Sample records for geochemical reference samples

  1. Review of geochemical reference sample programs since G-1 and W-1: progress to date and remaining challenges

    USGS Publications Warehouse

    Kane, J.S.

    1991-01-01

    A brief history of programs to develop geochemical reference samples and certified reference samples for use in geochemical analysis is presented. While progress has been made since G-1 and W-1 were issued, many challenges remain. ?? 1991.

  2. Publications - GMC 343 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 343 Publication Details Title: Geochemical data (HC-show evaluation) for the following samples Bibliographic Reference ConocoPhillips, 2007, Geochemical data (HC-show evaluation) for the following samples

  3. Publications - GMC 154 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 154 Publication Details Title: Geochemical and pellet data of an 8060 foot depth core sample Reference Mickey, M.B., and Brockway, Ron, 1990, Geochemical and pellet data of an 8060 foot depth core

  4. Analyzing legacy U.S. Geological Survey geochemical databases using GIS: applications for a national mineral resource assessment

    USGS Publications Warehouse

    Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew

    2012-01-01

    This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.

  5. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  6. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials

    NASA Astrophysics Data System (ADS)

    Fourny, Anaïs.; Weis, Dominique; Scoates, James S.

    2016-03-01

    Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

  7. Comment on the International Atomic Energy Agency Report on the Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigation, Vienna, Austria, September 19-21, 1983

    USGS Publications Warehouse

    Coplen, T.B.; Friedman, Irving; O'Neil, J.R.

    1984-01-01

    According to U.S. Geological Survey records, a report prepared by R. Gonfiantini summarizing the findings and recommendations of the 1983 Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrologic Investigations held in Vienna does not accurately represent the consultants ' consensus on three important points. The consultants (1) recommended no value for the C02-H20 oxygen isotope fractionation factor, not the cited value of 1.04115, (2) adopted a value of 1.0309 rather than 1.03086 to relate the PDB and SMOW scales, and (3) adopted a firm 180 value of -2.20% for NBS-19 on the PDB scale rather than agreeing that this would be a tentative value subject to modification when more measurements in selected laboratories are available. (USGS)

  8. East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ma, W.

    2010-12-01

    North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can generate classification thematic maps using query results, according different parameters. 3.Data analysis on-line. Here we designed lots of geochemical online analysis tools, including geochemical diagrams, CIPW computing, and so on, which allows researchers to analyze query data without download query results. Operation of all these analysis tools is very easy; users just do it by click mouse one or two time. In summary, ECGD provide a geochemical platform for researchers, whom to know where various data are, to view various data in a synthetic and dynamic way, and analyze interested data online. REFERENCES [1] S. Gao, R.L. Rudnick, and W.L. Xu, “Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton,” Earth and Planetary Science Letters,270,41-53,2008. [2] K.A. Lehnert, U. Harms, and E. Ito, “Promises, Achievements, and Challenges of Networking Global Geoinformatics Resources - Experiences of GeosciNET and EarthChem,” Geophysical Research Abstracts, Vol.10, EGU2008-A-05242,2008.

  9. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes for 30 samples.

  10. Leveling data in geochemical mapping: scope of application, pros and cons of existing methods

    NASA Astrophysics Data System (ADS)

    Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe

    2017-04-01

    Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.

  11. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  12. The Geochemical Databases GEOROC and GeoReM - What's New?

    NASA Astrophysics Data System (ADS)

    Sarbas, B.; Jochum, K. P.; Nohl, U.; Weis, U.

