-01
Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.
Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes
NASA Astrophysics Data System (ADS)
Stockstill-Cahill, K. R.; Peplowski, P. N.
2018-05-01
PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.
Blair, R.W.; Yager, D.B.; Church, S.E.
2002-01-01
This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.
Kasemodel, Mariana Consiglio; Lima, Jacqueline Zanin; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio; Trofino, Julio Cesar; Rodrigues, Valéria Guimarães Silvestre
2016-12-01
Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo ), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg -1 . The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo ) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.
Li, Lin; Benson, Craig H; Lawson, Elizabeth M
2006-02-01
A study was conducted to assess key factors to include when modeling porosity reductions caused by mineral fouling in permeable reactive barriers (PRBs) containing granular zero valent iron. The public domain codes MODFLOW and RT3D were used and a geochemical algorithm was developed for RT3D to simulate geochemical reactions occurring in PRBs. Results of simulations conducted with the model show that the largest porosity reductions occur between the entrance and mid-plane of the PRB as a result of precipitation of carbonate minerals and that smaller porosity reductions occur between the mid-plane and exit face due to precipitation of ferrous hydroxide. These findings are consistent with field and laboratory observations, as well as modeling predictions made by others. Parametric studies were conducted to identify the most important variables to include in a model evaluating porosity reduction. These studies showed that three minerals (CaCO3, FeCO3, and Fe(OH)2 (am)) account for more than 99% of the porosity reductions that were predicted. The porosity reduction is sensitive to influent concentrations of HCO3-, Ca2+, CO3(2-), and dissolved oxygen, the anaerobic iron corrosion rate, and the rates of CaCO3 and FeCO3 formation. The predictions also show that porosity reductions in PRBs can be spatially variable and mineral forming ions penetrate deeper into the PRB as a result of flow heterogeneities, which reflects the balance between the rate of mass transport and geochemical reaction rates. Level of aquifer heterogeneity and the contrast in hydraulic conductivity between the aquifer and PRB are the most important hydraulic variables affecting porosity reduction. Spatial continuity of aquifer hydraulic conductivity is less significant.
A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition
NASA Astrophysics Data System (ADS)
Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.
2017-12-01
Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared with the AUC of 0.77 using a single deep autoencoder approach.
Modelling carbon and nitrogen turnover in variably saturated soils
NASA Astrophysics Data System (ADS)
Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.
2009-04-01
Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative sensitivity of biological transformations to these processes.
NASA Astrophysics Data System (ADS)
Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.
2018-02-01
This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).
Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu
2016-11-05
The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6. Copyright © 2016 Elsevier B.V. All rights reserved.
GENPLOT: A formula-based Pascal program for data manipulation and plotting
NASA Astrophysics Data System (ADS)
Kramer, Matthew J.
Geochemical processes involving alteration, differentiation, fractionation, or migration of elements may be elucidated by a number of discrimination or variation diagrams (e.g., AFM, Harker, Pearce, and many others). The construction of these diagrams involves arithmetic combination of selective elements (involving major, minor, or trace elements). GENPLOT utilizes a formula-based algorithm (an expression parser) which enables the program to manipulate multiparameter databases and plot XY, ternary, tetrahedron, and REE type plots without needing to change either the source code or rearranging databases. Formulae may be any quadratic expression whose variables are the column headings of the data matrix. A full-screen editor with limited equations and arithmetic functions (spreadsheet) has been incorporated into the program to aid data entry and editing. Data are stored as ASCII files to facilitate interchange of data between other programs and computers. GENPLOT was developed in Turbo Pascal for the IBM and compatible computers but also is available in Apple Pascal for the Apple Ile and Ill. Because the source code is too extensive to list here (about 5200 lines of Pascal code), the expression parsing routine, which is central to GENPLOT's flexibility is incorporated into a smaller demonstration program named SOLVE. The following paper includes a discussion on how the expression parser works and a detailed description of GENPLOT's capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dontsova, K.; Steefel, C.I.; Desilets, S.
2009-07-15
A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less
NASA Astrophysics Data System (ADS)
Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.
2011-12-01
Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured σb increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in σb. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the σb changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.
Sensitivity of mineral dissolution rates to physical weathering : A modeling approach
NASA Astrophysics Data System (ADS)
Opolot, Emmanuel; Finke, Peter
2015-04-01
There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.
Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water
NASA Astrophysics Data System (ADS)
Saini-Eidukat, Bernhardt; Yahin, Andrew
1999-05-01
A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.
Solar-assisted MED treatment of Eskom power station waste water
NASA Astrophysics Data System (ADS)
Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard
2017-06-01
The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.
TAPIR--Finnish national geochemical baseline database.
Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael
2010-09-15
In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various environmental applications. Copyright 2010 Elsevier B.V. All rights reserved.
ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE
The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...
Carbonate mineral dissolution kinetics in high pressure experiments
NASA Astrophysics Data System (ADS)
Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.
2012-04-01
The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the reaction kinetics should be acknowledged when using reactive transport models, especially when modeling kinetically controlled pH-buffering processes between a CO2 leakage an a receptor like a ground water well. Currently, further experiments for the determination of the dolomite dissolution kinetics are being performed. Here, the knowledge of the dissolution rate constants can be even more important compared to the (still) fast calcite dissolution. This study is being funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. Literature Lasaga, A. C., 1984. Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research 89, 4009-4025. Palandri, J. L. and Kharaka, Y. K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS, Menlo Park, CA, USA. v. Grinsven, J. J. M. and Riemsdijk, W. H., 1992. Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 52, 41-57.
NASA Astrophysics Data System (ADS)
González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia
2016-04-01
Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and water content. It was surprising the low solubility product (Ksp) of the new phase Co2CO3(OH)2 in the order of 10-30 and this could explain its appearance only after 7 days of aging. On the other hand, the high solubility product of amorphous is consistent with its instantaneous precipitation at the beginning of the reaction. Solution calorimetry shows a higher value of exothermic solution enthalpy for crystalline cobalt hydroxide carbonate and hence, the solubility result are confirmed. Although geochemical models indicated that aqueous solution was supersaturated with respect both phases, the sequence of obtained phases (first amorphous and next crystalline) indicate that the evolution of the saturation index has to be dropped with respect to amorphous phase with time. These results points towards a simultaneous dissolution of the amorphous and the precipitation of crystalline phase Co2CO3(OH)2 at the first stages of the reaction. González-López, J. ; Fernández-González, Á. ; Jiménez, A. (2015) Prepublication: Crystallization of nanostructured cobalt hydroxide carbonate at ambient conditions: a key precursor of Co3O4. DOI: http://dx.doi.org/10.1180/minmag.2015.079.7.02
Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M.
2005-01-01
Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry spells. Despite the relatively humid climate of the eastern United States, where precipitation typically exceeds evaporation, salts form intermittently in open areas, persist in protected areas when temperature and relative humidity are appropriate, and contribute to metal loadings and acidity in surface waters upon dissolution, thereby causing short-term perturbations in water quality.
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
Leveling data in geochemical mapping: scope of application, pros and cons of existing methods
NASA Astrophysics Data System (ADS)
Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe
2017-04-01
Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.
Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation
Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.
2012-01-01
The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into the interactive U.S. Geological Survey Mineral Resource Data web portal, available at http://mrdata.usgs.gov/.
Alsop, Eric B; Boyd, Eric S; Raymond, Jason
2014-05-28
The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Clustering based on the frequency in which orthologous proteins occur among metagenomes facilitated accurate prediction of the ordering of community functional composition along geochemical gradients, despite a lack of geochemical input. The consistency in the results obtained from the application of Markov clustering and multivariate methods to distinct natural systems underscore their utility in predicting the functional potential of microbial communities within a natural system based on system geochemistry alone, allowing geochemical measurements to be used to predict purely biological metrics such as microbial community composition and metabolism.
SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks
NASA Astrophysics Data System (ADS)
Hertogen, Jan; Mareels, Joyce
2016-07-01
A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a number of questions about the petrogenetic relationships among parental magmas of nearly coeval granitic units emplaced in close proximity.
NASA Astrophysics Data System (ADS)
Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir
2016-03-01
The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.
Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M
NASA Astrophysics Data System (ADS)
Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.
2012-12-01
On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Iizuka, Tsuyoshi; Sasaki, Takanori; Ueno, Yuichiro; Ikoma, Masahiro
2017-07-01
The Earth was born in violence. Many giant collisions of protoplanets are thought to have occurred during the terrestrial planet formation. Here we investigated the giant impact stage by using a hybrid code that consistently deals with the orbital evolution of protoplanets around the Sun and the details of processes during giant impacts between two protoplanets. A significant amount of materials (up to several tens of percent of the total mass of the protoplanets) is ejected by giant impacts. We call these ejected fragments the giant-impact fragments (GIFs). In some of the erosive hit-and-run and high-velocity collisions, metallic iron is also ejected, which comes from the colliding protoplanets' cores. From ten numerical simulations for the giant impact stage, we found that the mass fraction of metallic iron in GIFs ranges from ∼1 wt% to ∼25 wt%. We also discussed the effects of the GIFs on the dynamical and geochemical characteristics of formed terrestrial planets. We found that the GIFs have the potential to solve the following dynamical and geochemical conflicts: (1) The Earth, currently in a near circular orbit, is likely to have had a highly eccentric orbit during the giant impact stage. The GIFs are large enough in total mass to lower the eccentricity of the Earth to its current value via their dynamical friction. (2) The concentrations of highly siderophile elements (HSEs) in the Earth's mantle are greater than what was predicted experimentally. Re-accretion of the iron-bearing GIFs onto the Earth can contribute to the excess of HSEs. In addition, Iron-bearing GIFs provide significant reducing agent that could transform primitive CO2-H2O atmosphere and ocean into more reducing H2-bearing atmosphere. Thus, GIFs are important for the origin of Earth's life and its early evolution.
Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.
2015-01-01
This study has used a data-driven, geographic information system (GIS)-based method for evaluating the mineral resource potential across the large region of the CYPA. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic unit codes or HUCs) as the spatial unit of classification. The final map output indicates an estimated potential (high, medium, low) for a given mineral deposit group and indicates the certainty (high, medium, low) of that estimate for any given subwatershed (HUC). Accompanying tables describe the data layers used in each analysis, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to the estimated potential and certainty determinations. Core datasets used include the U.S. Geological Survey (USGS) Alaska Geochemical Database (AGDB2), the Alaska Division of Geologic and Geophysical Surveys Web-based geochemical database, data from an anticipated USGS geologic map of Alaska, and the USGS Alaska Resource Data File. Map plates accompanying this report illustrate the mineral prospectivity for the six deposit groups across the CYPA and estimates of mineral resource potential. There are numerous areas, some of them large, rated with high potential for one or more of the selected deposit groups within the CYPA.
NASA Astrophysics Data System (ADS)
Ghosh, Amitabha
A finite element code has been developed to study the thermal history of asteroid 4 Vesta. This is the first attempt to model the thermal history of a differentiated asteroid, from accretion through core and crust formation and subsequent cooling until geochemical closure is attained. Previous thermal models were simpler formulations aimed at explaining metamorphism and aqueous alteration in unmelted asteroids. The results of the simulation are consistent with chronological measurements of cumulate and noncumulate eucrites, meteorites belonging to the HED suite, believed to have been derived from 4 Vesta. The work solves major problems with the hypothesis of heating by decay of 26Al, an extinct radionuclide, believed to be a plausible heat source in the early solar system. The simulation draws a model chronology of Vesta and predicts the time interval of accretion at 2.85 Myrs, the absolute times (with respect to CAI formation) of core formation at 4.58 Myrs, crust formation at 6.58 Myrs and geochemical closure on Vesta at ~100 Myrs. It is concluded that neither collisional heating nor heating due to the radioactive decay of 60Fe caused any perceptible difference in the whole-body thermal history of Vesta. Further, the thermal model suggested that the olivine-rich spot observed on Vesta may not be excavated mantle material, but may be unmelted near-surface material that escaped the asteroid's differentiation history.
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
Nutrient mitigation in a temporary river basin.
Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet
2014-04-01
We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.
Granitto, Matthew; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.
2013-01-01
The Alaska Geochemical Database Version 2.0 (AGDB2) contains new geochemical data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska Geochemical Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical geochemical data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all U.S. Geological Survey geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest U.S. Geological Survey geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB2 and will be added to the NGDB. The AGDB2 data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB2 data provided in the linked database may be updated or changed periodically.
Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.
2011-01-01
The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies
Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...
Use of partial dissolution techniques in geochemical exploration
Chao, T.T.
1984-01-01
Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.
Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes
2007-08-15
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.
The IUGS/IAGC Task Group on Global Geochemical Baselines
Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos
2012-01-01
The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
NASA Astrophysics Data System (ADS)
Ghezelbash, Reza; Maghsoudi, Abbas
2018-05-01
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.
Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.
2002-12-01
Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data if they were available from direct measurements or as variables otherwise. To estimate the geochemical parameters, we first assigned a prior model for each variable and a likelihood model for each type of data, which together define posterior probability distributions for each variable on the domain. Since the posterior probability distribution may involve hundreds of variables, we used a Markov Chain Monte Carlo (MCMC) method to explore each variable by generating and subsequently evaluating hundreds of realizations. Results from this case study showed that although geophysical attributes are not necessarily directly related to geochemical parameters, geophysical data could be very useful for providing accurate and high-resolution information about geochemical parameter distribution through their joint and indirect connections with hydrogeological properties such as lithofacies. This case study also demonstrated that MCMC methods were particularly useful for geochemical parameter estimation using geophysical data because they allow incorporation into the procedure of spatial correlation information, measurement errors, and cross correlations among different types of parameters.
Field-Integrated Studies of Long-Term Sustainability of Chromium Bioreduction at Hanford 100H Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.
2006-06-01
The objectives of the project are to investigate coupled hydraulic, geochemical, and microbial conditions, and to determine the critical biogeochemical parameters necessary to maximize the extent of Cr(VI) bioreduction and minimize Cr(III) reoxidation in groundwater. Specific goals of the project are as follows: (1) Field testing and monitoring of Cr(VI) bioreduction in ground water and its transformation into insoluble species of Cr(III) at the Hanford 100H site, to develop the optimal strategy of water sampling for chemical, microbial, stable isotope analyses, and noninvasive geophysical monitoring; (2) Bench-scale flow and transport investigations using columns of undisturbed sediments to obtain diffusion andmore » kinetic parameters needed for the development of a numerical model, predictions of Cr(VI) bioreduction, and potential of Cr(III) reoxidation; and (3) Development of a multiphase, multi-component 3D reactive transport model and a code, TOUGHREACT-BIO, to predict coupled biogeochemical-hydrological processes associated with bioremediation, and to calibrate and validate the developed code based on the results of bench-scale and field-scale Cr(VI) biostimulation experiments in ground water at the Hanford Site.« less
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
NASA Astrophysics Data System (ADS)
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008
Contaminant source identification using semi-supervised machine learning
NASA Astrophysics Data System (ADS)
Vesselinov, Velimir V.; Alexandrov, Boian S.; O'Malley, Daniel
2018-05-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).
Contaminant source identification using semi-supervised machine learning
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
2017-11-08
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
Contaminant source identification using semi-supervised machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
Integration of Geophysical and Geochemical Data
NASA Astrophysics Data System (ADS)
Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.
2006-12-01
Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.
