Modeling low-temperature geochemical processes: Chapter 2
Nordstrom, D. Kirk; Campbell, Kate M.
2014-01-01
This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.
Module-oriented modeling of reactive transport with HYTEC
NASA Astrophysics Data System (ADS)
van der Lee, Jan; De Windt, Laurent; Lagneau, Vincent; Goblet, Patrick
2003-04-01
The paper introduces HYTEC, a coupled reactive transport code currently used for groundwater pollution studies, safety assessment of nuclear waste disposals, geochemical studies and interpretation of laboratory column experiments. Based on a known permeability field, HYTEC evaluates the groundwater flow paths, and simulates the migration of mobile matter (ions, organics, colloids) subject to geochemical reactions. The code forms part of a module-oriented structure which facilitates maintenance and improves coding flexibility. In particular, using the geochemical module CHESS as a common denominator for several reactive transport models significantly facilitates the development of new geochemical features which become automatically available to all models. A first example shows how the model can be used to assess migration of uranium from a sub-surface source under the effect of an oxidation front. The model also accounts for alteration of hydrodynamic parameters (local porosity, permeability) due to precipitation and dissolution of mineral phases, which potentially modifies the migration properties in general. The second example illustrates this feature.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
Modeling Low-temperature Geochemical Processes
NASA Astrophysics Data System (ADS)
Nordstrom, D. K.
2003-12-01
Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for modeling groundwater chemistry: (i) "forward modeling," which predicts water compositions from hypothesized reactions and user assumptions and (ii) "inverse modeling," which uses water, mineral, and isotopic compositions to constrain hypothesized reactions. These approaches simply reflect the amount of information one has to work with. With minimal information on a site, a modeler is forced to rely on forward modeling. Optimal information would include detailed mineralogy on drill cores or well cuttings combined with detailed water analyses at varying depths and sufficient spatial distribution to follow geochemical reactions and mixing of waters along defined flow paths. With optimal information, a modeler will depend on inverse modeling.This chapter outlines the main concepts and key developments in the field of geochemical modeling for low-temperature environments and illustrates their use with examples. It proceeds with a short discussion of what modeling is, continues with concepts and definitions commonly used, and follows with a short history of geochemical models, a discussion of databases, the codes that embody models, and recent examples of how these codes have been used in water-rock interactions. An important new stage of development seems to have been reached in this field with questions of reliability and validity of models. Future work will be obligated to document ranges of certainty and sources of uncertainty, sensitivity of models and codes to parameter errors and assumptions, propagation of errors, and delineation of the range of applicability.
Reactive transport modeling in fractured rock: A state-of-the-science review
NASA Astrophysics Data System (ADS)
MacQuarrie, Kerry T. B.; Mayer, K. Ulrich
2005-10-01
The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
NASA Astrophysics Data System (ADS)
Pandey, S.; Rajaram, H.
2015-12-01
This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
NETPATH-WIN: an interactive user version of the mass-balance model, NETPATH
El-Kadi, A. I.; Plummer, Niel; Aggarwal, P.
2011-01-01
NETPATH-WIN is an interactive user version of NETPATH, an inverse geochemical modeling code used to find mass-balance reaction models that are consistent with the observed chemical and isotopic composition of waters from aquatic systems. NETPATH-WIN was constructed to migrate NETPATH applications into the Microsoft WINDOWS® environment. The new version facilitates model utilization by eliminating difficulties in data preparation and results analysis of the DOS version of NETPATH, while preserving all of the capabilities of the original version. Through example applications, the note describes some of the features of NETPATH-WIN as applied to adjustment of radiocarbon data for geochemical reactions in groundwater systems.
NASA Astrophysics Data System (ADS)
Jacques, Diederik
2017-04-01
As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different environmental and geo-engineering applications. SeSBench will organize new workshops to add new benchmarks in a new special issue. Steefel, C. I., et al. (2015). "Reactive transport codes for subsurface environmental simulation." Computational Geosciences 19: 445-478.
Data collection handbook to support modeling the impacts of radioactive material in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; Cheng, J.J.; Jones, L.G.
1993-04-01
A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.
2007-12-01
This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.
Ball, J.W.; Nordstrom, D. Kirk; Zachmann, D.W.
1987-01-01
A FORTRAN 77 version of the PL/1 computer program for the geochemical model WATEQ2, which computes major and trace element speciation and mineral saturation for natural waters has been developed. The code (WATEQ4F) has been adapted to execute on an IBM PC or compatible microcomputer. Two versions of the code are available, one operating with IBM Professional FORTRAN and an 8087 or 89287 numeric coprocessor, and one which operates without a numeric coprocessor using Microsoft FORTRAN 77. The calculation procedure is identical to WATEQ2, which has been installed on many mainframes and minicomputers. Limited data base revisions include the addition of the following ions: AlHS04(++), BaS04, CaHS04(++), FeHS04(++), NaF, SrC03, and SrHCO3(+). This report provides the reactions and references for the data base revisions, instructions for program operation, and an explanation of the input and output files. Attachments contain sample output from three water analyses used as test cases and the complete FORTRAN source listing. U.S. Geological Survey geochemical simulation program PHREEQE and mass balance program BALANCE also have been adapted to execute on an IBM PC or compatible microcomputer with a numeric coprocessor and the IBM Professional FORTRAN compiler. (Author 's abstract)
Palandri, James L.; Kharaka, Yousif K.
2004-01-01
Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.
Naval Research Laboratory Arctic Initiatives
2011-06-01
Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial
NASA Astrophysics Data System (ADS)
Fowler, S. J.; Driesner, T.; Hingerl, F. F.; Kulik, D. A.; Wagner, T.
2011-12-01
We apply a new, C++-based computational model for hydrothermal fluid-rock interaction and scale formation in geothermal reservoirs. The model couples the Complex System Modelling Platform (CSMP++) code for fluid flow in porous and fractured media (Matthai et al., 2007) with the Gibbs energy minimization numerical kernel GEMS3K of the GEM-Selektor (GEMS3) geochemical modelling package (Kulik et al., 2010) in a modular fashion. CSMP++ includes interfaces to commercial file formats, accommodating complex geometry construction using CAD (Rhinoceros) and meshing (ANSYS) software. The CSMP++ approach employs finite element-finite volume spatial discretization, implicit or explicit time discretization, and operator splitting. GEMS3K can calculate complex fluid-mineral equilibria based on a variety of equation of state and activity models. A selection of multi-electrolyte aqueous solution models, such as extended Debye-Huckel, Pitzer (Harvie et al., 1984), EUNIQUAC (Thomsen et al., 1996), and the new ELVIS model (Hingerl et al., this conference), makes it well-suited for application to a wide range of geothermal conditions. An advantage of the GEMS3K solver is simultaneous consideration of complex solid solutions (e.g., clay minerals), gases, fluids, and aqueous solutions. Each coupled simulation results in a thermodynamically-based description of the geochemical and physical state of a hydrothermal system evolving along a complex P-T-X path. The code design allows efficient, flexible incorporation of numerical and thermodynamic database improvements. We demonstrate the coupled code workflow and applicability to compositionally and physically complex natural systems relevant to enhanced geothermal systems, where temporally and spatially varying chemical interactions may take place within diverse lithologies of varying geometry. Engesgaard, P. & Kipp, K. L. (1992). Water Res. Res. 28: 2829-2843. Harvie, C. E.; Møller, N. & Weare, J. H. (1984). Geochim. Cosmochim. Acta 48: 723-751. Kulik, D. A., Wagner, T., Dmytrieva S. V, et al. (2010). GEM-Selektor home page, Paul Scherrer Institut. Available at http://gems.web.psi.ch. Matthäi, S. K., Geiger, S., Roberts, S. G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T. & Heinrich C. A. (2007). Geol. Soc. London, Spec. Publ. 292: 405-429. Thomsen, K. Rasmussen, P. & Gani, R. (1996). Chem. Eng. Sci. 51: 3675-3683.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, T.J.
1992-09-14
EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
How the Geothermal Community Upped the Game for Computer Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.
NASA Astrophysics Data System (ADS)
Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.
2009-12-01
The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database for both Pitzer ion-interaction parameters and thermodynamic equilibrium constants. The reliability of the parameters is as important as the accuracy of the modelling tool. For this purpose the project THEREDA (www.thereda.de)was set up. The project aims at a comprehensive and internally consistent thermodynamic reference database for geochemical modelling of near and far-field processes occurring in repositories for radioactive wastes in various host rock formations. In the framework of the project all data necessary to perform thermodynamic equilibrium calculations for elevated temperature in the system of oceanic salts are under revision, and it is expected that related data will be available for download by 2010-03. In this paper the geochemical issues that can play an essential role for the transport of radioactive contaminants within and around waste repositories are discussed. Some generic calculations are given to illustrate the geochemical interactions and their probable effects on the transport properties around HLW emplacements and on CO2 generating and/or containing repository systems.
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge
2014-08-01
This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.
Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.
2005-10-19
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal
2006-02-01
The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Charley; Kamboj, Sunita; Wang, Cheng
2015-09-01
This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less
Abrams , Robert H.; Loague, Keith
2000-01-01
This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and geochemical codes. The companion paper [Abrams and Loague, this issue] presents examples of the application of COMPTRAN to field‐scale problems.
Reactive transport modeling in the subsurface environment with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf
2015-04-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.
2014-12-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
Bartzas, Georgios; Komnitsas, Kostas
2010-11-15
A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...
2017-08-18
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
Laabidi, Ezzeddine; Bouhlila, Rachida
2015-07-01
In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity and permeability distributions.
NASA Astrophysics Data System (ADS)
Sali, D.; Fritz, B.; Clément, C.; Michau, N.
2003-04-01
Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.
Siegel, M.D.; Anderholm, S.
1994-01-01
The Culebra Dolomite Member of the Rustler Formation, a thin (10 m) fractured dolomite aquifer, lies approximately 450 m above the repository horizon of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Salinities of water in the Culebra range roughly from 10,000 to 200,000 mg/L within the WIPP site. A proposed model for the post-Pleistocene hydrochemical evolution of the Culebra tentatively identifies the major sources and sinks for many of the groundwater solutes. Reaction-path simulations with the PHRQPITZ code suggest that the Culebra dolomite is a partial chemical equilibrium system whose composition is controlled by an irreversible process (dissolution of evaporites) and equilibrium with gypsum and calcite. Net geochemical reactions along postulated modern flow paths, calculated with the NETPATH code, include dissolution of halite, carbonate and evaporite salts, and ion exchange. R-mode principal component analysis revealed correlations among the concentrations of Si, Mg, pH, Li, and B that are consistent with several clay-water reactions. The results of the geochemical calculations and mineralogical data are consistent with the following hydrochemical model: 1. (1) solutes are added to the Culebra by dissolution of evaporite minerals 2. (2) the solubilities of gypsum and calcite increase as the salinity increases; these minerals dissolve as chemical equilibrium is maintained between them and the groundwater 3. (3) equilibrium is not maintained between the waters and dolomite; sufficient Mg is added to the waters by dissolution of accessory carnallite or polyhalite such that the degree of dolomite supersaturation increases with ionic strength 4. (4) clays within the fractures and rock matrix exert some control on the distribution of Li, B, Mg, and Si via sorption, ion exchange, and dissolution. ?? 1994.
OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads
NASA Astrophysics Data System (ADS)
Kosakowski, G.; Kulik, D. A.; Shao, H.
2012-04-01
OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite element nodes with calls to GEMS3K and consecutive calculations of changed material parameters. In a first step the existing MPI implementation was utilized to parallelize this loop. Calculations were split between the MPI processes and afterwards data was synchronized by using MPI communication routines. Furthermore, multi-threaded calculation of the loop was implemented with help of the boost thread library (http://www.boost.org). This implementation provides a flexible environment to distribute calculations between several threads. For each MPI process at least one and up to several dozens of worker threads are spawned. These threads do not replicate the complete OGS-GEM data structure and use only a limited amount of memory. Calculation of the central geochemical loop is shared between all threads. Synchronization between the threads is done by barrier commands. The overall number of local threads times MPI processes should match the number of available computing nodes. The combination of multi-threading and MPI provides an effective and flexible environment to speed up OGS-GEMS calculations while limiting the required memory use. Test calculations on different hardware show that for certain types of applications tremendous speedups are possible.
NASA Astrophysics Data System (ADS)
Ackerer, Julien; Chabaux, François; Lucas, Yann; Pierret, Marie Claire; Viville, Daniel; Fritz, Bertrand; Clement, Alain; Beaulieu, Emilie; Negrel, Philippe
2017-04-01
Regular analysis of the major element concentrations in waters from springs emerging on the Strengbach catchment is made for more than 20 years (OHGE, Observatoire Hydro-Géochimique de l'Environnement). These data confirm the spatial variability of geochemical characteristics of the Strengbach springs linked, at least partly, to the lithological variability of the substratum (Pierret et al., 2014). The data also indicate that at the first order, the geochemical fluxes exported from each spring are mainly linked to the spring discharges, without significant variations of the relationships linking these two parameters between 1990 and 2010. There is also no observation of significant variations for the dissolved silica and for most of the cationic concentrations with time. Only a significant decrease of the Ca concentrations is observed for the Strengbach springs from 1990 to 2010. Numerical simulations, performed with the KIRMAT hydro-geochemical code, show that such a decrease can be considered as the response in the "bedrock" of the water-rock interactions to the variations of the soil solution chemical compositions recorded over the last 20 years, marked by a significant increase of pH and decrease of Ca concentrations. In particular, the modeling results show that the Ca concentration decrease is controlled by the couple apatite/clays, and that significant modifications of the apatite dissolution rate and clay compositions occurred between 1990 and 2010. This study shows that the temporal evolution of the Strengbach spring chemistry cannot be explained by the only variations of the clay mineral compositions, i.e. a modification of the chemical composition of the precipitated clays or a modification of the ionic exchange capacity of the clay minerals, but that it is definitely the interrelations between the apatite and the clay minerals that are involved.
An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0
Plummer, Niel; Prestemon, Eric C.; Parkhurst, David L.
1994-01-01
NETPATH is an interactive Fortran 77 computer program used to interpret net geochemical mass-balance reactions between an initial and final water along a hydrologic flow path. Alternatively, NETPATH computes the mixing proportions of two to five initial waters and net geochemical reactions that can account for the observed composition of a final water. The program utilizes previously defined chemical and isotopic data for waters from a hydrochemical system. For a set of mineral and (or) gas phases hypothesized to be the reactive phases in the system, NETPATH calculates the mass transfers in every possible combination of the selected phases that accounts for the observed changes in the selected chemical and (or) isotopic compositions observed along the flow path. The calculations are of use in interpreting geochemical reactions, mixing proportions, evaporation and (or) dilution of waters, and mineral mass transfer in the chemical and isotopic evolution of natural and environmental waters. Rayleigh distillation calculations are applied to each mass-balance model that satisfies the constraints to predict carbon, sulfur, nitrogen, and strontium isotopic compositions at the end point, including radiocarbon dating. DB is an interactive Fortran 77 computer program used to enter analytical data into NETPATH, and calculate the distribution of species in aqueous solution. This report describes the types of problems that can be solved, the methods used to solve problems, and the features available in the program to facilitate these solutions. Examples are presented to demonstrate most of the applications and features of NETPATH. The codes DB and NETPATH can be executed in the UNIX or DOS1 environment. This report replaces U.S. Geological Survey Water-Resources Investigations Report 91-4078, by Plummer and others, which described the original release of NETPATH, version 1.0 (dated December, 1991), and documents revisions and enhancements that are included in version 2.0. 1 The use of trade, brand or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.
NASA Astrophysics Data System (ADS)
Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.
The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and geochemical heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. Model simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the model recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.
Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew
2012-01-01
This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.
A 1-D evolutionary model for icy satellites, applied to Enceladus
NASA Astrophysics Data System (ADS)
Prialnik, Dina; Malamud, Uri
2015-11-01
A 1-D long-term evolution code for icy satellites is presented, which couples multiple processes: water migration, geochemical reactions, water and silicate phase transitions, crystallization, compaction by self-gravity, and ablation. The code takes into account various energy sources: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy, and insolation. It includes heat transport by conduction, convection, and advection.The code is applied to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, and adopting a homogeneous initial structure. Assuming that the satellite has been losing water continually along its evolution, it follows that it was formed as a more massive, more ice-rich and more porous object, and gradually transformed into its present day state, due to sustained tidal heating. Several initial compositions and evolution scenarios are considered, and the evolution is simulated for the age of the Solar System. The results corresponding to the present configuration are confronted with the available observational constraints. The present configuration is shown to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock in the central part and hydrated rock in the outer part. Such a differentiated structure is obtained not only for Enceladus, but for other medium size ice-rich bodies as well.Predictions for Enceladus are a higher rock/ice mass ratio than previously assumed, and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the 1-D model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1994-04-15
These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)
1987-03-01
available. Kincaid et al. (221 provide an overview of the geochemical code history (up to 1983) in which they group models into four major families...plant. The *Ixample is adapted from a study by Morel ,’t al. 1291 for Los Angeles County. It is prv.ented in four ;ections: I ’ Problem statement, ý2...presents environmentally important priperty dJata for several groups of elements or compcui’ds. The data include, for Pxrimpie, precal- culated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This paper applies a multiscale hydro-geochemical-mechanical approach to analyze faulted CO 2 reservoirs using the STOMP-CO 2-R code that is coupled to the ABAQUS® finite element package. STOMP-CO 2-R models the reactive transport of CO 2 causing mineral volume fraction changes that are captured by an Eshelby-Mori-Tanka model implemented in ABAQUS®. A three-dimensional (3D) STOMP-CO 2-R model for a reservoir containing an inclined fault was built to analyze a formation containing a reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D finite element mesh that exactly maps the STOMP-CO 2-R grid is developed for coupled hydro-geochemical-mechanicalmore » analyses. The model contains alternating sandstone and shale layers. The impact of reactive transport of CO 2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that affect their geomechanical responses. Simulations assuming extensional and compressional stress regimes with and without coupled geochemistry are performed to study the stress regime effect on the risk of hydraulic fracture. The tendency for the fault to slip is examined in terms of stress regime, geomechanical and geochemical-mechanical effects as well as fault inclination. The results show that mineralogical changes due to long-term injection of CO 2 reduce the permeability and elastic modulus of the reservoir, leading to increased risk of hydraulic fracture in the injection location and at the caprock seal immediately above the injection zone. Fault slip is not predicted to occur. However, fault inclination and stress regime have an important impact on the slip tendency factor.« less
A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.
2015-12-01
Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
Decreasing Kd uncertainties through the application of thermodynamic sorption models.
Domènech, Cristina; García, David; Pękala, Marek
2015-09-15
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (Kd) is often used to represent radionuclide retention, because analytical solutions to the classic advection-diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the Kd approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that Kd values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the Kd outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate Kd values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating Kd values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide Kd values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide Kd values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in geochemistry on Kd values. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Lin; Benson, Craig H; Lawson, Elizabeth M
2006-02-01
A study was conducted to assess key factors to include when modeling porosity reductions caused by mineral fouling in permeable reactive barriers (PRBs) containing granular zero valent iron. The public domain codes MODFLOW and RT3D were used and a geochemical algorithm was developed for RT3D to simulate geochemical reactions occurring in PRBs. Results of simulations conducted with the model show that the largest porosity reductions occur between the entrance and mid-plane of the PRB as a result of precipitation of carbonate minerals and that smaller porosity reductions occur between the mid-plane and exit face due to precipitation of ferrous hydroxide. These findings are consistent with field and laboratory observations, as well as modeling predictions made by others. Parametric studies were conducted to identify the most important variables to include in a model evaluating porosity reduction. These studies showed that three minerals (CaCO3, FeCO3, and Fe(OH)2 (am)) account for more than 99% of the porosity reductions that were predicted. The porosity reduction is sensitive to influent concentrations of HCO3-, Ca2+, CO3(2-), and dissolved oxygen, the anaerobic iron corrosion rate, and the rates of CaCO3 and FeCO3 formation. The predictions also show that porosity reductions in PRBs can be spatially variable and mineral forming ions penetrate deeper into the PRB as a result of flow heterogeneities, which reflects the balance between the rate of mass transport and geochemical reaction rates. Level of aquifer heterogeneity and the contrast in hydraulic conductivity between the aquifer and PRB are the most important hydraulic variables affecting porosity reduction. Spatial continuity of aquifer hydraulic conductivity is less significant.
NASA Astrophysics Data System (ADS)
Picot-Colbeaux, Géraldine; Devau, Nicolas; Thiéry, Dominique; Pettenati, Marie; Surdyk, Nicolas; Parmentier, Marc; Amraoui, Nadia; Crastes de Paulet, François; André, Laurent
2016-04-01
Chalk aquifer is the main water resource for domestic water supply in many parts in northern France. In same basin, groundwater is frequently affected by quality problems concerning nitrates. Often close to or above the drinking water standards, nitrate concentration in groundwater is mainly due to historical agriculture practices, combined with leakage and aquifer recharge through the vadose zone. The complexity of processes occurring into such an environment leads to take into account a lot of knowledge on agronomy, geochemistry and hydrogeology in order to understand, model and predict the spatiotemporal evolution of nitrate content and provide a decision support tool for the water producers and stakeholders. To succeed in this challenge, conceptual and numerical models representing accurately the Chalk aquifer specificity need to be developed. A multidisciplinary approach is developed to simulate storage and transport from the ground surface until groundwater. This involves a new agronomic module "NITRATE" (NItrogen TRansfer for Arable soil to groundwaTEr), a soil-crop model allowing to calculate nitrogen mass balance in arable soil, and the "PHREEQC" numerical code for geochemical calculations, both coupled with the 3D transient groundwater numerical code "MARTHE". Otherwise, new development achieved on MARTHE code allows the use of dual porosity and permeability calculations needed in the fissured Chalk aquifer context. This method concerning the integration of existing multi-disciplinary tools is a real challenge to reduce the number of parameters by selecting the relevant equations and simplifying the equations without altering the signal. The robustness and the validity of these numerical developments are tested step by step with several simulations constrained by climate forcing, land use and nitrogen inputs over several decades. In the first time, simulations are performed in a 1D vertical unsaturated soil column for representing experimental nitrates vertical soil profiles (0-30m depth experimental measurements in Somme region). In the second time, this approach is used to simulate with a 3D model a drinking water catchment area in order to compared nitrate contents time series calculated and measured in the domestic water pumping well since 1995 (field in northern France - Avre Basin region). This numerical tool will help the decision-making in all activities in relation with water uses.
SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks
NASA Astrophysics Data System (ADS)
Hertogen, Jan; Mareels, Joyce
2016-07-01
A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a number of questions about the petrogenetic relationships among parental magmas of nearly coeval granitic units emplaced in close proximity.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita
2017-04-01
Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a steam source at a pressure of 6 bar and at a temperature of least 165 °C. The geophysical images combined with the geochemical data allowed us to build up a multiphase fluid flow model of the Bocca Grande and and Bocca Nuova fumaroles using the TOUGH 2 code. Our results show that the distinct resistivity structure, temperature, and water content of the both fumaroles are due to the particular geometry of the condensate flow that intersects and contaminates the Bocca Nuova but not the Bocca Grande fumarole. These results indicate the necessity to combine geophysical and geochemical approaches in order to better apprehend the structure complexity and the dynamics of fumaroles and hydrothermal systems.
Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dontsova, K.; Steefel, C.I.; Desilets, S.
2009-07-15
A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less
Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M
NASA Astrophysics Data System (ADS)
Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.
2012-12-01
On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia
2010-09-01
A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.
NASA Astrophysics Data System (ADS)
Ghosh, Amitabha
A finite element code has been developed to study the thermal history of asteroid 4 Vesta. This is the first attempt to model the thermal history of a differentiated asteroid, from accretion through core and crust formation and subsequent cooling until geochemical closure is attained. Previous thermal models were simpler formulations aimed at explaining metamorphism and aqueous alteration in unmelted asteroids. The results of the simulation are consistent with chronological measurements of cumulate and noncumulate eucrites, meteorites belonging to the HED suite, believed to have been derived from 4 Vesta. The work solves major problems with the hypothesis of heating by decay of 26Al, an extinct radionuclide, believed to be a plausible heat source in the early solar system. The simulation draws a model chronology of Vesta and predicts the time interval of accretion at 2.85 Myrs, the absolute times (with respect to CAI formation) of core formation at 4.58 Myrs, crust formation at 6.58 Myrs and geochemical closure on Vesta at ~100 Myrs. It is concluded that neither collisional heating nor heating due to the radioactive decay of 60Fe caused any perceptible difference in the whole-body thermal history of Vesta. Further, the thermal model suggested that the olivine-rich spot observed on Vesta may not be excavated mantle material, but may be unmelted near-surface material that escaped the asteroid's differentiation history.
NASA Astrophysics Data System (ADS)
Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia
2017-06-01
The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
NASA Astrophysics Data System (ADS)
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin
Berger, P.M.; Roy, W.R.; Mehnert, E.
2009-01-01
The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.
Lagrangian simulation of mixing and reactions in complex geochemical systems
NASA Astrophysics Data System (ADS)
Engdahl, Nicholas B.; Benson, David A.; Bolster, Diogo
2017-04-01
Simulations of detailed geochemical systems have traditionally been restricted to Eulerian reactive transport algorithms. This note introduces a Lagrangian method for modeling multicomponent reaction systems. The approach uses standard random walk-based methods for the particle motion steps but allows the particles to interact with each other by exchanging mass of their various chemical species. The colocation density of each particle pair is used to calculate the mass transfer rate, which creates a local disequilibrium that is then relaxed back toward equilibrium using the reaction engine PhreeqcRM. The mass exchange is the only step where the particles interact and the remaining transport and reaction steps are entirely independent for each particle. Several validation examples are presented, which reproduce well-known analytical solutions. These are followed by two demonstration examples of a competitive decay chain and an acid-mine drainage system. The source code, entitled Complex Reaction on Particles (CRP), and files needed to run these examples are hosted openly on GitHub (https://github.com/nbengdahl/CRP), so as to enable interested readers to readily apply this approach with minimal modifications.
Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes
2007-08-15
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.
Hormann, Volker; Kirchner, Gerald
2002-04-22
For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically studied. It is shown that calculating the impacts of soil-based chemical countermeasures on soil solution chemistry using geochemical codes such as PHREEQC offers an attractive alternative to establishing these impacts by often time-consuming and site-specific experiments.
NASA Astrophysics Data System (ADS)
Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.
2017-12-01
About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water-Rock Interaction (Brantley et al., eds.), Springer, New York.[4] Edson et al. (2012) Astrobiology 12, 562-571.[5] Parkhurst & Appelo (2013) USGS Techniques and Methods 6-A43.[6] Palandri & Kharaka (2008) USGS Report 2004-1068.[7] Kite et al. (2009) ApJ 700, 1732-1749.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2013-05-01
Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less
A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition
NASA Astrophysics Data System (ADS)
Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.
2017-12-01
Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared with the AUC of 0.77 using a single deep autoencoder approach.
Contaminant source identification using semi-supervised machine learning
NASA Astrophysics Data System (ADS)
Vesselinov, Velimir V.; Alexandrov, Boian S.; O'Malley, Daniel
2018-05-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).
Contaminant source identification using semi-supervised machine learning
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
2017-11-08
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
Contaminant source identification using semi-supervised machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
NASA Astrophysics Data System (ADS)
Ghezelbash, Reza; Maghsoudi, Abbas
2018-05-01
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.
NASA Astrophysics Data System (ADS)
Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.
2003-12-01
The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.
User’s guide for GcClust—An R package for clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.
2016-04-08
GcClust is a software package developed by the U.S. Geological Survey for statistical clustering of regional geochemical data, and similar data such as regional mineralogical data. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of the user’s guide are bundled together in R’s unit of sharable code, which is called a “package.” The user’s guide includes step-by-step instructions showing how the functions are used to cluster data and to evaluate the clustering results. These functions are demonstrated in this report using test data, which are included in the package.
Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap
NASA Astrophysics Data System (ADS)
Jadamec, M.; Fischer, K. M.
2012-12-01
In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.
Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer
2016-01-01
One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the impact of climate change on this important complex of ecosystems.
Impact of the volume of gaseous phase in closed reactors on ANC results and modelling
NASA Astrophysics Data System (ADS)
Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise
2016-04-01
The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.
2017-12-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical species. Numerous geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. As a result, these types of model analyses are typically extremely challenging. Here, we demonstrate a new contaminant source identification approach that performs decomposition of the observation mixtures based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. We also demonstrate how NMFk can be extended to perform uncertainty quantification and experimental design related to real-world site characterization. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios). The NMFk algorithm has been extensively tested on synthetic datasets; NMFk analyses have been actively performed on real-world data collected at the Los Alamos National Laboratory (LANL) groundwater sites related to Chromium and RDX contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Barr, D.; Rutqvist, J.