    2017-12-01

    The geochemical databases GEOROC (http: georoc.mpch-mainz.gwdg.de) and GeoReM (http: georem.mpch-mainz.gwdg.de) are maintained by the Max Planck Institute for Chemistry in Mainz, Germany. Both online databases became crucial tools for geoscientists from different research areas. They are regularly upgraded by new tools and new data from recent publications obtained from a wide range of international journals. GEOROC is a collection of published analyses of volcanic rocks and mantle xenoliths. Since recently, data for plutonic rocks are added. The analyses include major and trace element concentrations, radiogenic and non-radiogenic isotope ratios as well as analytical ages for whole rocks, glasses, minerals and inclusions. Samples come from eleven geological settings and span the whole geological age scale from Archean to Recent. Metadata include, among others, geographic location, rock class and rock type, geological age, degree of alteration, analytical method, laboratory, and reference. The GEOROC web page allows selection of samples by geological setting, geography, chemical criteria, rock or sample name, and bibliographic criteria. In addition, it provides a large number of precompiled files for individual locations, minerals and rock classes. GeoReM is a database collecting information about reference materials of geological and environmental interest, such as rock powders, synthetic and natural glasses as well as mineral, isotopic, biological, river water and seawater reference materials. It contains published data and compilation values (major and trace element concentrations and mass fractions, radiogenic and stable isotope ratios). Metadata comprise, among others, uncertainty, analytical method and laboratory. Reference materials are important for calibration, method validation, quality control and to establish metrological traceability. GeoReM offers six different search strategies: samples or materials (published values), samples (GeoReM preferred values), chemical criteria, chemical criteria based on bibliography, bibliography, as well as methods and institutions.

  13. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  14. Comparison of several analytical methods for the determination of tin in geochemical samples as a function of tin speciation

    USGS Publications Warehouse

    Kane, J.S.; Evans, J.R.; Jackson, J.C.

    1989-01-01

    Accurate and precise determinations of tin in geological materials are needed for fundamental studies of tin geochemistry, and for tin prospecting purposes. Achieving the required accuracy is difficult because of the different matrices in which Sn can occur (i.e. sulfides, silicates and cassiterite), and because of the variability of literature values for Sn concentrations in geochemical reference materials. We have evaluated three methods for the analysis of samples for Sn concentration: graphite furnace atomic absorption spectrometry (HGA-AAS) following iodide extraction, inductively coupled plasma atomic emission spectrometry (ICP-OES), and energy-dispersive X-ray fluorescence (EDXRF) spectrometry. Two of these methods (HGA-AAS and ICP-OES) required sample decomposition either by acid digestion or fusion, while the third (EDXRF) was performed directly on the powdered sample. Analytical details of all three methods, their potential errors, and the steps necessary to correct these errors were investigated. Results showed that similar accuracy was achieved from all methods for unmineralized samples, which contain no known Sn-bearing phase. For mineralized samples, which contain Sn-bearing minerals, either cassiterite or stannous sulfides, only EDXRF and fusion ICP-OES methods provided acceptable accuracy. This summary of our study provides information which helps to assure correct interpretation of data bases for underlying geochemical processes, regardless of method of data collection and its inherent limitations. ?? 1989.

  15. Determination of the platinum - Group elements (PGE) and gold (Au) in manganese nodule reference samples by nickel sulfide fire-assay and Te coprecipitation with ICP-MS

    USGS Publications Warehouse

    Balaram, V.; Mathur, R.; Banakar, V.K.; Hein, J.R.; Rao, C.R.M.; Gnaneswara, Rao T.; Dasaram, B.

    2006-01-01

    Platinum group elements (PGE) and Au data in polymetallic oceanic ferromanganese nodule reference samples and crust samples obtained by inductively coupled plasma mass spectrometry (ICP-MS), after separation and pre-concentration by nickel sulfide fire-assay and Te coprecipitation, are presented. By optimizing several critical parameters such as flux composition, matrix matching calibration, etc., best experimental conditions were established to develop a method suitable for routine analysis of manganese nodule samples for PGE and Au. Calibrations were performed using international PGE reference materials, WMG-1 and WMS-1. This improved procedure offers extremely low detection limits in the range of 0.004 to 0.016 ng/g. The results obtained in this study for the reference materials compare well with previously published data wherever available. New PGE data arc also provided on some international manganese nodule reference materials. The analytical methodology described here can be used for the routine analysis of manganese nodule and crust samples in marine geochemical studies.

  16. Surface water quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : geochemical data for fine-fraction streambed sediment from high- and low-order streams, 1987

    USGS Publications Warehouse

    Colman, John A.; Sanzolone, R.F.