Concerning evaluation of eco-geochemical background in remediation strategy
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2015-04-01
The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for plants and animals (Kovalsky, 1974; Letunova, Kovalsky, 1978, Ermakov, 1999). Obtained zones of different eco-geochemical risk need particular strategy basing on maximum possible correspondence to the natural geochemical conditions. For example, the assessment of effects of the nuclear accident in any case needs taking into account the synergetic results of ionizing radiation in different eco-geochemical conditions. In this respect the most contaminated areas should be withdrawn from living but some spatial arable lands can be used for seeds or technical crops production. The less contaminated areas still used in agriculture need shifting to fodder or species giving non-contaminated products (e.g. oil). Wet meadows of superaqueous landscapes with a relatively high radionuclide transfer to the plants should be excluded from grazing but other areas with lower transfer to forage may be used. In all the cases the resultant remediation should achieve first of all the maximum decrease of the summary negative health effect for the residents or working personnel. References Vernadsky V.I., 1926. Biosphere. Leningrad, Nauch. khim.-tekhn. izd-vo, 147 p. Vernadsky V.I., 1960. Selected works, Vol. 5. Moscow, izd-vo AN SSSR, 422 p. Kovalsky V.V., 1974. Geochemical ecology. Moscow, Nauka, Letunova S.V., Kovalsky V.V., 1978. Geochemical ecology of microorganisms. Moscow, Nauka, 148 pp. Ermakov V.V., 1999.Geochemical ecology as a result of the system-based study of the biosphere. Problems of biogeochemistry and geochemical ecology. Transactions of the Biogeochem. Lab., 23, Moscow, Nauka, 152-182.
Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.
2010-01-01
This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Azain, Jaime S.; Granitto, Matthew
2014-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. For the geochemical part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 1,682 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering the western half of the Wrangellia Terrane in the Anchorage, Gulkana, Healy, Mt. Hayes, Nabesna, and Talkeetna Mountains quadrangles of south-central Alaska (fig. 1). USGS was responsible for sample retrieval from the Denver warehouse through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
NASA Astrophysics Data System (ADS)
Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.
2016-12-01
An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2016-02-01
Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.
NASA Astrophysics Data System (ADS)
Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu
2017-10-01
We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.
Geochemical survey of the Blood Mountain Roadless Area, Union and Lumpkin counties, Georgia
Koeppen, Robert P.; Nelson, Arthur E.
1989-01-01
The U.S. Geological Survey (USGS) made a reconnaissance geochemical survey of the Blood Mountain Roadless Area to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance of distribution patterns of trace elements. Forty five fine-grained stream-sediment samples and 45 panned-concentrate samples were collected in the Blood Mountain study area (fig. 1). A.E. Nelson, in conjunction with detailed geologic mapping, collected 13 rock-chip samples for geochemical analysis, in addition to a large number of hand specimins for thin-section study. Nelson's geologic study (1983), combined with this geochemical survey, provide the basis for our mineral-resource assessment of the Blood Mountain Roadless Area (Koeppen and others, 1983).
Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.
2001-01-01
In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
Mineralization of Basalts in the CO 2-H 2O-H 2S System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.
2013-05-10
Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less
NASA Astrophysics Data System (ADS)
Korobova, Elena
2010-05-01
Sites of active or abandoned mining represent areas of considerable technogenic impact and need scientifically ground organization of their monitoring and reclamation. The strategy of monitoring and reclamation depends on the scale and character of the physical, chemical and biological consequences of the disturbances. The geochemical studies for monitoring and rehabilitation of the career-dump complexes should methodically account of formation of the particular new landforms and the changes in circulation of the remobilized elements of the soil cover. However, the general strategy should account of both the initial and transformed landscape geochemical structure of the area with due regard to the natural and new content of chemical elements in the environmental components. For example the tailings and waste rocks present new geochemical fields with specifically different concentration of chemical elements that cause formation of new geochemical barriers and landscapes. The way of colonization of the newly formed landscapes depends upon the new geochemical features of the technogenic environment and the adaptive ability of local and intrusive flora. The newly formed biogeochemical anomalies need organization of permanent monitoring not only within the anomaly itself but also of its impact zones. Spatial landscape geochemical monitoring combined with bio-geochemical criteria of threshold concentrations seems to be a helpful tool for decision making on reclamation and operation of the soil mining sites to provide a long-term ecologically sustainable development of the impact zone as a whole.
NASA Astrophysics Data System (ADS)
Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre
2016-07-01
The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.
NASA Astrophysics Data System (ADS)
Laureijs, C. T.; Coogan, L. A.
2016-12-01
It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and hydrothermal fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic hydrothermal systems could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis hydrothermal systems probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.
Impact of water overstock on groundwater quality of the Bassee plain area (France)
NASA Astrophysics Data System (ADS)
Gourcy, L.; Pettenati, M.; Baran, N.; Durand, P. Y.
2009-04-01
The project, inspired by the structural flood plain management measures of the Rhine River, consists in the temporal removal of a maximum amount of water from the Seine River in order to leave priority to the water from the River Yonne. Yonne River and the Seine are presenting their maximum water flow usually at a same time. The space located between Bray-sur-Seine and Montereau-Fault-Yonne corresponding to the La Bassée plain (agricultural area of 23 km2) is well adapted to this project of temporary and artificial flood. The objective of the project financed by the Institution Interdépartementale des barrages Réservoirs du Bassin de la Seine (IIBRBS), the BRGM, the Seine-Normandie Water Agency, the European Communauty through the Interreg IIIB SAND project is the evaluation, at a local scale, of the impact on groundwater quality of the temporal Seine water storage. Indeed, the water over storage i) changes hydraulic conditions and therefore modify water and pollutants transfers through the unsaturated and saturated zones and ii) bring at soil surface a water (Seine River) potentially containing contaminants that may move to groundwater and consequently changed physico-chemicals conditions (redox) of groundwater. The estimation of the vulnerability of groundwater to changes and loads needs hydraulic and geochemical modelling of transfer through the unsaturated zone as well as the study of pollutants fate in static conditions. Retention properties of some metals (Pb, Ni, Cu, Cr, Zn) in soils and materials of the unsaturated zone by chemical processes were performed determining adsorption coefficient (Kd) by laboratory experiments. These experiments are showing that nickel mobility is lower in the argillous layers than in the sandy part of the unsaturated zone. Ni mobility is controlled by iron hydroxides and precipitation of other secondary minerals. Its complexation on organic ligands increases its mobility in soils. Copper concentration is influenced by CaCO3 presence and soluble organic ligands. Zinc is strongly adsorbed on the solid matrix at all tested soils. At basic condition, such as normally encountered at the Bassée floodplain, chromium adsorption is very low or null. Based on these results, batch modelling (without transport) were carried out for Cu and Ni. That confirms that nickel adsorption is controlled by iron hydroxides in porous media. For copper, the main processes controlling adsorption is organic ligands complexation that increases the mobility of this element in the soils. To complement the information acquired on metal comportment in the unsaturated zone and because pesticides were detected in soils and groundwater, laboratory experiments were performed using glyphosate alone and combining this pesticide with the tested heavy metals. The tests are highlighting the strong relationships between metals and pesticides. For the 5 soils used glyphosate adsorption is increased when metals are added to the solution. At the opposite, the experiences for the evaluation of the impact of the increase of glyphosate on the quantity of metals adsorbed (Cu, Ni, Ni) were not conclusive. The geochemical calculation code PHREEQC was used to model reactive transfer of solutes in a 1 D saturated column. Results obtained indicate that some contaminants (nickel) are mainly retained at the iron hydroxides surfaces even at very high concentration. Stability of metal depends then on the maintaining of oxic conditions in the porous media. After adsorption, nickel concentrations in soils remains well under average natural concentrations. Results of the project allowed the risk evaluation of a groundwater contamination by the Seine River during overstock episodes. During derivation of the Seine River into the Bassée floodplain, infiltration of water and solutes in the unsaturated zones will be done quickly. Some metals (Zn, Ni, Cu), and the glyphosate, will stay in the first centimetres of the soils due to their intrinsic properties. Even if a change of the physico-chemical conditions (mainly redox, organic matter contents) of the Bassée floodplain has very little probability to occur, this change may lead to very important changes in the comportment of heavy metals and pesticides. Other elements (Cr and other anionic metals) are not retained in the shallow soil horizons and, as water, will infiltrate very quickly in the unsaturated zone during inundation phases. Persistence time, estimated by modelling, of dissolved elements in the unsaturated zone is few years. The results showed that the probability of groundwater contamination due to overstock episodes is very low to null but consequences may be important. This assessment obliges to consider the installation of a water quality monitoring program for the control of the Seine River upstream the alluvial plain about 5 days before filling up the retention basins and up to the end of the replenishment procedure.
Kane, J.S.
1991-01-01
A brief history of programs to develop geochemical reference samples and certified reference samples for use in geochemical analysis is presented. While progress has been made since G-1 and W-1 were issued, many challenges remain. ?? 1991.
Chaffee, M.A.
1986-01-01
Geochemical sampling was conducted during 1982. This report summarizes the results of that investigation and provides details of the geochemical evaluation used in producing the final mineral resource assessment of the study area (Armstrong and others, 1983).
On prediction and discovery of lunar ores
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.; Vaniman, David
1991-01-01
Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.
NASA Astrophysics Data System (ADS)
Smirnov, Yu. V.; Sorokin, A. A.
2017-05-01
The first results of geochemical and Sm-Nd isotope-geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian-Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin "block" of the South Mongolian-Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Barr, D.; Rutqvist, J.
2005-11-15
The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches andmore » different computer codes.Below, we give an overview of the research task and report its currentstatus.« less
NASA Astrophysics Data System (ADS)
Gonçalves, Mario; Mateus, Antonio
2016-04-01
The safeguarding of access/use of many critical raw materials for Society requires that much of previously dismissed areas for exploration must be re-evaluated with new criteria in which the significance of "anomaly" should not be treated independently of the geochemical signals of the ore-forming processes and how the different chemical elements are interrelated. For much of the previous decade, several multifractal methods were methodically being refined as automatic tools to analyze and detect geochemical anomalies. These included the early concentration-area method (Cheng et al., 1994), singularity mapping (Cheng, 2007), and spectrum-area (Cheng et al., 2000), which has been recently combined with the bi-dimensional empirical mode decomposition (Xu et al., 2016) as a tool to separate different contributing sources of an otherwise complex geochemical pattern. We propose yet another approach, the use of geochemical indexes, which links to the geological and ore-forming processes known to define a given region in order to assess much of these numerical approaches. Therefore, we picked several areas from the Variscan basement in Portugal, with different geologic and metallogentic contexts, some of them previously analyzed with multifractal methods (Gonçalves et al., 2001; Jesus et al., 2013) and a multi-element geochemical campaign on which to test the different multifractal methods combined with the geochemical indexes, as an advantageous alternative to principal component mapping, for example. Some preliminary essays with stochastic models similar to those reported in Gonçalves (2001) and Agterberg (2007), with different overprinted pulses are presented as well. Acknowledgments: This is a contribution from UID/GEO/50019/2013 - Instituto Dom Luiz, supported by FCT. Agterberg, 2007, Math. Geol., 39, 1. Cheng et al, 1994, J. Geochem. Explor., 51, 109. Cheng et al., 2000, Nat. Resour. Res, 9, 43. Cheng, 2007, Ore Geol. Rev., 32, 314. Gonçalves, 2001, Math. Geol., 33, 41. Gonçalves et al., 2001, J. Geochem. Explor., 72, 91. Jesus et al., 2013, J. Geochem. Explor., 126-127, 23. Xu et al., 2016, J. Geochem. Explor., in press
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Linking the climatic and geochemical controls on global soil carbon cycling
NASA Astrophysics Data System (ADS)
Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal
2015-04-01
Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.
Stephens, G.C.; Evenson, E.B.; Detra, D.E.
1990-01-01
In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional geochemical sampling. As a result, in most geochemical sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic geochemical exploration of the glacial catchment area. Moraine sampling provides geochemical information that is site-specific in that geochemical anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and geochemical data the probable geological setting of the geochemical anomalies is determined. ?? 1990.
Geochemical survey of the Chattahoochee Roadless Area, Towns, Union, and White counties, Georgia
Koeppen, Robert P.; Nelson, Arthur E.
1989-01-01
Th U.S. Geological Survey made a reconnaissance geochemical survey of the Chattahoochee Roadless Area (fig. 1) to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance or distribution patterns of trace elements. As part of a regional geochemical reconnaissance, M/ Hurst (University of Georgia) collected 51 fine-grained stream-sediment samples and 45 planned-concentrate samples of alluvial gravels in the Chattahoochee study area (see figure 1). A.E. Nelson, in conjunction with detailed geologic mapping (Nelso, 1983), collected 10 rock-chip samples for geochemical analysis in addition to a large number of hand specimens for thin-section study. In order to evaluate isolated anomalies indicated by the earlier sampling, R.P. Koeppen, D.M. Sutphin, and P.D. Schruben collected several additional panned-concentrate, stream-sediment, and rock samples from the area in 1986. Both the geologic study by Nelson (1983) and this geochemical survey provide the basis for our mineral-resource assessment of the Chattahoochee Roadless Area (Nelson and others, 1983).
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
Mercury Slovenian soils: High, medium and low sample density geochemical maps
NASA Astrophysics Data System (ADS)
Gosar, Mateja; Šajn, Robert; Teršič, Tamara
2017-04-01
Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.
NASA Astrophysics Data System (ADS)
Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan
2017-12-01
Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.
Geochemical typification of kimberlite and related rocks of the North Anabar region, Yakutia
NASA Astrophysics Data System (ADS)
Kargin, A. V.; Golubeva, Yu. Yu.
2017-11-01
The results of geochemical typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the geochemical specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of geochemical data, the studied rocks are not industrially diamondiferous.
NASA Astrophysics Data System (ADS)
Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie
2016-04-01
Geochemical correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that geochemical ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of geochemical indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of geochemical patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against geochemical relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that geochemical relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad application of geochemical indices without an understanding of site specific conditions could result in significant underestimation of anthropogenic impacts to soil and potential risks to the environment. The reliability and application of geochemical indices for estimation of background concentrations will be discussed, including comment on statistical limitations, (such as management of censored results and the behaviour of composition data) and miss-use/miss-interpretation of geochemical indices within the environmental assessment industry, including inferences of causation based on empirical relationships. HAMON, R. E., MCLAUGHLIN, M. J., GILKES, R. J., RATE, A. W., ZARCINAS, B., ROBERTSON, A., COZENS, G., RADFORD, N. & BETTENAY, L. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18, GB1014. MYERS, J. & THORBJORNSEN, K. 2004. Identifying Metals Contamination in Soil: A Geochemical Approach. Soil & Sediment Contamination, 13, 1-16.
Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.
2009-01-01
The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.
Geochemical Exploration Techniques Applicable in the Search for Copper Deposits
Chaffee, Maurice A.
1975-01-01
Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.
2017-12-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical species. Numerous geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. As a result, these types of model analyses are typically extremely challenging. Here, we demonstrate a new contaminant source identification approach that performs decomposition of the observation mixtures based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. We also demonstrate how NMFk can be extended to perform uncertainty quantification and experimental design related to real-world site characterization. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios). The NMFk algorithm has been extensively tested on synthetic datasets; NMFk analyses have been actively performed on real-world data collected at the Los Alamos National Laboratory (LANL) groundwater sites related to Chromium and RDX contamination.
GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.
NASA Astrophysics Data System (ADS)
Asavin, A. M.
2001-12-01
There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.
Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, Daniel I.
The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less
NASA Astrophysics Data System (ADS)
Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.
Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.
Ranjbar, Faranak; Jalali, Mohsen
2015-11-01
In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in the presence of bicarbonate, sulfate, and phosphate in comparison with the presence of chloride, and the largest value was obtained in the presence of phosphate. So, it can be concluded that the presence of chloride anion is more favorable to reduce ESP compared to other anions, while the presence of phosphate anion makes the reclamation process more difficult. Furthermore, it is possible to reclaim sodic soils using inexpensive and readily available compounds such as potato residues and water management.