2005-11-15
The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches andmore » different computer codes.Below, we give an overview of the research task and report its currentstatus.« less
Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...
Programming PHREEQC calculations with C++ and Python a comparative study
Charlton, Scott R.; Parkhurst, David L.; Muller, Mike
2011-01-01
The new IPhreeqc module provides an application programming interface (API) to facilitate coupling of other codes with the U.S. Geological Survey geochemical model PHREEQC. Traditionally, loose coupling of PHREEQC with other applications required methods to create PHREEQC input files, start external PHREEQC processes, and process PHREEQC output files. IPhreeqc eliminates most of this effort by providing direct access to PHREEQC capabilities through a component object model (COM), a library, or a dynamically linked library (DLL). Input and calculations can be specified through internally programmed strings, and all data exchange between an application and the module can occur in computer memory. This study compares simulations programmed in C++ and Python that are tightly coupled with IPhreeqc modules to the traditional simulations that are loosely coupled to PHREEQC. The study compares performance, quantifies effort, and evaluates lines of code and the complexity of the design. The comparisons show that IPhreeqc offers a more powerful and simpler approach for incorporating PHREEQC calculations into transport models and other applications that need to perform PHREEQC calculations. The IPhreeqc module facilitates the design of coupled applications and significantly reduces run times. Even a moderate knowledge of one of the supported programming languages allows more efficient use of PHREEQC than the traditional loosely coupled approach.
Field-Integrated Studies of Long-Term Sustainability of Chromium Bioreduction at Hanford 100H Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.
2006-06-01
The objectives of the project are to investigate coupled hydraulic, geochemical, and microbial conditions, and to determine the critical biogeochemical parameters necessary to maximize the extent of Cr(VI) bioreduction and minimize Cr(III) reoxidation in groundwater. Specific goals of the project are as follows: (1) Field testing and monitoring of Cr(VI) bioreduction in ground water and its transformation into insoluble species of Cr(III) at the Hanford 100H site, to develop the optimal strategy of water sampling for chemical, microbial, stable isotope analyses, and noninvasive geophysical monitoring; (2) Bench-scale flow and transport investigations using columns of undisturbed sediments to obtain diffusion andmore » kinetic parameters needed for the development of a numerical model, predictions of Cr(VI) bioreduction, and potential of Cr(III) reoxidation; and (3) Development of a multiphase, multi-component 3D reactive transport model and a code, TOUGHREACT-BIO, to predict coupled biogeochemical-hydrological processes associated with bioremediation, and to calibrate and validate the developed code based on the results of bench-scale and field-scale Cr(VI) biostimulation experiments in ground water at the Hanford Site.« less
GEOCHEMICAL MODELING OF ARSENIC SPECIATION AND MOBILIZATION: IMPLICATIONS FOR BIOREMEDIATION
Geochemical modeling techniques were used to examine the biogeochemical linkages between Fe, S, and As in shallow alluvial aquifers. We modeled: 1) the adsorption and desorption of As on the surface of hydrous ferric oxides (HFO’s) in stream beds under aerobic conditions; 2) red...
Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution
NASA Astrophysics Data System (ADS)
Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.
2016-12-01
Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo which not only enables mesh refinement, but also refinement of the model-pore scale or continuum Darcy scale-in a dynamic way such that the appropriate model is used only when and where it is needed. Explicit flux matching provides coupling betwen the scales.
NASA Astrophysics Data System (ADS)
Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.
2015-12-01
The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.
VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz; Robert C. Starr; Brennon Orr
2003-09-01
This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.« less
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.
2002-12-01
Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data if they were available from direct measurements or as variables otherwise. To estimate the geochemical parameters, we first assigned a prior model for each variable and a likelihood model for each type of data, which together define posterior probability distributions for each variable on the domain. Since the posterior probability distribution may involve hundreds of variables, we used a Markov Chain Monte Carlo (MCMC) method to explore each variable by generating and subsequently evaluating hundreds of realizations. Results from this case study showed that although geophysical attributes are not necessarily directly related to geochemical parameters, geophysical data could be very useful for providing accurate and high-resolution information about geochemical parameter distribution through their joint and indirect connections with hydrogeological properties such as lithofacies. This case study also demonstrated that MCMC methods were particularly useful for geochemical parameter estimation using geophysical data because they allow incorporation into the procedure of spatial correlation information, measurement errors, and cross correlations among different types of parameters.
NASA Astrophysics Data System (ADS)
Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan
2016-07-01
Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.
NASA Astrophysics Data System (ADS)
Myagkiy, Andrey; Golfier, Fabrice; Truche, Laurent; Cathelineau, Michel
2017-04-01
This research proposes a subsurface reactive geochemical transport modelling of the development of a nickel laterite profile in New Caledonia over the past few million years. Such a regolith formation from ultramafic bedrock was not yet modelled and gives new profound insights into the Ni vertical mobility, its retention processes in a soil profile and relative enrichment, that are still poorly studied. The downward progression of the lateritization front is allowed by the leaching of the soluble elements (Si, Mg and Ni) through drainage system, represented by porous column of peridotite. Particular emphasis is placed on the detailed understanding of Ni redistribution as a function of time and depth triggered by Ni-bearing silicate precipitation (i.e. garnierite) and by sorption or recrystallization process with goethite. Current work consists of the following models: i) 1-D calculations that are done at 25oC with the code PHREEQC associated with the llnl thermodynamic database and ii) 2-D model that handles coupled thermo-hydro-chemical processes and is calculated on the interface Comsol-Phreeqc (iCP, Nardi et al., 2014). The impact of i) fluid flow in fractures and ii) recharge rate along with iii) hydraulic and iv) geothermal gradients are considered here. While the first model gives profound insights into the vertical mobility of metals upon the formation of laterite (Myagkiy et al, submitted), the latter one additionally allows to describe heterogeneities of mineralizing distributions due to the influence of preferential pathways (fractures), convective flows and lateral transfers. Our long-term 1-D simulations (10 Ma) clearly demonstrate that the Ni enrichment and thickening of iron-rich zone are governed by the vertical progression of the pH front. At the same time 2-D modelling shows reactivation of Ni from oxide zone and it subsequent redistribution and concentration in saprolite. Such a model appears to be of importance in attempt of explanation Ni mineralization processes, revealing the main keys to understanding the trace elements mobility in ultramafic environment. Myagkiy A, Truche L, Cathelineau M, Golfier F. "Revealing the conditions of Ni mineralization in laterite profile of New Caledonia: insights from reactive geochemical transport modelling" Preprint submitted to Chemical Geology (September 28, 2016). Nardi A, Idiart A, Trinchero P, de Vries LM, and Molinero J. "Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry."Computers & Geosciences 69 (2014): 10-21.
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.
Blair, R.W.; Yager, D.B.; Church, S.E.
2002-01-01
This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.
Geochemical Reaction Mechanism Discovery from Molecular Simulation
Stack, Andrew G.; Kent, Paul R. C.
2014-11-10
Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Integrated Disposal Facility FY 2012 Glass Testing Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.
2013-03-29
PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less
Han, L. F; Plummer, Niel
2016-01-01
Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of 13C values.In contrast to the single-sample-based models, the extended Gonfiantini & Zuppi model (Gonfiantini and Zuppi, 2003; Han et al., 2014) is a statistical approach. This approach can be used to estimate 14C ages when a curved relationship between the 14C and 13C values of the DIC data is observed. In addition to estimation of groundwater ages, the relationship between 14C and δ13C data can be used to interpret hydrogeological characteristics of the aquifer, e.g. estimating apparent rates of geochemical reactions and revealing the complexity of the geochemical environment, and identify samples that are not affected by the same set of reactions/processes as the rest of the dataset. The investigated water samples may have a wide range of ages, and for waters with very low values of 14C, the model based on statistics may give more reliable age estimates than those obtained from single-sample-based models. In the extended Gonfiantini & Zuppi model, a representative system-wide value of the initial 14C content is derived from the 14C and δ13C data of DIC and can differ from that used in single-sample-based models. Therefore, the extended Gonfiantini & Zuppi model usually avoids the effect of modern water components which might retain ‘bomb’ pulse signatures.The geochemical mass-balance approach constructs an adjustment model that accounts for all the geochemical reactions known to occur along an aquifer flow path (Plummer et al., 1983; Wigley et al., 1978; Plummer et al., 1994; Plummer and Glynn, 2013), and includes, in addition to DIC, dissolved organic carbon (DOC) and methane (CH4). If sufficient chemical, mineralogical and isotopic data are available, the geochemical mass-balance method can yield the most accurate estimates of the adjusted radiocarbon age. The main limitation of this approach is that complete information is necessary on chemical, mineralogical and isotopic data and these data are often limited.Failure to recognize the limitations and underlying assumptions on which the various models and approaches are based can result in a wide range of estimates of 14C0 and limit the usefulness of radiocarbon as a dating tool for groundwater. In each of the three generalized approaches (single-sample-based models, statistical approach, and geochemical mass-balance approach), successful application depends on scrutiny of the isotopic (14C and 13C) and chemical data to conceptualize the reactions and processes that affect the 14C content of DIC in aquifers. The recently developed graphical analysis method is shown to aid in determining which approach is most appropriate for the isotopic and chemical data from a groundwater system.
2006-09-01
Richardson, in review). Figure 1 shows the lithostratigraphic setting for Eocene through Miocene strata, and the occurrence of hydrostratigraphic units of...basal Haw- thorn unit lies unconformably on lithologies informally called “ Eocene limestones,” which consist of Suwannee Limestone, Ocala Limestone
Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
A new statistical model to find bedrock, a prequel to geochemical mass balance
NASA Astrophysics Data System (ADS)
Fisher, B.; Rendahl, A. K.; Aufdenkampe, A. K.; Yoo, K.
2016-12-01
We present a new statistical model to assess weathering trends in deep weathering profiles. The Weathering Trends (WT) model is presented as an extension of the geochemical mass balance model (Brimhall & Dietrich, 1987), and is available as an open-source R library on GitHub (https://github.com/AaronRendahl/WeatheringTrends). WT uses element concentration data to determine the depth to fresh bedrock by assessing the maximum extent of weathering for all elements and the model applies confidence intervals on the depth to bedrock. WT models near-surface features and the shape of the weathering profile using a log transformation of data to capture the magnitude of changes that are relevant to geochemical kinetics and thermodynamics. The WT model offers a new, enhanced opportunity to characterize and understand biogeochemical weathering in heterogeneous rock types. We apply the model to two 21-meter drill cores in the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont. The Laurels Schist had inconclusive weathering indicators prior to development and application of WT model. The model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 (CI 95% [9.2, 21.3]) meters in Ridge Well 1 and 7.2 (CI 95% [4.3, 13.0]) meters in Interfluve Well 2. The modeled extent to weathering is decoupled from the water table at the ridge, but coincides with the water table at the interfluve. These depths were applied as the parent material for the geochemical mass balance for the Laurels Schist. We test statistical approaches to assess the variability and correlation of immobile elements to facilitate the selection of the best immobile element for use in both models. We apply the model to other published data where the geochemical mass balance was applied, to demonstrate how the WT model provides additional information about weathering depth and weathering trends.
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
NASA Astrophysics Data System (ADS)
Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan
2016-07-01
An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.
Geoneutrinos and Heat Production in the Earth: Constraints and Implications
McDonough, Bill
2017-12-29
Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth. KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated. The SNO+ detector, situated in the middle of the North American plate will come on line in ~3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earthâs Th & U budget. The distribution of heat producing elements in the Earth drives convection and plate tectonics. Geochemical models posit that ~40% of the heat producing elements are in the continental crust, with the remainder in the mantle. Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible. Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict. The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.
Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model
Ellefsen, Karl J.; Smith, David
2016-01-01
Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.
Geochemistry and the Understanding of Groundwater Systems
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.
2009-12-01
Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper
2017-04-01
Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the cfd functions are used to put random reaction capacity variables into the hydrological voxel model. Here, the distribution can be conditioned on two variables. Two important variables are clay content and depth. The first is valid because more dense data is available for clay content than for geochemical variables as pyrite and probabilistic, lithological models are also built at TNO Geological Survey. The second is important to account for locally different depths at which the redox cline between NO3-rich and Fe(II)-rich groundwater occurs within the first tens of meters of the subsurface. An extensive data-set of groundwater quality analyses is used to derive criteria for depth variability of the redox cline. The result is a unique algoritm in order to obtain heterogeneous geochemical reaction capacity models of the entire groundwater compartment of the Netherlands.
Lovering, T.G.; McCarthy, J.H.
1978-01-01
This summary of geochemical exploration in the Basin and Range Province is another in the series of reviews of geochemical-exploration applications covering a large region; this series began in 1975 with a summary for the Canadian Cordillera and Canadian Shield, and was followed in 1976 by a similar summary for Scandinavia (Norden). Rather than adhering strictly to the type of conceptual models applied in those papers, we have made use of generalized landscape geochemistry models related to the nature of concealment of ore deposits. This study is part of a continuing effort to examine and evaluate geochemical-exploration practices in different areas of the world. Twenty case histories of the application of geochemical exploration in both district and regional settings illustrate recent developments in techniques and approaches. Along with other published reports these case histories, exemplifying generalized models of concealed deposits, provide data used to evaluate geochemical-exploration programs and specific sample media. Because blind deposits are increasingly sought in the Basin and Range Province, the use of new sample media or anomaly-enhancement techniques is a necessity. Analysis of vapors or gases emanating from blind deposits is a promising new technique. Certain fractions of stream sediments show anomalies that are weak or not detected in conventional minus 80-mesh fractions. Multi-element analysis of mineralized bedrock may show zoning patterns that indicate depth or direction of ore. Examples of the application of these and other, more conventional methods are indicated in the case histories. The final section of this paper contains a brief evaluation of the applications of all types of sample media to geochemical exploration in the arid environment of the Basin and Range Province. ?? 1978.
NASA Astrophysics Data System (ADS)
Lu, C.; Zhang, C.; Huang, H.; Johnson, T.
2012-12-01
Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.
Parks, William S.; Mirecki, June E.; Kingsbury, James A.
1995-01-01
NETPATH geochemical model code was used to mix waters from the alluvial aquifer with water from the Memphis aquifer using chloride as a conservative tracer. The resulting models indicated that a mixture containing 3 percent alluvial aquifer water mixed with 97 percent unaffected Memphis aquifer water would produce the chloride concentration measured in water from the Memphis aquifer well most affected by water-quality changes. NETPATH also was used to calculate mixing percentages of alluvial and Memphis aquifer Abstract waters based on changes in the concentrations of selected dissolved major inorganic and trace element constituents that define the dominant reactions that occur during mixing. These models indicated that a mixture containing 18 percent alluvial aquifer water and 82 percent unaffected Memphis aquifer water would produce the major constituent and trace element concentrations measured in water from the Memphis aquifer well most affected by water-quality changes. However, these model simulations predicted higher dissolved methane concentrations than were measured in water samples from the Memphis aquifer wells.
A scaling relationship for impact-induced melt volume
NASA Astrophysics Data System (ADS)
Nakajima, M.; Rubie, D. C.; Melosh, H., IV; Jacobson, S. A.; Golabek, G.; Nimmo, F.; Morbidelli, A.
2016-12-01
During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. The impactor's core sinks through the molten part of the target mantle (magma ocean) and experiences metal-silicate partitioning (e.g., Stevenson, 1990). For understanding the chemical evolution of the planetary mantle and core, we need to determine the impact-induced melt volume because the partitioning strongly depends on the ranges of the pressures and temperatures within the magma ocean. Previous studies have investigated the effects of small impacts (i.e. impact cratering) on melt volume, but those for giant impacts are not well understood yet. Here, we perform giant impact simulations to derive a scaling law for melt volume as a function of impact velocity, impact angle, and impactor-to-target mass ratio. We use two different numerical codes, namely smoothed particle hydrodynamics we developed (SPH, a particle method) and the code iSALE (a grid-based method) to compare their outcomes. Our simulations show that these two codes generally agree as long as the same equation of state is used. We also find that some of the previous studies developed for small impacts (e.g., Abramov et al., 2012) overestimate giant impact melt volume by orders of magnitudes partly because these models do not consider self-gravity of the impacting bodies. Therefore, these models may not be extrapolated to large impacts. Our simulations also show that melt volume can be scaled by the total mass of the system. In this presentation, we further discuss geochemical implications for giant impacts on planets, including Earth and Mars.
Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, Daniel I.
The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
Mercury Slovenian soils: High, medium and low sample density geochemical maps
NASA Astrophysics Data System (ADS)
Gosar, Mateja; Šajn, Robert; Teršič, Tamara
2017-04-01
Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.
NASA Astrophysics Data System (ADS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.
2018-06-01
On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia
2017-04-01
Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.
Experimental validation of Swy-2 clay standard's PHREEQC model
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György
2017-04-01
One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.
Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H
2014-01-01
This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.
SubductionGenerator: A program to build three-dimensional plate configurations
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.
2016-12-01
Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.
A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon
NASA Technical Reports Server (NTRS)
Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.
2017-01-01
The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.
Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik
2014-11-01
Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.
NASA Astrophysics Data System (ADS)
Gonçalves, Mario; Mateus, Antonio
2016-04-01
The safeguarding of access/use of many critical raw materials for Society requires that much of previously dismissed areas for exploration must be re-evaluated with new criteria in which the significance of "anomaly" should not be treated independently of the geochemical signals of the ore-forming processes and how the different chemical elements are interrelated. For much of the previous decade, several multifractal methods were methodically being refined as automatic tools to analyze and detect geochemical anomalies. These included the early concentration-area method (Cheng et al., 1994), singularity mapping (Cheng, 2007), and spectrum-area (Cheng et al., 2000), which has been recently combined with the bi-dimensional empirical mode decomposition (Xu et al., 2016) as a tool to separate different contributing sources of an otherwise complex geochemical pattern. We propose yet another approach, the use of geochemical indexes, which links to the geological and ore-forming processes known to define a given region in order to assess much of these numerical approaches. Therefore, we picked several areas from the Variscan basement in Portugal, with different geologic and metallogentic contexts, some of them previously analyzed with multifractal methods (Gonçalves et al., 2001; Jesus et al., 2013) and a multi-element geochemical campaign on which to test the different multifractal methods combined with the geochemical indexes, as an advantageous alternative to principal component mapping, for example. Some preliminary essays with stochastic models similar to those reported in Gonçalves (2001) and Agterberg (2007), with different overprinted pulses are presented as well. Acknowledgments: This is a contribution from UID/GEO/50019/2013 - Instituto Dom Luiz, supported by FCT. Agterberg, 2007, Math. Geol., 39, 1. Cheng et al, 1994, J. Geochem. Explor., 51, 109. Cheng et al., 2000, Nat. Resour. Res, 9, 43. Cheng, 2007, Ore Geol. Rev., 32, 314. Gonçalves, 2001, Math. Geol., 33, 41. Gonçalves et al., 2001, J. Geochem. Explor., 72, 91. Jesus et al., 2013, J. Geochem. Explor., 126-127, 23. Xu et al., 2016, J. Geochem. Explor., in press
Kim, Seong Hee; Choi, Byoung-Young; Lee, Gyemin; Yun, Seong-Taek; Kim, Soon-Oh
2017-12-20
The CO 2 -rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the geochemical evolution pathways of various CSW were simulated via equilibrium phase modeling (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO 3 water type, but some samples from the KW area were classified as Na-HCO 3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO 2 , deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150 °C for the Ca-HCO 3 and Na-HCO 3 types of CSW, respectively, in the KW area; 138.9 °C for the CB CSW; and 93.0 °C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO 3 -type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO 3 -type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the geochemical evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO 2 after its geological storage and to estimate the stability and security of geologically stored CO 2 .
NASA Astrophysics Data System (ADS)
Wissmeier, L. C.; Barry, D. A.
2009-12-01
Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection/dispersion are introduced as irreversible reactions. An example for the coupling of PHREEQC and MATLAB for the solution of unsaturated flow and transport is provided.
Colman, John A.; Sanzolone, R.F.
1991-01-01
Geochemical data are presented from a synoptic survey of 46 elements in fine-fraction streambed sediments of the Upper Illinois River Basin during the fall of 1987. The survey was a component study of the Illinois pilot project of the U.S. Geological Survey's National Water-Quality Assessment program. Most of the sampling sites were randomly chosen--135 on main stems of rivers and 238 on first- and second-order streams. In addition, 196 samples were collected for quality-assurance and special-study purposes. The report includes element concentration data and summary-statistics tables of percentiles, nested analysis of variance, and correlation coefficients. All concentration data are included in tabular form and can be selected by map reference number, latitude and longitude, or remark code indicating purpose for collecting sample.
Segmentation of singularity maps in the context of soil porosity
NASA Astrophysics Data System (ADS)
Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.
2016-04-01
Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).
A geochemical examination of humidity cell tests
Maest, Ann; Nordstrom, D. Kirk
2017-01-01
Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use in modeling the environmental performance at mine sites. Improved guidance is needed for more consistent interpretation and use of HCT results that rely on identifying: the geochemical processes; the mineralogy, including secondary mineralogy; the available surface area for reactions; and the influence of hydrologic processes on leachate concentrations in runoff, streams, and groundwater.
Geochemical Constraints on the Size of the Moon-Forming Giant Impact
NASA Astrophysics Data System (ADS)
Piet, Hélène; Badro, James; Gillet, Philippe
2017-12-01
Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.
Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems
Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.
2009-01-01
The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.
NASA Astrophysics Data System (ADS)
Gabriel, T. S. J.; Hardgrove, C.; Litvak, M. L.; Nowicki, S.; Mitrofanov, I. G.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Thompson, L. M.
2017-12-01
The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory Curiosity Rover delivers high-energy (14.1 MeV) pulses of neutrons into the surface when operating in "active" mode. Neutrons are moderated in the subsurface and return to two detectors to provide a time-of-flight profile in 64 time-bins in epithermal and thermal energy ranges. Results are compared to simulations of the experiment in the Monte Carlo N-Particle Transport Code where several aspects are modeled including the DAN detectors, neutron source, rover components, and underlying rock. Models can be improved by increasing the fidelity of the rock geochemistry as informed by instruments including the Alpha Particle X-Ray Spectrometer (APXS). Furthermore, increasing the fidelity of the rock morphology in models is enabled by the suite of imaging instruments on the rover.To rapidly interpret DAN data a set of pre-simulated generic rock density and bulk geochemistry models are compared to several DAN active observations. While, to first order, this methodology provides an indication of significant geochemical changes in the subsurface, higher-fidelity models should be used to provide accurate constraints on water content, depth of geologic layers, or abundance of neutron absorbers. For example, in high-silicon, low-iron rocks observed along the rover's traverse, generic models can differ by several wt%H2O from models that use APXS measurements of nearby drill samples. Accurate measurements of high-silicon targets are necessary in outlining the extent of aqueous alteration and hydrothermal activity in Gale Crater. Additionally, we find that for DAN active experiments over sand dunes best-fit models can differ by greater than 0.5 wt%HO when the upper layer density is reduced by 0.6 g/cm3 to account for the low-bulk density of sand. In areas where the rock geochemistry differs little from generic models the difference in results is expectedly less disparate. We report refined wt%HO values for high-silicon, aqueously-altered rock and comparatively dry sand dunes along the rover traverse. We also outline the methodology for providing accurate geochemical and morphological constraints using DAN active measurements.
Zheng, Jianqiu; Thornton, Peter; Painter, Scott; Gu, Baohua; Wullschleger, Stan; Graham, David
2018-06-13
This anaerobic carbon decomposition model is developed with explicit representation of fermentation, methanogenesis and iron reduction by combining three well-known modeling approaches developed in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical model PHREEQC (V3.0). Installation of PHREEQC is required to run this model.
Strategies to predict metal mobility in surficial mining environments
Smith, Kathleen S.
2007-01-01
This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2016-02-01
Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.
Geochemical Constraints on the Size of the Moon — Forming Giant Impact
NASA Astrophysics Data System (ADS)
Piet, H.; Badro, J.; Gillet, P.
2018-05-01
We use the partitioning of siderophile trace elements to model the geochemical influence of the Moon-forming giant impact on Earth’s mantle during core formation. We find the size of the impactor to be 15% of Earth mass or smaller.
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Hawke, B. R.
1982-01-01
Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.
NASA Astrophysics Data System (ADS)
Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William
2016-12-01
The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.
2015-01-01
Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
NASA Astrophysics Data System (ADS)
Henocq, Pierre
2017-06-01
In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.
NASA Astrophysics Data System (ADS)
Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir
2016-03-01
The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.
Surrogate model approach for improving the performance of reactive transport simulations
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.
Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho
Rattray, Gordon W.; Ginsbach, Michael L.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of solutes in the Mud Lake-Dubois area. Oxidation-reduction reactions are important influences on the chemistry of groundwater at Camas Meadows and the Camas National Wildlife Refuge. In addition, mixing of different groundwaters or surface water with groundwater appears to be an important physical process influencing groundwater geochemistry in much of the study area, and evaporation may be an important physical process influencing the groundwater geochemistry of the Camas National Wildlife Refuge. The mass-balance modeling results from this study provide an explanation of the natural geochemistry of groundwater in the ESRP aquifer northeast of the INL, and thus provide a starting point for evaluating the natural and anthropogenic geochemistry of groundwater at the INL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu
2015-02-27
In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less
Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)
NASA Astrophysics Data System (ADS)
Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.
1981-03-01
The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.
Modeling biogechemical reactive transport in a fracture zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang
2005-01-14
A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes inmore » biochemical parameters.« less
Drake, Brandon Lee; Wills, Wirt H.; Hamilton, Marian I.; Dorshow, Wetherbee
2014-01-01
Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts. In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studies using these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the East. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous. PMID:24854352
Laboratory experiments show that amorphous and poorly crystallized ferric iron hydroxides have much greater capacity to attenuate arsenic compared to clays and other aluminosilicate minerals. Studies (e.g., Lin and Qvarfort, 1996) showed that a sudden change in geochemical condit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattson, Earl; Smith, Robert; Fujita, Yoshiko
2015-03-01
The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less
Interactive client side data visualization with d3.js
NASA Astrophysics Data System (ADS)
Rodzianko, A.; Versteeg, R.; Johnson, D. V.; Soltanian, M. R.; Versteeg, O. J.; Girouard, M.
2015-12-01
Geoscience data associated with near surface research and operational sites is increasingly voluminous and heterogeneous (both in terms of providers and data types - e.g. geochemical, hydrological, geophysical, modeling data, of varying spatiotemporal characteristics). Such data allows scientists to investigate fundamental hydrological and geochemical processes relevant to agriculture, water resources and climate change. For scientists to easily share, model and interpret such data requires novel tools with capabilities for interactive data visualization. Under sponsorship of the US Department of Energy, Subsurface Insights is developing the Predictive Assimilative Framework (PAF): a cloud based subsurface monitoring platform which can manage, process and visualize large heterogeneous datasets. Over the last year we transitioned our visualization method from a server side approach (in which images and animations were generated using Jfreechart and Visit) to a client side one that utilizes the D3 Javascript library. Datasets are retrieved using web service calls to the server, returned as JSON objects and visualized within the browser. Users can interactively explore primary and secondary datasets from various field locations. Our current capabilities include interactive data contouring and heterogeneous time series data visualization. While this approach is very powerful and not necessarily unique, special attention needs to be paid to latency and responsiveness issues as well as to issues as cross browser code compatibility so that users have an identical, fluid and frustration-free experience across different computational platforms. We gratefully acknowledge support from the US Department of Energy under SBIR Award DOE DE-SC0009732, the use of data from the Lawrence Berkeley National Laboratory (LBNL) Sustainable Systems SFA Rifle field site and collaboration with LBNL SFA scientists.
Management and assimilation of diverse, distributed watershed datasets
NASA Astrophysics Data System (ADS)
Varadharajan, C.; Faybishenko, B.; Versteeg, R.; Agarwal, D.; Hubbard, S. S.; Hendrix, V.
2016-12-01
The U.S. Department of Energy's (DOE) Watershed Function Scientific Focus Area (SFA) seeks to determine how perturbations to mountainous watersheds (e.g., floods, drought, early snowmelt) impact the downstream delivery of water, nutrients, carbon, and metals over seasonal to decadal timescales. We are building a software platform that enables integration of diverse and disparate field, laboratory, and simulation datasets, of various types including hydrological, geological, meteorological, geophysical, geochemical, ecological and genomic datasets across a range of spatial and temporal scales within the Rifle floodplain and the East River watershed, Colorado. We are using agile data management and assimilation approaches, to enable web-based integration of heterogeneous, multi-scale dataSensor-based observations of water-level, vadose zone and groundwater temperature, water quality, meteorology as well as biogeochemical analyses of soil and groundwater samples have been curated and archived in federated databases. Quality Assurance and Quality Control (QA/QC) are performed on priority datasets needed for on-going scientific analyses, and hydrological and geochemical modeling. Automated QA/QC methods are used to identify and flag issues in the datasets. Data integration is achieved via a brokering service that dynamically integrates data from distributed databases via web services, based on user queries. The integrated results are presented to users in a portal that enables intuitive search, interactive visualization and download of integrated datasets. The concepts, approaches and codes being used are shared across various data science components of various large DOE-funded projects such as the Watershed Function SFA, Next Generation Ecosystem Experiment (NGEE) Tropics, Ameriflux/FLUXNET, and Advanced Simulation Capability for Environmental Management (ASCEM), and together contribute towards DOE's cyberinfrastructure for data management and model-data integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.