    1991-01-01

    Geochemical data are presented from a synoptic survey of 46 elements in fine-fraction streambed sediments of the Upper Illinois River Basin during the fall of 1987. The survey was a component study of the Illinois pilot project of the U.S. Geological Survey's National Water-Quality Assessment program. Most of the sampling sites were randomly chosen--135 on main stems of rivers and 238 on first- and second-order streams. In addition, 196 samples were collected for quality-assurance and special-study purposes. The report includes element concentration data and summary-statistics tables of percentiles, nested analysis of variance, and correlation coefficients. All concentration data are included in tabular form and can be selected by map reference number, latitude and longitude, or remark code indicating purpose for collecting sample.

  17. Cerium and Neodymium Isotope Fractionation in Geochemical Samples

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ishibashi, T.

    2014-12-01

    The study of naturally occurring isotopic variations of rare earth elements (REE) has a potentially significant influence in geochemical research fields with other traditional studies of REE. One of the key features of REE are their chemical similarities and gradual changes of ionic radius, which may make the isotopic variation of REE a potential tool to understand the mechanisms of isotopic fractionation in nature. Among the REE, geochemical and physicochemical features of Ce could be anomalous, because Ce could be present as the tetravalent (+IV) state as well as the common trivalent (+III) state of other REE. Since the oxidation state of Ce can change by reflecting the redox conditions of the environment, the measured differences in the degree of isotopic fractionation between Ce and other REE can provide unique information about the redox conditions. In this study, we developed a new analytical method to determine the mass-dependent isotopic fractionations of Ce and Nd in geochemical samples. The reproducibility of the isotopic ratio measurements on 142Ce/140Ce, 146Nd/144Nd and 148Nd/144Nd were 0.08‰ (2SD, n=25), 0.06‰ (2SD, n=39) and 0.12‰ (2SD, n=39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ142Ce and δ146Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by physicochemical processes without changing the oxidation status of Ce, since the redox-reaction can produce larger isotopic fractionation than the reactions without changing the oxidation state. The variations in the Ce and Nd isotope ratios for geochemical samples could provide new information concerning the physico-chemical processes of the sample formation.

  18. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE

    EPA Science Inventory

    The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...

  19. Compositional analysis and pollution impact assessment: A case study in the Gulfs of Naples and Salerno

    NASA Astrophysics Data System (ADS)

    Menghan, Wang; Stefano, Albanese; Annamaria, Lima; Claudia, Cannatelli; Antonio, Cosenza; Wanjun, Lu; Marco, Sacchi; Angela, Doherty; Benedetto, De Vivo

    2015-07-01

    This paper presents the results of an environmental geochemical investigation of the Gulfs of Naples and Salerno, near the Campania plain (Southern Italy). Surface marine sediment samples were collected during three field campaigns: 96 from the Gulfs of Naples and Salerno (NaSa); 123 from the Bagnoli site coastal area (BaSi); and 11 from the ports around the Gulf of Naples (PoNa). Elemental concentrations were determined and their interpolated distribution maps were compiled. Three geochemical sources (or processes) were determined associating elemental distribution with the results obtained from a R-mode factor analysis: 1) geogenic, 2) water kinetics and 3) anthropogenic. The results are presented as raw data single element distributions of eight potential toxic elements (PTEs) (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn) in the forms of raw data and additive log-ratio transformed data. The latter showed advantages in revealing the actual distribution patterns. Geochemical background reference values of PTEs were determined from the median value of local background reference values. Based on these values, pollution impact analysis was carried out to both BaSi and PoNa samples, indicating most of BaSi and PoNa sediments were affected by moderate to strong Pb, Zn, Cd and Hg pollution. An ecological risk assessment was subsequently carried out on the entire database, pointing a toxic risk ranking in the order Pb > As > Ni > Cd > Hg > Cr.

  20. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into the interactive U.S. Geological Survey Mineral Resource Data web portal, available at http://mrdata.usgs.gov/.

  1. Statistical analysis of soil geochemical data to identify pathfinders associated with mineral deposits: An example from the Coles Hill uranium deposit, Virginia, USA

    USGS Publications Warehouse

    Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.

    2015-01-01

    Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.