NASA Astrophysics Data System (ADS)
Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William
2016-12-01
The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.
Grosz, A.E.; Schruben, P.G.; Atelsek, P.J.
1987-01-01
A geochemical survey of bedrock samples in the Bread Loaf Roadless Area (index map; fig. 1) was conducted by the U.S. Geological Survey (USGS) during October, 1981 in order to outline areas that may contain undiscovered mineral deposits. This report describes the results of a geochemical analysis of panned concentrates collected from stream sediments, and complements other geologic and geochemical investigations of the area (Slack and Bitar, 1983). The present study has offered us a chance to identify sampling media and a technique most appropriate for the enhancement of certain metallic elements in samples of panned concentrate. This study is important to the resource evaluation of the Bread Loaf Roadless Area because it reveals that geochemical anomalies produced by this technique are not evident in the standard magnetic and nonmagnetic fractions of panned concentrates.
A scaling relationship for impact-induced melt volume
NASA Astrophysics Data System (ADS)
Nakajima, M.; Rubie, D. C.; Melosh, H., IV; Jacobson, S. A.; Golabek, G.; Nimmo, F.; Morbidelli, A.
2016-12-01
During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. The impactor's core sinks through the molten part of the target mantle (magma ocean) and experiences metal-silicate partitioning (e.g., Stevenson, 1990). For understanding the chemical evolution of the planetary mantle and core, we need to determine the impact-induced melt volume because the partitioning strongly depends on the ranges of the pressures and temperatures within the magma ocean. Previous studies have investigated the effects of small impacts (i.e. impact cratering) on melt volume, but those for giant impacts are not well understood yet. Here, we perform giant impact simulations to derive a scaling law for melt volume as a function of impact velocity, impact angle, and impactor-to-target mass ratio. We use two different numerical codes, namely smoothed particle hydrodynamics we developed (SPH, a particle method) and the code iSALE (a grid-based method) to compare their outcomes. Our simulations show that these two codes generally agree as long as the same equation of state is used. We also find that some of the previous studies developed for small impacts (e.g., Abramov et al., 2012) overestimate giant impact melt volume by orders of magnitudes partly because these models do not consider self-gravity of the impacting bodies. Therefore, these models may not be extrapolated to large impacts. Our simulations also show that melt volume can be scaled by the total mass of the system. In this presentation, we further discuss geochemical implications for giant impacts on planets, including Earth and Mars.
Chaffee, M.A.
1985-01-01
Geochemical sampling was conducted during 1978 and 1979. This report summarizes the reults of that investigation and provides details of the geochemical evaluation used in producing the final mineral resource assessment of the study area (John, Armin, Plouff, Chaffee, Peters, and others, 1983).
A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey
Sutphin, David M.
2005-01-01
National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.
Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin
Berger, P.M.; Roy, W.R.; Mehnert, E.
2009-01-01
The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.
Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542
Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.
NASA Astrophysics Data System (ADS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.
2018-06-01
On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu
2015-02-27
In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less
Geochemical landscapes of the conterminous United States; new map presentations for 22 elements
Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.
2001-01-01
Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.
Strategies to predict metal mobility in surficial mining environments
Smith, Kathleen S.
2007-01-01
This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.
Geochemical and mineralogical methods of prospecting for mineral deposits
Fersman, A. Ye; Borovik, S. A.; Gorshkov, G.V.; Popov, S.D.; Sosedko, A.F.; Hartsock, Lydia; Pierce, A.P.
1952-01-01
Fersman's book "Geochemical and mineralogical methods of prospecting for mineral deposits" (Geokhimicheskiye i mineralogicheskiye metody poiskov poleznykh iskopayemykh) covers all petrographic, mineralogical, and geochemical techniques that are used either directly or indirectly in mineral exploration. Chapter IV is of particular interest because it describes certain geochemical methods and principles that have not been widely applied outside of the Soviet Union. The original contained a number of photographs that have been omitted; the titles of the photographs are given in the body of the text. Wherever possible, bibliographic references have been checked, and the full titles given. References given in footnotes in the original have been collected and added at the end of each section as a bibliography.
Geochemical Reaction Mechanism Discovery from Molecular Simulation
Stack, Andrew G.; Kent, Paul R. C.
2014-11-10
Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less
Geochemical sampling in arid environments by the U.S. Geological Survey
Hinkle, Margaret E.
1988-01-01
The U.S. Geological Survey (USGS) is responsible for the geochemical evaluations used for mineral resource assessments of large tracts of public lands in the Western United States. Many of these lands are administered by the Bureau of Land Management (BLM) and are studied to determine their suitability or nonsuitability for wilderness designation. Much of the Western United States is arid or semiarid. This report discusses various geochemical sample media that have been used for evaluating areas in arid environments and describes case histories in BLM wilderness study areas in which stream-sediment and heavy-mineral-concentrate sample media were compared. As a result of these case history studies, the nonmagnetic fraction of panned heavy-mineral concentrates was selected as the most effective medium for reconnaissance geochemical sampling for resources other than gold, in arid areas. Nonmagnetic heavy-mineral-concentrate samples provide the primary analytical information currently used in geochemical interpretations of mineral resource potential assessment of BLM lands.
Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.
2008-01-01
This report is the second release of leachate geochemical data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. Geochemical data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for geochemical analysis. This report presents leachate geochemical data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).
Adjustment of geochemical background by robust multivariate statistics
Zhou, D.
1985-01-01
Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.
Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.
2011-01-01
The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.
Smith, Steven M.; Neilson, Ryan T.; Giles, Stuart A.
2015-01-01
Government-sponsored, national-scale, soil and sediment geochemical databases are used to estimate regional and local background concentrations for environmental issues, identify possible anthropogenic contamination, estimate mineral endowment, explore for new mineral deposits, evaluate nutrient levels for agriculture, and establish concentration relationships with human or animal health. Because of these different uses, it is difficult for any single database to accommodate all the needs of each client. Smith et al. (2013, p. 168) reviewed six national-scale soil and sediment geochemical databases for the United States (U.S.) and, for each, evaluated “its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.” Each of the evaluated databases has strengths and weaknesses that were listed in that review.Two of these U.S. national-scale geochemical databases are similar in their sample media and collection protocols but have different strengths—primarily sampling density and analytical consistency. This project was implemented to determine whether those databases could be merged to produce a combined dataset that could be used for mineral resource assessments. The utility of the merged database was tested to see whether mapped distributions could identify metalliferous black shales at a national scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, P.A.
1993-03-01
The global geochemical cycle for an element tracks its path from its various sources to its sinks via processes of weathering and transportation. The cycle may then be quantified in a necessarily approximate manner. The geochemical cycle (thus quantified) reveals constraints (known and unknown) on an element's behavior imposed by the various processes which act on it. In the context of a global geochemical cycle, a continent becomes essentially a source term. If, however, an element's behavior is examined in a local or regional context, sources and their related sinks may be identified. This suggests that small-scale geochemical cycles maymore » be superimposed on global geochemical cycles. Definition of such sub-cycles may clarify the distribution of an element in the earth's near-surface environment. In Florida, phosphate minerals of the Hawthorn Group act as a widely distributed source of uranium. Uranium is transported by surface- and ground-waters. Florida is the site of extensive wetlands and peatlands. The organic matter associated with these deposits adsorbs uranium and may act as a local sink depending on its hydrogeologic setting. This work examines the role of organic matter in the distribution of uranium in the surface and shallow subsurface environments of central and north Florida.« less
Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight
NASA Astrophysics Data System (ADS)
Akinlua, Akinsehinwa; Torto, Nelson
2011-09-01
A geochemical evaluation of Niger Delta organic matter was carried out using supercritical fluid extraction (SFE) sample preparation procedure. Comparison of geochemical significance of gas chromatographic data of rock extracts of SFE with those of Soxhlet extraction method from previous studies was made in order to establish the usefulness of SFE in geochemical exploration. The assessment of geochemical character of the rock samples from the comparison and interpretation of other geochemical parameters were used to give more insights into understanding the source rocks characteristics of onshore and shelf portions of the Niger Delta Basin. The results of the gas chromatographic (GC) analysis of the rock extracts across the lithostratigraphic units show that Pr/Ph, Pr/nC17, Pr/nC18, CPI and odd/even preference ranged from 0.07 to 12.39, 0.04 to 6.66, 0.05 to 13.80, 0.12 to 8.4 and 0.06 to 8.12, respectively. The Rock-Eval pyrolysis data and geochemical ratios and parameters calculated from the GC data showed that most of the samples are mature and have strong terrestrial provenance while a few samples have strong marine provenance. The few marine source rocks are located in the deeper depth horizon. Pr/Ph and standard geochemical plots indicate that most of samples were derived from organic matter deposited in less reducing conditions, i.e. more of oxidizing conditions while a few samples have predominantly influence of reducing conditions. The results of trace metal analysis of older samples from Agbada Formation also indicate marine and mixed organic matter input deposited in less reducing conditions. The results obtained in this study are comparable with those obtained from previous studies when Soxhlet extraction method was used and also indicated the presence of more than one petroleum systems in the Niger Delta.
Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap
NASA Astrophysics Data System (ADS)
Jadamec, M.; Fischer, K. M.
2012-12-01
In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.
Geochemical Monitoring Considerations for the FutureGen 2.0 Project
Amonette, James E.; Johnson, Timothy A.; Spencer, Clayton F.; ...
2014-12-31
Geochemical monitoring is an essential component of a suite of monitoring technologies designed to evaluate CO2 mass balance and detect possible loss of containment at the FutureGen 2.0 geologic sequestration site near Jacksonville, IL. This presentation gives an overview of the potential geochemical approaches and tracer technologies that were considered, and describes the evaluation process by which the most cost-effective and robust of these were selected for implementation
Summary geochemical maps of the Harrison 1° x 2° quadrangle, Arkansas and Missouri
Erickson, R.L.; Chazin, Barbara; Erickson, M.S.
1989-01-01
Geochemical studies of the Harrison lo x 2° quadrangle, Arkansas and Missouri, are part of a joint multidisciplinary study by the U.S. Geological Survey; the Division of Geology and Land Survey, Missouri Department of Natural Resources; and the Arkansas Geological Commission. The objective of the joint study is to assess the mineral-resource potential of the area by integrated geologic, geochemical, and geophysical investigations.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.
2015-01-01
Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean
Acceptance of the 2014 Geochemical Society Distinguished Service Award by Carla Koretsky
NASA Astrophysics Data System (ADS)
Koretsky, Carla
2015-06-01
I am deeply touched to have received the Geochemical Society Distinguished Service Award. It was a great surprise when I received the notice that I had been chosen for the award. It has been a tremendous pleasure to work on behalf of student members of the Geochemical Society, Japanese Geochemical Society and the European Association of Geochemists to organize the student travel grants over the past few years. Certainly, this is not an effort that I undertook on my own. Many, many members of the GS, the JGS and the EAG generously donated their time and expertise to serve as reviewers for the many travel grant applicants we receive each year. Seth Davis, the GS Chief Operating Officer, spent countless hours helping to organize applications, the website, distribution of funds and many other aspects of the competition. Without Seth and the many expert reviewers, we could not run the travel grant program each year and provide this important financial support to allow more students to experience the Goldschmidt Conference. I also enjoyed my time as Geochemical News co-editor, and I should point out that GN during those years was ably co-edited by Johnson Haas. It has been a pleasure to see Elements take off, and GN evolve into a timely source of important announcements and information about cutting-edge science since I stepped down as co-editor. I feel very fortunate to work with so many outstanding colleagues in the global geochemical community, and I am a little embarrassed, and also very grateful, to have been selected for the Geochemical Society Distinguished Service Award. Thank you!
Community-Based Development of Standards for Geochemical and Geochronological Data
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.
2007-12-01
The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.
Estimation of the geochemical threshold and its statistical significance
Miesch, A.T.
1981-01-01
A statistic is proposed for estimating the geochemical threshold and its statistical significance, or it may be used to identify a group of extreme values that can be tested for significance by other means. The statistic is the maximum gap between adjacent values in an ordered array after each gap has been adjusted for the expected frequency. The values in the ordered array are geochemical values transformed by either ln(?? - ??) or ln(?? - ??) and then standardized so that the mean is zero and the variance is unity. The expected frequency is taken from a fitted normal curve with unit area. The midpoint of an adjusted gap that exceeds the corresponding critical value may be taken as an estimate of the geochemical threshold, and the associated probability indicates the likelihood that the threshold separates two geochemical populations. The adjusted gap test may fail to identify threshold values if the variation tends to be continuous from background values to the higher values that reflect mineralized ground. However, the test will serve to identify other anomalies that may be too subtle to have been noted by other means. ?? 1981.
NASA Technical Reports Server (NTRS)
Casey, Kimberly Ann; Kaab, Andreas
2012-01-01
We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
NASA Astrophysics Data System (ADS)
Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton
2014-05-01
The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify potential gold zones, and determine their formation affinity. Nadezhda Site. Contrast Au, Ag, Pb, Bi, Sb, As dispersion halos that form a linear anomalous geochemical field of ore body rank are identified. Predicted mineralization was related to the gold-sulfosalt mineral association according to the secondary dispersion halos chemical composition. Timsha Site. Contrast secondary Au, Ag, Sb, As, Hg, Pb, Bi dispersion halos are identified. These halos have rhythmically-banded structure, which can be caused by stringer morphological type of mineralization. Bands with anomalously high contents of elements have been interpreted by the authors as probable auriferous bodies. Four such bodies of 700 to 1500 m long were identified. Mineralization of the gold-sulfide formation similar to the "Carlin" type is predicted according to the secondary dispersion halos chemical composition as well as geological features. Temny Site. Contrast secondary Au, Ag, W, Sb dispersion halos are identified. A series of geochemical associations was identified based on factor analysis results. Au-Bi-W-Hg, and Pb-Sb-Ag-Zn associations, apparently related to the mineralization are of the greatest interest. Geochemical fields of these associations are closely spaced and overlapped in plan that may be caused by axial zoning of the subvertically dipping auriferous body. Three linear geochemical zones corresponding to potentially auriferous zones with pyrite type mineralization of the gold-quartz formation are identified within the anomalous geochemical field core zone. 3. In all these prospects, mining and drilling penetrated gold ore bodies within the identified potentially gold zones. The Nadezhda target now has the status of gold deposit.
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Integrated Disposal Facility FY 2012 Glass Testing Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.
2013-03-29
PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less
NASA Astrophysics Data System (ADS)
Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.
2011-12-01
The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from <104 to 105 cells/mL), both HRC and lactate injections stimulated anaerobic microbial activity, which led to an increase in biomass to >107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production of acetate and propionate, the evolution of 13C in bicarbonate, and the rate of sulfate reduction. In contrast to the slow-release HRC injections, no long-term effects of biostimulation and Cr bioreduction were observed in groundwater after the lactate injections. The presentation will address these patterns of the geochemical, δ13C of DIC, and biomass changes in groundwater before and after the polylactate and lactate injections.
NASA Astrophysics Data System (ADS)
Dávila Ordoñez, M. G.; Zahasky, C.; Crandall, D.; Druhan, J. L.