1981-02-01
We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. Wemore » have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies.« less
NASA Astrophysics Data System (ADS)
Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.
2017-06-01
An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, Scott R.; Parkhurst, David L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, S.R.; Parkhurst, D.L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.
Updated Reference Model for Heat Generation in the Lithosphere
NASA Astrophysics Data System (ADS)
Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.
2017-12-01
Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.
Long-term climate change and the geochemical cycle of carbon
NASA Technical Reports Server (NTRS)
Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.
1988-01-01
The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.
NASA Technical Reports Server (NTRS)
Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)
1997-01-01
Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.
2011-01-01
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229
Mineralization of Basalts in the CO 2-H 2O-H 2S System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.
2013-05-10
Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.
1997-05-01
The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performancemore » considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.« less
Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions
2011-01-01
Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface. PMID:22078161
Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers
NASA Astrophysics Data System (ADS)
Kvale, Karin F.; Khatiwala, Samar; Dietze, Heiner; Kriest, Iris; Oschlies, Andreas
2017-06-01
Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline
numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method
(TMM), which represents tracer transport as a sequence of sparse matrix-vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online
counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
High-temperature life without photosynthesis as a model for Mars
NASA Technical Reports Server (NTRS)
Shock, E. L.
1997-01-01
Discoveries in biology and developments in geochemistry over the past two decades have lead to a radical revision of concepts relating to the upper temperature at which life thrives, the genetic relationships among all life on Earth, links between organic and inorganic compounds in geologic processes, and the geochemical supply of metabolic energy. It is now apparent that given a source of geochemical energy, in the form of a mixture of compounds that is far from thermodynamic equilibrium, microorganisms can take advantage of the energy and thrive without the need for photosynthesis as a means of primary productivity. This means that life can exist in the subsurface of a planet such as Mars without necessarily exhibiting a surface expression. Theoretical calculations quantify the geochemically provided metabolic energy available to hyperthermophilic organisms in submarine hydrothermal systems on the Earth, and help to explain the enormous biological productivity of these systems. Efforts to place these models in the context of the early Earth reveal that substantial geochemical energy would have been available and that organic synthesis would have been thermodynamically favored as hydrothermal fluids mix with seawater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less
NASA Astrophysics Data System (ADS)
Maqueda, A.; Renard, P.; Cornaton, F. J.
2014-12-01
Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.
Characteristics and habitat of deep vs. shallow slow slip events
NASA Astrophysics Data System (ADS)
Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.
2016-12-01
Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.
Matlab Geochemistry: An open source geochemistry solver based on MRST
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Raynaud, X.; Nilsen, H.; Hesse, M. A.
2017-12-01
The study of geological systems often requires the solution of complex geochemical relations. To address this need we present an open source geochemical solver based on the Matlab Reservoir Simulation Toolbox (MRST) developed by SINTEF. The implementation supports non-isothermal multicomponent aqueous complexation, surface complexation, ion exchange, and dissolution/precipitation reactions. The suite of tools available in MRST allows for rapid model development, in particular the incorporation of geochemical calculations into transport simulations of multiple phases, complex domain geometry and geomechanics. Different numerical schemes and additional physics can be easily incorporated into the existing tools through the object-oriented framework employed by MRST. The solver leverages the automatic differentiation tools available in MRST to solve arbitrarily complex geochemical systems with any choice of species or element concentration as input. Four mathematical approaches enable the solver to be quite robust: 1) the choice of chemical elements as the basis components makes all entries in the composition matrix positive thus preserving convexity, 2) a log variable transformation is used which transfers the nonlinearity to the convex composition matrix, 3) a priori bounds on variables are calculated from the structure of the problem, constraining Netwon's path and 4) an initial guess is calculated implicitly by sequentially adding model complexity. As a benchmark we compare the model to experimental and semi-analytic solutions of the coupled salinity-acidity transport system. Together with the reservoir simulation capabilities of MRST the solver offers a promising tool for geochemical simulations in reservoir domains for applications in a diversity of fields from enhanced oil recovery to radionuclide storage.
Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia
2015-07-01
The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.
Ilgen, A. G.; Cygan, R. T.
2015-12-07
During the Frio-I Brine Pilot CO 2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO 2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite andmore » oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less
Advances in the hydrogeochemistry and microbiology of acid mine waters
Nordstrom, D. Kirk
2000-01-01
The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.
Approach for environmental baseline water sampling
Smith, K.S.
2011-01-01
Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.
NASA Astrophysics Data System (ADS)
Cosans, C.; Moore, J.; Harman, C. J.
2017-12-01
Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering along tectonically-induced fractures and weathering front advance have been proposed, but additional data are needed to test them. Developing a thorough, nuanced understanding of the geochemical and hydrological behavior of Pond Branch may help test and refine hypotheses for Piedmont critical zone evolution.
NASA Astrophysics Data System (ADS)
Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe
2017-04-01
Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.
2015-01-01
Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.
NASA Astrophysics Data System (ADS)
Jones, R.; Van Keken, P. E.; Hauri, E.; Vervoort, J. D.; Ballentine, C. J.
2017-12-01
The chemical and isotopic evolution of the Earth's mantle is largely influenced by the formation of oceanic and continental crust at spreading ridges and through arc volcanism, and the subsequent recycling of this crust back into the mantle via subduction. In this study we use a combined geodynamical-geochemical modelling approach to investigate the Lu-Hf isotopic evolution of the terrestrial mantle and crust. We utilise the geodynamic mantle convection model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere. It has also been shown to reproduce the observed geochemical distributions in multiple isotope systems (U-Th-Pb, Rb-Sr, Sm-Nd, and Re-Os) that define the DMM, HIMU and EM1 mantle endmembers. We go on to extend this application to investigate the Lu-Hf isotope system, specifically in combination with Sm-Nd. The model has been updated to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model is initiated at 4.55 Ga, assumes continental crust is produced from 4 Ga and that a transition from `dry' to `wet' subduction occurs at 3 Ga. The results of the geodynamic model suggest that the ƐHf composition and evolution of the upper mantle can be generated through the extraction and recycling of oceanic crust, which creates an enriched and radiogenic reservoir at the core-mantle boundary. The formation of continental crust, which is extracted at each time-step from the oceanic crust to imitate subduction zone processes, and the recycling of this continental crust as sediments, plays a lesser role. Depending on the selected partition coefficients DMM, FOZO and HIMU mantle endmember compositions are also produced via the simple extraction and recycling of oceanic crust. The formation of continental crust produces spread in the ƐNd vs. ƐHf array and extends the model values into the HIMU region of the terrestrial array. We go on to use this geodynamic-geochemical model to investigate different models of continental growth, by observing the effects on the coupled crustal-mantle reservoirs. Brandenburg, J.P., Hauri, E.H., van Keken, P.E., Ballentine, C.J., 2008. Earth and Planetary Science Letters 276, 1-13.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.
NASA Astrophysics Data System (ADS)
Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.
2012-12-01
We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we applied a novel geostatistical technique, which allocates reactivity parameters to the grid cells by sampling from these parameters' cumulative frequency distribution (CDF) functions. These CDF functions are derived for each relevant geohydrological unit present in the model domain, from datasets of groundwater and sediment analyses. The nutrient loads on the surface water system and the nutrient concentrations in groundwater, simulated by the transport model, are in fair agreement with field measurements. The experience with the test model constitutes a proof-of-concept, justifying further developments towards application of ANIMO-MT3DMS in actual regional decision-making processes.
NASA Astrophysics Data System (ADS)
Dávila Ordoñez, M. G.; Zahasky, C.; Crandall, D.; Druhan, J. L.
2017-12-01
Thus far, one million metric tons of CO2 have been injected into the lower Mt. Simon formation as part of the Decatur CO2 Capture and Storage Project. Micro-seismic events were observed within the CO2 plume both during and after pressurization associated with the primary injection. The Mt. Simon reservoir rock consists of 76.5 wt.% quartz, 2.1 wt.% calcite, 17.3 wt.% K-feldspar, 1.1 wt.% chlorite, 0.7 wt.% illite and lesser extents of siderite, kaolinite, dolomite and marcasite, and is thus anticipated to become geochemically altered by exposure to acidified CO2-rich brine. However, the extent to which the geochemical reactivity contributes to structural weakening is unknown. To explore relationships between the principle geochemical reactions, evolution of fluid transport properties and physical alteration, we performed a series of flow-through experiments using Mt. Simon core (5 cm diameter, ranging from 4.3 - 8.6 cm length) and fluids representative of acidified reservoir brine. Experiments were operated under P = 1450 bar, Pconfining = 1900 - 3000 bar and T = 53 ºC conditions, and flow rates varied from 0.08 to 5.00 mL h-1 over a period of 166 h. A 2D reactive transport code (Crunch-Tope) was used to simulate these experiments, constrained by measured time series aqueous concentrations of Ca, Mg, S, Si, K and Fe and pH during the CO2-rich brine interaction. The model domain was divided into 30 nodes in x at a spacing of 0.12 cm, and 40 nodes in y at a spacing of 0.22 cm, and initial permeability measured for the core was specified and allowed to evolve over the course of the simulation using measured flow rate as a constraint. All relevant kinetic and thermodynamic reaction parameters were obtained from the literature. Solute time series from both experiments and simulations indicated that the acidified brine introduced continuously into the column promoted dissolution of K-feldspar, chloride, illite, pyrite and calcite, and the precipitation of Ca-, Fe- and Si -bearing secondary phases, resulting in a net porosity increase at the inlet. Despite this opening of the inlet pore space, permeability decreased over the length of the column (kfinal/kinitial = 0.76), thus altering local resistance to fluid phase pressure gradients.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
Testing and Resilience of the Impact Origin of the Moon
NASA Technical Reports Server (NTRS)
Righter, K.; Canup, R. M.
2016-01-01
The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.
Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R
2013-04-01
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.
Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties
Washburn, Kathryn E.; Birdwell, Justin E.
2013-01-01
In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.
PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC
Parkhurst, David L.; Wissmeier, Laurin
2015-01-01
PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.
PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC
Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.
1997-01-01
PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.
Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep
2012-01-01
A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.
GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.
NASA Astrophysics Data System (ADS)
Asavin, A. M.
2001-12-01
There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
Leach test of cladding removal waste grout using Hanford groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serne, R.J.; Martin, W.J.; Legore, V.L.
1995-09-01
This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. Themore » semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.« less
ab initio MD simulations of geomaterials with ~1000 atoms
NASA Astrophysics Data System (ADS)
Martin, G. B.; Kirtman, B.; Spera, F. J.
2009-12-01
In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.
Zheng, Liange; Samper, Javier; Montenegro, Luis
2011-09-25
The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. Published by Elsevier B.V.
The oceanic islands - Azores. [geological, geophysical and geochemical features
NASA Technical Reports Server (NTRS)
Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.
1974-01-01
A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.
Benchmark Problems of the Geothermal Technologies Office Code Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Podgorney, Robert; Kelkar, Sharad M.
A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulationmore » capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael
2017-04-01
Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M.: "Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment.", Energy Procedia, 97, 2016 p. 494-501.
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2015-04-01
Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction is thermodynamically favorable under a broad range of conditions. This includes low temperatures and absence of microbial catalysators. Our approach has potential for use in other applications that involve exploration of relationships in geochemical simulation model data.
NASA Astrophysics Data System (ADS)
Shamberger, Patrick J.; Garcia, Michael O.
2007-02-01
Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.
Predicting Biological Information Flow in a Model Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.
2016-02-01
Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.
Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.
Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M
2016-12-01
This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.
Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less
Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona
Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.; ...
2016-09-16
Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less
How to build stable geochemical reservoirs on Mars?
NASA Astrophysics Data System (ADS)
Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris
2014-05-01
To explain the complex thermo-chemical processes needed for the formation of distinct and stable geochemical reservoirs early in the thermo-chemical evolution of Mars, most geochemical studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical models show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography modelling [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable geochemical reservoirs is presented similar to the model of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The entire convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution [6]. Some of these reservoirs can be sustained during the entire evolution whereas others change with time - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites. References: [1] Elkins-Tanton et al., 2005, EPSL; [2] Debaille et al., 2009, Nature; [3] Tosi et al., 2013, JGR; [4] Plesa et al., submitted to EPSL; [5] Ogawa and Yanagisawa 2011, JGR; [6] Plesa and Breuer, 2013, PSS.
MetPetDB: A database for metamorphic geochemistry
NASA Astrophysics Data System (ADS)
Spear, Frank S.; Hallett, Benjamin; Pyle, Joseph M.; Adalı, Sibel; Szymanski, Boleslaw K.; Waters, Anthony; Linder, Zak; Pearce, Shawn O.; Fyffe, Matthew; Goldfarb, Dennis; Glickenhouse, Nickolas; Buletti, Heather
2009-12-01
We present a data model for the initial implementation of MetPetDB, a geochemical database specific to metamorphic rock samples. The database is designed around the concept of preservation of spatial relationships, at all scales, of chemical analyses and their textural setting. Objects in the database (samples) represent physical rock samples; each sample may contain one or more subsamples with associated geochemical and image data. Samples, subsamples, geochemical data, and images are described with attributes (some required, some optional); these attributes also serve as search delimiters. All data in the database are classified as published (i.e., archived or published data), public or private. Public and published data may be freely searched and downloaded. All private data is owned; permission to view, edit, download and otherwise manipulate private data may be granted only by the data owner; all such editing operations are recorded by the database to create a data version log. The sharing of data permissions among a group of collaborators researching a common sample is done by the sample owner through the project manager. User interaction with MetPetDB is hosted by a web-based platform based upon the Java servlet application programming interface, with the PostgreSQL relational database. The database web portal includes modules that allow the user to interact with the database: registered users may save and download public and published data, upload private data, create projects, and assign permission levels to project collaborators. An Image Viewer module provides for spatial integration of image and geochemical data. A toolkit consisting of plotting and geochemical calculation software for data analysis and a mobile application for viewing the public and published data is being developed. Future issues to address include population of the database, integration with other geochemical databases, development of the analysis toolkit, creation of data models for derivative data, and building a community-wide user base. It is believed that this and other geochemical databases will enable more productive collaborations, generate more efficient research efforts, and foster new developments in basic research in the field of solid earth geochemistry.
Community-Based Development of Standards for Geochemical and Geochronological Data
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.
2007-12-01
The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.
NASA Astrophysics Data System (ADS)
Gonçalves, Mario A.
2015-04-01
It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the scattered geochemical data sets that have been accumulating for decades of mining exploration in Southern Portugal. The studied zones include: the tectonic controlled quartz-vein Au-Sb mineralizations, the gabbroic and ultramafic complex of the southern border of the Ossa-Morena Zone, and the rocks belonging to the World-class massive sulfide province, the Iberian Pyrite Belt (IPB). The methodology used the CA method but also variogram analysis and modelling to outline and classify different sets of mineral deposits before confirmation in the field. This diversity of geologic contexts serves to show how effective and powerful the CA method can be, since it not only enhances already known mineralizations, it allowed the screening and identification of several new mineralized spots that have been previously overlooked. This has been of particularly economic importance because a major re-analysis of data and new exploration campaigns are currently under way for the next years in the IPB, with the potential for opening a new paradigm in the exploration for massive sulfide deposits in the region. Cheng et al, 1994, J. Geochem. Explor., 51, 109.
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian; Debraal, Jeffrey D.
1992-01-01
This is one in a series of reports summarizing our chemical modeling studies of water-rock-gas interactions at the martian surface through time. The purpose of these studies is to place constraints on possible mineralogies formed at the martian surface and to model the geochemical implications of martian surficial processes proposed by previous researchers. Plumlee and Ridley summarize geochemical processes that may have occurred as a result of inferred volcano- and impact-driven hydrothermal activity on Mars. DeBraal et al. model the geochemical aspects of water-rock interactions and water evaporation near 0 C, as a prelude to future calculations that will model sub-0 C brine-rock-clathrate interactions under the current martian climate. In this report, we discuss reaction path calculations that model chemical processes that may have occurred at the martian surface in a postulated early, warm, wet climate. We assume a temperature of 25 C in all our calculations. Processes we model here include (1) the reaction of rainwater under various ambient CO2 and O2 pressures with basaltic rocks at the martian surface, (2) the formation of acid rain by volcanic gases such as HCl and SO2, (3) the reactions of acid rain with basaltic surficial materials, and (4) evaporation of waters resulting from rainwater-basalt interactions.
Hydrologic and geochemical data assimilation at the Hanford 300 Area
NASA Astrophysics Data System (ADS)
Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.
2012-12-01
In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.
Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA
Rattray, Gordon W.
2015-01-01
Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Data Qualification Report For: Thermodynamic Data File, DATA0.YMP.R0 For Geochemical Code, EQ3/6
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.L. Cloke
The objective of this work is to evaluate the adequacy of chemical thermodynamic data provided by Lawrence Livermore National Laboratory (LLNL) as DataO.ymp.ROA in response to an input request submitted under AP-3.14Q. This request specified that chemical thermodynamic data available in the file, Data0.com.R2, be updated, improved, and augmented for use in geochemical modeling used in Process Model Reports (PMRs) for Engineered Barrier Systems, Waste Form, Waste Package, Unsaturated Zone, and Near Field Environment, as well as for Performance Assessment. The data are qualified in the temperature range 0 to 100 C. Several Data Tracking Numbers (DTNs) associated with Analysis/Modelmore » Reports (AMR) addressing various aspects of the post-closure chemical behavior of the waste package and the Engineered Barrier System that rely on EQ316 outputs to which these data are used as input, are Principal Factor affecting. This qualification activity was accomplished in accordance with the AP-SIII.2Q using the Technical Assessment method. A development plan, TDP-EBS-MD-000044, was prepared in accordance with AP-2.13Q and approved by the Responsible Manager. In addition, a Process Control Evaluation was performed in accordance with AP-SV.1Q. The qualification method, selected in accordance with AP-SIII.2Q, was Technical Assessment. The rationale for this approach is that the data in File Data0.com.R2 are considered Handbook data and therefore do not themselves require qualification. Only changes to Data0.com.R2 required qualification. A new file has been produced which contains the database Data0.ymp.R0, which is recommended for qualification as a result of this action. Data0.ymp.R0 will supersede Data0.com.R2 for all Yucca Mountain Project (YMP) activities.« less
Geochemical Fate and Transport of Diphenhydramine and Cetirizine in Soil
NASA Astrophysics Data System (ADS)
Wireman, R.; Rutherford, C. J.; Vulava, V. M.; Cory, W. C.
2015-12-01
Pharmaceuticals compounds presence in natural soils and water around the world has become a growing concern. These compounds are being discharged into the environment through treated wastewater or municipal sludge applications. The main goal of this study is determine their geochemical fate in natural soils. In this study we investigated sorption and transport behavior of diphenhydramine (DPH) and cetirizine (CTZ) in natural soils. These two commonly-used antihistamines are complex aromatic hydrocarbons with polar functional groups. Two clean acidic soils (pH~4.5) were used for these studies - an A-horizon soil that had higher organic matter content (OM, 7.6%) and a B-horizon soil that had lower OM (1.6%), but higher clay content (5.1%). Sorption isotherms were measured using batch reactor experiments. Data indicated that sorption was nonlinear and that it was stronger in clay-rich soils. The pKa's of DPH and CTZ are 8.98 and 8.27 respectively, i.e., these compounds are predominantly in cationic form at soil pH. In these forms, they preferentially sorb to negatively charged mineral surfaces (e.g., clay) present in the soils. Soil clay mineral characterization indicated that kaolinite was the dominant clay mineral present along with small amount of montmorillonite. The nonlinear sorption isotherms were fitted with Freundlich model. Transport behavior of both compounds was measured using glass chromatography columns. As expected both DPH and CTZ were strongly retained in the clay-rich soil as compared with OM-rich soil. The asymmetrical shape of the breakthrough curves indicated that there were likely two separate sorption sites in the soil, each with different reaction rates with each compound. A two-region advection-dispersion transport code was used to model the transport breakthrough curves. There was no evidence of transformation or degradation of the compounds during our sorption and transport studies.
NASA Technical Reports Server (NTRS)
Mogk, D. W.; Kain, L.
1985-01-01
The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L.; Samper, J.; Montenegro, L.
The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collectedmore » after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.« less
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
NASA Astrophysics Data System (ADS)
Bjerg, Poul L.; Ammentorp, Hans C.; Christensen, Thomas H.
1993-04-01
A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic strength. Information on geology, hydrogeology and the transient conservative solute transport behaviour was obtained from a dispersion study in the same aquifer. The geochemical input parameters were carefully examined. CEC and selectivity coefficients were determined on the actual aquifer material by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with KCa selectivity coefficients indicating dependency on equivalent fraction and K + concentration in the aqueous phase. The model simulations over a distance of 35 m and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K +.
Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer
NASA Astrophysics Data System (ADS)
Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.
2000-11-01
Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.
The geochemical evolution of riparian ground water in a forested piedmont catchment
Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter
2003-01-01
The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering. An accurate model of the geochemical evolution of riparian ground water is necessary to accurately model the geochemical evolution of stream water at PMRW.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia
2017-03-01
Volcanic unrest at calderas involves complex interaction between magma, hydrothermal fluids, and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterized by the highest volcanic risk on Earth for the extreme urbanization, undergoes unrest phenomena involving several meters of uplift and intense shallow microseismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapor-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed (1) for two decades since the 1982-1984 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and (2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing the modest heating and overpressure of the hydrothermal system. Our results have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.
NASA Astrophysics Data System (ADS)
Bridges, John C.
2018-03-01
A new geochemical study shows that short-lived warm and wet episodes during a globally cold early Mars could have formed the clay deposits detected on the Martian surface. This model can reconcile climate models with mineralogical and geomorphological evidence.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Kühn, Michael
2014-05-01
Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
NASA Astrophysics Data System (ADS)
Amos, Richard T.; Ulrich Mayer, K.
2006-09-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH 4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test
NASA Technical Reports Server (NTRS)
Stottlemyre, J. S.
1980-01-01
A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.
The ferroan-anorthositic suite and the extent of primordial lunar melting
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Kallemeyn, Gregory W.
1992-01-01
The Apollo highlands rock collection includes more than 100 'pristine' fragments that survived the intense meteoritic bombardment of the ancient lunar crust with unmixed, endogenously igneous compositions. The geochemical anomaly manifested by the 'ferroan-anorthositic suite' (FAS) appears to reflect a geochemical, and probably also a genetic, bimodality among the ancient lunar cumulates. Early models that purported to account for this bimodality as a product of a single magma have been discredited. The model of the present paper implies that the Mg-suite rocks formed by a comparatively normal variety of basaltic fractional crystallization (FC) shortly after the era of magma ocean (MO) crystallization and FAS genesis.
NASA Technical Reports Server (NTRS)
Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.
1993-01-01
Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.
Gross, Eliza L.; Low, Dennis J.
2013-01-01
Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.
Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.
2008-01-01
Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive relationships exist between tectonic and geochemical paleolatitude for each family. Standard error of prediction for geochemical paleolatitude ranges from 0.9?? to 2.6?? of tectonic paleolatitude, which translates to a relative standard error of prediction in the range 1.5-4.8%. The results suggest that the observed effect of source rock paleolatitude on crude oil composition is caused by (i) stable carbon isotope fractionation during photosynthetic fixation of carbon and (ii) species diversity at different latitudes during Late Jurassic time. ?? 2008 Elsevier Ltd. All rights reserved.
Haefner, Ralph J.
2002-01-01
An abandoned coal mine in eastern Ohio was reclaimed with 125 tons per acre of pressurized fluidized bed combustion (PFBC) by-product. Water quality at the site (known as the Fleming site) was monitored for 7 years after reclamation; samples included water from soil-suction lysimeters (interstitial water), wells, and spring sites established downgradient of the application area. This report presents a summary of data collected at the Fleming site during the period September 1994 through June 2001. Additionally, results of geochemical modeling are included in this report to evaluate the potential fate of elements derived from the PFBC by-product. Chemical analyses of samples of interstitial waters within the PFBC by-product application area indicated elevated levels of pH and specific conductance and elevated concentrations of boron, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate compared to water samples collected in a control area where traditional reclamation methods were used. Magnesium-to-calcium (Mg:Ca) mole ratios and sulfur-isotope ratios were used to trace the PFBC by-product leachate and showed that little, if any, leachate reached ground water. Concentrations of most constituents in interstitial waters in the application-area decreased during the seven sampling rounds and approached background concentrations observed in the control area; however, median pH in the application area remained above 6, indicating that some acid-neutralizing capacity was still present. Although notable changes in water quality were observed in interstitial waters during the study period, quality of ground water and spring water remained poor. Water from the Fleming site was not potable, given exceedances of primary and secondary Maximum Contaminant Levels (MCLs) for inorganic constituents in drinking water set by the U.S. Environmental Protection Agency. Only fluoride and sulfate, which were found in higher concentrations in application-area interstitial waters than in control-area interstitial waters, could be related to the PFBC by-product. Concentrations of arsenic, lead, and selenium typically were at or below the detection limits (generally 1 or 2 micrograms per liter). Elements detected at elevated concentrations in PFBC by-product application-area interstitial waters were not evident in downgradient ground water or spring water. Dilution of leachate by ground water was confirmed with a mixing model generated by the computer code NETPATH. Additionally, thermodynamic modeling of the chemical composition of water samples by use of the computer code PHREEQC indicated favorable conditions for precipitation of secondary minerals in the unsaturated zone and in aquifer materials. Because of low application rates of PFBC by-product and precipitation and sorption of elements in the unsaturated zone, it is improbable that concentrations of any toxic elements of concern (arsenic, lead, or selenium) will exceed drinking-water standards at this site or other sites where similar volumes of PFBC by-products are used.
Quantifying Volcanic Emissions of Trace Elements to the Atmosphere: Ideas Based on Past Studies
NASA Astrophysics Data System (ADS)
Rose, W. I.
2003-12-01
Extensive data exist from volcanological and geochemical studies about exotic elemental enrichments in volcanic emissions to the atmosphere but quantitative data are quite rare. Advanced, highly sensitive techniques of analysis are needed to detect low concentrations of some minor elements, especially during major eruptions. I will present data from studies done during low levels of activity (incrustations and silica tube sublimates at high temperature fumaroles, from SEM studies of particle samples collected in volcanic plumes and volcanic clouds, from geochemical analysis of volcanic gas condensates, from analysis of treated particle and gas filter packs) and a much smaller number that could reflect explosive activity (from fresh ashfall leachate geochemistry, and from thermodynamic codes modeling volatile emissions from magma). This data describes a highly variable pattern of elemental enrichments which are difficult to quantify, generalize and understand. Sampling in a routine way is difficult, and work in active craters has heightened our awareness of danger, which appropriately inhibits some sampling. There are numerous localized enrichments of minor elements that can be documented and others can be expected or inferred. There is a lack of systematic tools to measure minor element abundances in volcanic emissions. The careful combination of several methodologies listed above for the same volcanic vents can provide redundant data on multiple elements which could lead to overall quantification of minor element fluxes but there are challenging issues about detection. For quiescent plumes we can design combinations of measurements to quantify minor element emission rates. Doing a comparable methodology to succeed in measuring minor element fluxes for significant eruptions will require new strategies and/or ideas.
NASA Astrophysics Data System (ADS)
Ghiorso, M. S.