  2. Geochemical and mineralogical methods of prospecting for mineral deposits

    USGS Publications Warehouse

    Fersman, A. Ye; Borovik, S. A.; Gorshkov, G.V.; Popov, S.D.; Sosedko, A.F.; Hartsock, Lydia; Pierce, A.P.

    1952-01-01

    Fersman's book "Geochemical and mineralogical methods of prospecting for mineral deposits" (Geokhimicheskiye i mineralogicheskiye metody poiskov poleznykh iskopayemykh) covers all petrographic, mineralogical, and geochemical techniques that are used either directly or indirectly in mineral exploration. Chapter IV is of particular interest because it describes certain geochemical methods and principles that have not been widely applied outside of the Soviet Union. The original contained a number of photographs that have been omitted; the titles of the photographs are given in the body of the text. Wherever possible, bibliographic references have been checked, and the full titles given. References given in footnotes in the original have been collected and added at the end of each section as a bibliography.

  3. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context of a sample and complement more closed spaced studies. New results will be added to the database continuously with the aim of covering all major geologic units of France within the next year.

  4. Trace element and Nd, Sr, Pb isotope geochemistry of Kilauea Volcano, Hawai'i, near-vent eruptive products: 1983-2001

    USGS Publications Warehouse

    Thornber, Carl R.; Budahn, James R.; Ridley, W. Ian; Unruh, Daniel M.

    2003-01-01

    This open-file report serves as a repository for geochemical data referred to in U.S. Geological Survey Professional Paper 1676 (Heliker, Swanson, and Takahashi, eds., 2003), which includes multidisciplinary research papers pertaining to the first twenty years of Puu Oo Kupaianaha eruption activity. Details of eruption characteristics and nomenclature are provided in the introductory chapter of that volume (Heliker and Mattox, 2003). Geochemical relations of this data are depicted and interpreted by Thornber (2003), Thornber and others (2003a) and Thornber (2001). This report supplements Thornber and others (2003b) in which whole-rock and glass major-element data on ~1000 near-vent lava samples collected during the 1983 to 2001 eruptive interval of Kilauea Volcano, Hawai'i, are presented. Herein, we present whole-rock trace element compositions of 85 representative samples collected from January 1983 to May 2001; glass trace-element compositions of 39 Pele’s Tear (tephra) samples collected from September 1995 to September 1996, and whole-rock Nd, Sr and Pb isotopic analyses of 10 representative samples collected from September 1983 to September 1993. Thornber and others (2003b) provide a specific record of sample characteristics, location, etc., for each of the samples reported here. Spreadsheets of both reports may be integrated and sorted based upon time of formation or sample numbers. General information pertaining to the selectivity and petrologic significance of this sample suite is presented by Thornber and others (2003b). As justified in that report, this select suite of time-constrained geochemical data is suitable for constructing petrologic models of pre-eruptive magmatic processes associated with prolonged rift zone eruption of Hawaiian shield volcanoes.

  5. A compilation of whole-rock and glass major-element geochemistry of Kilauea Volcano, Hawai'i, near-vent eruptive products: January 1983 through September 2001

    USGS Publications Warehouse

    Thornber, Carl R.; Hon, Ken; Heliker, Christina; Sherrod, David A.