2017-12-01
Thus far, one million metric tons of CO2 have been injected into the lower Mt. Simon formation as part of the Decatur CO2 Capture and Storage Project. Micro-seismic events were observed within the CO2 plume both during and after pressurization associated with the primary injection. The Mt. Simon reservoir rock consists of 76.5 wt.% quartz, 2.1 wt.% calcite, 17.3 wt.% K-feldspar, 1.1 wt.% chlorite, 0.7 wt.% illite and lesser extents of siderite, kaolinite, dolomite and marcasite, and is thus anticipated to become geochemically altered by exposure to acidified CO2-rich brine. However, the extent to which the geochemical reactivity contributes to structural weakening is unknown. To explore relationships between the principle geochemical reactions, evolution of fluid transport properties and physical alteration, we performed a series of flow-through experiments using Mt. Simon core (5 cm diameter, ranging from 4.3 - 8.6 cm length) and fluids representative of acidified reservoir brine. Experiments were operated under P = 1450 bar, Pconfining = 1900 - 3000 bar and T = 53 ºC conditions, and flow rates varied from 0.08 to 5.00 mL h-1 over a period of 166 h. A 2D reactive transport code (Crunch-Tope) was used to simulate these experiments, constrained by measured time series aqueous concentrations of Ca, Mg, S, Si, K and Fe and pH during the CO2-rich brine interaction. The model domain was divided into 30 nodes in x at a spacing of 0.12 cm, and 40 nodes in y at a spacing of 0.22 cm, and initial permeability measured for the core was specified and allowed to evolve over the course of the simulation using measured flow rate as a constraint. All relevant kinetic and thermodynamic reaction parameters were obtained from the literature. Solute time series from both experiments and simulations indicated that the acidified brine introduced continuously into the column promoted dissolution of K-feldspar, chloride, illite, pyrite and calcite, and the precipitation of Ca-, Fe- and Si -bearing secondary phases, resulting in a net porosity increase at the inlet. Despite this opening of the inlet pore space, permeability decreased over the length of the column (kfinal/kinitial = 0.76), thus altering local resistance to fluid phase pressure gradients.
Geochemical orientation for mineral exploration in the Hashemite Kingdom of Jordan
Overstreet, W.C.; Grimes, D.J.; Seitz, J.F.
1982-01-01
This report is a supplement to previous accounts of geochemical exploration conducted in the Hashemite Kingdom of Jordan by the Natural Resources Authority of the Royal Government of Jordan and the U.S. Geological Survey. The field work on which this report is based was sponsored by the U.S. Agency for International Development, U.S. Department of State. Procedures used in collecting various kinds of rocks, ores, slags, eluvial and alluvial sediments, heavy-mineral concentrates, and organic materials for use as geochemical sample media are summarized, as are the laboratory procedures followed for the analysis of these sample materials by semiquantitative spectrographic, atomic absorption, fluorometric, and X-ray diffraction methods. Geochemical evaluations of the possibilities for economic mineral deposits in certain areas are presented. The results of these preliminary investigations open concepts for further use in geochemical exploration in the search for metallic mineral deposits in Jordan. Perhaps the most desirable new activity would be hydrogeochemical exploration for uranium and base metals, accompanied by interpretation of such remote-sensing data as results of airborne radiometric surveys and computer-enhanced LANDSAT imagery. For more conventional approaches to geochemical exploration, however, several fundamental problems regarding proper choice of geochemical sample media for different geologic and geographic parts of the Country must be solved before effective surveys can be made. The present results also show that such common geochemical exploration techniques as the determination of the trace-element contents of soils, plant ash, and slags have direct application also toward the resolution of several archaeological problems in Jordan. These include the relation of trace-elements chemistry of local soils to the composition of botanic remains, the trace-elements composition of slags to the technological development of the extractive metallurgy of copper and iron in the region, and the use of charcoal from slags for the C-14 dating of periods of archaeometallurgical activity. Less directly, interpretations based on the distribution in time and space of the archaeometallurgical activities of the region might add to the knowledge of early climatic conditions and vegetative cover of the area.
Geochemistry of subduction zone serpentinites: A review
NASA Astrophysics Data System (ADS)
Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko
2013-09-01
Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zone geodynamics. Their presence and role in subduction environments are recognized through geophysical, geochemical and field observations of modern and ancient subduction zones and large amounts of geochemical database of serpentinites have been created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical data of abyssal, mantle wedge and exhumed serpentinites after subduction. The aim was to better understand the geochemical evolution of these rocks during their subduction as well as their impact in the global geochemical cycle. When studying serpentinites, it is essential to determine their protoliths and their geological history before serpentinization. The geochemical data of serpentinites shows little mobility of compatible and rare earth elements (REE) at the scale of hand-specimen during their serpentinization. Thus, REE abundance can be used to identify the protolith for serpentinites, as well as magmatic processes such as melt/rock interactions before serpentinization. In the case of subducted serpentinites, the interpretation of trace element data is difficult due to the enrichments of light REE, independent of the nature of the protolith. We propose that enrichments are probably not related to serpentinization itself, but mostly due to (sedimentary-derived) fluid/rock interactions within the subduction channel after the serpentinization. It is also possible that the enrichment reflects the geochemical signature of the mantle protolith itself which could derive from the less refractory continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous analyses have been carried out, notably using in situ approaches, to better constrain the behavior of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) incorporated in serpentine phases. The abundance of these elements provides information related to the fluid/rock interactions during serpentinization and the behavior of FME, from their incorporation to their gradual release during subduction. Serpentinites are considered as a reservoir of the FME in subduction zones and their role, notably on arc magma composition, is underestimated presently in the global geochemical cycle.
2008-01-01
Background Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. Results We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. Conclusion These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis. PMID:18631373
Duval, Simon; Ducluzeau, Anne-Lise; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara
2008-07-16
Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.
Quantifying Volcanic Emissions of Trace Elements to the Atmosphere: Ideas Based on Past Studies
NASA Astrophysics Data System (ADS)
Rose, W. I.
2003-12-01
Extensive data exist from volcanological and geochemical studies about exotic elemental enrichments in volcanic emissions to the atmosphere but quantitative data are quite rare. Advanced, highly sensitive techniques of analysis are needed to detect low concentrations of some minor elements, especially during major eruptions. I will present data from studies done during low levels of activity (incrustations and silica tube sublimates at high temperature fumaroles, from SEM studies of particle samples collected in volcanic plumes and volcanic clouds, from geochemical analysis of volcanic gas condensates, from analysis of treated particle and gas filter packs) and a much smaller number that could reflect explosive activity (from fresh ashfall leachate geochemistry, and from thermodynamic codes modeling volatile emissions from magma). This data describes a highly variable pattern of elemental enrichments which are difficult to quantify, generalize and understand. Sampling in a routine way is difficult, and work in active craters has heightened our awareness of danger, which appropriately inhibits some sampling. There are numerous localized enrichments of minor elements that can be documented and others can be expected or inferred. There is a lack of systematic tools to measure minor element abundances in volcanic emissions. The careful combination of several methodologies listed above for the same volcanic vents can provide redundant data on multiple elements which could lead to overall quantification of minor element fluxes but there are challenging issues about detection. For quiescent plumes we can design combinations of measurements to quantify minor element emission rates. Doing a comparable methodology to succeed in measuring minor element fluxes for significant eruptions will require new strategies and/or ideas.
Interactive client side data visualization with d3.js
NASA Astrophysics Data System (ADS)
Rodzianko, A.; Versteeg, R.; Johnson, D. V.; Soltanian, M. R.; Versteeg, O. J.; Girouard, M.
2015-12-01
Geoscience data associated with near surface research and operational sites is increasingly voluminous and heterogeneous (both in terms of providers and data types - e.g. geochemical, hydrological, geophysical, modeling data, of varying spatiotemporal characteristics). Such data allows scientists to investigate fundamental hydrological and geochemical processes relevant to agriculture, water resources and climate change. For scientists to easily share, model and interpret such data requires novel tools with capabilities for interactive data visualization. Under sponsorship of the US Department of Energy, Subsurface Insights is developing the Predictive Assimilative Framework (PAF): a cloud based subsurface monitoring platform which can manage, process and visualize large heterogeneous datasets. Over the last year we transitioned our visualization method from a server side approach (in which images and animations were generated using Jfreechart and Visit) to a client side one that utilizes the D3 Javascript library. Datasets are retrieved using web service calls to the server, returned as JSON objects and visualized within the browser. Users can interactively explore primary and secondary datasets from various field locations. Our current capabilities include interactive data contouring and heterogeneous time series data visualization. While this approach is very powerful and not necessarily unique, special attention needs to be paid to latency and responsiveness issues as well as to issues as cross browser code compatibility so that users have an identical, fluid and frustration-free experience across different computational platforms. We gratefully acknowledge support from the US Department of Energy under SBIR Award DOE DE-SC0009732, the use of data from the Lawrence Berkeley National Laboratory (LBNL) Sustainable Systems SFA Rifle field site and collaboration with LBNL SFA scientists.
NASA Astrophysics Data System (ADS)
Lu, C.; Zhang, C.; Huang, H.; Johnson, T.
2012-12-01
Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.
Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui
2017-10-01
Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Management and assimilation of diverse, distributed watershed datasets
NASA Astrophysics Data System (ADS)
Varadharajan, C.; Faybishenko, B.; Versteeg, R.; Agarwal, D.; Hubbard, S. S.; Hendrix, V.
2016-12-01
The U.S. Department of Energy's (DOE) Watershed Function Scientific Focus Area (SFA) seeks to determine how perturbations to mountainous watersheds (e.g., floods, drought, early snowmelt) impact the downstream delivery of water, nutrients, carbon, and metals over seasonal to decadal timescales. We are building a software platform that enables integration of diverse and disparate field, laboratory, and simulation datasets, of various types including hydrological, geological, meteorological, geophysical, geochemical, ecological and genomic datasets across a range of spatial and temporal scales within the Rifle floodplain and the East River watershed, Colorado. We are using agile data management and assimilation approaches, to enable web-based integration of heterogeneous, multi-scale dataSensor-based observations of water-level, vadose zone and groundwater temperature, water quality, meteorology as well as biogeochemical analyses of soil and groundwater samples have been curated and archived in federated databases. Quality Assurance and Quality Control (QA/QC) are performed on priority datasets needed for on-going scientific analyses, and hydrological and geochemical modeling. Automated QA/QC methods are used to identify and flag issues in the datasets. Data integration is achieved via a brokering service that dynamically integrates data from distributed databases via web services, based on user queries. The integrated results are presented to users in a portal that enables intuitive search, interactive visualization and download of integrated datasets. The concepts, approaches and codes being used are shared across various data science components of various large DOE-funded projects such as the Watershed Function SFA, Next Generation Ecosystem Experiment (NGEE) Tropics, Ameriflux/FLUXNET, and Advanced Simulation Capability for Environmental Management (ASCEM), and together contribute towards DOE's cyberinfrastructure for data management and model-data integration.
Publications - GMC 275 | Alaska Division of Geological & Geophysical
DGGS GMC 275 Publication Details Title: Geochemical analyses from the following North Slope oil/gas Piggott, Neil, 1997, Geochemical analyses from the following North Slope oil/gas exploratory well
Publications - GMC 343 | Alaska Division of Geological & Geophysical
DGGS GMC 343 Publication Details Title: Geochemical data (HC-show evaluation) for the following samples Bibliographic Reference ConocoPhillips, 2007, Geochemical data (HC-show evaluation) for the following samples
du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.
2013-04-23
Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.
Determination of geochemical and natural radioactivity characteristics in Bilecik Marble, Turkey
NASA Astrophysics Data System (ADS)
Yerel Kandemir, Suheyla; Ozbay, Nurgul
2014-05-01
Natural stones are one of the oldest known building materials. There are more than 400 natural stone in Turkey. Recently, the demand for the natural stone types in markets has been increasing rapidly. For this reason, the geochemical and natural radioactivity characteristics of natural stone are very important. Bilecik province is located at the northwest part of Turkey and it is surrounded by Sakarya, Bursa, Eskisehir and Kutahya city. Bilecik is one of the important marble industry regions of Turkey. Thus, the geochemical and natural radioactivity characteristics of Bilecik marble are very important. In this study, Bilecik marble was collected to determine the geochemistry and natural radioactivity. Then, analyses of geochemical and natural radioactivity in the marble samples are interpreted. ACKNOWLEDGMENT This study is supported by Bilecik Seyh Edebali University scientific project (Project Number =2011-02-BIL.03-04).
Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming
Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.
2015-01-01
The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.
Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan
2015-07-15
Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2013-05-01
Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less
Geochemical baseline studies of soil in Finland
NASA Astrophysics Data System (ADS)
Pihlaja, Jouni
2017-04-01
The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).
Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades
Reddy, M.M.; Aiken, G.R.
2001-01-01
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.
Kinetic modeling of antimony(III) oxidation and sorption in soils.
Cai, Yongbing; Mi, Yuting; Zhang, Hua
2016-10-05
Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DI Kaplan; RJ Serne
Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste ismore » protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.« less
Clark, Allan K.; Journey, Celeste A.
2006-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically.
Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation
Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine
2011-01-01
Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.
Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S
2010-12-01
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.
An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research
NASA Astrophysics Data System (ADS)
Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.
2013-12-01
This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.
NASA Astrophysics Data System (ADS)
Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn
2017-04-01
Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is further dependent on carbon dioxide partial pressure within the gas phase. Moreover, no other gases apart from hydrogen, such as methane, were produced in any of the model runs. The combined results offer a constraint on hydrogen production over time, and may aid habitability assessments of extraterrestrial bodies where serpentinization could occur.
Hydrologic and geochemical data assimilation at the Hanford 300 Area
NASA Astrophysics Data System (ADS)
Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.
2012-12-01
In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, A.A.; Selby, L.A.; Hutcheson, D.P.
1973-01-01
Infertility and growth suppression were reported in two beef-cattle herds located in a small valley in central Missouri. Clinical, epidemiological, and toxicological evaluation of the herds and ranches by personnel from the Environmental Health Surveillance Center suggested that the problem was related to the local geochemical environment. US Geological Survey personnel, engaged in a geochemical survey of the natural environment of Missouri, were asked to evaluate the site geochemically. Geochemical studies of waters, alluvial deposits, and vegetation revealed that aluminum, beryllium, cobalt, copper, molybdenum, and nickel occur in anomalous concentrations in these materials. The principal source of these elements ismore » believed to be clay, shale, limestone, coal, and pyrite that were exposed at the head of the valley when the clay was mined. Young beef cattle from two ranches which were pastured on the flood plain below the claypile experienced a severe growth suppression from an imbalance of minerals or other nutrients in their feed or water, or both. Metabolic disturbances in these cattle resembled chronic molybdenosis. Imbalances of copper and molybdenum, in addition to those of cobalt and other substances, may have contributed to this syndrome. 17 references.« less
Geochemical and isotopic water results, Barrow, Alaska, 2012-2013
Heikoop, Jeff; Wilson, Cathy; Newman, Brent
2012-07-18
Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.
Mercury's Geochemical Terranes Revisited
NASA Astrophysics Data System (ADS)
Peplowski, P. N.; Stockstill-Cahill, K. R.
2018-05-01
We applied analytical tools to redefine Mercury's major geochemical terranes. The composition and petrology of each terrane will be discussed, along with analyses of gamma-ray data aimed at deriving absolute abundances of Si and Mg in each terrane.
Publications - GMC 335 | Alaska Division of Geological & Geophysical
DGGS GMC 335 Publication Details Title: Geochemical analysis of core (3340'-3625') from the BP Reference ExxonMobil, 2006, Geochemical analysis of core (3340'-3625') from the BP Exploration (Alaska) Inc
Publications - GMC 209 | Alaska Division of Geological & Geophysical
DGGS GMC 209 Publication Details Title: Source rock potential and geochemical characterization of OCS Y Reference DGSI, Inc., 1993, Source rock potential and geochemical characterization of OCS Y-0943-1 (Aurora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianqiu; RoyChowdhury, Taniya; Herndon, Elizabeth
This is a synthesis data product that reports (1) the results of soil geochemical characterization and (2) organic carbon degradation in low temperature soil incubations on cores collected on the NGEE Arctic Study Area near Utqiaġvik (Barrow), Alaska. The study area consists of thaw lakes, drained thaw lake basins and interstitial tundra with a polygonal landscape of microtopographic features created by ice wedges. Integrated geochemical and organic carbon degradation data from 9 individual soil cores are included in the synthesis product.