2013-12-01
Internally consistent thermodynamic databases are critical resources that facilitate the calculation of heterogeneous phase equilibria and thereby support geochemical, petrological, and geodynamical modeling. These 'databases' are actually derived data/model systems that depend on a diverse suite of physical property measurements, calorimetric data, and experimental phase equilibrium brackets. In addition, such databases are calibrated with the adoption of various models for extrapolation of heat capacities and volumetric equations of state to elevated temperature and pressure conditions. Finally, these databases require specification of thermochemical models for the mixing properties of solid, liquid, and fluid solutions, which are often rooted in physical theory and, in turn, depend on additional experimental observations. The process of 'calibrating' a thermochemical database involves considerable effort and an extensive computational infrastructure. Because of these complexities, the community tends to rely on a small number of thermochemical databases, generated by a few researchers; these databases often have limited longevity and are universally difficult to maintain. ThermoFit is a software framework and user interface whose aim is to provide a modeling environment that facilitates creation, maintenance and distribution of thermodynamic data/model collections. Underlying ThermoFit are data archives of fundamental physical property, calorimetric, crystallographic, and phase equilibrium constraints that provide the essential experimental information from which thermodynamic databases are traditionally calibrated. ThermoFit standardizes schema for accessing these data archives and provides web services for data mining these collections. Beyond simple data management and interoperability, ThermoFit provides a collection of visualization and software modeling tools that streamline the model/database generation process. Most notably, ThermoFit facilitates the rapid visualization of predicted model outcomes and permits the user to modify these outcomes using tactile- or mouse-based GUI interaction, permitting real-time updates that reflect users choices, preferences, and priorities involving derived model results. This ability permits some resolution of the problem of correlated model parameters in the common situation where thermodynamic models must be calibrated from inadequate data resources. The ability also allows modeling constraints to be imposed using natural data and observations (i.e. petrologic or geochemical intuition). Once formulated, ThermoFit facilitates deployment of data/model collections by automated creation of web services. Users consume these services via web-, excel-, or desktop-clients. ThermoFit is currently under active development and not yet generally available; a limited capability prototype system has been coded for Macintosh computers and utilized to construct thermochemical models for H2O-CO2 mixed fluid saturation in silicate liquids. The longer term goal is to release ThermoFit as a web portal application client with server-based cloud computations supporting the modeling environment.
2017-01-01
Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700
NASA Astrophysics Data System (ADS)
Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.
2017-01-01
Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.
PHT3D-UZF: A reactive transport model for variably-saturated porous media
Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.
2016-01-01
A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.
An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems
Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric
2011-01-01
Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1984-01-01
A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 my (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 my ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1984-01-01
A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 m.y. (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 m.y. ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Luo, Wensui
2008-01-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less
NASA Astrophysics Data System (ADS)
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.
2008-12-01
A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.
NASA Astrophysics Data System (ADS)
Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.
2014-06-01
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.
Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.
2015-01-01
Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.
Subsurface Transport Over Multiple Phases Demonstration Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-01-05
The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less
NASA Astrophysics Data System (ADS)
Basch, V.; Rampone, E.; Crispini, L.; Ferrando, C.; Ildefonse, B.; Godard, M.
2017-12-01
Recent studies investigate the replacive formation of hybrid troctolites from mantle peridotites after multiple stages of melt-rock reactions. However, none of these studies are conducted in a field-controlled geological setting displaying the clear evolution from peridotite to dunite to troctolite. We investigated the Mt.Maggiore and Erro Tobbio ophiolitic peridotites. They both preserve structural and chemical records of two distinct melt-rock interaction stages, from a reactive melt percolation at spinel facies to plagioclase-bearing melt impregnation at shallower lithospheric depths. We performed EBSD and in situ geochemical analyses to document the textural, structural and geochemical variations of the olivine matrix during melt-rock interactions and the associated evolution from peridotite to dunite to troctolite. The olivine-saturated reactive melt percolation leads to the dissolution of mantle pyroxenes in peridotite, and to the formation of replacive dunite. At shallower level, melt impregnation leads to the crystallization of plagioclase in the dunite, and to the formation of hybrid troctolite. The latter is characterized by textural, structural and geochemical features acquired during dunitization and impregnation processes. We documented a textural evolution of the olivine matrix (decrease in grain area, tortuosity and aspect ratio) during impregnation, with a progressive corrosion of mantle olivines by a reactive melt. As a result, olivine in the hybrid troctolites occurs both as coarse deformed relicts and disrupted undeformed grains. During melt-rock interactions, the variation in olivine Crystallographic Preferred Orientation is related to the local melt/rock ratio involved in the percolation process. At high melt/rock ratio, a change from axial-[100] to axial-[010] is observed, with the disaggregation of the solid matrix. REE-enriched compositions are observed in olivine of dunites and troctolites. A geochemical modeling of melt-rock interactions (Plate Model) fits the observed evolution of modal composition with the measured trace element composition variability. The combined field, structural, and geochemical investigation of the evolution from a mantle protolith to the product of the reactions truly supports the hybrid origin of an olivine-rich troctolite.
Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.
Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P
2010-07-01
This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.
2010-08-15
Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less
NASA Astrophysics Data System (ADS)
Ha, Jong Heon; Jeen, Sung-Wook
2017-04-01
Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.
The reclamation effort typically deals with consequences of mining activity instead of being planned well before the mining. Detailed assessment of principal hydro- and geochemical processes participating in pore and groundwater chemistry evolution was carried out at three surface mine localities in North Dakota-the Fritz mine, the Indian Head mine, and the Velva mine. The geochemical model MINTEQUA2 and advanced statistical analysis coupled with traditional interpretive techniques were used to determine site-specific environmental characteristics and to compare the differences between study sites. Multivariate statistical analysis indicates that sulfate, magnesium, calcium, the gypsum saturation index, and sodium contribute the most tomore » overall differences in groundwater chemistry between study sites. Soil paste extract pH and EC measurements performed on over 3700 samples document extremely acidic soils at the Fritz mine. The number of samples with pH <5.5 reaches 80%-90% of total samples from discrete depth near the top of the soil profile at the Fritz mine. Soil samples from Indian Head and Velva do not indicate the acidity below the pH of 5.5 limit. The percentage of samples with EC > 3 mS cm{sup -1} is between 20% and 40% at the Fritz mine and below 20% for samples from Indian Head and Velva. The results of geochemical modeling indicate an increased tendency for gypsum saturation within the vadose zone, particularly within the lands disturbed by mining activity. This trend is directly associated with increased concentrations of sulfate anions as a result of mineral oxidation. Geochemical modeling, statistical analysis, and soil extract pH and EC measurements proved to be reliable, fast, and relatively cost-effective tools for the assessment of soil acidity, the extent of the oxidation zone, and the potential for negative impact on pore and groundwater chemistry.« less
NASA Astrophysics Data System (ADS)
Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.
2015-12-01
Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the alteration process.
Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.
2009-01-01
Flow-model particle-tracking results and geochemical data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical reactions are kinetically limited, and geochemical zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree model accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.
Microbial Response in Peat Overlying Kimberlite Pipes in The Attawapiskat Area, Northern Ontario
NASA Astrophysics Data System (ADS)
Donkervoort, L. J.; Southam, G.
2009-05-01
Exploration for ore deposits occurring under thick, post-mineralized cover requires innovative methods and instrumentation [1]. Buried kimberlite pipes 'produce' geochemical conditions such as increased pH and decreased Eh in overlying peat [2] that intuitively select for bacterial populations that are best able to grow and, which in turn affect the geochemistry producing a linked signal. A microbiological study of peat was conducted over the Zulu kimberlite in the Attawapiskat area of the James Bay Lowlands to determine if the type of underlying rock influences the diversity and populations of microorganisms living in the overlying peat. Peat was sampled along an 800 m transect across the Zulu kimberlite, including samples underlain by limestone. Microbial populations and carbon source utilization patterns of peat samples were compared between the two underlying rock types. Results demonstrate an inverse relationship of increased anaerobic populations and lower biodiversity directly above the kimberlite pipe. These results support a reduced 'column' consistent with the model presented by Hamilton [3]. The combination of traditional bacterial enumeration and community- level profiling represents a cost-effective and efficient exploration technique that can serve to compliment both geophysical and geochemical surveys. [1] Goldberg (1998) J. Geochem. Explor. 61, 191-202 [2] Hattori and Hamilton (2008) Appl. Geochem. 23, 3767-3782 [3] Hamilton (1998) J. Geochem. Explor. 63, 155-172
Quantifying reactive transport processes governing arsenic mobility in a Bengal Delta aquifer
NASA Astrophysics Data System (ADS)
Rawson, Joey; Neidhardt, Harald; Siade, Adam; Berg, Michael; Prommer, Henning
2017-04-01
Over the last few decades significant progress has been made to characterize the extent and severity of groundwater arsenic pollution in S/SE Asia, and to understand the underlying geochemical processes. However, comparably little effort has been made to merge the findings from this research into quantitative frameworks that allow for a process-based quantitative analysis of observed arsenic behavior and predictions of its future fate. Therefore, this study developed and tested field-scale numerical modelling approaches to represent the primary and secondary geochemical processes associated with the reductive dissolution of Fe-oxy(hydr)oxides and the concomitant release of sorbed arsenic. We employed data from an in situ field experiment in the Bengal Delta Plain, which investigated the influence of labile organic matter (sucrose) on the mobility of Fe, Mn, and As. The data collected during the field experiment were used to guide our model development and to constrain the model parameterisation. Our results show that sucrose oxidation coupled to the reductive dissolution of Fe-oxy(hydr)oxides was accompanied by multiple secondary geochemical reactions that are not easily and uniquely identifiable and quantifiable. Those secondary reactions can explain the disparity between the observed Fe and As behavior. Our modelling results suggest that a significant fraction of the released As is scavenged through (co-)precipitation with newly formed Fe-minerals, specifically magnetite, rather than through sorption to pre-existing and freshly precipitated iron minerals.
Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes
NASA Astrophysics Data System (ADS)
Stockstill-Cahill, K. R.; Peplowski, P. N.
2018-05-01
PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.
Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep
2014-01-01
Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many geochemical and physical processes and numerous models have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a model based on the curved relationship between 14CDICand δ13CDIC. The derived model, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for geochemical interpretations, e.g. estimation of apparent rates of geochemical reactions and revealing the complexity of the geochemical environment.
NASA Astrophysics Data System (ADS)
Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.
2017-04-01
Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.
Pattern recognition analysis and classification modeling of selenium-producing areas
Naftz, D.L.
1996-01-01
Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.
Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer
Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.
2000-01-01
Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO42- in the aerobic zone, and to the reduction of SO42- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55??10-4 to 48.6??10-4mmol l-1yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO42- (1.31??10-4 to 15??10-4mmol l-1yr-1). The overall increase in SO42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO42- loss through microbial reduction is exceeded by SO42- gain through diffusion from sediments and through the oxidation of FeS2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO42--rich zones have been depleted by microbial reduction and resulted in localized SO42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.
NASA Astrophysics Data System (ADS)
Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.
2011-12-01
The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from <104 to 105 cells/mL), both HRC and lactate injections stimulated anaerobic microbial activity, which led to an increase in biomass to >107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production of acetate and propionate, the evolution of 13C in bicarbonate, and the rate of sulfate reduction. In contrast to the slow-release HRC injections, no long-term effects of biostimulation and Cr bioreduction were observed in groundwater after the lactate injections. The presentation will address these patterns of the geochemical, δ13C of DIC, and biomass changes in groundwater before and after the polylactate and lactate injections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.
2014-06-17
The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data setmore » supports the modeling of cement alteration by CO 2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Feng; McPherson, Brian J.; Kaszuba, John
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
Pan, Feng; McPherson, Brian J.; Kaszuba, John
2017-01-01
Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
NASA Astrophysics Data System (ADS)
McGuire, J. T.; Phanikumar, M. S.; Long, D. T.; Hyndman, D. W.
2003-12-01
Hydrogeological, microbiological, and geochemical processes operating in a shallow sandy aquifer contaminated by waste fuels and chlorinated solvents were integrated using high-resolution mechanistic models. A 3-D, transient, reactive transport model was developed to quantitatively describe coupled processes via thermodynamic and kinetic arguments. The model was created by linking the hydrodynamic model MODFLOW (McDonald and Harbaugh, 1988), with advection, dispersion and user defined kinetic reactions based on RT3D 2.0, (Clement and Jones, 1998) and geochemical model PHREEQC (Parkhurst and Appelo, 1999). This model, BGTK3D 2.0, describes 1) the biodegradation of organic matter based on the influence of transport processes on microbial growth, 2) the complex suite of biogeochemical reactions operating in the aquifer, and 3) sharp chemical gradients. Some key features of this model are an ability to incorporate realistic solid phases to test hypotheses regarding mineral-water interactions, and an ability to accurately describe small-scale biogeochemical cycling (cm variability) observed in the field without oscillations or excessive numerical damping. BGTK3D was used to test hypotheses regarding the evolution of redox chemistry in a contaminated aquifer. The conceptual model that terminal electron accepting processes (TEAPs) distribute themselves sequentially into redox zones down flow path in aqueous systems is often used to interpret how and at what rates organic compounds will be degraded in the environment. Geochemical and microbiological data collected from a mixed contaminant plume at the former Wurtsmith AFB in Oscoda, Michigan suggests that under steady-state, mature plume conditions, traditional redox zonation may not be a realistic model of the distribution of TEAPs and therefore may not be the best model to evaluate the potential degradation of organic compounds. Based on these data, a conceptual model of TEAP evolution in contaminated systems was established. This model proposes that during initial plume development terminal electron acceptors O2, Fe3+, NO3, and SO4, are consumed sequentially based on thermodynamic arguments until a balance between organic degradation rates and source inputs and thus a stable plume length can be achieved. Once this "mature" state has been achieved, distinct redox zones can no longer be sustained and methanogenesis will dominate except in portions of the aquifer impacted by recharge water and diffusion of TEAs from all sides. Under these conditions, TEAPs will not proceed sequentially.
Geodetic measurements and numerical models of the Afar rifting sequence 2005-2010
NASA Astrophysics Data System (ADS)
Ali, T.; Feigl, K.; Calais, E.; Hamling, I. J.; Wright, T. J.
2012-12-01
Rifting episodes are characterized by magma migration and dike intrusions that perturb the stress field within the surrounding lithosphere, inducing viscous flow in the lower crust and upper mantle that leads to observable, transient surface deformation. The Manda Hararo-Dabbahu rifting episode that occurred in the Afar depression between 2005 and 2010 is the first such episode to unfold fully in the era of satellite geodesy, thus providing a unique opportunity to probe the rheology of lithosphere at a divergent plate boundary. GPS and SAR measurements over the region since 2005 show accelerated surface deformation rates during post-diking intervals [Wright et al., Nature Geosci., 2012]. Using these observations in combination with a numerical model, we estimate model parameters that best explain the deformation signal. Our model accounts for three distinct processes: (i) secular plate spreading between Nubian and Arabian plates, (ii) time dependent post-rifting viscoelastic relaxation following the 14 dike intrusions that occurred between 2005 and 2010, including the 60 km long mega dike intrusion of September 2005, and (iii) magma accumulation within crustal reservoirs that feed the dikes. To model the time dependent deformation field, we use the open-source unstructured finite element code, Defmod [Ali, 2011, http://defmod.googlecode.com/]. Using a gradient-based iterative scheme [Ali and Feigl, Geochem. Geophys. Geosyst., 2012], we optimize the fit between observed and modeled deformation to estimate parameters in the model, including the locking depth of the rift zone, geometry and depth of magma reservoirs and rheological properties of lower crust and upper mantle, along with their formal uncertainties.
NASA Astrophysics Data System (ADS)
Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.
Based on geochemical data collected by Japan Nuclear Cycle Development Institute (JNC) in the Tono uranium mine, a conceptual groundwater evolution model developed by JNC is tested to evaluate whether equilibrium-based concepts of water-rock interaction are consistent with observed variations in the mineralogy and hydrochemistry of the Tono mine area. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest that it is possible to interpret approximately the actual groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted (a) CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 atm, and (b) minerals in the rock zone that control the solubility of respective elements in the groundwater include: chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). This result helps to build confidence in the use of simplified geochemical modeling techniques to develop an understanding of dominant geochemical reactions controlling groundwater chemistry in rocks similar to those that could be used for the geological disposal of radioactive wastes. It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties are needed to improve the model. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvement of model considering ion-exchange reactions are needed in future, however.
Thermodynamic properties of potassium chloride aqueous solutions
NASA Astrophysics Data System (ADS)
Zezin, Denis; Driesner, Thomas
2017-04-01
Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2017-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.
Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone
Hawley, Alyse K.; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P.; Kheirandish, Sam; Michiels, Céline C.; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A.; Hallam, Steven J.
2016-01-01
Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales. PMID:27655888
Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone.
Louca, Stilianos; Hawley, Alyse K; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P; Kheirandish, Sam; Michiels, Céline C; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A; Hallam, Steven J
2016-10-04
Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.
Recovery Act: Web-based CO{sub 2} Subsurface Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolini, Christopher; Castillo, Jose
2012-11-30
The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions.more » symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational science students and one geological science student in technologies relevant to carbon sequestration and problems involving flow in subsurface media. The three computational science students are currently finishing their doctorial studies on different aspects of modeling CO{sub 2} sequestration, while the geological science student completed his master’s thesis in modeling the thermal response of CO{sub 2} injection in brine and, as a direct result of participation in this project, is now employed at ExxonMobil as a full-time staff geologist.« less
Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Strnad, Ladislav
2005-05-20
Two air-pollution-control (APC) residues--one from flue gas cooling with alkaline water and one from deionized water cooling--from secondary lead metallurgy were submitted to two different standardized short-term leaching protocols: US EPA toxicity characteristic leaching procedure (TCLP) and static leaching according to Czech/European norm EN 12457-2. The experimental procedure was coupled with detailed mineralogical investigation of the solid material (SEM, XRPD) and speciation-solubility calculations using the PHREEQC-2 geochemical code. Both types of residues were considered as hazardous materials exhibiting substantial leaching of Pb (up to 7130 mg/l) and other inorganic contaminants. However, the APC residue produced by flue gas cooling with alkaline water (sample B) exhibits more favourable leaching and environmental characteristics than that produced by simple deionised water cooling (sample A). At pH < 5, primary caracolite (Na3Pb2(SO4)3Cl) and potassium lead chloride (KCl.2PbCl2) are completely or partially dissolved and transformed to residual anglesite (PbSO4), cotunnite (PbCl2) and laurionite (Pb(OH)Cl). At pH 5-6, anglesite is still the principal residual product, whereas at pH > 6, phosgenite (PbCl2.PbCO3) became the dominant secondary phase. The results are consistent with the mineralogical and geochemical studies focused on acidic forest soils highly polluted by smelter emissions, where anglesite, as a unique Pb-bearing phase, has been detected. From the technological point of view, the mixing of APC residue with alkaline water, followed by an increase in the suspension pH and equilibration with atmospheric CO2, may be used to ensure the precipitation of less soluble Pb carbonates, which are more easily recycled in the Pb recovery process in the metallurgical plant.
Kasemodel, Mariana Consiglio; Lima, Jacqueline Zanin; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio; Trofino, Julio Cesar; Rodrigues, Valéria Guimarães Silvestre
2016-12-01
Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo ), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg -1 . The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo ) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.
Magma transport and metasomatism in the mantle: a critical review of current geochemical models
Nielson, J.E.; Wilshire, H.G.
1993-01-01
Conflicting geochemical models of metasomatic interactions between mantle peridotite and melt all assume that mantle reactions reflect chromatographic processes. Examination of field, petrological, and compositional data suggests that the hypothesis of chromatographic fractionation based on the supposition of large-scale percolative processes needs review and revision. Well-constrained rock and mineral data from xenoliths indicate that many elements that behave incompatibly in equilibrium crystallization processes are absorbed immediately when melts emerge from conduits into depleted peridotite. After reacting to equilibrium with the peridotite, melt that percolates away from the conduit is largely depleted of incompatible elements. Continued addition of melts extends the zone of equilibrium farther from the conduit. Such a process resembles ion-exchange chromatography for H2O purification, rather than the model of chromatographic species separation. -from Authors
Natural geochemical analogues of the near field of high-level nuclear waste repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apps, J.A.
1995-09-01
United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less
Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling
Dittrich, T. M.; Reimus, P. W.
2015-02-12
The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system.
NASA Astrophysics Data System (ADS)
Hejazian, M.; Swarzenski, P. W.; Gurdak, J. J.; Odigie, K. O.; Storlazzi, C. D.
2015-12-01
This study compares the hydrogeochemistry of two contrasting atoll groundwater systems in Roi-Namur, Republic of the Marshall Islands. Roi-Namur houses a U.S. Department of Defense military installation and presents an ideal study location where a human impacted aquifer is co-located next to a natural aquifer as part of two artificially conjoined atoll islands. The hydrogeology and geochemistry of carbonate atoll aquifers has been well studied, particularly because of its small, well-defined hydrologic system that allows for relatively precise modeling. However, it is unknown how changes in land-use/land cover and managed aquifer recharge (MAR) alters natural geochemical processes in atoll aquifers. A better understanding of this has implications on groundwater quantity and quality, carbonate dissolution, and best aquifer management practices in the context of rising sea level and saltwater intrusion. Roi has been heavily modified to house military and civilian operations; here, lack of vegetation and managed recharge has increased the volume of potable groundwater and affected the geochemical processes in the freshwater lens and saltwater transition zone. Namur is heavily vegetated and the hydrogeology is indicative of a natural atoll island. A suite of monitoring wells were sampled across both island settings for major ions, nutrients, trace elements, DOC/DIC, δ13C and δ18O/2H isotopes. By modeling geochemical reactions using a conservative mixing approach, we measure deviations from expected reactions and compare the two contrasting settings using derived geochemical profiles through a wide salinity spectrum. Results indicate that groundwater on Namur is more heavily depleted in δ13C and has greater dissolved inorganic carbon, suggesting higher microbial oxidation and greater dissolution within the carbonate aquifer. This suggests MAR and reduction of vegetation makes the groundwater supply on atoll islands more resilient to sea level rise.
Hydrologic Responses to CO2 Injection in Basalts Based on Flow-through Experiments
NASA Astrophysics Data System (ADS)
Thomas, D.; Hingerl, F.; Garing, C.; Bird, D. K.; Benson, S. M.; Maher, K.
2015-12-01
Experimental studies of basalt-CO2 interactions have increased our ability to predict geochemical responses within a mafic reservoir during geologic CO2 sequestration. However, the lack of flow-through experiments prevents the use of coupled hydrologic-geochemical models to predict evolution of permeability and porosity, critical parameters for assessing storage feasibility. We present here results of three flow-through experiments on an intact basalt core during which we employed X-ray Computed Tomography (CT) to quantify porosity evolution and fluid flow. Using a single core of glassy basaltic tuff from the Snake River Plain (Menan Buttes complex), we performed tracer tests using a solution of NaI (~100,000 ppm) before and after injection of CO2-saturated water at reservoir conditions (90 bar, 50°C) to image porosity and flow path distribution. During the tracer tests, CT scans were taken at 2.5-minute intervals, and outlet fluid was discretely sampled at the same intervals and subsequently measured via ICP-MS, enabling interpretation of the tracer breakthrough curve through both imaging and geochemical analyses. Comparison of the porosity distribution from before and after injection of CO2 shows an overall decrease in core-averaged porosity from 34% to 31.1%. Permeability decreased exponentially from ~4.9x10-12 m2 to 1.18 x10-12 m2. The decrease in porosity and permeability suggests geochemical transformations in the mineral assemblage of the core, which we observe through petrographic analysis of an unaltered sample of the same lithology in contrast with the altered core. There is a significant increase in grain coatings, as well as reduction in the grain size, suggesting dissolution re-precipitation mechanisms. Finally, to develop a framework for the coupled geochemical and hydrologic responses observed experimentally, we have calibrated a reactive transport model at the core scale using the TOUGHREACT simulator [1]. [1] Xu et al. (2011) Comput. Geosci.
Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange
2014-12-31
An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less
Biogeochemical controls on mercury methylation in the Allequash Creek wetland.
Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E
2017-06-01
We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.
Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach
NASA Astrophysics Data System (ADS)
Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.
2013-12-01
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.
1991-01-01
Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.
A review of the hydrogeologic-geochemical model for Cerro Prieto
Lippmann, M.J.; Truesdell, A.H.; Halfman-Dooley, S. E.; Mañónm, A.
1991-01-01
With continued exploitation of the Cerro Prieto, Mexico, geothermal field, there is increasing evidence that the hydrogeologic model developed by Halfman and co-workers presents the basic features controlling the movement of geothermal fluids in the system. In mid-1987 the total installed capacity at Cerro Prieto reached 620 MWc, requiring a large rate of fluid production (more than 10,500 tonnes/hr of a brine-steam mixture; August 1988). This significant mass extraction has led to changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. Pressure drawdown has caused an increase in cold water recharge in the southern and western edges of the field, and local and general reservoir boiling in parts of the geothermal system. After reviewing the hydrogeologic and geochemical models of Cerro Prieto, the exploitation-induced cold water recharge and reservoir boiling (and plugging) observed in different areas of the field, are discussed and interpreted on the basis of these models and schematic flow models that describe the hydrogeology. ?? 1991.
Modeling Background Radiation in our Environment Using Geochemical Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malchow, Russell L.; Marsac, Kara; Burnley, Pamela
2015-02-01
Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation:more » D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.« less
A hybrid model of the CO2 geochemical cycle and its application to large impact events
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.
1986-01-01
The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.
NASA Astrophysics Data System (ADS)
Fujita, Y.; Taylor, J. L.; Wendt, L.; Reed, D.; Smith, R. W.
2009-12-01
A groundwater plume of Strontium-90 at the 100-N Springs Area of the U. S. Department of Energy’s Hanford Reservation in Washington is discharging into the Columbia River. Previous pump and treat activities to remove the 90Sr were ineffective and consequently discontinued; immobilization of the contaminant in situ is preferable, but no proven methods to accomplish this objective currently exist. This study was a preliminary assessment of the feasibility at the 100-N Area of a novel in situ remediation approach for 90Sr, where microbial urea hydrolysis is used to drive the precipitation of calcite and the co-precipitation of strontium in the calcite. Water quality data from the 100-N site indicated that geochemical conditions at the site were conducive to stable calcite precipitation, and groundwater and sediment samples from the site were examined to assess the urea hydrolyzing capabilities of the native microbial populations. Estimated average numbers of ureolytic organisms in the groundwater, determined using cultivation-based tests (Most Probable Number) for urease activity, ranged from 72 to 1,100 cells mL-1. Estimated numbers of ureC gene targets in the water samples, as determined by quantitative polymerase chain reaction (qPCR) assays, ranged from 850 to 17,600 copies mL-1; the ureC gene codes for the catalytic subunit of urease. In the sediment samples, ureC gene targets ranged from non-detectable to 925,000 copies g-1 of sediment. For both water and sediment, the number of ureolytic cells (estimated by qPCR) generally amounted to < 5% of the total microbial cell numbers. Nevertheless, estimates of in situ ureolysis rates using trace levels of 14C-labeled urea added to the groundwater and sediment samples in the laboratory indicate that significant urea hydrolyzing activity exists in the 100-N subsurface. Normalizing the measured urea hydrolysis rates to 1 L of in situ pore space resulted in hydrolysis rates on the order of 9.5 nmol L-1 hr-1 and 170 to 2,500 nmol L-1 hr-1 for groundwater and sediments, respectively. The results suggest that the majority (99%) of the in situ urea hydrolyzing potential is associated with organisms attached to the sediments. A mixed kinetic-equilibrium model for ureolytically driven calcite precipitation was developed and parameterized using available characterization data for the 100-N site. The model was used to simulate the effects of urea treatment on the 100-N subsurface, and predict the quantities of calcite precipitated and Sr removed as a co-precipitate. Together, the microbial characterization data and geochemical modeling suggest that the Hanford 100-N area has the requisite microbial geochemical characteristics for application of the ureolytically driven calcite precipitation remediation approach for 90Sr.
STRATEGY FOR IN SITU BIOREMEDIATION OF ARSENIC IN GROUNDWATER: FIELD AND MODELING STUDIES
Natural sources of arsenic are a major threat to water quality worldwide. Geochemical modeling techniques were used to examine the biogeochemical linkages between Fe, S, and As in shallow alluvial aquifers. We modeled: 1) the adsorption and desorption of As on the surface of hy...
NASA Astrophysics Data System (ADS)
McNab, W. W.; Narasimhan, T. N.
1995-08-01
Dissolved organic contaminants such as petroleum hydrocarbon constituents are often observed to degrade in groundwater environments through biologically mediated transformation reactions into carbon dioxide, methane, or intermediate organic compounds. Such transformations are closely tied to local geochemical conditions. Favorable degradation pathways depend upon local redox conditions through thermodynamic constraints and the availability of appropriate mediating microbial populations. Conversely, the progress of the degradation reactions may affect the chemical composition of groundwater through changes in electron donor/acceptor speciation and pH, possibly inducing mineral precipitation/dissolution reactions. Transport of reactive organic and inorganic aqueous species through open systems may enhance the reaction process by mixing unlike waters and producing a state of general thermodynamic disequilibrium. In this study, field data from an aquifer contaminated by petroleum hydrocarbons have been analyzed using a mathematical model which dynamically couples equilibrium geochemistry of inorganic constituents, kinetically dominated sequential degradation of organic compounds, and advective-dispersive chemical transport. Simulation results indicate that coupled geochemical processes inferred from field data, such as organic biodegradation, iron reduction and dissolution, and methanogenesis, can be successfully modeled using a partial-redox-disequilibrium approach. The results of this study also suggest how the modeling approach can be used to study system sensitivity to various physical and chemical parameters, such as the effect of dispersion on the position of chemical fronts and the impact of alternative buffering mineral phases (e.g., goethite versus amorphous Fe(OH)3) on water chemistry.