    2003-01-01

    This report presents major-element geochemical data from 652 glasses (~6,520 analyses) and 795 whole-rock aliquots from 1,002 fresh samples of olivine-tholeiitic lava collected throughout the near-continuous eruption of Kïlauea Volcano, Hawai'i, from January 1983 through September 2001. The data presented herein provide a unique temporal compilation of lava geochemistry that best reflects variations of pre-eruptive magma compositions during prolonged rift-zone eruption. This document serves as a repository for geochemical data referred to in U.S. Geological Survey Professional Paper 1676 (Heliker, Swanson, and Takahashi, eds., 2003) which includes multidisciplinary research papers pertaining to the first twenty years of Puu Oo-Kupaianaha eruption activity. Details of eruption characteristics and nomenclature are provided in the introductory chapter of that volume (Heliker and Mattox, 2003). Geochemical relations among all or portions of this data set are depicted and interpreted by Thornber (2003), Thornber and others (2003) and Thornber (2001). Trace element compositions and Nd, Sr and Pb isotopic analyses of representative samples of this select eruption suite will be provided in a separate and complimentary open file report. From 1983 to October 2001, approximately 2,500 eruption samples were collected and archived by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO). Geochemical data for 1,002 of these samples are included here. Previous reports present bulk-lava major- element chemistry for eruption samples collected from 1983 to 1986 and from 1990 to 1994 (Neal and others, 1988 and Mangan and others, 1995, respectively). Major element glass chemistry and thermometry data for samples collected from 1983 to 1994 is reported by Helz and Hearn (1998) and whole-rock and glass chemistry for samples collected from September 1994 to October 2001 is provided by Thornber and others (2002). This report is a compilation of previously published data along with unpublished whole-rock data for the 1986–1990 eruptive interval (episode 48, see Heliker and Mattox, 2003). The geochemical data in this report is mostly limited to well-quenched samples collected at or near their respective vents. The samples include tephra and spatter, in addition to lava dipped from lava lakes, lava tubes, and surface lava flows. The details of sample collection techniques as described by Thornber and others (2002) are generally applicable for this entire sampling interval. Specifically excluded from this database are samples of distal surface flows, many of which were collected for topical studies of emplacement dynamics (for example, Cashman and others, 1999). Samples of sluggish or crystal-laden tube flows collected during eruptive pauses were also excluded, because they bear visual, petrographic and geochemical evidence for crystal accumulation during surface-flow stagnation. In addition, the pre-1992 whole-rock major element data reported here has been corrected to compensate for minor analytical discrepancies between pre- and post-1991 XRF analyses. These discrepancies resulted from a change in instrumentation at the USGS Denver analytical laboratories. This select suite of time-constrained geochemical data is suitable for constructing petrologic models of pre-eruptive magmatic processes associated with prolong rift zone eruption of Hawaiian shield volcanoes.

  6. Geochemical baseline distribution of harmful elements in the surface soils of Campania region.

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto

    2015-04-01

    Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a ranking of priorities and located areas of regional territory where human health risk is more relevant and follow-up activities are required.

  7. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  8. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  9. Baseline geochemical data for stream sediment and surface water samples from Panther Creek, the Middle Fork of the Salmon River, and the Main Salmon River from North Fork to Corn Creek, collected prior to the severe wildfires of 2000 in central Idaho

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.

    2001-01-01

    In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.

  10. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale

    PubMed Central

    Verhougstraete, Marc P.; Martin, Sherry L.; Kendall, Anthony D.; Hyndman, David W.; Rose, Joan B.

    2015-01-01

    Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan’s Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL−1). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems. PMID:26240328

  11. A geochemical sampling technique for use in areas of active alpine glaciation: an application from the central Alaska Range

    USGS Publications Warehouse

    Stephens, G.C.; Evenson, E.B.; Detra, D.E.

    1990-01-01

    In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional geochemical sampling. As a result, in most geochemical sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic geochemical exploration of the glacial catchment area. Moraine sampling provides geochemical information that is site-specific in that geochemical anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and geochemical data the probable geological setting of the geochemical anomalies is determined. ?? 1990.

  12. Alaska Geochemical Database, Version 2.0 (AGDB2)--including “best value” data compilations for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2013-01-01

    The Alaska Geochemical Database Version 2.0 (AGDB2) contains new geochemical data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska Geochemical Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical geochemical data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all U.S. Geological Survey geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest U.S. Geological Survey geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB2 and will be added to the NGDB. The AGDB2 data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB2 data provided in the linked database may be updated or changed periodically.

  13. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    NASA Astrophysics Data System (ADS)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612 glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting

  14. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.