East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton
NASA Astrophysics Data System (ADS)
Wang, X.; Ma, W.
2010-12-01
North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can generate classification thematic maps using query results, according different parameters. 3.Data analysis on-line. Here we designed lots of geochemical online analysis tools, including geochemical diagrams, CIPW computing, and so on, which allows researchers to analyze query data without download query results. Operation of all these analysis tools is very easy; users just do it by click mouse one or two time. In summary, ECGD provide a geochemical platform for researchers, whom to know where various data are, to view various data in a synthetic and dynamic way, and analyze interested data online. REFERENCES [1] S. Gao, R.L. Rudnick, and W.L. Xu, “Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton,” Earth and Planetary Science Letters,270,41-53,2008. [2] K.A. Lehnert, U. Harms, and E. Ito, “Promises, Achievements, and Challenges of Networking Global Geoinformatics Resources - Experiences of GeosciNET and EarthChem,” Geophysical Research Abstracts, Vol.10, EGU2008-A-05242,2008.
NASA Astrophysics Data System (ADS)
Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.
2017-12-01
Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance of fracture opening in controlling both saprolite and regolith thickness within this watershed.
Morrison, Jean M.; Goldhaber, Martin B.; Holloway, JoAnn M.; Smith, David B.
2008-01-01
In 2004, the U.S. Geological Survey (USGS), the Geological Survey of Canada (GSC), and the Mexican Geological Survey (Servicio Geologico Mexicano, or SGM) initiated pilot studies in preparation for a soil geochemical survey of North America called the Geochemical Landscapes Project. The purpose of this project is to provide a better understanding of the variability in chemical composition of soils in North America. The data produced by this survey will be used to construct baseline geochemical maps for regions within the continent. Two initial pilot studies were conducted: (1) a continental-scale study involving a north-south and east-west transect across North America and (2) a regional-scale study. The pilot studies were intended to test and refine sample design, sampling protocols, and field logistics for the full continental soils geochemical survey. Smith and others (2005) reported the results from the continental-scale pilot study. The regional-scale California study was designed to represent more detailed, higher resolution geochemical investigations in a region of particular interest that was identified from the low-sample-density continental-scale survey. A 20,000-km2 area of northern California (fig. 1), representing a wide variety of topography, climate, and ecoregions, was chosen for the regional-scale pilot study. This study area also contains diverse geology and soil types and supports a wide range of land uses including agriculture in the Sacramento Valley, forested areas in portions of the Sierra Nevada, and urban/suburban centers such as Sacramento, Davis, and Stockton. Also of interest are potential effects on soil geochemistry from historical hard rock and placer gold mining in the foothills of the Sierra Nevada, historical mercury mining in the Coast Range, and mining of base-metal sulfide deposits in the Klamath Mountains to the north. This report presents the major- and trace-element concentrations from the regional-scale soil geochemical survey in northern California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Devleena, E-mail: devleenatiwari@ngri.res.in; Kumar, T. Satish; Rasheed, M. A.
2011-03-15
The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospectivemore » for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.« less
Publications - GMC 249 | Alaska Division of Geological & Geophysical
DGGS GMC 249 Publication Details Title: Source rock geochemical and visual kerogen data from cuttings Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings (2,520-8,837') of the
Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep
2012-01-01
A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.
NASA Astrophysics Data System (ADS)
Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan
2016-07-01
Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.
Geobiochemistry: Placing Biochemistry in Its Geochemical Context
NASA Astrophysics Data System (ADS)
Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.
2014-12-01
Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.
NASA Astrophysics Data System (ADS)
Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.
2014-06-01
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.
NASA Astrophysics Data System (ADS)
Bowles, Marshall; Hunter, Kimberley S.; Samarkin, Vladimir; Joye, Samantha
2016-07-01
We collected 69 sediment cores from distinct ecological and geological settings along the deep slope in the Northern Gulf of Mexico to evaluate whether specific geochemical- or habitat-related factors correlated with rates of microbial processes and geochemical signatures. By collecting replicate cores from distinct habitats across multiple sites, we illustrate and quantify the heterogeneity of cold seep geochemistry and microbial activity. These data also document the factors driving unique aspects of the geochemistry of deep slope gas, oil and brine seeps. Surprisingly little variation was observed between replicate (n=2-5) cores within sites for most analytes (except methane), implying that the common practice of collecting one core for geochemical analysis can capture the signature of a habitat in most cases. Depth-integrated concentrations of methane, dissolved inorganic carbon (DIC), and calcium were the predominant geochemical factors that correlated with a site's ecological or geological settings. Pore fluid methane concentration was related to the phosphate and DIC concentration, as well as to rates of sulfate reduction. While distinctions between seep habitats were identified from geochemical signatures, habitat specific geochemistry varied little across sites. The relative concentration of dissolved inorganic nitrogen versus phosphorus suggests that phosphorus availability limits biomass production at cold seeps. Correlations between calcium, chloride, and phosphate concentrations were indicative of brine-associated phosphate transport, suggesting that in addition to the co-migration of methane, dissolved organic carbon, and ammonium with brine, phosphate delivery is also associated with brine advection.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia
2017-04-01
Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehmel, G.A.
1989-05-01
Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ..delta..G/sub f,298//sup o/, ..delta..H/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reactionmore » (..delta..H/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs.« less
ISSOL Meeting, 7th, Barcelona, Spain, July 4-9, 1993. [Abstracts only
NASA Technical Reports Server (NTRS)
Ferris, James P. (Editor)
1994-01-01
The journal issue consists of abstracts presented at the International Society for the Study of the Origins of Life (ISSOL) conference. Topics include research on biological and chemical evolution including prebiotic evolution: cosmic and terrestrial; mechanisms of abiogenesis including synthesis and reactions of biomonomers; and analysis of cometary matter and its possible relationship to organic compounds on Earth. Theories and research on origins of ribonucleic acids (RNA), deoxyribonucleic acid (DNA), and other amino acids and complex proteins including their autocatalysis, replication, and translation are presented. Abiotic synthesis of biopolymers, mechanisms of the Genetic Code, precellular membrane systems and energetics are considered. Earth planetary evolution including early microfossils and geochemical conditions and simulations to study these conditions are discussed. The role of chirality in precellular evolution and the taxonomy and phylogeny of very simple organisms are reported. Past and future explorations in exobiology and space research directed toward study of the origins of life and solar system evolution are described.
Publications - GMC 154 | Alaska Division of Geological & Geophysical
DGGS GMC 154 Publication Details Title: Geochemical and pellet data of an 8060 foot depth core sample Reference Mickey, M.B., and Brockway, Ron, 1990, Geochemical and pellet data of an 8060 foot depth core
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Kvenvolden, K. A.; Philpott, D. E.
1974-01-01
The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized.
Publications - GMC 295 | Alaska Division of Geological & Geophysical
DGGS GMC 295 Publication Details Title: Geochemical assay data from U.S. Bureau of Mines hard-rock . Bureau of Mines, 2000, Geochemical assay data from U.S. Bureau of Mines hard-rock mineral cores (holes
NASA Astrophysics Data System (ADS)
Udvardi, Beatrix; Szabó, Zsuzsanna; Freiler, Ágnes; Kónya, Péter; Jerabek, Csaba; Pálfi, Éva; Kovács, István; Nagy, Péter; Halupka, Gábor
2017-04-01
It is well known that water from precipitation or other sources (e.g. groundwater, river) contributes to the triggering of landslides by means of infiltration into the slope, which causes an increase in the pore pressure and a reduction in the strength of the involved material. The physical failure is commonly coupled with chemical changes in landslides due the fact that soluble components dissolve in the pore water and others precipitate during rock-water interaction. Thus the composition of sediments and water chemistry are used jointly as indicators of the development of landslides. Rock-water interaction, however, takes a long time, and depends on hydrology and geochemistry of the landslide area; therefore, many researchers have focused on numerical simulation and laboratory experiment for setting up a landslide early warning system. Since water chemistry can change over time in landslides due to the seasonal rainfall pattern, groundwater fluctuation and flood events, the intensity of rock-water interaction (e.g. dissolution, precipitation) may also vary. Thus, the physicochemical processes cannot be elucidated precisely without understanding both the solution evolution and the mineral alteration in landslides. From this aspect, field survey, mineralogical (XRD, FTIR, DTG) and chemical measurements (ICP-OES), and geochemical modelling (PHREEQC) were conducted in a landslide-prone loess area along the River Danube (Hungary). Water from the River Danube and three springs were sampled during four field campaigns at Kulcs over a year. Additionally, landslide deposits including sliding surface and secondary precipitations were collected at Kulcs and Dunaújváros. In combination with previous hydrochemical analyses of the area and average rainfall composition of Hungary, it is possible to model the kinetic dissolution and precipitation of minerals during rainfall events and flooding periods of the river. The chemistry of springs shows that the Mg-Ca-HCO3 facies with high electrical conductivity (898 - 1227 µS/cm) may occur due to the dissolution of carbonates and silicates throughout the year. During occasional rainstorms in summer, however, it is found that the pH of the springs slightly increased while their electrical conductivity decreased tenfold. This can be attributed to the rapid infiltration of rainwater through fractures and holes of the loess deposit. Similar process can take place at Dunaújváros, however, larger subsidence happened there than at Kulcs. The secondary precipitations indicate that dissolved components in groundwater precipitate as calcite at the foot of the Dunaújváros landslide. Furthermore, the comparison between model of loess-river water and loess-spring water interaction suggests that the dissolution of dolomite, Ca-montmorillonite and chlorite is stronger during flooding than during low water level of the river. Therefore, frequency and duration of rainstorms and floodings may have deeper consequences for loess landslides.
Geochemistry of serpentinites in subduction zones: A review
NASA Astrophysics Data System (ADS)
Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko
2013-04-01
Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zones geodynamics. Their presence and effective role in this environment is acknowledged notably by geophysical, geochemical and field observations of (paleo-) subduction zones. In this context, with the increasing amount of studies concerning serpentinites in subduction environments, a huge geochemical database was created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical analyses of abyssal, mantle wedge and subducted serpentinites. The aim was to better understand the geochemical evolution of these rocks during their subduction history as well as their impact in the global geochemical cycle. When studying serpentinites, it is often a challenge to determine the nature of the protolith and their geological history before serpentinisation. The present-day (increasing) geochemical database for serpentinites indicates little to no mobility of incompatible elements at the scale of the hand-sample in most serpentinized peridotites. Thus, Rare Earth Elements (REE) distribution can be used to identify the initial protolith for abyssal and mantle wedge serpentinites, as well as magmatic processes such as melt/rock interactions taking place before serpentinisation. In the case of subducted serpentinites, the interpretation of trace element data is more difficult due to secondary enrichments independent of the nature of the protolith, notably in (L)REE. We propose that these enrichments reflect complex interactions probably not related to serpentinisation itself, but mostly to fluid/rock or sediment/rock interactions within the subduction channel, as well as intrinsic feature of the mantle protolith which could derive from the continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous studies have been carried out, notably using in situ approaches, to better constrain the geochemical budget of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) stored in serpentinites and serpentine phases. These elements are good markers of the fluid/rock interactions taking place during serpentinisation. Today, the control of serpentinites on the behaviour of these elements, from their incorporation to their gradually release during subduction, is better understood. Serpentinites must be considered as a component of the FME budget in subduction zones and their role, notably on arc magmas composition, is undoubtedly underestimated presently in the global geochemical cycle.
Benchmark Problems of the Geothermal Technologies Office Code Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Podgorney, Robert; Kelkar, Sharad M.
A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulationmore » capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners.« less
Toxicity of major geochemical ions to freshwater species
Extensive testing regarding the toxicity of major geochemical ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...
The objective of this presentation is to evaluate the potential and applicability of different geochemical and isotopic tracers for tracing the impacts of fracturing fluids and co-produced waters on water resources.
FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES
The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...
Vertical Geochemical Profiling Across a 3.33 Ga Microbial Mat from Barberton
NASA Astrophysics Data System (ADS)
Westall, F.; Lemelle, L.; Simionovici, A.; Southam, G.; Maclean, L.; Salomé, M.; Wirick, S.; Toporski, J.; Jauss, A.
2008-03-01
The Josefdal Chert (3.33 Ga), Barberton, contains a superbly preserved microbial mat. High resolution geochemical profiling across the mat documents textures and compositions indicative of a mixed microbial community of anoxygenic photosynthesisers and probably SRBs.
NASA Astrophysics Data System (ADS)
Tsukanov, N. V.; Saveliev, D. P.; Kovalenko, D. V.
2018-01-01
This study presents new geochemical and isotope data on igneous rocks of the Vetlovaya marginal sea paleobasin (part of the Late Mesozoic-Cenozoic margin of the northwestern Pacific). The results show that the rock complexes of this marginal sea basin comprise igneous rocks with geochemical compositions similar to those of normal oceanic tholeiites, enriched transitional tholeiites, and ocean island and back-arc basin basalts. Island-arc tholeiitic basalts are present only rarely. The specific geochemical signatures of these rocks are interpreted as being related to mantle heterogeneity and the geodynamic conditions in the basin.
Geochemical characteristics of peat from two raised bogs of Germany
NASA Astrophysics Data System (ADS)
Mezhibor, A. M.
2016-11-01
Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.
Bookstrom, Arthur A.; El Komi, Mohamed; Christian, Ralph P.; Bazzari, Maher A.
1990-01-01
Ore minerals in outcrops, and geochemically anomalous concentrations of gold, silver, copper, lead, zinc, arsenic, antimony, and tellurium are present in carbonate-rich rocks of the hot-spring assemblage. This indicates that the ore minerals and elements were deposited originally as constituents of the hot-spring assemblage. However, exposed ore-mineral occurrences are small and sparse, and geochemical anomalies are small, irregularly distributed, and of subeconomic grade. Furthermore, weak electromagnetic anomalies do not indicate the presence of subsurface bodies of concentrated, conductive ore minerals. Therefore, no drilling is recommended.
Instrumentation for Testing Whether the Icy Moons of the Gas and Ice Giants Are Inhabited.
Chela-Flores, Julian
2017-10-01
Evidence of life beyond Earth may be closer than we think, given that the forthcoming missions to the jovian system will be equipped with instruments capable of probing Europa's icy surface for possible biosignatures, including chemical biomarkers, despite the strong radiation environment. Geochemical biomarkers may also exist beyond Europa on icy moons of the gas giants. Sulfur is proposed as a reliable geochemical biomarker for approved and forthcoming missions to the outer solar system. Key Words: JUICE mission-Clipper mission-Geochemical biomarkers-Europa-Moons of the ice giants-Geochemistry-Mass spectrometry. Astrobiology 17, 958-961.
Drake, Brandon Lee; Wills, Wirt H.; Hamilton, Marian I.; Dorshow, Wetherbee
2014-01-01
Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts. In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studies using these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the East. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous. PMID:24854352
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz; Robert C. Starr; Brennon Orr
2003-09-01
This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.« less
Adamski, J.C.