NASA Astrophysics Data System (ADS)
Brown, Eric; Petersen, Kenni; Lesher, Charles
2017-04-01
Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models that best fit the geochemical and geophysical observables require elevated mantle potential temperatures ( 120 °C above ambient mantle), and 5% pyroxenite. The modeled peridotite source has a trace element composition similar to depleted MORB mantle, whereas the trace element composition of the pyroxenite is similar to enriched mid-ocean ridge basalt. These results highlight the promise of this method for efficiently exploring the range of mantle temperatures, lithologic abundances, and mantle source compositions that are most consistent with available observational constraints in individual volcanic systems. 1 Brown and Lesher (2016), G-cubed, 17, 3929-3968
NASA Astrophysics Data System (ADS)
Moffett, K. B.; Dittmar, J.; Seyfferth, A.; Fendorf, S.; Gorelick, S.
2012-12-01
Surface and subsurface environments are linked by the biogeochemical activity in near-surface sediment and by the hydrological fluxes that mobilize its reagents and products. A particularly dynamic and interesting setting to study near-surface hydrogeochemistry is the intertidal zone. Here, the very strong tidal hydraulic forcing is often thought to dominate water and solute transport. However, we demonstrated the importance of two additional subsurface drivers: groundwater flow and plant root water uptake. A high-resolution, coupled surface water-groundwater model of an intertidal salt marsh in San Francisco Bay, CA showed that these three drivers vary over different spatial scales: tidal flooding varies over 10's of meters; groundwater flow varies over meters, particularly within channel banks; and plant root water uptake varies in 3D at the sub-meter scale. Expanding on this third driver, we investigated whether the spatial variations in soil-water-plant hydraulic interactions that occur due to vegetation zonation also cause distinct geochemical zonation in salt marsh sediment pore waters. The existence of such geochemical zonation was verified and mapped by detailed field observations of the chemical composition of sediments, pore waters, surface waters, and vegetation. The field data and the coupled hydrologic model were then further analyzed to evaluate potential causal mechanisms for the geochemical zonation, including testing the hypothesis that the vegetation affects pore water geochemistry via a positive feedback beneficial to itself. If further supported by future studies, this geochemical feedback may complement known physical ecosystem engineering mechanisms to help stabilize and organize intertidal wetlands.
Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments
NASA Astrophysics Data System (ADS)
Ng, G.-H. C.; Yourd, A. R.; Johnson, N. W.; Myrbo, A. E.
2017-09-01
Recent studies show sulfur redox processes in terrestrial settings are more important than previously considered, but much remains uncertain about how these processes respond to dynamic hydrologic conditions in natural field settings. We used field observations from a sulfate-impacted wetland and stream in the mining region of Minnesota (USA) to calibrate a reactive transport model and evaluate sulfur and coupled geochemical processes under contrasting hydrogeochemical scenarios. Simulations of different hydrological conditions showed that flux and chemistry differences between surface water and deeper groundwater strongly control hyporheic zone geochemical profiles. However, model results for the stream channel versus wetlands indicate sediment organic carbon content to be the more important driver of sulfate reduction rates. A complex nonlinear relationship between sulfate reduction rates and geochemical conditions is apparent from the model's higher sensitivity to sulfate concentrations in settings with higher organic content. Across all scenarios, simulated e- balance results unexpectedly showed that sulfate reduction dominates iron reduction, which is contrary to the traditional thermodynamic ladder but corroborates recent experimental findings by Hansel et al. (2015) that "cryptic" sulfur cycling could drive sulfate reduction in preference over iron reduction. Following the thermodynamic ladder, our models shows that high surface water sulfate slows methanogenesis in shallow sediments, but field observations suggest that sulfate reduction may not entirely suppress methane. Overall, our results show that sulfate reduction may serve as a major component making up and influencing terrestrial redox processes, with dynamic hyporheic fluxes controlling sulfate concentrations and reaction rates, especially in high organic content settings.
Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling.
Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the u...
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion
Gil‐Lozano, Carolina; Uceda, Esther R.; Losa‐Adams, Elisabeth; Davila, Alfonso F.; Gago‐Duport, Luis
2017-01-01
Abstract Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water‐sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere‐water and water‐sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size. PMID:29104844
Biokinetics of yttrium and comparison with its geochemical twin holmium
Leggett, Rich
2017-06-01
The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.
Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis
2017-09-01
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Engesgaard, Peter; Kipp, Kenneth L.
1992-01-01
A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.
Estimating terrestrial uranium and thorium by antineutrino flux measurements.
Dye, Stephen T; Guillian, Eugene H
2008-01-08
Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.
Estimating terrestrial uranium and thorium by antineutrino flux measurements
Dye, Stephen T.; Guillian, Eugene H.
2008-01-01
Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211
GENPLOT: A formula-based Pascal program for data manipulation and plotting
NASA Astrophysics Data System (ADS)
Kramer, Matthew J.
Geochemical processes involving alteration, differentiation, fractionation, or migration of elements may be elucidated by a number of discrimination or variation diagrams (e.g., AFM, Harker, Pearce, and many others). The construction of these diagrams involves arithmetic combination of selective elements (involving major, minor, or trace elements). GENPLOT utilizes a formula-based algorithm (an expression parser) which enables the program to manipulate multiparameter databases and plot XY, ternary, tetrahedron, and REE type plots without needing to change either the source code or rearranging databases. Formulae may be any quadratic expression whose variables are the column headings of the data matrix. A full-screen editor with limited equations and arithmetic functions (spreadsheet) has been incorporated into the program to aid data entry and editing. Data are stored as ASCII files to facilitate interchange of data between other programs and computers. GENPLOT was developed in Turbo Pascal for the IBM and compatible computers but also is available in Apple Pascal for the Apple Ile and Ill. Because the source code is too extensive to list here (about 5200 lines of Pascal code), the expression parsing routine, which is central to GENPLOT's flexibility is incorporated into a smaller demonstration program named SOLVE. The following paper includes a discussion on how the expression parser works and a detailed description of GENPLOT's capabilities.
Preliminary study of a potential CO2 reservoir area in Hungary
NASA Astrophysics Data System (ADS)
Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória
2014-05-01
Since the first international agreement in 1997 (the Kyoto Protocol) the reduction of greenhouse gas emission has a key role in the European Union's energy and climate change policy. Following the Directive 2009/31/EC we are experiencing a significant change in the Hungarian national activity. Since the harmonization procedure, which was completed in May 2012, the national regulation obligates the competent authority to collect and regularly update all geological complexes that are potential for CO2 geological storage. In Hungary the most abundant potential storage formations are mostly saline aquifers of the Great Hungarian Plain (SE-Hungary), with sandstone reservoir and clayey caprock. The Neogene basin of the Great Hungarian Plain was subsided and then filled by a prograding delta system from NW and NE during the Late Miocene, mostly in the Pannonian time. The most potential storage rock was formed as a fine-grained sandy turbidite interlayered by thin argillaceous beds in the deepest part of the basin. It has relatively high porosity, depth and more than 1000 m thickness. Providing a regional coverage for the sandy turbidite, a 400-500 m thick argillaceous succession was formed in the slope environment. The composition, thickness and low permeability is expected to make it a suitable, leakage-safe caprock of the storage system. This succession is underlain by argillaceous rocks that were formed in the basin, far from sediment input and overlain by interfingering siltstone, sandstone and claystone succession formed in delta and shoreline environments and in the alluvial plain. Core samples have been collected from the potential reservoir rock and its cap rock in the Great Hungarian Plain's succession. The water compositions of the studied depth were known from well-log database. Using the information, acquired from these archive documents, we have constructed input data for geochemical modeling in order to to study the effect of pCO2 injection in the potential CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.
NASA Astrophysics Data System (ADS)
Marin, I. S.; Molson, J. W.
2013-05-01
Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.
Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water
NASA Astrophysics Data System (ADS)
Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.
2012-12-01
Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive categories for both aquifer systems. DIC concentration is strongly sensitive to increased pCO2 for both aquifers; however, CO2 outgassing during sampling complicates direct field measurement of DIC. Interpretation of data from in-situ push-pull aquifer tests is ongoing and will be used to augment results summarized here. We are currently designing groundwater monitoring plans for two additional industrial-scale sites where we will further test the sensitivity and utility of our sampling approach.
NASA Astrophysics Data System (ADS)
Laakso, Thomas A.
2018-01-01
A combination of two anoxygenic pathways of photosynthesis could have helped to warm early Earth, according to geochemical models. These metabolisms, and attendant biogeochemical feedbacks, could have worked to counter the faint young Sun.
NASA Astrophysics Data System (ADS)
Howells, A. E.; Oiler, J.; Fecteau, K.; Boyd, E. S.; Shock, E.
2014-12-01
The parameters influencing species diversity in natural ecosystems are difficult to assess due to the long and experimentally prohibitive timescales needed to develop causative relationships among measurements. Ecological diversity-disturbance models suggest that disturbance is a mechanism for increased species diversity, allowing for coexistence of species at an intermediate level of disturbance. Observing this mechanism often requires long timescales, such as the succession of a forest after a fire. In this study we evaluated the effect of mixing of two end member hydrothermal fluids on the diversity and structure of a microbial community where disturbance occurs on small temporal and spatial scales. Outflow channels from two hot springs of differing geochemical composition in Yellowstone National Park, one pH 3.3 and 36 °C and the other pH 7.6 and 61 °C flow together to create a mixing zone on the order of a few meters. Geochemical measurements were made at both in-coming streams and at a site of complete mixing downstream of the mixing zone, at pH 6.5 and 46 °C. Compositions were estimated across the mixing zone at 1 cm intervals using microsensor temperature and conductivity measurements and a mixing model. Qualitatively, there are four distinct ecotones existing over ranges in temperature and pH across the mixing zone. Community analysis of the 16S rRNA genes of these ecotones show a peak in diversity at maximal mixing. Principle component analysis of community 16S rRNA genes reflects coexistence of species with communities at maximal mixing plotting intermediate to communities at distal ends of the mixing zone. These spatial biological and geochemical observations suggest that the mixing zone is a dynamic ecosystem where geochemistry and biological diversity are governed by changes in the flow rate and geochemical composition of the two hot spring sources. In ecology, understanding how environmental disruption increases species diversity is a foundation for ecosystem conservation. By studying a hot spring environment where detailed measurements of geochemical variation and community diversity can be made at small spatial scales, the mechanisms by which maximal diversity is achieved can be tested and may assist in applications of diversity-disturbance models for larger ecosystems.
Integrated Disposal Facility FY2010 Glass Testing Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.
2010-09-30
Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility.more » Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.« less
BEST (bioreactor economics, size and time of operation) is an Excel™ spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...
Thermal history of the periphery of the Junggar Basin, Northwestern China
King, J. David; Yang, Jianqiang; Pu, Fan
1994-01-01
Geochemical analysis of rock core samples show that the basin periphery has experienced low thermal stress; present-day heat flows are in the range of 25–35 mW/m2 and have not been significantly higher than the worldwide mean of approx. 63 mW/m2 since the mid-Permian. Present day heat flows were determined from corrected borehole temperatures and rock thermal conductivities. Paleo-heat flows were determined by first-order reaction kinetic modeling of several geochemical paleothermometers (vitrinite reflectance, clay mineral diagenesis and relative proportions of sterane and hopane biological marker diastereomers).
Thermal history of the periphery of the Junggar Basin, Northwestern China
King, J.D.; Yang, J.; Pu, F.
1994-01-01
Geochemical analysis of rock core samples show that the basin periphery has experienced low thermal stress; present-day heat flows are in the range of 25-35 mW/m2 and have not been significantly higher than the worldwide mean of approx. 63 mW/m2 since the mid-Permian. Present day heat flows were determined from corrected borehole temperatures and rock thermal conductivities. Paleo-heat flows were determined by first-order reaction kinetic modeling of several geochemical paleothermometers (vitrinite reflectance, clay mineral diagenesis and relative proportions of sterane and hopane biological marker diastereomers). ?? 1994.
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria
2016-04-01
Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Peters, Catherine A.; Celia, Michael A.
2006-05-03
Our paper "Upscaling geochemical reaction rates usingpore-scale network modeling" presents a novel application of pore-scalenetwork modeling to upscale mineral dissolution and precipitationreaction rates from the pore scale to the continuum scale, anddemonstrates the methodology by analyzing the scaling behavior ofanorthite and kaolinite reaction kinetics under conditions related to CO2sequestration. We conclude that under highly acidic conditions relevantto CO2 sequestration, the traditional continuum-based methodology may notcapture the spatial variation in concentrations from pore to pore, andscaling tools may be important in correctly modeling reactive transportprocesses in such systems. This work addresses the important butdifficult question of scaling mineral dissolution and precipitationreactionmore » kinetics, which is often ignored in fields such as geochemistry,water resources, and contaminant hydrology. Although scaling of physicalprocesses has been studied for almost three decades, very few studieshave examined the scaling issues related to chemical processes, despitetheir importance in governing the transport and fate of contaminants insubsurface systems.« less
East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton
NASA Astrophysics Data System (ADS)
Wang, X.; Ma, W.
2010-12-01
North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can generate classification thematic maps using query results, according different parameters. 3.Data analysis on-line. Here we designed lots of geochemical online analysis tools, including geochemical diagrams, CIPW computing, and so on, which allows researchers to analyze query data without download query results. Operation of all these analysis tools is very easy; users just do it by click mouse one or two time. In summary, ECGD provide a geochemical platform for researchers, whom to know where various data are, to view various data in a synthetic and dynamic way, and analyze interested data online. REFERENCES [1] S. Gao, R.L. Rudnick, and W.L. Xu, “Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton,” Earth and Planetary Science Letters,270,41-53,2008. [2] K.A. Lehnert, U. Harms, and E. Ito, “Promises, Achievements, and Challenges of Networking Global Geoinformatics Resources - Experiences of GeosciNET and EarthChem,” Geophysical Research Abstracts, Vol.10, EGU2008-A-05242,2008.
Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.
Keller, C Brenhin; Schoene, Blair
2012-05-23
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.
Clark, D.W.
1995-01-01
A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltenegger, L.; Sasselov, D., E-mail: lkaltene@cfa.harvard.ed
2010-01-10
We study the spectrum of a planetary atmosphere to derive detectable features in low resolution of different global geochemical cycles on exoplanets-using the sulfur cycle as our example. We derive low-resolution detectable features for first generation space- and ground-based telescopes as a first step in comparative planetology. We assume that the surfaces and atmospheres of terrestrial exoplanets (Earth-like and super-Earths) will most often be dominated by a specific geochemical cycle. Here we concentrate on the sulfur cycle driven by outgassing of SO{sub 2} and H{sub 2}S followed by their transformation to other sulfur-bearing species, which is clearly distinguishable from themore » carbon cycle, which is driven by outgassing of CO{sub 2}. Due to increased volcanism, the sulfur cycle is potentially the dominant global geochemical cycle on dry super-Earths with active tectonics. We calculate planetary emission, reflection, and transmission spectrum from 0.4 mum to 40 mum with high and low resolution to assess detectable features using current and Archean Earth models with varying SO{sub 2} and H{sub 2}S concentrations to explore reducing and oxidizing habitable environments on rocky planets. We find specific spectral signatures that are observable with low resolution in a planetary atmosphere with high SO{sub 2} and H{sub 2}S concentration. Therefore, first generation space- and ground-based telescopes can test our understanding of geochemical cycles on rocky planets and potentially distinguish planetary environments dominated by the carbon and sulfur cycles.« less
Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupka, K.M.; Sterne, R.J.
1995-12-31
Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
Inferences from Microfractures and Geochemistry in Dynamic Shale-CO2 Packed Bed Experiments
NASA Astrophysics Data System (ADS)
Radonjic, M.; Olabode, A.
2016-12-01
Subsurface storage of large volumes of carbondioxide (CO2) is expected to have long term rock-fluid interactions impact on reservoir and seal rocks properties. Caprocks, particularly sedimentary types, are the ultimate hydraulic barrier in carbon sequestration. The mineralogical components of sedimentary rocks are geochemically active under enormous earth stresses, which generate high pressure and temperature conditions. It has been postulated that in-situ mineralization can lead to flow impedance in natural fractures in the presence of favorable geochemical and thermodynamic conditions. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures. Geochemical analyses were performed on four different samples of shale rocks, effluent fluids and recovered precipitates both before and after CO2-brine flooding of crushed shale rocks at moderately high temperature and pressure conditions. The results showed that most significant diagenetic changes in shale rocks after flooding with CO2-brine, reflected in the effluent fluid with predominantly calcium based minerals dissolving and precipitating under experimental conditions. Major and trace elements in the effluent (using ICP-OES analysis) indicated that multiple geochemical reactions are occurring with almost all of the constituent minerals participating. The geochemical composition of precipitates recovered after the experiments showed diagenetic carbonates and opal as the main constituents. The bulk rock showed little changes in composition except for sharper and more refined peaks on XRD analysis, suggesting that a significant portion of the amorphous content of the rocks have been removed via dissolution by the slightly acid CO2-brine fluid that was injected. Micro-indentation results captured slight reduction in the hardness of the shale rocks and this reduction appeared dependent on diagenetic quartz content. It can be inferred that convective reactive transport of dissolved minerals are involved in nanoscale precipitation-dissolution processes in shale. This reactive transport of dissolved minerals can occlude micro-fracture flow paths, thereby improving shale caprock seal integrity with respect to leakage risk under CO2 sequestration conditions.
NASA Astrophysics Data System (ADS)
Guo, W.
2017-12-01
Chemical and isotopic compositions of scleractinian coral skeletons reflect the physicochemical condition of the seawater in which corals grow. This makes coral skeleton one of the best archives of ocean climate and biogeochemical changes. A number of coral-based geochemical proxies have been developed and applied to reconstruct past seawater conditions, such as temperature, pH, carbonate chemistry and nutrient concentrations. Detailed laboratory and field-based studies of these proxies, however, indicate interpretation of the geochemistry of coral skeletons is not straightforward, due to the presence of `vital effects' and the variations of empirical proxy calibrations among and within different species. This poses challenges for the broad application of many geochemical proxies in corals, and highlights the need to better understand the fundamental processes governing the incorporation of different proxies. Here I present a numerical model that simulates the incorporation of a suite of geochemical proxies into coral skeletons, including δ11B, Mg/Ca, Sr/Ca, U/Ca, B/Ca and Ba/Ca. This model, building on previous theoretical studies of coral calcification, combines our current understanding of coral calcification mechanism with experimental constraints on the isotope and element partition during carbonate precipitation. It enables quantitative evaluation of the effects of different environmental and biological factors on each proxy. Specifically, this model shows that (1) the incorporation of every proxy is affected by multiple seawater parameters (e.g. temperature, pH, DIC) as opposed to one single parameter, and (2) biological factors, particularly the interplay between enzymatic alkalinity pumping and the exchange of coral calcifying fluid with external seawater, also exert significant controls. Based on these findings, I propose an inverse method for simultaneously reconstructing multiple seawater physicochemical parameters, and compare the performance of this new method with conventional paleo-reconstruction methods that are based on empirical calibrations. In addition, the extension of this model to simulate carbon, oxygen and clumped isotope (δ13C, δ18O, Δ47) composition of coral skeletons will also be discussed at the meeting.
NASA Astrophysics Data System (ADS)
van Keken, P. E.; Brandenburg, J. P.; Hauri, E. H.; Ballentine, C. J.
2009-12-01
The heterogeneity of the Earth's mantle is expressed in complementary geochemical and geophysical signatures, where the geochemistry provides a time-integrated signal and the geophysics tends to see a recent snapshot of the Earth's interior. While the geophysical evidence tends to support a form of whole mantle convection that is moderated by rheological and phase changes below the transition zone, the geochemical observations have been generally used to support the presence of long-lived and isolated reservoirs. Recent dynamical modeling (Brandenburg et al., EPSL, 2008) employed high resolution finite modeling of mantle convection using an energetically consistent simulation of tectonic plates. A suite of models was developed with a dynamic vigor similar to that of the present day earth. The recycling of oceanic crust combined with a two-stage formation of the continental crust leads to a satisfactory match to the observed spread between HIMU-DMM-EM1 in multiple isotope systems without invoking recycling of continental crust. Due to the rheological contrast between upper and lower mantle there is a natural occurrence of a well-mixed upper mantle overlaying a chemically more heterogeneous lower mantle. The pooling of dense oceanic crust provides the formation of dense piles at the base of the mantle. Together with the occurrence of slabs that thicken and/or stagnate at the 670 discontinuity we find reasonable correspondance with the present day tomographic signatures. At present the models fail to explain noble gas systematics, even when taking the suggested high compatibility of helium into account.
Rates of microbial metabolism in deep coastal plain aquifers
Chapelle, F.H.; Lovley, D.R.
1990-01-01
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.
Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.
1986-01-01
Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns ofmore » basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.« less
TAPIR--Finnish national geochemical baseline database.
Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael
2010-09-15
In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various environmental applications. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceriotti, G.; Porta, G. M.; Geloni, C.; Dalla Rosa, M.; Guadagnini, A.
2017-09-01
We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2 generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2 resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2 generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2 in sedimentary systems, (ii) the order of magnitude of the CO2 generation rate that can be associated with CCR processes.
NASA Astrophysics Data System (ADS)
Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.
2015-12-01
Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.
A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring
Dick, Jeffrey M.; Shock, Everett L.
2013-01-01
Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions. PMID:24023738
NASA Astrophysics Data System (ADS)
Gorgas, Thomas; Conze, Ronald; Lorenz, Henning; Elger, Kirsten; Ulbricht, Damian; Wilkens, Roy; Lyle, Mitchell; Westerhold, Thomas; Drury, Anna Joy; Tian, Jun; Hahn, Annette
2017-04-01
Scientific ocean drilling over the past >40 years and corresponding efforts on land (by now for more than >20 years) has led to the accumulation of an enormous amount of valuable petrophysical, geochemical, biological and geophysical data obtained through laboratory and field experiments across a multitude of scale-and time dimensions. Such data can be utilized comprehensively in a holistic fashion, and thereby provide base toward an enhanced "Core-Log-Integration", modeling small-scale basin processes to large-scale Earth phenomena, while also storing and managing all relevant information in an "Open Access" fashion. Since the early 1990's members of our team have acquired and measured a large dataset of physical and geochemical properties representing both terrestrial and marine geological environments. This dataset cover a variety of both macro-to-microscale dimensions, and thereby allowing this type of interdisciplinary data examination. Over time, data management and processing tools have been developed and were recently merged with modern data publishing methods, which allow identifying and tracking data and associated publications in a trackable and concise manner. Our current presentation summarizes an important part of the value chain in geosciences, comprising: 1) The state-of-the-art in data management for continental and lake drilling projects performed with and through ICDP's Drilling Information System (DIS). 2) The CODD (Code for Ocean Drilling Data) as numerical-based, programmable data processing toolbox and applicable for both continental and marine drilling projects. 3) The implementation of Persistent Identifiers, such as the International Geo Sample Number (IGSN) to identify and track sample material as part of Digital-Object-Identifier (DOI)-tagged operation reports and research publications. 4) A list of contacts provided for scientists with an interest in learning and applying methods and techniques we offer in form of basic and advanced training courses at our respective research institutions and facilities around the world.
Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.
2003-01-01
This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.
Modelling radionuclide transport in fractured media with a dynamic update of K d values
Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; ...
2015-10-13
Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less
NASA Astrophysics Data System (ADS)
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions.
NASA Astrophysics Data System (ADS)
Cardace, D.; Schrenk, M. O.; McCollom, T. M.; Hoehler, T. M.
2017-12-01
Serpentinization is the aqueous alteration (or hydration) of olivine and pyroxene minerals in ultramafic rocks, occurring in the seabed and ultramafic units on continents, such as at the Coast Range Ophiolite (CRO) in northern California, USA. Mineral products of serpentinization include serpentine, magnetite, brucite, talc, oxyhydroxides, carbonates, and diverse clay minerals. Such mineral transformations generate extremely high pH solutions with characteristic cation and dissolved metal loads, transmitting CH4, H2, and CO gas mixtures from depth; deep life in ultramafic terrains is thought to be fueled by chemical energy derived from these geochemical reactions. The installation of 8 groundwater monitoring wells in the CRO has allowed frequent monitoring since 2011. Influx of deeply sourced, serpentinization-influenced waters is evidenced by related geochemical shifts (e.g., pH, oxidation-reduction potential), but is apparently mixing with other, regionally important groundwater types. Evaluation salinity loads in concert with other parameters, we model the mixing scenario of this site of ongoing scientific study and experimentation.
A Generalized Model for Transport of Contaminants in Soil by Electric Fields
Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.
2012-01-01
A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884
NASA Astrophysics Data System (ADS)
Owen, R.; Day, C. C.; Henderson, G. M.
2016-12-01
Speleothem palaeoclimate records are widely used but are often difficult to interpret due to the geochemical complexity of the soil-karst-cave system. Commonly analysed proxies (e.g. δ18O, δ13C and Mg/Ca) may be affected by multiple processes along the water flow path from atmospheric moisture source through to the cave drip site. Controls on speleothem chemistry include rainfall and aerosol chemistry, bedrock chemistry, temperature, soil pCO2, the degree of open-system dissolution and prior calcite precipitation. Disentangling the effects of these controls is necessary to fully interpret speleothem palaeoclimate records. To quantify the effects of these processes, we have developed an isotope-enabled numerical model based on the geochemical modelling software PHREEQC. The model calculates dripwater chemistry and isotopes through equilibrium bedrock dissolution and subsequent iterative CO2 degassing and calcite precipitation. This approach allows forward modelling of dripwater and speleothem proxies, both chemical (e.g. Ca concentration, pH, Mg/Ca and Sr/Ca ratios) and isotopic (e.g. δ18O, δ13C, δ44Ca and radiocarbon content), in a unified framework. Potential applications of this model are varied and the model may be readily expanded to include new isotope systems or processes. Here we focus on calculated proxy co-variation due to changes in model parameters. Examples include: - The increase in Ca concentration, decrease in δ13C and increase in radiocarbon content as bedrock dissolution becomes more open-system. - Covariation between δ13C, δ44Ca and trace metal proxies (e.g. Mg/Ca) predicted by changing prior calcite precipitation. - The effect of temperature change on all proxies through the soil-karst-cave system. Separating the impact of soil and karst processes on geochemical proxies allows more quantitative reconstruction of the past environment, and greater understanding in modern cave monitoring studies.
Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H
2014-01-01
Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%.
Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.
2014-01-01
Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905
Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume
NASA Astrophysics Data System (ADS)
Liu, Chao; Wang, Zhengrong; Raub, Timothy D.; Macdonald, Francis A.; Evans, David A. D.
2014-10-01
Neoproterozoic cap carbonates host distinctive geochemical and sedimentological features that reflect prevailing conditions in the aftermath of Snowball Earth. Interpretation of these features has remained contentious, with hypotheses hinging upon timescale and synchronicity of deposition, and whether or not geochemical signatures of cap carbonates represent those of a well-mixed ocean. Here we present new high-resolution Sr and Mg isotope results from basal Ediacaran cap dolostones in South Australia and Mongolia. Least-altered Sr and Mg isotope compositions of carbonates are identified through a novel incremental leaching technique that monitors the purity of a carbonate sample and the effects of diagenesis. These data can be explained by the formation of these cap dolostones involving two chemically distinct solutions, a glacial meltwater plume enriched in radiogenic Sr, and a saline ocean residue with relatively lower 87Sr/86Sr ratios. Model simulations suggest that these water bodies remained dynamically stratified during part of cap-dolostone deposition, most likely lasting for ∼8 thousand years. Our results can potentially reconcile previous conflicts between timescales estimated from physical mixing models and paleomagnetic constraints. Geochemical data from cap carbonates used to interpret the nature of Snowball Earth and its aftermath should be recast in terms of a chemically distinct meltwater plume.
Numerical modeling of perched water under Yucca Mountain, Nevada
Hinds, J.J.; Ge, S.; Fridrich, C.J.
1999-01-01
The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.
NASA Astrophysics Data System (ADS)
Smith, R. W.; Fujita, Y.; Taylor, J. L.