  15. Publications - GMC 335 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 335 Publication Details Title: Geochemical analysis of core (3340'-3625') from the BP Reference ExxonMobil, 2006, Geochemical analysis of core (3340'-3625') from the BP Exploration (Alaska) Inc

  16. Publications - GMC 209 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 209 Publication Details Title: Source rock potential and geochemical characterization of OCS Y Reference DGSI, Inc., 1993, Source rock potential and geochemical characterization of OCS Y-0943-1 (Aurora

  17. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  18. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  19. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  20. Advances in the hydrogeochemistry and microbiology of acid mine waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  1. Publications - GMC 249 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 249 Publication Details Title: Source rock geochemical and visual kerogen data from cuttings Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings (2,520-8,837') of the

  2. Geochemical survey of the Chattahoochee Roadless Area, Towns, Union, and White counties, Georgia

    USGS Publications Warehouse

    Koeppen, Robert P.; Nelson, Arthur E.

    1989-01-01

    Th U.S. Geological Survey made a reconnaissance geochemical survey of the Chattahoochee Roadless Area (fig. 1) to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance or distribution patterns of trace elements. As part of a regional geochemical reconnaissance, M/ Hurst (University of Georgia) collected 51 fine-grained stream-sediment samples and 45 planned-concentrate samples  of alluvial gravels in the Chattahoochee study area (see figure 1). A.E. Nelson, in conjunction with detailed geologic mapping (Nelso, 1983), collected 10 rock-chip samples for geochemical analysis in addition to a large number of hand specimens for thin-section study. In order to evaluate isolated anomalies indicated by the earlier sampling, R.P. Koeppen, D.M. Sutphin, and P.D. Schruben collected several additional panned-concentrate, stream-sediment, and rock samples from the area in 1986. Both the geologic study by Nelson (1983) and this geochemical survey provide the basis for our mineral-resource assessment of the Chattahoochee Roadless Area (Nelson and others, 1983). 

  3. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

  4. Reanalysis of historical U.S. Geological Survey sediment samples for geochemical data from the western part of the Wrangellia terrane, Anchorage, Gulkana, Healy, Mt. Hayes, Nabesna, and Talkeetna Mountains quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Azain, Jaime S.; Granitto, Matthew

    2014-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. For the geochemical part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 1,682 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering the western half of the Wrangellia Terrane in the Anchorage, Gulkana, Healy, Mt. Hayes, Nabesna, and Talkeetna Mountains quadrangles of south-central Alaska (fig. 1). USGS was responsible for sample retrieval from the Denver warehouse through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  5. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio

  6. Geochemical survey of the Blood Mountain Roadless Area, Union and Lumpkin counties, Georgia

    USGS Publications Warehouse

    Koeppen, Robert P.; Nelson, Arthur E.

    1989-01-01

    The U.S. Geological Survey (USGS) made a reconnaissance geochemical survey of the Blood Mountain Roadless Area to search for unexposed mineral deposits which might be recognized by a geochemical signature in the abundance of distribution patterns of trace elements. Forty five fine-grained stream-sediment samples and 45 panned-concentrate samples were collected in the Blood Mountain study area (fig. 1). A.E. Nelson, in conjunction with detailed geologic mapping, collected 13 rock-chip samples for geochemical analysis, in addition to a large number of hand specimins for thin-section study. Nelson's geologic study (1983), combined with this geochemical survey, provide the basis for our mineral-resource assessment of the Blood Mountain Roadless Area (Koeppen and others, 1983).

  7. Summary geochemical maps for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Pyramid Roadless Area, El Dorado County, California

    USGS Publications Warehouse

    Chaffee, M.A.

    1986-01-01

    Geochemical sampling was conducted during 1982. This report summarizes the results of that investigation and provides details of the geochemical evaluation used in producing the final mineral resource assessment of the study area (Armstrong and others, 1983).

  8. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  9. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    USGS Publications Warehouse

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  10. Geochemical sampling in arid environments by the U.S. Geological Survey

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1988-01-01

    The U.S. Geological Survey (USGS) is responsible for the geochemical evaluations used for mineral resource assessments of large tracts of public lands in the Western United States. Many of these lands are administered by the Bureau of Land Management (BLM) and are studied to determine their suitability or nonsuitability for wilderness designation. Much of the Western United States is arid or semiarid. This report discusses various geochemical sample media that have been used for evaluating areas in arid environments and describes case histories in BLM wilderness study areas in which stream-sediment and heavy-mineral-concentrate sample media were compared. As a result of these case history studies, the nonmagnetic fraction of panned heavy-mineral concentrates was selected as the most effective medium for reconnaissance geochemical sampling for resources other than gold, in arid areas. Nonmagnetic heavy-mineral-concentrate samples provide the primary analytical information currently used in geochemical interpretations of mineral resource potential assessment of BLM lands.