2000-01-01
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict flow and increase water-rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright (C) 2000 John Wiley and Sons, Ltd.Geochemical data indicate that the Springfield Plateau carbonate aquifer has two distinct hydrochemical zones. With each hydrochemical zone, water from springs is geochemically and isotopically different from the water from wells. Spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Factors affecting the differences in the geochemical composition of groundwater between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zones.
ab initio MD simulations of geomaterials with ~1000 atoms
NASA Astrophysics Data System (ADS)
Martin, G. B.; Kirtman, B.; Spera, F. J.
2009-12-01
In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.
Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona
Wenrich, K.J.; Aumente-Modreski, R. M.
1994-01-01
Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.
VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...
Publications - GMC 304 | Alaska Division of Geological & Geophysical
DGGS GMC 304 Publication Details Title: Hard-rock geochemical data of core from the FL-001, FL-003, and . Bibliographic Reference Unknown, 2002, Hard-rock geochemical data of core from the FL-001, FL-003, and FL-004
Szuszkiewicz, Marcin; Łukasik, Adam; Magiera, Tadeusz; Mendakiewicz, Maria
2016-07-01
Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include selected parameters, both magnetic (mass magnetic susceptibility - χ, frequency-dependent magnetic susceptibility - χfd and thermomagnetic susceptibility measurement - TSM), and geochemical (selected heavy metal contents: Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn). Additionally, the enrichment factor (EF) and index of geoaccumulation (Igeo) were calculated. Our results suggest the following: (1) the χ/Fe ratio may be a reliable indicator for determining changes of magnetic signal origin in soil profiles; (2) magnetic and geochemical signals are simultaneously higher (the increment of χ and lead and zinc was noted) in topsoil horizons because of the deposition of technogenic magnetic particles (TMPs); (3) EF and Igeo evaluated for lead and zinc unambiguously showed anthropogenic influence in terms of increasing heavy metal contents in topsoil regardless of bedrock or soil type; (4) magnetic susceptibility measurements supported by TSM curves for soil samples of different genetic horizons are a helpful tool for interpreting the origin and nature of the mineral phases responsible for the changes of magnetic susceptibility values. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Feng; McPherson, Brian J.; Kaszuba, John
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2013-04-01
Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.
NASA Astrophysics Data System (ADS)
Silva, Dailto; Lana, Cristiano; Souza Filho, Carlos Roberto
2016-03-01
Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact-induced congruent melting of an alkali-granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium-rich granite, similar to postcollisional, A-type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact-induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.
Pan, Feng; McPherson, Brian J.; Kaszuba, John
2017-01-01
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
Lovering, T.G.; McCarthy, J.H.
1978-01-01
This summary of geochemical exploration in the Basin and Range Province is another in the series of reviews of geochemical-exploration applications covering a large region; this series began in 1975 with a summary for the Canadian Cordillera and Canadian Shield, and was followed in 1976 by a similar summary for Scandinavia (Norden). Rather than adhering strictly to the type of conceptual models applied in those papers, we have made use of generalized landscape geochemistry models related to the nature of concealment of ore deposits. This study is part of a continuing effort to examine and evaluate geochemical-exploration practices in different areas of the world. Twenty case histories of the application of geochemical exploration in both district and regional settings illustrate recent developments in techniques and approaches. Along with other published reports these case histories, exemplifying generalized models of concealed deposits, provide data used to evaluate geochemical-exploration programs and specific sample media. Because blind deposits are increasingly sought in the Basin and Range Province, the use of new sample media or anomaly-enhancement techniques is a necessity. Analysis of vapors or gases emanating from blind deposits is a promising new technique. Certain fractions of stream sediments show anomalies that are weak or not detected in conventional minus 80-mesh fractions. Multi-element analysis of mineralized bedrock may show zoning patterns that indicate depth or direction of ore. Examples of the application of these and other, more conventional methods are indicated in the case histories. The final section of this paper contains a brief evaluation of the applications of all types of sample media to geochemical exploration in the arid environment of the Basin and Range Province. ?? 1978.
Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilger, R.H. Jr.
1985-01-01
The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Geochemical Constraints on the Size of the Moon — Forming Giant Impact
NASA Astrophysics Data System (ADS)
Piet, H.; Badro, J.; Gillet, P.
2018-05-01
We use the partitioning of siderophile trace elements to model the geochemical influence of the Moon-forming giant impact on Earth’s mantle during core formation. We find the size of the impactor to be 15% of Earth mass or smaller.
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Hawke, B. R.
1982-01-01
Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.
NASA Astrophysics Data System (ADS)
Roselee, Muhammad Hatta; Umor, Mohd Rozi; Ghani, Azman Abdul; Badruldin, Muhamad Hafifi; Quek, Long Xiang
2018-04-01
Kampung Awah and Tasik Kenyir are geologically located in East Malaya Blocks. These block is also known as western margin of Indochina terrane. Apart from sedimentary formations, East Malaya Blocks is also dominated by plutonic and volcanic rocks of mafic to rhyolitic compositions. Petrography and geochemical data suggest that Kampung Awah and Tasik Kenyir are one of locations which consists of volcanic rocks of generally basaltic to basaltic andesite compositions. Volcanic rocks from both area consists of plagioclcase, clinopyroxene, orthpyroxene as main mineral constituents with minor occurrences of hornblende. Geochemical data also indicate that volcanic rocks from both area were formed during subduction of the Paleo-tethys oceanic underneath the East Malaya Block or Indochina terrane. Most of the samples are metaluminous which indicate the volcanics are derived from igneous origin. This paper will contribute new geochemical data of mafic volcanics from Kampung Awah and Tasik Kenyir with the support of petrographic and field evidence to deduce the magma evolution and the tectonic setting.
NASA Technical Reports Server (NTRS)
Mogk, D. W.; Kain, L.
1985-01-01
The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.
Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu
2017-01-01
During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.
Marcaida, Mae; Mangan, Margaret T.; Vazquez, Jorge A.; Bursik, Marcus; Lidzbarski, Marsha I.
2014-01-01
Nineteen tephra layers within the Wilson Creek formation near Mono Lake provide a record of late Pleistocene to early Holocene volcanic activity from the nearby Mono Craters and are important chronostratigraphic markers for paleomagnetic, paleoclimatic, and paleoecologic studies. These stratigraphically important tephra deposits can be geochemically identified using compositions of their titanomagnetite phenocrysts. Titanomagnetite compositions display a broad range (XUsp 0.26–0.39), which allow the tephra layers to be distinguished despite the indistinguishable major-element glass compositions (76–77 wt% SiO2) of their hosts. The concentrations of Ti and Fe in titanomagnetite display geochemical and stratigraphic groupings that allow clear discrimination between older (> 57 ka) and younger (2O3 contents. In addition, a few tephra layers can be correlated to their source vents by their titanomagnetite compositions. The unique geochemical fingerprint of the Mono Craters-sourced titanomagnetites also allows the discrimination of two tephra layers apparently sourced from nearby Mammoth Mountain volcano in Long Valley.
Landmeyer, J.E.; Bradley, P.M.
2003-01-01
The effect of pre-existing factors, e.g., hydrologic, geochemical, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger geochemical sink for DO compared to ground water in the unpaved area.
Segmentation of singularity maps in the context of soil porosity
NASA Astrophysics Data System (ADS)
Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.
2016-04-01
Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).
MetPetDB: A database for metamorphic geochemistry
NASA Astrophysics Data System (ADS)
Spear, Frank S.; Hallett, Benjamin; Pyle, Joseph M.; Adalı, Sibel; Szymanski, Boleslaw K.; Waters, Anthony; Linder, Zak; Pearce, Shawn O.; Fyffe, Matthew; Goldfarb, Dennis; Glickenhouse, Nickolas; Buletti, Heather
2009-12-01
We present a data model for the initial implementation of MetPetDB, a geochemical database specific to metamorphic rock samples. The database is designed around the concept of preservation of spatial relationships, at all scales, of chemical analyses and their textural setting. Objects in the database (samples) represent physical rock samples; each sample may contain one or more subsamples with associated geochemical and image data. Samples, subsamples, geochemical data, and images are described with attributes (some required, some optional); these attributes also serve as search delimiters. All data in the database are classified as published (i.e., archived or published data), public or private. Public and published data may be freely searched and downloaded. All private data is owned; permission to view, edit, download and otherwise manipulate private data may be granted only by the data owner; all such editing operations are recorded by the database to create a data version log. The sharing of data permissions among a group of collaborators researching a common sample is done by the sample owner through the project manager. User interaction with MetPetDB is hosted by a web-based platform based upon the Java servlet application programming interface, with the PostgreSQL relational database. The database web portal includes modules that allow the user to interact with the database: registered users may save and download public and published data, upload private data, create projects, and assign permission levels to project collaborators. An Image Viewer module provides for spatial integration of image and geochemical data. A toolkit consisting of plotting and geochemical calculation software for data analysis and a mobile application for viewing the public and published data is being developed. Future issues to address include population of the database, integration with other geochemical databases, development of the analysis toolkit, creation of data models for derivative data, and building a community-wide user base. It is believed that this and other geochemical databases will enable more productive collaborations, generate more efficient research efforts, and foster new developments in basic research in the field of solid earth geochemistry.
The survival of geochemical mantle heterogeneities
NASA Astrophysics Data System (ADS)
Albarede, F.
2004-12-01
The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km) domains, strongly sheared and refolded, and interlayered with younger recycled material. The exploration of the fine-scale geochemical structure of the mantle and the quest for preserved remnants of very old mantle arise as the strongest priorities of deep Earth geochemistry.
A geochemical examination of humidity cell tests
Maest, Ann; Nordstrom, D. Kirk
2017-01-01
Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use in modeling the environmental performance at mine sites. Improved guidance is needed for more consistent interpretation and use of HCT results that rely on identifying: the geochemical processes; the mineralogy, including secondary mineralogy; the available surface area for reactions; and the influence of hydrologic processes on leachate concentrations in runoff, streams, and groundwater.
GEOCHEMICAL MODELING OF ARSENIC SPECIATION AND MOBILIZATION: IMPLICATIONS FOR BIOREMEDIATION
Geochemical modeling techniques were used to examine the biogeochemical linkages between Fe, S, and As in shallow alluvial aquifers. We modeled: 1) the adsorption and desorption of As on the surface of hydrous ferric oxides (HFO’s) in stream beds under aerobic conditions; 2) red...
43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?
Code of Federal Regulations, 2011 CFR
2011-10-01
..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...
43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?
Code of Federal Regulations, 2012 CFR
2012-10-01
..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...
43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?
Code of Federal Regulations, 2014 CFR
2014-10-01
..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...
43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?
Code of Federal Regulations, 2013 CFR
2013-10-01
..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.C.; King, H.D.; O'Leary, R.M.
Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.
IDENTIFICATION OF SOURCES OF GROUND-WATER SALINIZA- TION USING GEOCHEMICAL TECHNIQUES
This report deals with salt-water sources that commonly mix and deteriorate fresh ground water. It reviews characteristics of salt-water sources and geochemical techniques that can be used to identify these sources after mixing has occurred. The report is designed to assist inves...
DOT National Transportation Integrated Search
2010-03-01
Both Ground Penetrating Radar (GPR) surveys and Hydro-Geochemical Water Testing (HGWT) have been performed at the Cumberland Gap Tunnel to determine why the reinforced concrete pavement has settled in various areas throughout both tunnels. To date, a...
Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh
2012-01-01
The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000more » μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.« less
Donoghue, S.L.; Vallance, J.; Smith, I.E.M.; Stewart, R.B.
2007-01-01
Volcanic hazards assessments at andesite stratovolcanoes rely on the assessment of frequency and magnitude of past events. The identification and correlation of proximal and distal andesitic tephra, which record the explosive eruptive history, are integral to such assessments. These tephra are potentially valuable stratigraphic marker beds useful to the temporal correlation and age dating of Quaternary volcanic, volcaniclastic and epiclastic sedimentary deposits with which they are interbedded. At Mt Ruapehu (New Zealand) and Mt Rainier (USA), much of the detail of the recent volcanic record remains unresolved because of the difficulty in identifying proximal tephra. This study investigates the value of geochemical methods in discriminating andesitic tephra. Our dataset comprises petrological and geochemical analyses of tephra that span the late Quaternary eruptive record of each volcano. Our data illustrate that andesitic tephra are remarkably heterogeneous in composition. Tephra compositions fluctuate widely over short time intervals, and there are no simple or systematic temporal trends in geochemistry within either eruptive record. This complexity in tephra geochemistry limits the application of geochemical approaches to tephrostratigraphic studies, beyond a general characterisation useful to provenance assignation. Petrological and geochemical data suggest that the products of andesite systems are inherently variable and therefore intractable to discrimination by simple geochemical methods alone. Copyright ?? 2006 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.
2015-12-01
The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.
Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.
Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk
2012-01-01
The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Shaoqing; Wang, Jing; Lin, Chunye; He, Mengchang; Liu, Xitao
2013-10-15
The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of geochemical background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P geochemical baseline level (GBL) and develop P geochemical baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The geochemical background and baseline information of P are of great importance in managing P levels within the LRW. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.
2015-01-01
Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.
NASA Astrophysics Data System (ADS)
Aftabi, Alijan; Atapour, Habibeh
2009-12-01
Based on the imprecise geochemical data for 62 samples from Qom, Anar and Baft regions in central Iranian magmatic arc Omrani et al. (Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagsros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos 106, 380-398.), suggested that all studied magmatic rocks display the geochemical affinity of subduction-related calc-alkalic rock suites. Here, we demonstrate that the incorrect altered and variable geochemical data (e.g., Al 2O 3, Sr, Y, Ni, Cr, SiO 2, Na 2O, La/Yb and Th/Ce), show that most of the samples actually display calc-alkaline, shoshonitic and calc-alkalic-adakitic affinities. Furthermore, as a result of alteration, rock samples of similar age (e.g., Qom) indicate both adakitic and non-adakitic compositional signatures, which is misleading. On the basis of more than 400 previously published geochemical analyses, we suggest that, after eliminating the false geochemical signatures, the calc-alkaline and adakitic affinities of the central Iranian magmatic arc are due to flat subduction and might be related to a second phase of Miocene- Pliocene porphyry copper mineralization, which is a considerable exploration target and thus merits further investigation.
Microbial Response in Peat Overlying Kimberlite Pipes in The Attawapiskat Area, Northern Ontario
NASA Astrophysics Data System (ADS)
Donkervoort, L. J.; Southam, G.
2009-05-01
Exploration for ore deposits occurring under thick, post-mineralized cover requires innovative methods and instrumentation [1]. Buried kimberlite pipes 'produce' geochemical conditions such as increased pH and decreased Eh in overlying peat [2] that intuitively select for bacterial populations that are best able to grow and, which in turn affect the geochemistry producing a linked signal. A microbiological study of peat was conducted over the Zulu kimberlite in the Attawapiskat area of the James Bay Lowlands to determine if the type of underlying rock influences the diversity and populations of microorganisms living in the overlying peat. Peat was sampled along an 800 m transect across the Zulu kimberlite, including samples underlain by limestone. Microbial populations and carbon source utilization patterns of peat samples were compared between the two underlying rock types. Results demonstrate an inverse relationship of increased anaerobic populations and lower biodiversity directly above the kimberlite pipe. These results support a reduced 'column' consistent with the model presented by Hamilton [3]. The combination of traditional bacterial enumeration and community- level profiling represents a cost-effective and efficient exploration technique that can serve to compliment both geophysical and geochemical surveys. [1] Goldberg (1998) J. Geochem. Explor. 61, 191-202 [2] Hattori and Hamilton (2008) Appl. Geochem. 23, 3767-3782 [3] Hamilton (1998) J. Geochem. Explor. 63, 155-172
NASA Astrophysics Data System (ADS)
Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang
2016-05-01
In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin geochemical data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high geochemical anomaly and known tin polymetallic deposits. The target areas within high tin geochemical anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin geochemical anomalies whereas no tin polymetallic deposits have been found in them.