2008-12-01
Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory [INL]). Manipulation of in situ biogeochemical conditions to induce immobilization of these contaminants is a promising remediation approach that could yield significant risk and cost benefits to DOE. However, the effective design and interpretation of such field remediation activities requires the availability of numerical tools to model the biogeochemical processes underlying the remediation strategy. We are evaluating the use of microbial urea hydrolysis coupled to calcite precipitation as a means for the cost effective in situ stabilization of trace inorganic contaminants in groundwater and vadose zone systems. The approach relies upon the activity of indigenous ureolytic bacteria to hydrolyze introduced urea and causing an increase in pH and alkalinity, thereby accelerating calcium carbonate precipitation. The precipitation reaction results in the co- precipitation of trace metals and is sustained by the release of cations (both calcium and trace metals) from the aquifer matrix via exchange reactions involving the ammonium ions produced by urea hydrolysis. We have developed and parameterized a mixed kinetic-equilibrium reaction model using the Geochemist's Workbench computer code. Simulation results based on laboratory- and field-scale studies demonstrate the importance of transient events in systems with geochemical fluxes as well as of the coupling of biogeochemical processes.
NASA Astrophysics Data System (ADS)
Thorslund, J.; Jarsjo, J.; Wällstedt, T.; Morth, C. M.; Lychagin, M.; Chalov, S.
2014-12-01
The knowledge of coupled processes controlling the spreading and fate of metals in non-acidic river systems is currently much more limited than the knowledge of metal behavior under acidic conditions (e.g., in acid mine drainage systems). Critical geochemical controls governing metal speciation may thus differ substantially between acidic and non-acidic hydrological systems. We here aim at expanding the knowledge of metals in non-acidic river systems, by considering a high pH river, influenced by mining by the largest gold mining area in the Mongolian part of the transboundary Lake Baikal drainage basin. The combined impact of geochemical and hydrological processes is investigated, to be able to understand the solubility of various heavy metals, their partitioning between particulate and dissolved phase and its impact on overall transport. We show, through site specific measurements and a geochemical modelling approach, that the combined effects of precipitation of ferrihydrite and gibbsite and associated sorption complexes of several metals can explain the high impact of suspended transport relative to total transport often seen under non-acidic conditions. Our results also identifies the phosphate mineral Hydroxyapatite as a potential key sorption site for many metals, which has both site specific and general relevance for metal partitioning under non-acidic conditions. However, an adsorption database, which is currently unavailable for hydroxyapatite, needs to be developed for appropriate sorption quantification. Furthermore, Cd, Fe, Pb and Zn were particularly sensitive to increasing DOC concentrations, which increased the solubility of these metals due to metal-organic complexation. Modeling the sensitivity to changes in geochemical parameters showed that decreasing pH and increasing DOC concentrations in downstream regions would increase the dissolution and hence the toxicity and bioavailability of many pollutants of concern in the downstream ecosystem. In general, this study suggests that in non-acidic hydrological systems, both seasonality of DOC concentrations (which could vary by several 100%), changing DOC concentrations (resulting from climate and land use changes) and potential phosphate solids can majorly influence on the spreading and toxicity of several metals.
28 CFR 36.608 - Guidance concerning model codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Guidance concerning model codes. 36.608... Codes § 36.608 Guidance concerning model codes. Upon application by an authorized representative of a... relevant model code and issue guidance concerning whether and in what respects the model code is consistent...
ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE
The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...
Cheng, Siwei; Liu, Guijian; Zhou, Chuncai; Sun, Ruoyu
2018-05-21
The distribution characteristics of Cadmium (Cd) fractions in soils around a coal mining area of Huaibei coalfield were investigated, with the aim to assess its ecological risk. The total Cd concentrations in soils ranged from 0.05 to 0.87 mg/kg. The high percentage of phyto-available Cd (58%) when redox or base-acid equilibria changed. Soil pH was found to be a crucial factor affecting soil Cd fraction, and carbonate-bound Cd can be significantly affected by both organic matter and pH of soils. The static ecological evaluation models, including potential ecological risk index (PERI), geo-accumulation index (I geo ) and risk assessment code (RAC), revealed a moderate soil Cd contamination and prensented high Cd exposure risk in studied soils. However, the dynamic evaluation of Cd risk, determined using a delayed geochemical hazard (DGH), suggested that our studied soils can be classified as median-risk with a mean probability of 24.79% for Cd DGH. These results provide a better assessment for the risk development of Cd contamination in coal mining areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Mercury's Early Geologic History
NASA Astrophysics Data System (ADS)
Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.
2018-05-01
A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.
A Titration Technique for Demonstrating a Magma Replenishment Model.
ERIC Educational Resources Information Center
Hodder, A. P. W.
1983-01-01
Conductiometric titrations can be used to simulate subduction-setting volcanism. Suggestions are made as to the use of this technique in teaching volcanic mechanisms and geochemical indications of tectonic settings. (JN)
Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin
2014-01-01
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia
NASA Astrophysics Data System (ADS)
Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska
2017-04-01
Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.
Geochemical modeling of subsurface fluid generation in the Gulf of Cadiz
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Hensen, Christian; Wallmann, Klaus
2016-04-01
During RV METEOR cruise M86/5 in 2012 a number of deep-sea mud volcanoes were discovered at about 4500 m water depth west of the deformation front of the accretionary wedge in the Gulf of Cadiz (NE Atlantic). Fluid flow at these locations is mediated by an active strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical signals of emanating fluids have been interpreted as being a mixture of various deep-sourced processes such as the alteration of oceanic crust, clay-mineral dehydration, and recrystallization of carbonaceous, Upper Jurassic sediments (Hensen et al. 2015). In the current study we present results of a geochemical reactive-transport model that was designed to simulate major fluid-affecting processes, such as the smectite to illite transformation or recrystallization of carbonates in order to provide a proof of concept. Preliminary results show that the model is able to reproduce pore water signatures (e.g. for chloride, strontium, 87Sr/86Sr) in subsurface sediments that are similar to those of MV fluids. Hensen, C., Scholz, F., Nuzzo, M., Valadares, V., Gràcia, E., Terrinha, P., Liebetrau, V., Kaul, N., Silva, S., Martínez-Loriente, S., Bartolome, R., Piñero, E., Magalhães, V.H., Schmidt, M., Weise, S.M., Cunha, M., Hilario, A., Perea, H., Rovelli, L. and Lackschewitz, K. (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43, 339-342.
Qu, Mingkai; Wang, Yan; Huang, Biao; Zhao, Yongcun
2018-06-01
The traditional source apportionment models, such as absolute principal component scores-multiple linear regression (APCS-MLR), are usually susceptible to outliers, which may be widely present in the regional geochemical dataset. Furthermore, the models are merely built on variable space instead of geographical space and thus cannot effectively capture the local spatial characteristics of each source contributions. To overcome the limitations, a new receptor model, robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR), was proposed based on the traditional APCS-MLR model. Then, the new method was applied to the source apportionment of soil metal elements in a region of Wuhan City, China as a case study. Evaluations revealed that: (i) RAPCS-RGWR model had better performance than APCS-MLR model in the identification of the major sources of soil metal elements, and (ii) source contributions estimated by RAPCS-RGWR model were more close to the true soil metal concentrations than that estimated by APCS-MLR model. It is shown that the proposed RAPCS-RGWR model is a more effective source apportionment method than APCS-MLR (i.e., non-robust and global model) in dealing with the regional geochemical dataset. Copyright © 2018 Elsevier B.V. All rights reserved.
Small scale changes of geochemistry and flow field due to transient heat storage in aquifers
NASA Astrophysics Data System (ADS)
Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.
2013-12-01
Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.
Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.
2010-01-01
The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, exchangers, surfaces, gases, kinetic reactants, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a format suitable for exporting to spreadsheets and postprocessing programs; and in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST.
Spalding, B P; Spalding, I R
2001-01-15
Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity, exchangeable cations, total 90Sr, and pH values of layers within the soil columns and of column effluents.
Simulation of in situ uranium bioremediation with slow-release organic amendment injection
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.
2010-12-01
In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGraw, David; Hershey, Ronald L.
Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries.more » The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little variation in source-water fraction between the deterministic and Monte Carlo approaches, and therefore, little variation in travel times between approaches. Sensitivity analysis proved very useful for identifying the most important input constraints (dissolved-ion concentrations), which can reveal the variables that have the most influence on source-water fractions and carbon-14 travel times. Once these variables are determined, more focused effort can be applied to determining the proper distribution for each constraint. Second, Monte Carlo results for water-rock reaction modeling showed discrete and nonunique results. The NETPATH models provide the solutions that satisfy the constraints of upgradient and downgradient water chemistry. There can exist multiple, discrete solutions for any scenario and these discrete solutions cause grouping of results. As a result, the variability in output may not easily be represented by a single distribution or a mean and variance and care should be taken in the interpretation and reporting of results.« less
Biogeochemical metabolic modeling of methanogenesis by Methanosarcina barkeri
NASA Astrophysics Data System (ADS)
Jensvold, Z. D.; Jin, Q.
2015-12-01
Methanogenesis, the biological process of methane production, is the final step of natural organic matter degradation. In studying natural methanogenesis, important questions include how fast methanogenesis proceeds and how methanogens adapt to the environment. To address these questions, we propose a new approach - biogeochemical reaction modeling - by simulating the metabolic networks of methanogens. Biogeochemical reaction modeling combines geochemical reaction modeling and genome-scale metabolic modeling. Geochemical reaction modeling focuses on the speciation of electron donors and acceptors in the environment, and therefore the energy available to methanogens. Genome-scale metabolic modeling predicts microbial rates and metabolic strategies. Specifically, this approach describes methanogenesis using an enzyme network model, and computes enzyme rates by accounting for both the kinetics and thermodynamics. The network model is simulated numerically to predict enzyme abundances and rates of methanogen metabolism. We applied this new approach to Methanosarcina barkeri strain fusaro, a model methanogen that makes methane by reducing carbon dioxide and oxidizing dihydrogen. The simulation results match well with the results of previous laboratory experiments, including the magnitude of proton motive force and the kinetic parameters of Methanosarcina barkeri. The results also predict that in natural environments, the configuration of methanogenesis network, including the concentrations of enzymes and metabolites, differs significantly from that under laboratory settings.
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Beinlich, Andreas; Bach, Wolfgang; Janots, Emilie; Austrheim, Håkon
2014-09-01
Geochemical micro-environments within serpentinizing systems can abiotically synthesize hydrocarbons and provide the ingredients required to support life. Observations of organic matter in microgeode-like hydrogarnets found in Mid-Atlantic Ridge serpentinites suggest these garnets possibly represent unique nests for the colonization of microbial ecosystems within the oceanic lithosphere. However, little is known about the mineralogical and geochemical processes that allow such unique environments to form. Here we present work on outcrop-scale vein networks from an ultramafic massif in Norway that contain massive amounts of spherulitic garnets (andradite), which help to constrain such processes. Vein andradite spherulites are associated with polyhedral serpentine, brucite, Ni-Fe alloy (awaruite), and magnetite indicative of low temperature (<200 °C) alteration under low fO2 and low aSiO2,aq geochemical conditions. Together with the outcrop- and micro-scale analysis geochemical reaction path modeling shows that there was limited mass transport and fluid flow over a large scale. Once opened the veins remained isolated (closed system), forming non-equilibrium microenvironments that allowed, upon a threshold supersaturation, the rapid crystallization (seconds to weeks) of spherulitic andradite. The presence of polyhedral serpentine spheres indicates that veins were initially filled with a gel-like protoserpentine phase. In addition, massive Fe oxidation associated with andradite formation could have generated as much as 600 mmol H2,aq per 100 cm3 vein. Although no carboneous matter was detected, the vein networks fulfill the reported geochemical criteria required to generate abiogenic hydrocarbons and support microbial communities. Thus, systems similar to those investigated here are of prime interest when searching for life-supporting environments within the deep subsurface.
Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?
Huang, Longbin; Baumgartl, Thomas; Mulligan, David
2012-07-01
Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil - mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to develop hydro-geochemically stable and biologically functional root zones, which can facilitate the recovery of the microbial community and ecological linkages with revegetated plant communities.
Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida
NASA Astrophysics Data System (ADS)
Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.
2008-05-01
Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kühn, Michael
2013-04-01
PHREEQC [1] is a widely used non-interactive open source software for speciation, batch-reactions, one-dimensional transport, and inverse geochemical caclulations. It represents the tool of choice for many researchers and practicioners for a broad set of geochemical problems, underground CO2 storage among others. Its open source nature, the flexibility to program arbitrary kinetic laws for the chemical reactions, as well as a thorough implementation of the Pitzer formalism explain its success and longevity. However, its non-interactive architecture make it cumbersome to couple PHREEQC to transport programs to achieve reactive transport simulations [2], but also to overcome the limitations of PHREEQC itself regarding the setup of large numbers of simulations - for example exploring wide ranges of conditions - and the graphical evaluation of the results. This has been the main motivation leading to the development of an interface with the high level language and environment for statistical computing and graphics GNU R [3]. The interface consists of minor modifications in PHREEQC's C source code, only affecting data I/O, plus on the R side a bunch of helper functions used to setup the simulations - basically automated manipulation of PHREEQC's input files, which are text files - and to collect and visualize the results. The most relevant subset of PHREEQC's capabilities and features are fully usable through the interface. Illustratory examples for the utility of this programmable interface were given in the framework of the research project this developement originated from: CLEAN [4], a project investigating the feasibility of enhanced gas recovery combined with CO2 storage. This interface allowed us to successfully and easily manipulate, compare and refit chemical databases, perform sensitivity analysis by combinatory variations of parameters, and all that in an environment which is both scriptable and interactive, with all results directly available for further manipulations and visualization in a powerful high level language, and benefiting from an enormous amount of third-party open source R extensions. The possibility to rapidly prototype complex algorithms involving geochemical modelling is in our opinion a huge advantage. A demonstration is given by the successful evaluation of a strategy to reduce the CPU-time needed to perform reactive transport simulations in a sequential coupling scheme. The idea is the "reduction" of the number of actual chemical simulations to perform at every time step, by searching for "duplicates" of each chemical simulations in the grid: such comparison involves typically a huge number of elements (one chemical simulation for grid element for time step) and a quite large number of variables (concentrations and mineral abundances). However, through the straightforward implementation of the prototype algorithm through the R/PHREEQC interface, we found out that the scan is extremely cost-effective in terms of CPU-time and typically allows a relevant speedup for simulations starting from a homogeneous or zone-homogeneous state. This speedup can even greatily exceed that of parallelization in some favorable but not unfrequent case. This feature should therefore be implemented in reactive transport simulators. References [1] Parkhurst D, Appelo C (1999) Users guide to PHREEQC (version 2). Tech. rep, U.S. Geological Survey. [2] Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012): Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ. Earth Sci., 67, 2, 573-588. [3] R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. [4] Kühn M, Münch U (2012) CLEAN: CO2 Large-Scale Enhanced Gas Recovery. GEOTECHNOLOGIEN Science Report No. 19. Series: Advanced. Technologies in Earth Sciences, 199 p, ISBN 978-3-642-31676-0.
Leveling data in geochemical mapping: scope of application, pros and cons of existing methods
NASA Astrophysics Data System (ADS)
Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe
2017-04-01
Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.
Flexible Environmental Modeling with Python and Open - GIS
NASA Astrophysics Data System (ADS)
Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann
2015-04-01
Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.
Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation
Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.
2012-01-01
The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into the interactive U.S. Geological Survey Mineral Resource Data web portal, available at http://mrdata.usgs.gov/.
Major hydrogeochemical processes in an acid mine drainage affected estuary.
Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F
2015-02-15
This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.
Alsop, Eric B; Boyd, Eric S; Raymond, Jason
2014-05-28
The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Clustering based on the frequency in which orthologous proteins occur among metagenomes facilitated accurate prediction of the ordering of community functional composition along geochemical gradients, despite a lack of geochemical input. The consistency in the results obtained from the application of Markov clustering and multivariate methods to distinct natural systems underscore their utility in predicting the functional potential of microbial communities within a natural system based on system geochemistry alone, allowing geochemical measurements to be used to predict purely biological metrics such as microbial community composition and metabolism.
NASA Astrophysics Data System (ADS)
Mork, M. W.; Kracht, O.
2012-04-01
When investigating stability relations in aquatic solutions or rock-water interactions, the number of dissolved species and mineral phases involved can be overwhelming. To facilitate an overview about equilibrium relationships and how chemical elements are distributed between different aqueous ions, complexes, and solids, predominance diagrams are a widely used tool in aquatic chemistry. In the simplest approach, the predominance field boundaries can be calculated based on a set of mass action equations and log K values for the reactions between different species. Example given, for the popular redox diagram (pe-pH diagram), half cell reactions according to Nernst's equation can be used (Garrels & Christ 1965). In such case, boundaries between different species are "equal-activity" lines. However, for boundaries between solids and dissolved species a specific concentration needs to be stipulated, and the same applies if other components than those displayed in the diagram are involved in the possible reactions. In such case, the predominance field boundaries depend on the actual concentration values chosen. An alternative approach can be the computation of predominance diagrams using the full speciation obtained from a geochemical speciation program, which then needs to be coupled with an external wrapper code for appropriate control and data pre- and post-processing. In this way, the distribution of different species can be based on the consideration of complete chemical analysis obtained from laboratory investigations. We present the results of a student semester-project that aimed to develop and test an external wrapper program for the computation of pe-pH diagrams based on modeling outputs obtained with PHREEQC (Parkhurst & Appelo 1999). We have chosen PHREEQC for this core task as a geochemical calculation module, because of its capabilities to simulate a wide range of equilibrium reactions between water and minerals. Due to the intended final users, a free and extensible simulation platform was considered important. The wrapper program was created in the R environment which is freely available under the GNU General Public License (R Development Core Team 2011). The wrapper reads in analytical data in the standard PHREEQC input file format and then iterates over a systematic selection of pe and pH values. These data are transferred to PHREEQC for the calculation of a corresponding set of hydrochemical speciations based on thermodynamic equilibrium. The results of the PHREEQC simulations are subsequently analyzed by a postprocessor function in order to derive a two-dimensional representation of the dominant aquatic species in the pe-pH plane. In this step, the most abundant species at each grid point is identified as the predominant one. To investigate the utility of the program, differences in the speciation of iron were calculated from chemical compositions of water samples from one of our current field sites (Gardermoen / Øvre Romerike aquifer in S-Norway).
Hydrologic and geochemical approaches for determining ground-water flow components
Hjalmarson, H.W.; Robertson, F.N.
1991-01-01
Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.
Application of artificial neural networks to chemostratigraphy
NASA Astrophysics Data System (ADS)
Malmgren, BjöRn A.; Nordlund, Ulf
1996-08-01
Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.
Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks
NASA Astrophysics Data System (ADS)
Ferralis, N.; Grossman, J.; Summons, R. E.
2017-12-01
Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.
NASA Astrophysics Data System (ADS)
Shatsky, V. S.; Skuzovatov, S. Yu.; Ragozin, A. L.; Dril, S. I.
2018-03-01
In the present paper, the results of our isotope-geochemical studies on eclogites of the ultrahighpressure metamorphic complex of the Kokchetav massif are reported. The fact that the distribution of nonmobile elements in most of the samples was close to that of E-type MORB basalts is shown by using geochemical multielement diagrams normalized to N-MORB. Six samples were found to have a negative anomaly over niobium that may have resulted from contamination with crustal material. For eclogites of the Kokchetav massif, the 147Sm/144Nd ratio was found to range widely from 0.143 to 0.367. The ɛNd-values calculated for the age of the highly barometric stage of metamorphism (530 million years) varied from-10.3 to +8.1. Eclogites show a dispersion of model ages from 1.95 billion years to 670 million years. On the graphs in the ɛNd( T)-87Sr/86Sr and ɛNd( T)- T coordinates, eclogites were shown to form trends that can be interpreted as a result of contamination of the eclogite protolith by the host rocks. Based on the data obtained, it is proposed that the basalts of rift zones that may have geochemical characteristics of N-MORB basalts and at the same time may be contaminated by the continental crust may have served as proxies for eclogite protoliths of the Kokchetav massif.
NASA Astrophysics Data System (ADS)
Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.
2012-12-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.
NASA Astrophysics Data System (ADS)
Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola
2013-04-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Assessing the Role of Seafloor Weathering in Global Geochemical Cycling
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Abbot, D. S.; Archer, D. E.
2015-12-01
Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Iizuka, Tsuyoshi; Sasaki, Takanori; Ueno, Yuichiro; Ikoma, Masahiro
2017-07-01
The Earth was born in violence. Many giant collisions of protoplanets are thought to have occurred during the terrestrial planet formation. Here we investigated the giant impact stage by using a hybrid code that consistently deals with the orbital evolution of protoplanets around the Sun and the details of processes during giant impacts between two protoplanets. A significant amount of materials (up to several tens of percent of the total mass of the protoplanets) is ejected by giant impacts. We call these ejected fragments the giant-impact fragments (GIFs). In some of the erosive hit-and-run and high-velocity collisions, metallic iron is also ejected, which comes from the colliding protoplanets' cores. From ten numerical simulations for the giant impact stage, we found that the mass fraction of metallic iron in GIFs ranges from ∼1 wt% to ∼25 wt%. We also discussed the effects of the GIFs on the dynamical and geochemical characteristics of formed terrestrial planets. We found that the GIFs have the potential to solve the following dynamical and geochemical conflicts: (1) The Earth, currently in a near circular orbit, is likely to have had a highly eccentric orbit during the giant impact stage. The GIFs are large enough in total mass to lower the eccentricity of the Earth to its current value via their dynamical friction. (2) The concentrations of highly siderophile elements (HSEs) in the Earth's mantle are greater than what was predicted experimentally. Re-accretion of the iron-bearing GIFs onto the Earth can contribute to the excess of HSEs. In addition, Iron-bearing GIFs provide significant reducing agent that could transform primitive CO2-H2O atmosphere and ocean into more reducing H2-bearing atmosphere. Thus, GIFs are important for the origin of Earth's life and its early evolution.
NASA Astrophysics Data System (ADS)
Shirokova, V.; Graves, L.; Stojanovic, S.; Enright, A. M.; Bank, C.; Ferris, F. G.
2013-12-01
A pristine glaciofluvial aquifer displaying naturally occurring geochemical gradients was investigated using hydrogeological, geophysical, and microbiological methods. A network of 25 piezometers was used to collect samples for groundwater chemical analysis, including parameters such as total iron (Fe), ferrous iron (Fe2+), sulphate (SO42-), sulfur (S2-), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), silica (SiO2), phosphate (PO43-), pH, and oxidation reduction potential (ORP). Ion concentration values between piezometers were interpolated using kriging and inverse distance weighting. Yearly analysis of the network shows spatially and temporally persistent plumes of iron and sulfur. A 3D model of the aquifer was compiled to aid in the understanding of the nature and origin of the geochemical gradients. The resulting maps showed zones with high concentrations of dissolved total iron (predominantly soluble ferric iron and complexed iron compounds), followed immediately downgradient by a high concentration of ferrous iron. Similarly, zones of high sulfide concentration were followed by areas of high sulfate concentration. There was some overlap between the iron and sulfur plumes, and ion concentrations were higher in years with a lower water table elevation. Metagenomic analysis revealed a diverse microbial community in the sediment, capable of the biogeochemical cycling of iron, sulfur, and nitrogen. The aquifer basin, as bounded by a till aquitard, was delineated using ground penetrating radar tomography from 45 lines. The plumes corresponded to an area where there is large, channel-like depression in the till boundary. Flow vectors from hydrogeological modelling indicated increased velocity followed by a slowing and convergence of groundwater in this location. Resistivity values from 20 lines varied in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. The resistivity surveys consistently showed low resistivity values in areas of ionic enrichment, the location of the geochemical plumes, and high resistivity values at the top of the vadose zone including below dry sand outcrops. Fluorescent microscopy suggests the plumes are associated with attached subsurface bacteria dominated by species such as Gallionella and Leptothrix. These bacteria are likely responsible for conductive anomalies (<200 Ohm.m), observed in the resistivity models, that were at the centre of areas with high ionic concentrations. The above aquifer chemical network is currently being computationally simulated, and attempts are being made to determine the extents to which biotic and abiotic processes contribute to the formation of the geochemical gradients.
Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments
NASA Astrophysics Data System (ADS)
Kyle, J. E.; Ferris, G.
2009-05-01
Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a contributor to prokaryotic abundance but given the elements strong multicollinearity with sulfate, iron was removed from the model (as sulfate acts more conservatively across the range of pH sampled, 2.5-9.0). Geochemical variables that have been reported to influence viral abundances under laboratory and field experiments (i.e. Ca2+, DOC, temperature) had minimal effect in the natural environment despite 2 to 3 orders of magnitude range in the data. However, log transformed viral abundance did revealed a significant relationship with pH (Pearson correlation coefficient of r = 0.70) when using principle component analysis. Prokaryotic abundance did not reveal significant correlations with geochemical parameters (all r < 0.38).
NASA Astrophysics Data System (ADS)
Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.
2014-05-01
At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon Isotopes at the Ketzin Pilot Site, Germany. Energy Procedia 40, 346-354. Wiese, B., Zimmer, M., Nowak, M., Pellizzari, L., Pilz, P., 2013. Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environmental Earth Sciences, 1-18.
Fallon, Nevada FORGE Distinct Element Reservoir Modeling
Blankenship, Doug; Pettitt, Will; Riahi, Azadeh; Hazzard, Jim; Blanksma, Derrick
2018-03-12
Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given technical topic (e.g., creating meshes, reordering nodes, applying boundary conditions), a given numerical topic (e.g., using various solution strategies, non-linear iterations), or that present a fully-developed solver designed to address a scientific topic (e.g., performing Stokes flow simulations in synthetic porous medium). References: Dabrowski, M., M. Krotkiewski, and D. W. Schmid MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, 2008
NASA Astrophysics Data System (ADS)
Xu, T.; Kharaka, Y.; Benson, S.
2006-12-01
A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.
Predictive modeling of terrestrial radiation exposure from geologic materials
NASA Astrophysics Data System (ADS)
Haber, Daniel A.
Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have concentrations determined via in situ radiation measurements with high purity germanium detectors (HPGe) and aerial survey measurements. These various measurement techniques have been compared and found to produce consistent results. Finally, modeling using Monte Carlo N-Particle Transport Code (MCNP), a particle physics modeling code, has allowed us to derive concentration to exposure rate coefficients. These simulations also have shown that differences in major element chemistry have little impact on the gamma ray emissions of geologic materials.
Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.
2015-01-01
This study has used a data-driven, geographic information system (GIS)-based method for evaluating the mineral resource potential across the large region of the CYPA. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic unit codes or HUCs) as the spatial unit of classification. The final map output indicates an estimated potential (high, medium, low) for a given mineral deposit group and indicates the certainty (high, medium, low) of that estimate for any given subwatershed (HUC). Accompanying tables describe the data layers used in each analysis, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to the estimated potential and certainty determinations. Core datasets used include the U.S. Geological Survey (USGS) Alaska Geochemical Database (AGDB2), the Alaska Division of Geologic and Geophysical Surveys Web-based geochemical database, data from an anticipated USGS geologic map of Alaska, and the USGS Alaska Resource Data File. Map plates accompanying this report illustrate the mineral prospectivity for the six deposit groups across the CYPA and estimates of mineral resource potential. There are numerous areas, some of them large, rated with high potential for one or more of the selected deposit groups within the CYPA.
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, M.; Halama, R.
2014-12-01
The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code... partially accepted, then the properties eligible for HUD benefits in that jurisdiction shall be constructed..., those portions of one of the model codes with which the property must comply. Schedule for Model Code...
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code... partially accepted, then the properties eligible for HUD benefits in that jurisdiction shall be constructed..., those portions of one of the model codes with which the property must comply. Schedule for Model Code...
Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, James; Decker, David; Patterson, Gary
2007-06-25
Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC)more » were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical reactions. The DIC carbon-14 corrected ages can be further constrained by measuring the carbon isotopes of DOC. Because the only source of organic carbon in aquifers is almost always greater than 40,000 years old, any organic carbon that may be added to the groundwater would contain no carbon-14. Thus, ground-water ages determined by carbon isotopes of DOC should be maximum ages that can be used to constrain DIC corrected ages.« less
Granitto, Matthew; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.
2013-01-01
The Alaska Geochemical Database Version 2.0 (AGDB2) contains new geochemical data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska Geochemical Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical geochemical data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all U.S. Geological Survey geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest U.S. Geological Survey geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB2 and will be added to the NGDB. The AGDB2 data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB2 data provided in the linked database may be updated or changed periodically.
Geochemical response to hydrologic change along land-sea interfaces
NASA Astrophysics Data System (ADS)
Michael, H. A.; Yu, X.; LeMonte, J. J.; Sparks, D. L.; Kim, K. H.; Heiss, J.; Ullman, W. J.; Guimond, J. A.; Seyfferth, A.