  11. Leachate Geochemical Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.

    2008-01-01

    This report is the second release of leachate geochemical data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. Geochemical data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for geochemical analysis. This report presents leachate geochemical data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).

  12. Publications - GMC 304 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 304 Publication Details Title: Hard-rock geochemical data of core from the FL-001, FL-003, and . Bibliographic Reference Unknown, 2002, Hard-rock geochemical data of core from the FL-001, FL-003, and FL-004

  13. Mineralogical, geochemical and radiological characterisation of Selmo Formation in Batman area, Turkey.

    PubMed

    Isik, Umit; Damla, Nevzat; Akkoca, Dicle Bal; Cevik, Uğur

    2012-06-01

    This work deals with the mineralogical, geochemical and radiological characterisations of Selmo Formation in Batman neighbourhood. The upper Miocene-Pliocene Selmo Formation is common in the centre of Batman and composed of carbonated sandy claystones and silty-sandy stone lenses. The common whole minerals of the samples are quartz, feldspars, calcite and dolomite. The clay minerals are smectite, illite, chlorite and mixed-layer clay (chlorite-smectite). The geochemical mean values of the samples are 51.7% SiO(2); 12.6% Al(2)O(3); 6.2% Fe(2)O(3); 3.6% MgO; 6.3% CaO; 1.1% Na(2)O; 1.7% K(2)O; 0.8% TiO(2); 0.2% P(2)O(5); 0.1% MnO; and 0.03% Cr(2)O(3). In addition, baseline maps for the concentrations of each radionuclide, the radium equivalent activity and the outdoor gamma dose rate distributions have been plotted for the study area. The mean activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined to be 32, 24, 210 and 9 Bq kg(-1), respectively. The assessments of the radiological hazard indices, such as radium equivalent activity, absorbed dose rate in air, annual effective dose equivalent, excess lifetime cancer risk, external hazard index and internal hazard index, were calculated and compared with the internationally accepted reference values. This study shows that the concentrations of radioactivities in the measured samples were within the recommended safety limits and did not pose to be any significant source of radiation hazard.

  14. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  15. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  16. Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight

    NASA Astrophysics Data System (ADS)

    Akinlua, Akinsehinwa; Torto, Nelson

    2011-09-01

    A geochemical evaluation of Niger Delta organic matter was carried out using supercritical fluid extraction (SFE) sample preparation procedure. Comparison of geochemical significance of gas chromatographic data of rock extracts of SFE with those of Soxhlet extraction method from previous studies was made in order to establish the usefulness of SFE in geochemical exploration. The assessment of geochemical character of the rock samples from the comparison and interpretation of other geochemical parameters were used to give more insights into understanding the source rocks characteristics of onshore and shelf portions of the Niger Delta Basin. The results of the gas chromatographic (GC) analysis of the rock extracts across the lithostratigraphic units show that Pr/Ph, Pr/nC17, Pr/nC18, CPI and odd/even preference ranged from 0.07 to 12.39, 0.04 to 6.66, 0.05 to 13.80, 0.12 to 8.4 and 0.06 to 8.12, respectively. The Rock-Eval pyrolysis data and geochemical ratios and parameters calculated from the GC data showed that most of the samples are mature and have strong terrestrial provenance while a few samples have strong marine provenance. The few marine source rocks are located in the deeper depth horizon. Pr/Ph and standard geochemical plots indicate that most of samples were derived from organic matter deposited in less reducing conditions, i.e. more of oxidizing conditions while a few samples have predominantly influence of reducing conditions. The results of trace metal analysis of older samples from Agbada Formation also indicate marine and mixed organic matter input deposited in less reducing conditions. The results obtained in this study are comparable with those obtained from previous studies when Soxhlet extraction method was used and also indicated the presence of more than one petroleum systems in the Niger Delta.

  17. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2013-11-01

    Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our dataset. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own datasets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the dataset and how to use and access of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope of this publication.