NASA Astrophysics Data System (ADS)
Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio
2015-04-01
Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic events (magnitude >3 up to 5.4) experienced in the Tuscany, Emilia-Romagna and Umbria regions during the period 2012-2014, and these geochemical anomalies. Changes in pH (decreasing) and PCO2 (increasing) are generally observed from a few months to a few weeks before the main shock. This trend has been recognized for the Parma quake of 27 January 2012 (M = 5.4), for the Pieve Fosciana quake of 13 January 2013 (M = 4.8), for the Garfagnana-Lunigiana seismic sequence started June 21, 2013 (Mmax = 5.2), for the Montefeltro seismic sequence started July 11, 2013 (Mmax = 3.9), for the Gubbio seismic sequences of July and December 2013 (Mmax = 3.9), for the Città di Castello seismic sequences of April 2013 and December 2013 (Mmax = 3.9), for the Casentino seismic sequence started October 17, 2014 (Mmax = 3.5), and for the Chianti seismic sequence started December 19, 2014 (Mmax = 4.1). These features suggest that the selected mineral springs can be considered as appropriate sites for the search of geochemical earthquake precursors. Further investigations focused on in-depth analysis of signals are currently in progress.
Small scale changes of geochemistry and flow field due to transient heat storage in aquifers
NASA Astrophysics Data System (ADS)
Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.
2013-12-01
Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.
Publications - GMC 26 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 26 Publication Details Title: Geochemical data (total organic carbon, rock-eval pyrolysis, and Reference Unknown, 1984, Geochemical data (total organic carbon, rock-eval pyrolysis, and vitrinite ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 29 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 29 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Minder, Michael, and Shell Oil Company, 1985, Geochemical analysis (total organic carbon, rock ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 25 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 25 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Unknown, 1984, Geochemical analysis (total organic carbon, rock-eval pyrolysis, kerogen type ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of
Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical
Publications - GMC 30 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 30 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis , Geochemical analysis (total organic carbon, rock-eval pyrolysis, vitrinite reflectance and gc/ms chromato (1.3 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Publications - GMC 19 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 19 Publication Details Title: Geochemical analysis (total organic carbon-rock-eval, vitrinite information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon-rock-eval K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Publications - GMC 27 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 27 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis . Bibliographic Reference Unknown, 1995, Geochemical analysis (total organic carbon, rock-eval pyrolysis, and ; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of
Publications - GMC 91 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 91 Publication Details Title: Organic geochemical analyses, which include rock-eval pyrolysis , total organic carbon, and vitrinite reflectance, of ditch cuttings from the Marathon OCS Y-0086-1 well information. Bibliographic Reference Unknown, 1988, Organic geochemical analyses, which include rock-eval
Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration
US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...
Publications - DDS 8 | Alaska Division of Geological & Geophysical Surveys
DGGS DDS 8 Publication Details Title: Alaska Volcano Observatory geochemical database Authors: Cameron ., Snedigar, S.F., and Nye, C.J., 2014, Alaska Volcano Observatory geochemical database: Alaska Division of ://doi.org/10.14509/29120 Publication Products Interactive Interactive Database Alaska Volcano Observatory
How to build stable geochemical reservoirs on Mars?
NASA Astrophysics Data System (ADS)
Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris
2014-05-01
To explain the complex thermo-chemical processes needed for the formation of distinct and stable geochemical reservoirs early in the thermo-chemical evolution of Mars, most geochemical studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical models show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography modelling [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable geochemical reservoirs is presented similar to the model of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The entire convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution [6]. Some of these reservoirs can be sustained during the entire evolution whereas others change with time - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites. References: [1] Elkins-Tanton et al., 2005, EPSL; [2] Debaille et al., 2009, Nature; [3] Tosi et al., 2013, JGR; [4] Plesa et al., submitted to EPSL; [5] Ogawa and Yanagisawa 2011, JGR; [6] Plesa and Breuer, 2013, PSS.
NASA Astrophysics Data System (ADS)
Seidel, J. L.; Ladouche, B.; Batiot-Guilhe, C.
2013-12-01
Geochemical and isotopic ratio (11B/10B and 87Sr/86Sr) results are reported for better determining the groundwater origins in the Lez Karst system (southern France). The Lez spring is the main perennial outlet of the system and supplies with drinking water the metropolitan area of Montpellier. According to the hydrodynamic conditions, five water-types discharge at the Lez spring with important mineralization fluctuations (Caetano Bicalho et al., 2012). This geochemical response suggests that hydrodynamics targets groundwater circulation, resulting from different water end-member solicitation and mixing. Previous studies using conventional natural tracers do not succeed to identify all the water compartments supporting the flow during the hydrologic cycle (Marjolet & Salado, 1977; Joseph et al., 1988) and to explain the mineralization variation of the Lez spring. The present study combines a basic geochemical survey data with boron and strontium isotope ratio data for a better characterization of the Lez spring geochemical functioning. Groundwater samples were collected at the Lez spring and surrounding springs and wells under different hydrologic conditions from 2009 to 2011. Major, trace and rare earth elements were determined at AETE analytical platform (OREME, Univ. Montpellier 2) by ionic chromatography and Q-ICP-MS respectively. d11B and 87Sr/86Sr were determined at BRGM/MMA Orleans by TIMS. The geochemical survey has been extended at a larger scale by sampling the main geochemical end- members already identified to replace the Lez spring waters in the regional geochemical context. From this geochemical study, valuable informations have been provided on the reservoir types and water origins flowing in high and low stage periods. For the highly mineralized waters occurring in the fall first rainy events or severe low stages, a deep contribution is highlighted but B and Sr isotopic data do not ascertain the two Triassic end-members (halite or gypsum) as possible sources of the mineralization increase. However, the Lez spring REE profiles, despite a close Cretaceous end-member signature, exhibit an evolution between the Bajocian and the highly depleted Triassic signature. A better characterization of the regional deep basement end-member and a multi-isotopic approach (d7Li, d11B, d18O, D and 87Sr/86Sr) have been undertaken for a conclusive identification of the Lez spring water type. This study could be generalized to the coastal karstic systems of the Mediterranean region. Caetano Bicalho C., Batiot-Guilhe C., Seidel J. L., Van Exter S. and Jourde H. (2012). Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J. Hydrol., 450-451, 206-218. Joseph, C., Rodier, C., Soulte, M., Sinegre, F., Baylet, R., Deltour, P., 1988. Approche des transferts de pollution bactérienne dans une crue karstique par l'étude des paramètres physico-chimiques. Rev. Sci. l'eau 1-2, 73-106. Marjolet, G., Salado, J., 1976. Contribution à l'étude de l'aquifère karstique de la source du Lez (Hérault). Etude du chimisme des eaux de la source du Lez et de son bassin Tome IX - FASC II., Université des Sciences et Techniques du Languedoc (Montpellier 2), Montpellier 101 pp.
Coplen, Tyler B.
2000-01-01
The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic data based on the time of day of analysis. Whereas Finnigan ISODAT software is confined to using only a single peak for calculating delta values, LIMS now enables one to use the mean of two or more reference injections during a continuous flow analysis to calculate delta values. This is useful with Finnigan?s GasBench II online sample preparation system. Concentrations of carbon, nitrogen, and sulfur can be calculated based one or more isotopic reference materials analyzed with a group of samples. Both sample data and isotopic analysis data can now be exported to Excel files. A calculator for determining the amount of sample needed for isotopic analysis based on a previous amount of sample and continuous flow area is now an integral part of LIMS for Light Stable Isotopes. LIMS for Light Stable Isotopes can now assign an error code to Finnigan elemental analyzer analyses in which one of the electrometers has saturated due to analysis of too much sample material, giving rise to incorrect isotopic abundances. Information on downloading this report and downloading code and databases is provided at the Internet addresses: http://water.usgs.gov/software/geochemical.html or http://www.geogr.uni-jena.de/software/geochemical.html in the Eastern Hemisphere.
Geochemical data for Colorado soils-Results from the 2006 state-scale geochemical survey
Smith, David B.; Ellefsen, Karl J.; Kilburn, James E.
2010-01-01
In 2006, soil samples were collected at 960 sites (1 site per 280 square kilometers) throughout the state of Colorado. These samples were collected from a depth of 0-15 centimeters and, following a near-total multi-acid digestion, were analyzed for a suite of more than 40 major and trace elements. The resulting data set provides a baseline for the natural variation in soil geochemistry for Colorado and forms the basis for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used and makes available all the soil geochemical data generated in the study.
Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems
Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.
2009-01-01
The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.
2006-09-01
Richardson, in review). Figure 1 shows the lithostratigraphic setting for Eocene through Miocene strata, and the occurrence of hydrostratigraphic units of...basal Haw- thorn unit lies unconformably on lithologies informally called “ Eocene limestones,” which consist of Suwannee Limestone, Ocala Limestone
Laboratory simulation of organic geochemical processes.
NASA Technical Reports Server (NTRS)
Eglinton, G.
1972-01-01
Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.
Publications - GMC 160 | Alaska Division of Geological & Geophysical
Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy DGGS GMC 160 Publication Details Title: A geochemical summary report of cuttings from the Chevron USA Schiefelbein, C.F., 1990, A geochemical summary report of cuttings from the Chevron USA Inc. Koniag #1 well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.
The Sulphur Bank Mercury Mine on the eastern shore of Clear Lake is the source of poor quality acid mine drainage seeping into Clear Lake. Lateral and vertical geochemical trends in ground water composition point to a number of redox reactions taking place as a function of subsu...
Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...
Publications - GMC 284 | Alaska Division of Geological & Geophysical
DGGS GMC 284 Publication Details Title: TOC/rock-eval pyrolysis geochemical data for 26 Alaska North for more information. Bibliographic Reference Unknown, 1999, TOC/rock-eval pyrolysis geochemical data Information gmc284.pdf (1.8 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page
Publications - GMC 405 | Alaska Division of Geological & Geophysical
DGGS GMC 405 Publication Details Title: Geochemical analyses of oil and gas cuttings from the of Alaska, and TestAmerica Laboratories, Inc., 2012, Geochemical analyses of oil and gas cuttings (265.0 K) Keywords Geochemistry; Oil and Gas Top of Page Department of Natural Resources, Division of
Dodge, F.C.W.
1973-01-01
Previous geochemical exploration has indicated areas in the Precambrian Al Uyaijah ring structure for further investigation. This report encompasses the results of geologic and geochemical investigations made in a 40 square kilometer area located on the southeast perimeter of the ring structure, an area where previous geochemical exploration revealed anomalous tungsten and molybdenum values. Igneous rocks exposed in the area include batholithic plutonic rocks, intrusive rocks of the ring dike, hypabyssal dike rocks, and late epithermal quartz veins; remnants of metamorphosed, prebatholithic rocks are also exposed. About two-thirds of the area is covered with a veneer of surficial debris. Structural patterns of the area are dominated by the ring structure. The principal mineralization consists of powellite and scheelite in high-temperature, quartz-rich veinlets and pods and in contact metamorphic rocks. Although the areas of metallization account for the previously discovered sediment geochemical anomalies, mineralization is sparse, and no currently valuable mineral deposits are known or thought to be present in the area.
High-temperature life without photosynthesis as a model for Mars
NASA Technical Reports Server (NTRS)
Shock, E. L.
1997-01-01
Discoveries in biology and developments in geochemistry over the past two decades have lead to a radical revision of concepts relating to the upper temperature at which life thrives, the genetic relationships among all life on Earth, links between organic and inorganic compounds in geologic processes, and the geochemical supply of metabolic energy. It is now apparent that given a source of geochemical energy, in the form of a mixture of compounds that is far from thermodynamic equilibrium, microorganisms can take advantage of the energy and thrive without the need for photosynthesis as a means of primary productivity. This means that life can exist in the subsurface of a planet such as Mars without necessarily exhibiting a surface expression. Theoretical calculations quantify the geochemically provided metabolic energy available to hyperthermophilic organisms in submarine hydrothermal systems on the Earth, and help to explain the enormous biological productivity of these systems. Efforts to place these models in the context of the early Earth reveal that substantial geochemical energy would have been available and that organic synthesis would have been thermodynamically favored as hydrothermal fluids mix with seawater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedesco, S.A.
1996-06-01
The use of surface geochemistry as a first pass exploration tool is becoming more prevalent in petroleum exploration. This is especially true due to the high cost of 2-D and 3-D surveys in defining small targets such as the Waulsortian mounds of the Lodgepole Formation. Surface geochemical surveys are very effective in pinpointing specific target areas for seismic surveying and thus reducing costs. Presented are examples of surface geochemical surveys utilizing magnetic susceptibility and iodine methods in delineating reservoirs in the Lodgepole, Mission Canyon and Red River formations. The types of surveys presented vary from reconnaissance to detail and examplesmore » of how to define a grid will be discussed. Surface geochemical surveys can be very effective when the areal extent of the target(s) and the purpose of the survey are clearly defined prior to implementation. By determining which areas have microseepage and which areas do not, surface geochemistry can be a very effective tool in focusing exploration efforts and maximizing exploration dollars.« less
Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.
2015-01-01
Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.
Scale-dependent temporal variations in stream water geochemistry.
Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B
2003-03-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Scale-dependent temporal variations in stream water geochemistry
Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.
2003-01-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.
1999-01-01
Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.
Kedziorek, Monika A M; Geoffriau, Stephane; Bourg, Alain C M
2008-04-15
A 3 year study of the infiltration of Lot River water into a well field located in an adjacent gravel and clay alluvial aquifer was conducted to assess the importance of organic matter regarding the redox processes which influence groundwater quality in a positive (denitrification) or negative (Mn dissolution) manner. Chloride was used to quantify the mixing of river water with groundwater. According to modeling with PHREEQC, the biodegradation of the infiltrated dissolved organic carbon (DOCi) is not sufficient to explain the observed consequences of the redox reactions (dissolved O2 depletion, denitrification, Mn dissolution). Another electron donor source must therefore be involved: we propose solid organic carbon (SOC) as a likely candidate, if made available for degradation by prior hydrolysis. Its contribution to redox reactions could be significant (30-80% of the total organic carbon consumed by redox reactions during river bank filtration). We show here also that even though the first few meters of infiltration are highly reactive, significant redox reactions can take place further in the aquifer, possibly affecting groundwater quality away from the river bank.
NASA Astrophysics Data System (ADS)
Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales
2015-05-01
Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming geochemical analyses. Our primary aim of this study is to describe the magnetic and geochemical properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and geochemical methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. Geochemical data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).
NASA Astrophysics Data System (ADS)
Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui
2018-03-01
The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Geochemical Atlas of the San Jose and Golfito 1:200,000-scale quadrangles, Costa Rica, was produced to help stimulate the growth of the Costa Rican mining industry and, thus, to benefit the economy of the country. As a result of the geochemical data presented in the Atlas, future exploration for metallic minerals in Costa Rica can be focused on specific areas that have the highest potential for mineralization. Stream-sediment samples were collected from drainage basins within the two quadrangles. These samples were analyzed for 50 elements and the results were displayed as computer-generated color maps. Each map shows the variation inmore » abundance of a single element within the quadrangle. Basic statistics, geological and cultural data are included as insets in each map to assist in interpretation. In the Golfito quadrangle, the geochemical data do not clearly indicate undiscovered gold mineralization. The areas known to contain placer (alluvial) gold are heavily affected by mining activity. Statistical treatment of the geochemical data is necessary before it will be possible to determine the gold potential of this quadrangle. In San Jose quadrangle, gold and the pathfinder elements, arsenic and antimony, are indicators of the gold mineralization characteristic of the Costa Rican gold district located in the Tilaran-Montes del Aguacate Range. This work shows that high concentrations of these elements occur in samples collected downstream from active gold mines. More importantly, the high concentrations of gold, arsenic, and antimony in sediment samples from an area southeast of the known gold district suggest a previously unknown extension of the district. This postulated extension underlain by Tertiary volcanic rocks which host the gold deposits within the gold district. The geochemical data, displayed herein, also indicate that drainage basins north of Ciudad Quesada on the flanks of Volcan Platanar have high gold potential.« less
NASA Astrophysics Data System (ADS)
Cosans, C.; Moore, J.; Harman, C. J.