2016-12-01
Coastal groundwater-surface water interfaces are hotspots of geochemical activity, where reactants contributed by different sources come in contact. Reactions that occur along these land-sea boundaries have important effects on fluxes and cycling of carbon, nutrients, and contaminants. Hydrologic perturbations can alter interactions by promoting mixing, changing redox state, and altering subsurface residence times during which reactions may occur. We present examples from field and modeling investigations along the Delaware coastline that illustrate the impacts of hydrologic fluctuations on geochemical conditions and fluxes in different coastal environments. Along the highly populated Wilmington coastline, soils are contaminated with heavy metals from legacy industrial practices. We show with continuous redox monitoring and sampling over tidal to seasonal timescales that arsenic is mobilized and immobilized in response to hydrologic change. Along a beach, modeling and long-term monitoring show the influence of tidal to seasonal changes in the mixing zone between discharging fresh groundwater and seawater in the intertidal beach aquifer and associated impacts on biogeochemical reactivity and denitrification. In a saltmarsh, hydrologic changes alter carbon dynamics, with implications for the discharge of dissolved organic carbon to the ocean and export of carbon dioxide and methane to the atmosphere. Understanding the impacts of hydrologic changes on both long and short timescales is essential for improving our ability to predict the global biogeochemical impacts of a changing climate.
Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J
2015-01-01
Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.
Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.
2011-01-01
The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.
NASA Astrophysics Data System (ADS)
Montefalco de Lira Santos, Lauro Cézar; Dantas, Elton Luiz; Cawood, Peter A.; José dos Santos, Edilton; Fuck, Reinhardt A.
2017-11-01
Pre-Brasiliano rocks in the Borborema Province (NE Brazil) are concentrated in basement blocks, such as the Alto Moxotó Terrane. Petrographic, geochemical, and U-Pb and Sm-Nd isotopic data from two basement metagranitic suites within the terrane provide evidence for Neoarchean (2.6 Ga) and Paleoproterozoic (2.1 Ga) subduction-related events. The Riacho das Lajes Suite is made of medium to coarse-grained hornblende and biotite-bearing metatonalites and metamonzogranites. Whole-rock geochemical data indicate that these rocks represent calcic, magnesian and meta-to peraluminous magmas, and have unequivocal affinities with high-Al low-REE tonalite-trondhjemite-granodiorites (TTG). Zircon U-Pb data from two samples of this suite indicate that they were emplaced at 2.6 Ga, which is the first discovered Archean crust in the central portion of the province. The suite has Neoarchean depleted mantle model ages (TDM) and slightly negative to positive εNd(t), indicating slight crustal contamination. The overall geochemical and isotopic data indicate a Neoarchean intraoceanic setting for genesis of the Riacho das Lajes magma via melting of basaltic oceanic crust submitted to high-pressure eclogite facies conditions. On the other hand, the Floresta Suite comprise metaigneous rocks, which are mostly tonalitic and granodioritic in composition. Geochemical data indicate that this suite shares similarities with calcic to calc-alkalic magmas with magnesian and metaluminous to slightly peraluminous characteristics. Other geochemical features include anomolous Ni, V and Cr contents, as well as high large-ion litophile elements (LILE) values. The suite yields U-Pb zircon ages of approximately 2.1 Ga, Archean to Paleoproterozoic TDM ages, and negative to positive εNd(t) values, suggesting both new crust formation and reworking of Archean crust, in addition to mantle metasomatism, reflecting mixed sources. The most likely tectonic setting for the Floresta Suite magmas involved crustal thickening by terrane accretion, coeval to slab break off. Our results provide new insights on proto-Western Gondwana crustal evolution.
NASA Astrophysics Data System (ADS)
Trampush, S. M.; Hajek, E. A.
2016-12-01
The stratigraphic record provides a vital opportunity to investigate how changes in climate can impact many different landscapes and seascapes. However, the inherent variability in sedimentation within many depositional environments may mask or remove the signature of climate change. A common solution is to use geochemical proxies - usually collected at regular stratigraphic intervals - to independently identify climate events. This approach doesn't account for the potentially significant variability in deposition and erosion time series resulting from autogenic landscape dynamics. In order to explore how geochemical proxy records could be overprinted by landscape dynamics, we use a 1D stochastic sedimentation model where we mimic fluvial, lacustrine, shallow marine, and deep marine environmental dynamics by varying the frequency-magnitude distributions of sedimentation rates. We find that even conservative estimates of the frequency and magnitude of stochastic sedimentation variability can heavily modify proxy records in characteristic ways by alternately removing, compressing, and expanding portions of the record, regardless of the magnitude or duration of the climatic event. Our model results are consistent with observations of the carbon isotope excursions of the Paleocene Eocene Thermal Maximum (PETM) preserved within both fluvial (e.g. the Bighorn Basin, Wyoming and the Piceance Basin, Colorado) and shallow marine (e.g. the New Jersey shelf) deposits. Our results suggest that we may be able to use existing geochemical proxy records within well studied, global climate events, such as the PETM, to constrain the variability in sedimentation present within different depositional environments.
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
Multidisciplinary exploration of the Tendaho Graben geothermal fields
NASA Astrophysics Data System (ADS)
Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede
2017-04-01
The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and the dome-shape structure of the clay cap layer. The 2D and 3D gravimetric, magnetic and resistivity models have been integrated with the structural, geological and geochemical outcomings in order to get an updated conceptual model of the geothermal systems.
Porosity development in coastal carbonate aquifers
Sanford, W.E.; Konikow, Leonard F.
1989-01-01
Combines geochemical mixing theory with the hydrodynamics of fresh-water-salt-water mixing zones in a coupled reaction-transport model. Results from the reaction-path model PHREEQE are used with a variable-density groundwater flow and solute-transport model to simulate an idealized cross section of a coastal carbonate aquifer. The dissolution process is sensitive to fresh-water chemistry, groundwater velocities, and sea-level movement. -from Authors
Hawaiian lavas: a window into mantle dynamics
NASA Astrophysics Data System (ADS)
Jones, Tim; Davies, Rhodri; Campbell, Ian
2017-04-01
The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.
A Comparison of Methods for Modeling Geochemical Variability in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Kellogg, J. B.; Tackley, P. J.
2004-12-01
Numerial models of isotopic and chemical heterogeneity of the Earth's mantle fall into three categories, in decreasing order of computational demand. First, several authors have used chemical tracers within a full thermo-chemical convection calculation (e.g., Christensen and Hofmann, 1994, van Keken and Ballentine, 1999; Xie and Tackley, 2004). Second, Kellogg et al. (2002) proposed an extension of the traditional geochemical box model calculations in which numerous subreservoirs were tracked within the bulk depleted mantle reservoir. Third, Allègre and Lewin (1995) described a framework in which the variance in chemical and isotopic ratios were treated as quantities intrinsic to the bulk reservoirs, complete with sources and sinks. Results from these three methods vary, particularly with respect to conclusions drawn about the meaning of the Pb-Pb pseudo-isochron. We revisit these methods in an attempt to arrive at a common understanding. By considering all three we better identify the strengths and weaknesses of each approach and allow each to inform the other. Finally, we present results from a new hybrid model that combines the complexity and regional-scale variability of the thermochemical convection models with the short length-scale sensitivity of the Kellogg et al. approach.
Impacts of Model Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Sivaraman, Deepak; Elliott, Douglas B.
The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO 2 emissions atmore » the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.« less
ERIC Educational Resources Information Center
New Mexico Univ., Albuquerque. American Indian Law Center.
The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kirschvink, J. L.; Gaidos, E. J.; Bertani, L. E.; Beukes, N. J.; Gutzmer, J.; Maepa, L. N.; Steinberger, R. E.
2000-01-01
Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation ("snowball Earth" conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O(2) are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.
ERIC Educational Resources Information Center
Closs, L. Graham
1983-01-01
Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…
A MATLAB based 3D modeling and inversion code for MT data
NASA Astrophysics Data System (ADS)
Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.
2017-07-01
The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies
NASA Astrophysics Data System (ADS)
Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.
2012-12-01
Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore stabilization of this reservoir is directly related to the thermal conditions present at the basis of the continental crust, and allows the production of large volumes at the batholiths level, known as flare-up events. These results are critical in order to estimate the amount of crustal growth and thickening in the Arequipa area, as they provide the basis for the estimation of the mantle versus crustal contribution during the magma genesis.
NASA Astrophysics Data System (ADS)
Sheen, Alex I.; Kendall, Brian; Reinhard, Christopher T.; Creaser, Robert A.; Lyons, Timothy W.; Bekker, Andrey; Poulton, Simon W.; Anbar, Ariel D.
2018-04-01
Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca. 2.0-0.8 Ga) with oxygenated surface waters and predominantly anoxic deep waters. The extent of mid-Proterozoic seafloor anoxia has been recently estimated using mass-balance models based on molybdenum (Mo), uranium (U), and chromium (Cr) enrichments in organic-rich mudrocks (ORM). Here, we use a temporal compilation of concentrations for the redox-sensitive trace metal rhenium (Re) in ORM to provide an independent constraint on the global extent of mid-Proterozoic ocean anoxia and as a tool for more generally exploring how the marine geochemical cycle of Re has changed through time. The compilation reveals that mid-Proterozoic ORM are dominated by low Re concentrations that overall are only mildly higher than those of Archean ORM and significantly lower than many ORM deposited during the ca. 2.22-2.06 Ga Lomagundi Event and during the Phanerozoic Eon. These temporal trends are consistent with a decrease in the oceanic Re inventory in response to an expansion of anoxia after an interval of increased oxygenation during the Lomagundi Event. Mass-balance modeling of the marine Re geochemical cycle indicates that the mid-Proterozoic ORM with low Re enrichments are consistent with extensive seafloor anoxia. Beyond this agreement, these new data bring added value because Re, like the other metals, responds generally to low-oxygen conditions but has its own distinct sensitivity to the varying environmental controls. Thus, we can broaden our capacity to infer nuanced spatiotemporal patterns in ancient redox landscapes. For example, despite the still small number of data, some mid-Proterozoic ORM units have higher Re enrichments that may reflect a larger oceanic Re inventory during transient episodes of ocean oxygenation. An improved understanding of the modern oceanic Re cycle and a higher temporal resolution for the Re compilation will enable further tests of these hypotheses regarding changes in the surficial Re geochemical cycle in response to variations in atmosphere-ocean oxygenation. Nevertheless, the existing Re compilation and model results are in agreement with previous Cr, Mo, and U evidence for pervasively anoxic and ferruginous conditions in mid-Proterozoic oceans.
Use of partial dissolution techniques in geochemical exploration
Chao, T.T.
1984-01-01
Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.
The IUGS/IAGC Task Group on Global Geochemical Baselines
Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos
2012-01-01
The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.
Numerical Simulation Applications in the Design of EGS Collab Experiment 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; White, Mark D.; Fu, Pengcheng
The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
DEVELOPMENT OF AN IMPROVED SIMULATOR FOR CHEMICAL AND MICROBIAL IOR METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad
2001-10-01
This is the final report of a three-year research project on further development of a chemical and microbial improved oil recovery reservoir simulator. The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods which use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. The first task was the addition of a dual-porosity model for chemical IOR in naturally fractured oil reservoirs. They formulated and implemented a multiphase, multicomponent dual porosity model for enhanced oil recoverymore » from naturally fractured reservoirs. The multiphase dual porosity model was tested against analytical solutions, coreflood data, and commercial simulators. The second task was the addition of a foam model. They implemented a semi-empirical surfactant/foam model in UTCHEM and validated the foam model by comparison with published laboratory data. The third task addressed several numerical and coding enhancements that will greatly improve its versatility and performance. Major enhancements were made in UTCHEM output files and memory management. A graphical user interface to set up the simulation input and to process the output data on a Windows PC was developed. New solvers for solving the pressure equation and geochemical system of equations were implemented and tested. A corner point grid geometry option for gridding complex reservoirs was implemented and tested. Enhancements of physical property models for both chemical and microbial IOR simulations were included in the final task of this proposal. Additional options for calculating the physical properties such as relative permeability and capillary pressure were added. A microbiological population model was developed and incorporated into UTCHEM. They have applied the model to microbial enhanced oil recovery (MEOR) processes by including the capability of permeability reduction due to biomass growth and retention. The formations of bio-products such as surfactant and polymer surfactant have also been incorporated.« less
Swingley, Wesley D.; Meyer-Dombard, D’Arcy R.; Shock, Everett L.; Alsop, Eric B.; Falenski, Heinz D.; Havig, Jeff R.; Raymond, Jason
2012-01-01
We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability. PMID:22675512
Acoustic wave simulation using an overset grid for the global monitoring system
NASA Astrophysics Data System (ADS)
Kushida, N.; Le Bras, R.
2017-12-01
The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
Calculation of the relative metastabilities of proteins using the CHNOSZ software package
Dick, Jeffrey M
2008-01-01
Background Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables. Results A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules. Conclusion Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations. PMID:18834534
Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Kelvin
2013-08-12
The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recoverymore » from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.« less
NASA Astrophysics Data System (ADS)
Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.
2012-12-01
The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.
Conference on the Origin of the Moon
NASA Technical Reports Server (NTRS)
1984-01-01
Various topics relating to lunar evolution are discussed. The Moon's ancient orbital history, geophysical and geochemical constraints favoring the capture hypothesis, the site of the lunar core, chemical and petrological constraints, dynamical constraints, and mathematical models are among the topics discussed.
NASA Astrophysics Data System (ADS)
Milesi, V.; Shock, E.
2018-05-01
Thermodynamic modeling is performed to investigate the possible reaction paths of sea water throughout the Lo'ihi seamount and the associated geochemical supplies of energy that can support autotrophic microbial communities.
How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?
NASA Astrophysics Data System (ADS)
Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György
2017-04-01
Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an unexpectedly high proportion of total amount of CO2. Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO2 mineral trapping process.
Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.
2008-01-01
Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Zuccarello, Francesco
2017-09-01
Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.
NASA Astrophysics Data System (ADS)
Pigott, John D.; Abouelresh, Mohamed O.
2016-02-01
To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.
Geochemistry of the Birch Creek Drainage Basin, Idaho
Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.
2003-01-01
The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide models. In the southern part, ground water enters the ESRPA. In this area, the sampling sites were wells with depths and water levels much deeper than those in the northern and central parts of the valley. The calcium and carbon water chemistry in this area was characterized by a simple calcite-carbon dioxide model, but complex calcite-silicate models more accurately accounted for mass transfer in these areas. Throughout the geochemical system, calcite precipitated if it was an active phase in the models. Carbon dioxide either precipitated (outgassed) or dissolved depending on the partial pressure of carbon dioxide in water from the modeled sites. Dolomite was an active phase only in models from the central part of the system. Generally the entire geochemical system could be modeled with either evaporative models, carbonate models, or carbonate-silicate models. In both of the latter types of models, a significant amount of calcite precipitated relative to the mass transfer to and from the other active phases. The amount of calcite precipitated in the more complex models was consistent with the amount of calcite precipitated in the simpler models. This consistency suggests that, although the simpler models can predict calcium and carbon concentrations in Birch Creek Valley ground and surface water, silicate-mineral-based models are required to account for the other constituents. The amount of mass transfer to and from the silicate mineral phases was generally small compared with that in the carbonate phases. It appears that the water chemistry of well USGS 126B represents the chemistry of water recharging the ESRPA by means of underflow from the Birch Creek Valley.
Parkhurst, David L.; Appelo, C.A.J.
2013-01-01
PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales. Surface complexation can be calculated with the CD-MUSIC (Charge Distribution MUltiSIte Complexation) triple-layer model in addition to the diffuse-layer model. The composition of the electrical double layer of a surface can be estimated by using the Donnan approach, which is more robust and faster than the alternative Borkovec-Westall integration. Multicomponent diffusion, diffusion in the electrostatic double layer on a surface, and transport of colloids with simultaneous surface complexation have been added to the transport module. A series of keyword data blocks has been added for isotope calculations—ISOTOPES, CALCULATE_VALUES, ISOTOPE_ALPHAS, ISOTOPE_RATIOS, and NAMED_EXPRESSIONS. Solution isotopic data can be input in conventional units (for example, permil, percent modern carbon, or tritium units) and the numbers are converted to moles of isotope by PHREEQC. The isotopes are treated as individual components (they must be defined as individual master species) so that each isotope has its own set of aqueous species, gases, and solids. The isotope-related keywords allow calculating equilibrium fractionation of isotopes among the species and phases of a system. The calculated isotopic compositions are printed in easily readable conventional units. New keywords and options facilitate the setup of input files and the interpretation of the results. Keyword data blocks can be copied (keyword COPY) and deleted (keyword DELETE). Keyword data items can be altered by using the keyword data blocks with the _MODIFY extension and a simulation can be run with all reactants of a given index number (keyword RUN_CELLS). The definition of the complete chemical state of all reactants of PHREEQC can be saved in a file in a raw data format ( DUMP and _RAW keywords). The file can be read as part of another input file with the INCLUDE$ keyword. These keywords facilitate the use of IPhreeqc, which is a module implementing all PHREEQC version 3 capabilities; the module is designed to be used in other programs that need to implement geochemical calculations; for example, transport codes. Charting capabilities have been added to some versions of PHREEQC. Charting capabilities have been added to Windows distributions of PHREEQC version 3. (Charting on Linux requires installation of Wine.) The keyword data block USER_GRAPH allows selection of data for plotting and manipulation of chart appearance. Almost any results from geochemical simulations (for example, concentrations, activities, or saturation indices) can be retrieved by using Basic language functions and specified as data for plotting in USER_GRAPH. Results of transport simulations can be plotted against distance or time. Data can be added to a chart from tab-separated-values files. All input for PHREEQC version 3 is defined in keyword data blocks, each of which may have a series of identifiers for specific types of data. This report provides a complete description of each keyword data block and its associated identifiers. Input files for 22 examples that demonstrate most of the capabilities of PHREEQC version 3 are described and the results of the example simulations are presented and discussed.
Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, Larry L.
2017-05-01
MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.
NASA Astrophysics Data System (ADS)
Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.
2015-12-01
The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Detecting and Quantifying Paleoseasonality in Stalagmites using Geochemical and Modelling Approaches
NASA Astrophysics Data System (ADS)
Baldini, J. U. L.
2017-12-01
Stalagmites are now well established sources of terrestrial paleoclimate information, providing insights into climate change on a variety of timescales. One of the most exciting aspects of stalagmites as climate archives is their ability to provide information regarding seasonality, a notoriously difficult component of climate change to characterise. However, stalagmite geochemistry may reflect not only the most apparent seasonal signal in external climate parameters, but also cave-specific signals such as seasonal changes in cave air carbon dioxide concentrations, sudden shifts in ventilation, and stochastic hydrological processes. Additionally, analytical bias may dampen or completely obfuscate any paleoseasonality, highlighting the need for appropriate quantification of this issue using simple models. Evidence from stalagmites now suggests that a seasonal signal is extractable from many samples, and that this signal can provide an important extra dimension to paleoclimate interpretations. Additionally, lower resolution annual- to decadal-scale isotope ratio records may also reflect shifts in seasonality, but identifying these is often challenging. Integrating geochemical datasets with models and cave monitoring data can greatly increase the accuracy of climate reconstructions, and yield the most robust records.
Integration of Geophysical and Geochemical Data
NASA Astrophysics Data System (ADS)
Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.
2006-12-01
Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.
Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas
NASA Astrophysics Data System (ADS)
Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.
2015-11-01
Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.
Pierotti, Lisa; Cortecci, Gianni; Gherardi, Fabrizio
2016-01-01
We investigate the interaction between hydrothermal gases and groundwater in a major aquifer exploited for potable supply in the geothermal-volcanic area of Mt. Amiata, Central Italy. Two springs and two wells located on different sides of the volcanic edifice have been repeatedly sampled over the last 11 years. More than 160 chemical analyses and 10 isotopic analyses of total dissolved carbon (δ(13)C - total dissolved inorganic carbon (TDIC) = -15.9 to -7.8 ‰ vs. V-PDB) and sulphate (δ(34)S-SO4 = -6.9 to 5.1 ‰ vs. V-CDT) have been processed with geochemical modelling techniques. Best-fitting conditions between analytical data and model outputs have been achieved by numerical optimization, allowing for a quantitative description of gas-water-rock interactions occurring in this aquifer. Numerical calculations support a conceptual model that considers water-rock interactions to occur in the volcanic aquifer after inflow of deep-seated gases (CO2(g) and H2S(g)), and total conversion of H2S(g) to SO4, in the absence of mixing with geothermal waters from reservoirs currently exploited for electricity generation.
Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing
NASA Technical Reports Server (NTRS)
Blanchard, D. P. (Editor)
1980-01-01
The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.
Concerning evaluation of eco-geochemical background in remediation strategy
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2015-04-01
The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for plants and animals (Kovalsky, 1974; Letunova, Kovalsky, 1978, Ermakov, 1999). Obtained zones of different eco-geochemical risk need particular strategy basing on maximum possible correspondence to the natural geochemical conditions. For example, the assessment of effects of the nuclear accident in any case needs taking into account the synergetic results of ionizing radiation in different eco-geochemical conditions. In this respect the most contaminated areas should be withdrawn from living but some spatial arable lands can be used for seeds or technical crops production. The less contaminated areas still used in agriculture need shifting to fodder or species giving non-contaminated products (e.g. oil). Wet meadows of superaqueous landscapes with a relatively high radionuclide transfer to the plants should be excluded from grazing but other areas with lower transfer to forage may be used. In all the cases the resultant remediation should achieve first of all the maximum decrease of the summary negative health effect for the residents or working personnel. References Vernadsky V.I., 1926. Biosphere. Leningrad, Nauch. khim.-tekhn. izd-vo, 147 p. Vernadsky V.I., 1960. Selected works, Vol. 5. Moscow, izd-vo AN SSSR, 422 p. Kovalsky V.V., 1974. Geochemical ecology. Moscow, Nauka, Letunova S.V., Kovalsky V.V., 1978. Geochemical ecology of microorganisms. Moscow, Nauka, 148 pp. Ermakov V.V., 1999.Geochemical ecology as a result of the system-based study of the biosphere. Problems of biogeochemistry and geochemical ecology. Transactions of the Biogeochem. Lab., 23, Moscow, Nauka, 152-182.
Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts
NASA Technical Reports Server (NTRS)
Lowe, Donald R.; Byerly, Gary R.; Asaro, Frank; Kyte, Frank T.
1989-01-01
Beds of sand-sized spherules in the 3400-million-year-old Fig Tree Group, Barberton Greenstone belt, South Africa, formed by the fall of quenched liquid silicate droplets into a range of shallow- to deep-water depositional environments. The regional extent of the layers, their compositional complexity, and lack of included volcanic debris suggest that they are not products of volcanic activity. The layers are greatly enriched in iridium and other platinum group elements in roughly chondritic proportions. Geochemical modeling based on immobile element abundances suggests that the original average spherule composition can be approximated by a mixture of fractionated tholeiitic basalt, komatiite, and CI carbonaceous chondrite. The spherules are thought to be the products of large meteorite impacts on the Archean earth.
Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater
NASA Astrophysics Data System (ADS)
Brown, Giles H.; Tranter, M.; Sharp, M. J.
1996-04-01
The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.
This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationshipsmore » of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.« less
Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.
2010-01-01
This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Azain, Jaime S.; Granitto, Matthew
2014-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. For the geochemical part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 1,682 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering the western half of the Wrangellia Terrane in the Anchorage, Gulkana, Healy, Mt. Hayes, Nabesna, and Talkeetna Mountains quadrangles of south-central Alaska (fig. 1). USGS was responsible for sample retrieval from the Denver warehouse through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
NASA Astrophysics Data System (ADS)
Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.
2016-12-01
An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitsche, H.; Gatti, R.C.; Standifer, E.M.
1993-07-01
Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree},more » and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.« less
Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?
Huang, Longbin; Baumgartl, Thomas; Mulligan, David
2012-01-01
Background Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil – mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Scope Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. Conclusions When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to develop hydro-geochemically stable and biologically functional root zones, which can facilitate the recovery of the microbial community and ecological linkages with revegetated plant communities. PMID:22648878
NASA Astrophysics Data System (ADS)
Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto
2012-03-01
This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.
2016-01-01
Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.
Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions
NASA Astrophysics Data System (ADS)
Khan, S. D.; Flower, M. F. J.; Sultan, M. I.; Sandvol, E.
2006-05-01
The TETHYS GIS database is being developed as a way to integrate relevant geologic, geophysical, geochemical, geochronologic, and remote sensing data bearing on Tethyan continental plate collisions. The project is predicated on a need for actualistic model 'templates' for interpreting the Earth's geologic record. Because of their time-transgressive character, Tethyan collisions offer 'actualistic' models for features such as continental 'escape', collision-induced upper mantle flow magmatism, and marginal basin opening, associated with modern convergent plate margins. Large integrated geochemical and geophysical databases allow for such models to be tested against the geologic record, leading to a better understanding of continental accretion throughout Earth history. The TETHYS database combines digital topographic and geologic information, remote sensing images, sample-based geochemical, geochronologic, and isotopic data (for pre- and post-collision igneous activity), and data for seismic tomography, shear-wave splitting, space geodesy, and information for plate tectonic reconstructions. Here, we report progress on developing such a database and the tools for manipulating and visualizing integrated 2-, 3-, and 4-d data sets with examples of research applications in progress. Based on an Oracle database system, linked with ArcIMS via ArcSDE, the TETHYS project is an evolving resource for researchers, educators, and others interested in studying the role of plate collisions in the process of continental accretion, and will be accessible as a node of the national Geosciences Cyberinfrastructure Network—GEON via the World-Wide Web and ultra-high speed internet2. Interim partial access to the data and metadata is available at: http://geoinfo.geosc.uh.edu/Tethys/ and http://www.esrs.wmich.edu/tethys.htm. We demonstrate the utility of the TETHYS database in building a framework for lithospheric interactions in continental collision and accretion.
CO2 outgassing in a combined fracture and conduit karst aquifer near lititz spring, Pennsylvania
Toran, L.; Roman, E.
2006-01-01
Lititz Spring in southeastern Pennsylvania and a nearby domestic well were sampled for 9 months. Although both locations are connected to conduits (as evidenced by a tracer test), most of the year they were saturated with respect to calcite, which is more typical of matrix flow. Geochemical modeling (PHREEQC) was used to explain this apparent paradox and to infer changes in matrix and conduit contribution to flow. The saturation index varied from 0.5 to 0 most of the year, with a few samples in springtime dropping below saturation. The log PCO2 value varied from -2.5 to -1.7. Lower log PCO2 values (closer to the atmospheric value of -3.5) were observed when the solutions were at or above saturation with respect to calcite. In contrast, samples collected in the springtime had high PCO2, low saturation indices, and high water levels. Geochemical modeling showed that when outgassing occurs from a water with initially high PCO2, the saturation index of calcite increases. In the Lititz Spring area, the recharge water travels through the soil zone, where it picks up CO2 from soil gas, and excess CO 2 subsequently is outgassed when this recharge water reaches the conduit. At times of high water level (pipe full), recharge with excess CO 2 enters the system but the outgassing does not occur. Instead the recharge causes dilution, reducing the calcite saturation index. Understanding the temporal and spatial variation in matrix and conduit flow in karst aquifers benefited here by geochemical modeling and calculation of PCO2 values. ?? 2006 Geological Society of America.
Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle
NASA Astrophysics Data System (ADS)
Canovas, Peter A.; Shock, Everett L.
2016-12-01
Integrating microbial metabolism into geochemical modeling allows assessments of energy and mass transfer between the geosphere and the microbial biosphere. Energy and power supplies and demands can be assessed from analytical geochemical data given thermodynamic data for compounds involved in catabolism and anabolism. Results are reported here from a critique of the available standard state thermodynamic data for organic acids and acid anions involved in the citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle). The development of methods for estimating standard state data unavailable from experiments is described, together with methods to predict corresponding values at elevated temperatures and pressures using the revised Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous species. Internal consistency is maintained with standard state thermodynamic data for organic and inorganic aqueous species commonly used in geochemical modeling efforts. Standard state data and revised-HKF parameters are used to predict equilibrium dissociation constants for the organic acids in the citric acid cycle, and to assess standard Gibbs energies of reactions for each step in the cycle at elevated temperatures and pressures. The results presented here can be used with analytical data from natural and experimental systems to assess the energy and power demands of microorganisms throughout the habitable ranges of pressure and temperature, and to assess the consequences of abiotic organic compound alteration processes at conditions of subsurface aquifers, sedimentary basins, hydrothermal systems, meteorite parent bodies, and ocean worlds throughout the solar system.
CFD Code Development for Combustor Flows
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.
Toward a Probabilistic Automata Model of Some Aspects of Code-Switching.
ERIC Educational Resources Information Center
Dearholt, D. W.; Valdes-Fallis, G.
1978-01-01
The purpose of the model is to select either Spanish or English as the language to be used; its goals at this stage of development include modeling code-switching for lexical need, apparently random code-switching, dependency of code-switching upon sociolinguistic context, and code-switching within syntactic constraints. (EJS)
NASA Astrophysics Data System (ADS)
Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu
2017-10-01
We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.
24 CFR 200.926b - Model codes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model codes. 200.926b Section 200... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.926b Model codes. (a) Incorporation by reference. The following model code publications are incorporated by reference in accordance...
Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data
NASA Astrophysics Data System (ADS)
Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.
2005-12-01
Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and geochemical data, with detailed monitoring plume data. It provided key insights for confirming alternative conceptual site models and assessing the performance of monitoring networks. A monitoring strategy based on this graded approach for assessing alternative conceptual models can provide the technical bases for identifying critical monitoring locations, adequate monitoring frequency, and performance indicator parameters for performance monitoring involving ground-water levels and PCE concentrations.
Geochemical survey of the Blood Mountain Roadless Area, Union and Lumpkin counties, Georgia
Koeppen, Robert P.; Nelson, Arthur E.
1989-01-01
The U.S. Geological Survey (USGS) made a reconnaissance geochemical survey of the Blood Mountain Roadless Area to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance of distribution patterns of trace elements. Forty five fine-grained stream-sediment samples and 45 panned-concentrate samples were collected in the Blood Mountain study area (fig. 1). A.E. Nelson, in conjunction with detailed geologic mapping, collected 13 rock-chip samples for geochemical analysis, in addition to a large number of hand specimins for thin-section study. Nelson's geologic study (1983), combined with this geochemical survey, provide the basis for our mineral-resource assessment of the Blood Mountain Roadless Area (Koeppen and others, 1983).
Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.
2001-01-01
In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
Revisiting classical silicate dissolution rate laws under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand
2015-04-01
In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.
NASA Astrophysics Data System (ADS)
Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain
2014-09-01
A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.
A Model for Siderophile Element Distribution in Planetary Differentiation
NASA Technical Reports Server (NTRS)
Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.
2005-01-01
Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.
Anatomy of a fumarolic system inferred from a multiphysics approach.
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra
2018-05-15
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
NASA Technical Reports Server (NTRS)
Abbott, D.; Hoffman, S.
1985-01-01
The recycling of sediments into the mantle has become an important issue because recent papers have suggested that the geochemical inverse models of the evolution of radiogenic isotope abundances over the history of the Earth have nonunique solutions. Both the recycling of continent-derived sediments into the mantle and mixing in the mantle could produce similar geochemical effects in the mean isotopic ratios of new igneous material emplaced in continents. Recent models of Archaean heat flow and of plate tectonics during early Earth history have demonstrated that higher internal heat production of the early Earth was mainly dissipated through a higher creation rate of oceanic lithosphere. If the seafloor creation rate was higher on the early Earth, then the residence time of any one piece of oceanic lithosphere on the surface would have been shorter. It is possible that a higher rate of recycling of oceanic lithosphere into the mantle could have resulted in some transport of sediment into the mantle.
NASA Astrophysics Data System (ADS)
Korobova, Elena
2010-05-01
Sites of active or abandoned mining represent areas of considerable technogenic impact and need scientifically ground organization of their monitoring and reclamation. The strategy of monitoring and reclamation depends on the scale and character of the physical, chemical and biological consequences of the disturbances. The geochemical studies for monitoring and rehabilitation of the career-dump complexes should methodically account of formation of the particular new landforms and the changes in circulation of the remobilized elements of the soil cover. However, the general strategy should account of both the initial and transformed landscape geochemical structure of the area with due regard to the natural and new content of chemical elements in the environmental components. For example the tailings and waste rocks present new geochemical fields with specifically different concentration of chemical elements that cause formation of new geochemical barriers and landscapes. The way of colonization of the newly formed landscapes depends upon the new geochemical features of the technogenic environment and the adaptive ability of local and intrusive flora. The newly formed biogeochemical anomalies need organization of permanent monitoring not only within the anomaly itself but also of its impact zones. Spatial landscape geochemical monitoring combined with bio-geochemical criteria of threshold concentrations seems to be a helpful tool for decision making on reclamation and operation of the soil mining sites to provide a long-term ecologically sustainable development of the impact zone as a whole.
NASA Astrophysics Data System (ADS)
André, Laurent; Christov, Christomir; Lassin, Arnault; Azaroual, Mohamed
2018-03-01
The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.
2013-05-01
A crucial problem at most volcanoes involves the reconstruction of past eruptions from the geologic record. Rapid erosion of many volcanic terrains means that even geologically recent eruptions can leave a relatively sparse record. Here we consider the tephra-stratigraphic record of the 1913 eruption of Volcan de Colima, a recent but greatly eroded tephra fallout deposit. A total of 37 stratigraphic sections of the 1913 deposit have been analyzed for thickness, granulometry and geochemistry. The 1913 scoria are hornblende and two-pyroxene andesites with approximately 58 wt% SiO2, providing a distinct geochemical and petrographic signature from earlier (1818) and later (1961) tephra fallout deposits. A computer algorithm and code, Tephra2, is used to model the thickness variation of the deposit observed at these 37 localities using the advection-diffusion equation and to model the particle size distribution at each locality. Based on models of the particle size distribution, we estimate a median particle size for the deposit to be approximately -0.15 phi. We find model eruption height of approximately 18 km amsl and total erupted mass of 4-6e7 kg to best fit the observed tephra-stratigraphy. This volume and column height agree well with estimates from integrating the interpolated isopach map and maximum clast analysis. When historical reports of tephra accumulation are included in an alternative model, finer median particle size (2 phi), higher columns (25 km amsl) and greater total eruption mass (1-10e8 kg) are inferred, but with much greater uncertainty. The differences between these models suggest that either significant segregation by particle size as a function of height occurred in the 1913 eruption column, or the distal tephra fallout was associated with co-pyroclastic flow plumes ascending to great height, rather than direct deposition from the eruption column. This analysis highlights potential bias in eruption magnitude estimates from using only proximal deposits, which are the most likely preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This article develops a novel multiscale modeling approach to analyze CO2 reservoirs using Pacific Northwest National Laboratory’s STOMP-CO2-R code that is interfaced with the ABAQUS® finite element package. The STOMP-CO2-R/ABAQUS® sequentially coupled simulator accounts for the reactive transport of CO2 causing mineral composition changes that modify the geomechanical properties of reservoir rocks and seals. Formation rocks’ elastic properties that vary during CO2 injection and govern the poroelastic behavior of rocks are modeled by an Eshelby-Mori-Tanka approach (EMTA) implemented in ABAQUS® via user-subroutines. The computational tool incorporates the change in rock permeability due to both geochemistry and geomechanics. A three-dimensional (3D)more » STOMP-CO2-R model for a model CO2 reservoir containing a vertical fault is built to analyze a formation containing a realistic geochemical reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D ABAQUS® model that maps the above STOMP-CO2-R model is built for the analysis using STOMP-CO2-R/ABAQUS®. The results show that the changes in volume fraction of minerals include dissolution of anorthite, precipitation of calcite and kaolinite, with little change in the albite volume fraction. After a long period of CO2 injection the mineralogical and geomechanical changes significantly reduced the permeability and elastic modulus of the reservoir (between the base and caprock) in front of the fault leading to a reduction of the pressure margin to fracture at and beyond the injection location. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that directly affect the rock stiffness, stress and strain distributions as well as the pressure margin to fracture.« less
NASA Astrophysics Data System (ADS)
Dannberg, J.; Heister, T.; Grove, R. R.; Gassmoeller, R.; Spiegelman, M. W.; Bangerth, W.
2017-12-01
Earth's surface shows many features whose genesis can only be understood through the interplay of geodynamic and thermodynamic models. This is particularly important in the context of melt generation and transport: Mantle convection determines the distribution of temperature and chemical composition, the melting process itself is then controlled by the thermodynamic relations and in turn influences the properties and the transport of melt. Here, we present our extension of the community geodynamics code ASPECT, which solves the equations of coupled magma/mantle dynamics, and allows to integrate different parametrizations of reactions and phase transitions: They may alternatively be implemented as simple analytical expressions, look-up tables, or computed by a thermodynamics software. As ASPECT uses a variety of numerical methods and solvers, this also gives us the opportunity to compare different approaches of modelling the melting process. In particular, we will elaborate on the spatial and temporal resolution that is required to accurately model phase transitions, and show the potential of adaptive mesh refinement when applied to melt generation and transport. We will assess the advantages and disadvantages of iterating between fluid dynamics and chemical reactions derived from thermodynamic models within each time step, or decoupling them, allowing for different time step sizes. Beyond that, we will expand on the functionality required for an interface between computational thermodynamics and fluid dynamics models from the geodynamics side. Finally, using a simple example of melting of a two-phase, two-component system, we compare different time-stepping and solver schemes in terms of accuracy and efficiency, in dependence of the time scales of fluid flow and chemical reactions relative to each other. Our software provides a framework to integrate thermodynamic models in high resolution, 3d simulations of coupled magma/mantle dynamics, and can be used as a tool to study links between physical processes and geochemical signals in the Earth.
Development and application of the GIM code for the Cyber 203 computer
NASA Technical Reports Server (NTRS)
Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.
1982-01-01
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.
Comparison of Einstein-Boltzmann solvers for testing general relativity
NASA Astrophysics Data System (ADS)
Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.
2018-01-01
We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.
Wicks, C.M.; Herman, J.S.
1994-01-01
In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the geochemical evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer models suggest that, in unconfined areas, the geochemical reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.
NASA Astrophysics Data System (ADS)
Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.
2008-12-01
The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
He, Y.; Billen, M. I.; Puckett, E. G.
2015-12-01
Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and viscosity, and a Rayleigh-Taylor instability of a compositionally buoyant layer. To evaluate the trade-offs in computational speed and solution accuracy we present results for these same benchmarks using the two field tracking methods available in ASPECT: active tracer particles and the entropy viscosity method.
Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.
Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less
Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Church, S.E.; Schmidt, T.S.; Fey, D.L.; deWitt, E.H.; Klein, T.L.
2009-01-01
The US Geological Survey is conducting a study of surface-water quality in the Rocky Mountains of central Colorado, an area of approximately 55,000 km2. Using new and existing geologic maps, the more than 200 rock formations represented in the area were arranged into 17 groups based on lithologic similarity. The dominant regional geologic feature affecting water quality in central Colorado is the Colorado mineral belt (CMB), a NE-trending zone hosting many polymetallic vein or replacement deposits, and porphyry Mo deposits, many of which have been mined historically. The influence of the CMB is seen in lower surface-water pH (<5), and higher concentrations of SO42 - (>100 mg/L) and chalcophile metals such as Cu (>10 ??g/L), Zn (>100 ??g/L), and Cd (>1 ??g/L) relative to surface water outside the CMB. Not all streams within the CMB have been affected by mineralization, as there are numerous catchments within the CMB that have no mineralization or alteration exposed at the surface. At the regional-scale, and away from sites affected by mineralization, hydrothermal alteration, or mining, the effects of lithology on water quality can be distinguished using geochemical reaction modeling and principal components analysis. At local scales (100 s of km2), effects of individual rock units on water chemistry are subtle but discernible, as shown by variations in concentrations of major lithophile elements or ratios between them. These results demonstrate the usefulness of regional geochemical sampling of surface waters and process-based interpretations incorporating geologic and geochemical understanding to establish geochemical baselines.
NASA Astrophysics Data System (ADS)
Floyd, J. G.; Beeler, S. R.; Mors, R. A.; Kraus, E. A.; 2016, G.; Piazza, O.; Frantz, C. M.; Loyd, S. J.; Berelson, W.; Stevenson, B. S.; Marenco, P. J.; Spear, J. R.; Corsetti, F. A.
2016-12-01
Hot spring environments exhibit unique redox/physical gradients that may create favorable conditions for the presence of life and commonly contain mineral precipitates that could provide a geologic archive of such ecosystems on Earth and potentially other planets. However, it is critical to discern biologic from abiotic formation mechanisms if hot spring-associated minerals are to be used as biosignatures. The study of modern hot spring environments where mineral formation can be directly observed is necessary to better interpret the biogenicity of ancient/extraterrestrial examples. Little Hot Creek (LHC), a hot spring located in the Long Valley Caldera, California, contains mineral precipitates composed of a carbonate base covered with amorphous silica and minor carbonate in close association with microbial mats/biofilms. Geological, geochemical, and microbiological techniques were integrated to investigate the role of biology in mineral formation at LHC. Geochemical measurements indicate that the waters of the spring are near equilibrium with respect to carbonate and undersaturated with respect to silica, implying additional processes are necessary to initiate cap formation. Geochemical modeling, integrating elemental and isotopic data from hot spring water and mineral precipitates, indicate that the abiotic processes of degassing and evaporation drive mineral formation at LHC, without microbial involvement. However, petrographic analysis of LHC caps revealed microbial microfabrics within silica mineral phases, despite the fact that microbial metabolism was not required for mineral precipitation. Our results show that microorganisms in hot spring environments can shape mineral precipitates even in the absence of a control on authigenesis, highlighting the need for structural as well as geochemical investigation in similar systems.
Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale
Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; ...
2016-11-09
Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less
Miller, W.R.; Ficklin, W.H.; McHugh, J.B.
1992-01-01
Water was used as a medium for geochemical exploration to detect copper-nickel mineralization along the basal zone of the Duluth Complex. Ni2+ is the most important pathfinder for the detection of the mineralized rocks, followed by Cu2+ and SO42- and to a lesser extent Mg2+ and SiO2. A normalized sum plot using these species defines the mineralization more consistently than a single-element plot, mainly because the absence of one variable does not significantly influence the normalized sum value. A hydrogeochemical survey was conducted in an area of known copper-nickel mineralization in the cool-humid climate of northeastern Minnesota. The area is covered with glacial drift, and wetlands are abundant. Modeling of the chemistry of waters indicates that the waters are oxidizing and have a pH of 7 or less. The most important pathfinder species in the waters, Cu2+, Ni2+, and SO42-, are derived from the simple weathering of sulfide minerals and are mobile in the waters in this environment. Plots of Cu and Ni concentrations in soils show that Cu followed by Ni are the most useful indicator elements for delineating copper-nickel mineralization. The ability of soils and water to delineate the mineralization supports the use of both media for geochemical exploration in this cool-humid environment. In the wetlands, abundant water is available and soils are scarce or absent; where soils are abundant, waters are generally scarce or absent. The use of both media is recommended for geochemical exploration in this environment. ?? 1992.
Kane, J.S.
1991-01-01
A brief history of programs to develop geochemical reference samples and certified reference samples for use in geochemical analysis is presented. While progress has been made since G-1 and W-1 were issued, many challenges remain. ?? 1991.
Chaffee, M.A.
1986-01-01
Geochemical sampling was conducted during 1982. This report summarizes the results of that investigation and provides details of the geochemical evaluation used in producing the final mineral resource assessment of the study area (Armstrong and others, 1983).
On prediction and discovery of lunar ores
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.; Vaniman, David
1991-01-01
Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.
NASA Astrophysics Data System (ADS)
Smirnov, Yu. V.; Sorokin, A. A.
2017-05-01
The first results of geochemical and Sm-Nd isotope-geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian-Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin "block" of the South Mongolian-Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.
NASA Astrophysics Data System (ADS)
Smith, J. P.; Owens, P. N.; Gaspar, L.; Lobb, D. A.; Petticrew, E. L.
2015-12-01
An understanding of sediment redistribution processes and the main sediment sources within a watershed is needed to support watershed management strategies. The fingerprinting technique is increasingly being recognized as a method for establishing the source of the sediment transported within watersheds. However, the different behaviour of the various fingerprinting properties has been recognized as a major limitation of the technique, and the uncertainty associated with tracer selection needs to be addressed. There are also questions associated with which modelling approach (frequentist or Bayesian) is the best to unmix complex environmental mixtures, such as river sediment. This study aims to compare and evaluate the differences between fingerprinting predictions provided by a Bayesian unmixing model (MixSIAR) using different groups of tracer properties for use in sediment source identification. We used fallout radionuclides (e.g. 137Cs) and geochemical elements (e.g. As) as conventional fingerprinting properties, and colour parameters as emerging properties; both alone and in combination. These fingerprinting properties are being used (i.e. Koiter et al., 2013; Barthod et al., 2015) to determine the proportional contributions of fine sediment in the South Tobacco Creek Watershed, an agricultural watershed located in Manitoba, Canada. We show that the unmixing model using a combination of fallout radionuclides and geochemical tracers gave similar results to the model based on colour parameters. Furthermore, we show that a model that combines all tracers (i.e. radionuclide/geochemical and colour) gave similar results, showing that sediment sources change from predominantly topsoil in the upper reaches of the watershed to channel bank and bedrock outcrop material in the lower reaches. Barthod LRM et al. (2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. J Environ Qual. Doi:10.2134/jeq2015.01.0043 Koiter AJ et al. (2013). Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J Soils Sediments, 13, 1676-1691.
Predicting subsurface uranium transport: Mechanistic modeling constrained by experimental data
NASA Astrophysics Data System (ADS)
Ottman, Michael; Schenkeveld, Walter D. C.; Kraemer, Stephan
2017-04-01
Depleted uranium (DU) munitions and their widespread use throughout conflict zones around the world pose a persistent health threat to the inhabitants of those areas long after the conclusion of active combat. However, little emphasis has been put on developing a comprehensive, quantitative tool for use in remediation and hazard avoidance planning in a wide range of environments. In this context, we report experimental data on U interaction with soils and sediments. Here, we strive to improve existing risk assessment modeling paradigms by incorporating a variety of experimental data into a mechanistic U transport model for subsurface environments. 20 different soils and sediments from a variety of environments were chosen to represent a range of geochemical parameters that are relevant to U transport. The parameters included pH, organic matter content, CaCO3, Fe content and speciation, and clay content. pH ranged from 3 to 10, organic matter content from 6 to 120 g kg-1, CaCO3 from 0 to 700 g kg-1, amorphous Fe content from 0.3 to 6 g kg-1 and clay content from 4 to 580 g kg-1. Sorption experiments were then performed, and linear isotherms were constructed. Sorption experiment results show that among separate sets of sediments and soils, there is an inverse correlation between both soil pH and CaCO¬3 concentration relative to U sorptive affinity. The geological materials with the highest and lowest sorptive affinities for U differed in CaCO3 and organic matter concentrations, as well as clay content and pH. In a further step, we are testing if transport behavior in saturated porous media can be predicted based on adsorption isotherms and generic geochemical parameters, and comparing these modeling predictions with the results from column experiments. The comparison of these two data sets will examine if U transport can be effectively predicted from reactive transport modeling that incorporates the generic geochemical parameters. This work will serve to show whether a more mechanistic approach offers an improvement over statistical regression-based risk assessment models.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2017-03-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2016-01-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Abdullatif, Osman M.; Makkawi, Mohammed H.; Eltoum, Isam-Eldin A.
2017-03-01
The interpretation of depositional environments provides important information to understand facies distribution and geometry. The classical approach to interpret depositional environments principally relies on the analysis of lithofacies, biofacies and stratigraphic data, among others. An alternative method, based on geochemical data (chemical element data), is advantageous because it can simply, reproducibly and efficiently interpret and refine the interpretation of the depositional environment of carbonate strata. Here we geochemically analyze and statistically model carbonate samples (n = 156) from seven sections of the Arab-D reservoir outcrop analog of central Saudi Arabia, to determine whether the elemental signatures (major, trace and rare earth elements [REEs]) can be effectively used to predict depositional environments. We find that lithofacies associations of the studied outcrop (peritidal to open marine depositional environments) possess altered REE signatures, and that this trend increases stratigraphically from bottom-to-top, which corresponds to an upward shallowing of depositional environments. The relationship between REEs and major, minor and trace elements indicates that contamination by detrital materials is the principal source of REEs, whereas redox condition, marine and diagenetic processes have minimal impact on the relative distribution of REEs in the lithofacies. In a statistical model (factor analysis and logistic regression), REEs, major and trace elements cluster together and serve as markers to differentiate between peritidal and open marine facies and to differentiate between intertidal and subtidal lithofacies within the peritidal facies. The results indicate that statistical modelling of the elemental composition of carbonate strata can be used as a quantitative method to predict depositional environments and regional paleogeography. The significance of this study lies in offering new assessments of the relationships between lithofacies and geochemical elements by using advanced statistical analysis, a method that could be used elsewhere to interpret depositional environment and refine facies models.
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
Combustion chamber analysis code
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-01-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Voluntary National Model Building Codes E Exhibit E... National Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of...
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Voluntary National Model Building Codes E Exhibit E to... Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of this...
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Voluntary National Model Building Codes E Exhibit E... National Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of...
Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey
NASA Astrophysics Data System (ADS)
Gorring, Matthew L.; Naslund, H. R.
1995-03-01
Transects through the lower part of the Palisades sill were made at Fort Lee and Alpine, New Jersey in order to characterize the petrologic signature of previously proposed “reversals” in the normal, tholeiitic differentiation trend. Petrographic and geochemical data include: (1) modal and grain size analyses, (2) bulk rock major and trace element concentrations by DCP-AES, and (3) augite, orthopyroxene, magnetite, and olivine compositions by electron microprobe analysis. Anomalous horizons, defined by increased bulk rock Mg?, Cr, Ni, and Co concentrations and abrupt modal and grain-size changes, occur at 10 m (the well known olivine zone), 27 m, 45 m, and 95 m above the basal contact. Thermal models coupled with estimates of the emplacement rate and total magma volume indicate that the olivine zone (OZ) is an early-stage feature, related to the emplacement of initial magma into the Palisades chamber. Stoke’s Law calculations indicate that the settling velocity of average-sized olivine crystals in a high-titanium, quartz-normative (HTQ) magma is too slow for significant gravity settling to have occurred prior to the solidification of the basal 20 m of the sill. It is suggested that the OZ resulted from the emplacement of a heterogeneous initial magma from a compositionally stratified, sub-Palisades storage chamber located within the upper crust; however, heterogeneity may have been derived directly from the mantle or during rapid ascent. Geochemical models indicate that the OZ contains accumulated olivine that is not in cotectic (or constant) proportions with the other cumulus phases, suggesting a mechanical sorting process. Magma chamber recharge is proposed to have occurred at the 27 m and 45 m levels, when a slightly more-primitive HTQ magma was injected into the Palisades sill cha- mber. Zones of elevated Mg? and Cr, 6 to 10 m thick, at these two horizons may indicate the thickness of the hybrid magma formed by the mixing of these two compositions. Geochemical models indicate that the rocks at these levels have accumulated excess orthopyroxene relative to samples from the rest of the sill. Normal faulting in the Fort Lee area at the 95 m level has caused repetition of the stratigraphic section, and hence, the sharp reversal observed at this level.
NASA Astrophysics Data System (ADS)
Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.
2016-09-01
Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although 14C cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water.
The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...
Modeling of dust deposition in central Asia
USDA-ARS?s Scientific Manuscript database
The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...
In-Drift Microbial Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Jolley
2000-11-09
As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999).more » This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.« less
2011-01-01
Background Electronic patient records are generally coded using extensive sets of codes but the significance of the utilisation of individual codes may be unclear. Item response theory (IRT) models are used to characterise the psychometric properties of items included in tests and questionnaires. This study asked whether the properties of medical codes in electronic patient records may be characterised through the application of item response theory models. Methods Data were provided by a cohort of 47,845 participants from 414 family practices in the UK General Practice Research Database (GPRD) with a first stroke between 1997 and 2006. Each eligible stroke code, out of a set of 202 OXMIS and Read codes, was coded as either recorded or not recorded for each participant. A two parameter IRT model was fitted using marginal maximum likelihood estimation. Estimated parameters from the model were considered to characterise each code with respect to the latent trait of stroke diagnosis. The location parameter is referred to as a calibration parameter, while the slope parameter is referred to as a discrimination parameter. Results There were 79,874 stroke code occurrences available for analysis. Utilisation of codes varied between family practices with intraclass correlation coefficients of up to 0.25 for the most frequently used codes. IRT analyses were restricted to 110 Read codes. Calibration and discrimination parameters were estimated for 77 (70%) codes that were endorsed for 1,942 stroke patients. Parameters were not estimated for the remaining more frequently used codes. Discrimination parameter values ranged from 0.67 to 2.78, while calibration parameters values ranged from 4.47 to 11.58. The two parameter model gave a better fit to the data than either the one- or three-parameter models. However, high chi-square values for about a fifth of the stroke codes were suggestive of poor item fit. Conclusion The application of item response theory models to coded electronic patient records might potentially contribute to identifying medical codes that offer poor discrimination or low calibration. This might indicate the need for improved coding sets or a requirement for improved clinical coding practice. However, in this study estimates were only obtained for a small proportion of participants and there was some evidence of poor model fit. There was also evidence of variation in the utilisation of codes between family practices raising the possibility that, in practice, properties of codes may vary for different coders. PMID:22176509
Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT
NASA Technical Reports Server (NTRS)
Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.
2015-01-01
This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2017-04-01
Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed study confirms that Cs-137 as a label helps to trace processes and patterns of chemical elements' migration on the level of ELGS that are numerously reproduced elsewhere in natural systems. The study is aimed at and believed to provide solution for a number of important problems related to generation and evolution of soil structure, spatial redistribution of fertilizers and pesticides, other important processes of matter redistribution on the level of local LGS. References Korobova E.M., Korovaykov P.A., 1990. Landscape and geochemical approach to drawing up a soil distribution profile for Chernobyl radionuclides in distant areas //Seminar "Comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtum, Windscale, Chernobyl". V. 1. Luxembourg, 309-327. Linnik V.G., 2008. Landscape differentiation of technogenic radionuclides: geoinformation systems and models. Thesis. Moscow: Moscow State University, 42 p. Romanov S.L., 1989. Principles of formation of radionuclide dispersion and concentration fields // Abstracts of the All-Union Conference "Principles and methods of landscape geochemical studies of radionuclide migration". Moscow: Vernadsky Institute, p. 46. Shcheglov A.I., Tsvetnova O.B., KlyashtorinA.L., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Moscow: Nauka, 235 p.
NASA Astrophysics Data System (ADS)
Kalugin, Ivan; Darin, Andrey; Babich, Valery; Markovich, Tatiana; Meydan, Feray
2017-04-01
As it well known, recent quantitative estimations of high-resolution environmental variability are based on geochemical records in lake sediments. Naturally, annually laminated sediments (varves) are the best objects for paleoclimatic study, because they allow to investigate seasonal variability for understanding long-term environmental pattern. Also, varved sediments seem to be applied as the model for identification of element-indicators for non-laminated sediments. The XRF scanner on Synchrotron Radiation provides big geochemical dataset for next mathematic treatment, including time series construction. XRF scanning realizes rapid and non-destructive determinations more than 30 trace elements in a range of concentration from 1 up to 10000 ppm in annual layers. That makes sedimentary cores comparable with tree-rings. Geochemical and physicochemical investigation of lake sediments provides basic information to identify geochemical signals with paleoclimate. In general, sediment consists of mineral component, organics and carbonates. The proportions between these components are affected by environmental parameters, because measured element content or their combinations show correlation with meteodata on instrumental time interval. That allows applying geochemical variability to reconstruct the environmental parameters in the form of time series. The proportions between main components are controlled by temperature, atmospheric precipitation, water salinity and other external forcings. So, layered structure of lake bottom sediments and detectable elements content variability both represent a continuous record of environmental history. Element composition and it's climatic response. Bottom sediments represent conditions of physical weathering, temperate bioproductivity and aridity, which concern to mountain lakes within extra tropical zone. The numerical values of the parameters can be computed by software of physical-chemical modeling for gas+water+rock multisystems. Mineral matter responses to runoff. Mineral clastic part is correlated with x-ray density. It includes "clastic" rock-forming - Si, Al , Ti, Fe, Mg, Ca, K and trace elements such as Sr, Rb, Y, Zr, REE etc. Organic component of sediment more reflects temperature by means of productivity in the catchment and waterbody. Organophillic elements are Br, I, U and others soluble elements correlated with organic Carbon or LOI<500oC. Bio-chemogenic component is more characteristic for saline lakes, where Ca-, Mg- and Sr- carbonates precipitated in dependence of temperature, aridity and water salinity. Separate geochemical indicators are directly used for paleo- environmental evaluation. For example, elements with changing valency may be a proxy of outer conditions. Fe is strictly connected with sulfur in sulphide under anoxic conditions. And also Fe forms siderite in carbonate ion saturated, but calcium poor, water in the sedimentation system. Mn-enriched layers, crusts and nodules mark usually a long - term pauses of sedimentation in oxic systems. Mo/Mn ratio is good correlated with anoxic atmosphere. And so on. The work is supported by grants RFBR 16-05-00641, 16-05-00657, 15-55-46001.
Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.
2015-01-01
The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.
Linking the climatic and geochemical controls on global soil carbon cycling
NASA Astrophysics Data System (ADS)
Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal
2015-04-01
Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.