2017-12-01
Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering along tectonically-induced fractures and weathering front advance have been proposed, but additional data are needed to test them. Developing a thorough, nuanced understanding of the geochemical and hydrological behavior of Pond Branch may help test and refine hypotheses for Piedmont critical zone evolution.
Assessment of CO2-Induced Geochemical Changes in Soil/Mineral-Water Systems
NASA Astrophysics Data System (ADS)
Jeong, H. Y.; Choi, H. J.
2016-12-01
Although the storage of CO2 in deep geological formations is considered the most promising sequestration path, there is still a risk that it may leak into the atmosphere. To ensure the secure operation of CO2 storage sites, thus, it is necessary to implement CO2 leakage monitoring systems. Furthermore, the leakage may alter geochemical properties of overlying geological units to have adverse environmental consequences. By elucidating geochemical changes due to CO2 leakage, it is possible to develop effective CO2 monitoring techniques and predict the influence of CO2 leakage. A series of batch experiments were conducted to simulate CO2-induced geochemical changes in soil/mineral-water systems. Soil samples, obtained from Eumseong basin in Eumseong-gun, Chungcheongbuk-do, were dried for 6 hours at 60° and then divided into two size fractions: < 106 and 106-212 mm. Minerals including mica/illite, vermiculite, and feldspar were purchased and purified if necessary. Prior to batch experiments, soils and minerals were characterized for surface area, mineralogy, elemental composition, carbon and nitrogen contents, pH buffering capacity, and metal extractability. Batch experiments were initiated by reacting 100% CO2 atmosphere with aqueous suspensions of 120 g soils or 50 g minerals in 3,000 mL of 10 mM CsClO4 at room temperature. In parallel, the batches having the same soil/mineral compositions were run under the ambient air as controls. To prevent microbial activities, all batches were sterilized with 0.03% HCHO. To track geochemical changes, pH and electrical conductivity were monitored. Also, while solutions were regularly sampled and analyzed for trace metals as well as main cations and anions, solid phases were sampled to observe changes in mineralogical compositions. Geochemical changes in both solution and solid phases during the initial 6 month reaction will be presented. Acknowledgement: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Inferences from Microfractures and Geochemistry in Dynamic Shale-CO2 Packed Bed Experiments
NASA Astrophysics Data System (ADS)
Radonjic, M.; Olabode, A.
2016-12-01
Subsurface storage of large volumes of carbondioxide (CO2) is expected to have long term rock-fluid interactions impact on reservoir and seal rocks properties. Caprocks, particularly sedimentary types, are the ultimate hydraulic barrier in carbon sequestration. The mineralogical components of sedimentary rocks are geochemically active under enormous earth stresses, which generate high pressure and temperature conditions. It has been postulated that in-situ mineralization can lead to flow impedance in natural fractures in the presence of favorable geochemical and thermodynamic conditions. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures. Geochemical analyses were performed on four different samples of shale rocks, effluent fluids and recovered precipitates both before and after CO2-brine flooding of crushed shale rocks at moderately high temperature and pressure conditions. The results showed that most significant diagenetic changes in shale rocks after flooding with CO2-brine, reflected in the effluent fluid with predominantly calcium based minerals dissolving and precipitating under experimental conditions. Major and trace elements in the effluent (using ICP-OES analysis) indicated that multiple geochemical reactions are occurring with almost all of the constituent minerals participating. The geochemical composition of precipitates recovered after the experiments showed diagenetic carbonates and opal as the main constituents. The bulk rock showed little changes in composition except for sharper and more refined peaks on XRD analysis, suggesting that a significant portion of the amorphous content of the rocks have been removed via dissolution by the slightly acid CO2-brine fluid that was injected. Micro-indentation results captured slight reduction in the hardness of the shale rocks and this reduction appeared dependent on diagenetic quartz content. It can be inferred that convective reactive transport of dissolved minerals are involved in nanoscale precipitation-dissolution processes in shale. This reactive transport of dissolved minerals can occlude micro-fracture flow paths, thereby improving shale caprock seal integrity with respect to leakage risk under CO2 sequestration conditions.
Geochemical baseline distribution of harmful elements in the surface soils of Campania region.
NASA Astrophysics Data System (ADS)
Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto
2015-04-01
Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a ranking of priorities and located areas of regional territory where human health risk is more relevant and follow-up activities are required.
Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution
NASA Astrophysics Data System (ADS)
Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.
2016-12-01
Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo which not only enables mesh refinement, but also refinement of the model-pore scale or continuum Darcy scale-in a dynamic way such that the appropriate model is used only when and where it is needed. Explicit flux matching provides coupling betwen the scales.
Geochemistry and the Understanding of Groundwater Systems
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.
2009-12-01
Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.
Penguin Bank: A Loa-Trend Hawaiian Volcano
NASA Astrophysics Data System (ADS)
Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.
2007-12-01
Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes existed at ~2.2 Ma when the Molokai Island volcanoes formed and has persisted until the present. References: Abouchami et al., 2005 Nature, 434:851-856 Xu et al., 2005 G3, doi: 10.1029/2004GC000830 Xu et al., 2007 G3, doi: 10.1029/2006GC001554
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper
2017-04-01
Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the cfd functions are used to put random reaction capacity variables into the hydrological voxel model. Here, the distribution can be conditioned on two variables. Two important variables are clay content and depth. The first is valid because more dense data is available for clay content than for geochemical variables as pyrite and probabilistic, lithological models are also built at TNO Geological Survey. The second is important to account for locally different depths at which the redox cline between NO3-rich and Fe(II)-rich groundwater occurs within the first tens of meters of the subsurface. An extensive data-set of groundwater quality analyses is used to derive criteria for depth variability of the redox cline. The result is a unique algoritm in order to obtain heterogeneous geochemical reaction capacity models of the entire groundwater compartment of the Netherlands.
Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann
2008-01-01
Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining geochemical background determined upstream of the mine site. Postmining metal concentrations in sediment are lower than during the mining period, but remain elevated relative to premining geochemical background. Furthermore, the sediment composition of surface sediment in the Blue Creek delta is contaminated. Base-metal contamination by arsenic, cadmium, lead, and zinc in sediment in the delta in Blue Creek cove is dominated by suspended sediment from the Coeur d?Alene mining district. Uranium contamination in surface sediment in the delta of Blue Creek cove extends at least 500 meters downstream from the mouth of Blue Creek as defined by the 1,290-ft elevation boundary between lands administered by the National Park Service and the Spokane Indian Tribe. Comparisons of the premining geochemical background to sediment sampled during the period the mine was in operation, and to the sediment data from the postmining period, are used to delineate the extent of contaminated sediment in Blue Creek cove along the thalweg of Blue Creek into Lake Roosevelt. The extent of contamination out into Lake Roosevelt by mining remains open.
Data Qualification Report For: Thermodynamic Data File, DATA0.YMP.R0 For Geochemical Code, EQ3/6
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.L. Cloke
The objective of this work is to evaluate the adequacy of chemical thermodynamic data provided by Lawrence Livermore National Laboratory (LLNL) as DataO.ymp.ROA in response to an input request submitted under AP-3.14Q. This request specified that chemical thermodynamic data available in the file, Data0.com.R2, be updated, improved, and augmented for use in geochemical modeling used in Process Model Reports (PMRs) for Engineered Barrier Systems, Waste Form, Waste Package, Unsaturated Zone, and Near Field Environment, as well as for Performance Assessment. The data are qualified in the temperature range 0 to 100 C. Several Data Tracking Numbers (DTNs) associated with Analysis/Modelmore » Reports (AMR) addressing various aspects of the post-closure chemical behavior of the waste package and the Engineered Barrier System that rely on EQ316 outputs to which these data are used as input, are Principal Factor affecting. This qualification activity was accomplished in accordance with the AP-SIII.2Q using the Technical Assessment method. A development plan, TDP-EBS-MD-000044, was prepared in accordance with AP-2.13Q and approved by the Responsible Manager. In addition, a Process Control Evaluation was performed in accordance with AP-SV.1Q. The qualification method, selected in accordance with AP-SIII.2Q, was Technical Assessment. The rationale for this approach is that the data in File Data0.com.R2 are considered Handbook data and therefore do not themselves require qualification. Only changes to Data0.com.R2 required qualification. A new file has been produced which contains the database Data0.ymp.R0, which is recommended for qualification as a result of this action. Data0.ymp.R0 will supersede Data0.com.R2 for all Yucca Mountain Project (YMP) activities.« less
NASA Astrophysics Data System (ADS)
Gorgas, Thomas; Conze, Ronald; Lorenz, Henning; Elger, Kirsten; Ulbricht, Damian; Wilkens, Roy; Lyle, Mitchell; Westerhold, Thomas; Drury, Anna Joy; Tian, Jun; Hahn, Annette
2017-04-01
Scientific ocean drilling over the past >40 years and corresponding efforts on land (by now for more than >20 years) has led to the accumulation of an enormous amount of valuable petrophysical, geochemical, biological and geophysical data obtained through laboratory and field experiments across a multitude of scale-and time dimensions. Such data can be utilized comprehensively in a holistic fashion, and thereby provide base toward an enhanced "Core-Log-Integration", modeling small-scale basin processes to large-scale Earth phenomena, while also storing and managing all relevant information in an "Open Access" fashion. Since the early 1990's members of our team have acquired and measured a large dataset of physical and geochemical properties representing both terrestrial and marine geological environments. This dataset cover a variety of both macro-to-microscale dimensions, and thereby allowing this type of interdisciplinary data examination. Over time, data management and processing tools have been developed and were recently merged with modern data publishing methods, which allow identifying and tracking data and associated publications in a trackable and concise manner. Our current presentation summarizes an important part of the value chain in geosciences, comprising: 1) The state-of-the-art in data management for continental and lake drilling projects performed with and through ICDP's Drilling Information System (DIS). 2) The CODD (Code for Ocean Drilling Data) as numerical-based, programmable data processing toolbox and applicable for both continental and marine drilling projects. 3) The implementation of Persistent Identifiers, such as the International Geo Sample Number (IGSN) to identify and track sample material as part of Digital-Object-Identifier (DOI)-tagged operation reports and research publications. 4) A list of contacts provided for scientists with an interest in learning and applying methods and techniques we offer in form of basic and advanced training courses at our respective research institutions and facilities around the world.
Geochemical Fate and Transport of Diphenhydramine and Cetirizine in Soil
NASA Astrophysics Data System (ADS)
Wireman, R.; Rutherford, C. J.; Vulava, V. M.; Cory, W. C.
2015-12-01
Pharmaceuticals compounds presence in natural soils and water around the world has become a growing concern. These compounds are being discharged into the environment through treated wastewater or municipal sludge applications. The main goal of this study is determine their geochemical fate in natural soils. In this study we investigated sorption and transport behavior of diphenhydramine (DPH) and cetirizine (CTZ) in natural soils. These two commonly-used antihistamines are complex aromatic hydrocarbons with polar functional groups. Two clean acidic soils (pH~4.5) were used for these studies - an A-horizon soil that had higher organic matter content (OM, 7.6%) and a B-horizon soil that had lower OM (1.6%), but higher clay content (5.1%). Sorption isotherms were measured using batch reactor experiments. Data indicated that sorption was nonlinear and that it was stronger in clay-rich soils. The pKa's of DPH and CTZ are 8.98 and 8.27 respectively, i.e., these compounds are predominantly in cationic form at soil pH. In these forms, they preferentially sorb to negatively charged mineral surfaces (e.g., clay) present in the soils. Soil clay mineral characterization indicated that kaolinite was the dominant clay mineral present along with small amount of montmorillonite. The nonlinear sorption isotherms were fitted with Freundlich model. Transport behavior of both compounds was measured using glass chromatography columns. As expected both DPH and CTZ were strongly retained in the clay-rich soil as compared with OM-rich soil. The asymmetrical shape of the breakthrough curves indicated that there were likely two separate sorption sites in the soil, each with different reaction rates with each compound. A two-region advection-dispersion transport code was used to model the transport breakthrough curves. There was no evidence of transformation or degradation of the compounds during our sorption and transport studies.
Publications - RDF 2009-1 v. 1.2 | Alaska Division of Geological &
main content DGGS RDF 2009-1 v. 1.2 Publication Details Title: Geochemical, major-oxide, minor-oxide , M.B., Szumigala, D.J., Andrew, J.E., Newberry, R.J., and Athey, J.E., 2009, Geochemical, major-oxide prospect; Keevy Peak Formation; LEA Creek prospect; Major Oxides; Mississippian; Newman Creek; Newman Creek
Publications - RDF 2005-5 | Alaska Division of Geological & Geophysical
content DGGS RDF 2005-5 Publication Details Title: Major-oxide, minor-oxide, and trace-element geochemical ., and Lessard, R.R., 2005, Major-oxide, minor-oxide, and trace-element geochemical data from rocks ; Zinc; Zirconium Top of Page Department of Natural Resources, Division of Geological & Geophysical
Acceptance of the 2014 Geochemical Journal Award by Hiroshi Amakawa
NASA Astrophysics Data System (ADS)
Amakawa, Hiroshi
2015-06-01
I thank Professor Hisayoshi Yurimoto for generous citation. I also would like to extend my gratitude to the people who supported me and to the members of editorial board of Geochemical Journal for the nomination. I also would like to thank the organizing committee of the Goldschmidt Conference for giving an opportunity for this acceptance speech.
Publications - RDF 2002-3 | Alaska Division of Geological & Geophysical
geochemical data from the rocks collected in the Big Delta Quadrangle, Alaska in 2001 Authors: Athey, J.E or please see our publication sales page for more information. Quadrangle(s): Big Delta Bibliographic , minor-oxide, trace-element, and geochemical data from the rocks collected in the Big Delta Quadrangle
Publications - RDF 2001-1 | Alaska Division of Geological & Geophysical
geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and northwestern Eagle more information. Quadrangle(s): Big Delta; Eagle Bibliographic Reference Werdon, M.B., Athey, J.E , and geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and
Publications - RDF 2003-2 | Alaska Division of Geological & Geophysical
geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002 Authors: Werdon, M.B . Quadrangle(s): Big Delta Bibliographic Reference Werdon, M.B., Newberry, R.J., Athey, J.E., Szumigala, D.J -element, and geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002: Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, H.D.; Smith, S.C.; Sutley, S.J.
Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1{degree} by 3{degree} Quadrangles , Seward Peninsula, Alaska is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains geology of the Durango A detail area, radioactive mineral occurences in Colorado, and geophysical data interpretation. Eight appendices provide the following: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
The geology of the Durango B detail area, the radioactive mineral occurrences in Colorado and the geophysical data interpretation are included in this report. Seven appendices contain: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, and test line data.
Leinz, Reinhard
1996-01-01
Scientists at the U.S. Geological Survey have expanded applications of the Chim electrode, technology used to perform partial geochemical extractions from soils. Recent applications of the the improved electrode technology show that geochemical extraction efficiencies can be improved by 2 orders of magnitude or better to about 30%.
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.