  18. Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.

    PubMed

    Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S

    2004-01-01

    New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.

  19. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less

  20. Summary geochemical map for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Freel and Dardanelles Roadless Areas, Alpine and El Dorado Counties, California

    USGS Publications Warehouse

    Chaffee, M.A.

    1985-01-01

    Geochemical sampling was conducted during 1978 and 1979.  This report summarizes the reults of that investigation and provides details of the geochemical evaluation used in producing the final mineral resource assessment of the study area (John, Armin, Plouff, Chaffee, Peters, and others, 1983).

  1. Publications - GMC 26 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 26 Publication Details Title: Geochemical data (total organic carbon, rock-eval pyrolysis, and Reference Unknown, 1984, Geochemical data (total organic carbon, rock-eval pyrolysis, and vitrinite ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of

  2. Publications - GMC 29 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 29 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Minder, Michael, and Shell Oil Company, 1985, Geochemical analysis (total organic carbon, rock ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of

  3. Publications - GMC 25 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 25 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Unknown, 1984, Geochemical analysis (total organic carbon, rock-eval pyrolysis, kerogen type ; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of

  4. Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical

  5. Publications - GMC 19 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 19 Publication Details Title: Geochemical analysis (total organic carbon-rock-eval, vitrinite information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon-rock-eval K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources

  6. Publications - GMC 27 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 27 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis . Bibliographic Reference Unknown, 1995, Geochemical analysis (total organic carbon, rock-eval pyrolysis, and ; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of

  7. Publications - GMC 91 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 91 Publication Details Title: Organic geochemical analyses, which include rock-eval pyrolysis , total organic carbon, and vitrinite reflectance, of ditch cuttings from the Marathon OCS Y-0086-1 well information. Bibliographic Reference Unknown, 1988, Organic geochemical analyses, which include rock-eval

  8. Map showing geochemical data for panned stream sediments from the Bread Loaf Further Planning Area, Addison and Washington counties, Vermont

    USGS Publications Warehouse

    Grosz, A.E.; Schruben, P.G.; Atelsek, P.J.

    1987-01-01

    A geochemical survey of bedrock samples in the Bread Loaf Roadless Area (index map; fig. 1) was conducted by the U.S. Geological Survey (USGS) during October, 1981 in order to outline areas that may contain undiscovered mineral deposits. This report describes the results of a geochemical analysis of panned concentrates collected from stream sediments, and complements other geologic and geochemical investigations of the area (Slack and Bitar, 1983). The present study has offered us a chance to identify sampling media and a technique most appropriate for the enhancement of certain metallic elements in samples of panned concentrate. This study is important to the resource evaluation of the Bread Loaf Roadless Area because it reveals that geochemical anomalies produced by this technique are not evident in the standard magnetic and nonmagnetic fractions of panned concentrates.

  9. Publications - GMC 284 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 284 Publication Details Title: TOC/rock-eval pyrolysis geochemical data for 26 Alaska North for more information. Bibliographic Reference Unknown, 1999, TOC/rock-eval pyrolysis geochemical data Information gmc284.pdf (1.8 M) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon Top of Page

  10. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    NASA Astrophysics Data System (ADS)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared with the AUC of 0.77 using a single deep autoencoder approach.

  11. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2014-03-01

    Strontium isotope ratios (87Sr / 86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new data set of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our data set. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own data sets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the data set and how to use and access the data set through the IRHUM database. Any interpretation of the isotope data set is outside the scope of this publication.

  12. Publications - RDF 2001-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and northwestern Eagle more information. Quadrangle(s): Big Delta; Eagle Bibliographic Reference Werdon, M.B., Athey, J.E , and geochemical data from rocks collected in the Salcha River-Pogo area in 2000, Big Delta and

  13. Publications - RDF 2003-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002 Authors: Werdon, M.B . Quadrangle(s): Big Delta Bibliographic Reference Werdon, M.B., Newberry, R.J., Athey, J.E., Szumigala, D.J -element, and geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002: Alaska

  14. Preliminary assessment of an economical fugitive road dust sampler for the collection of bulk samples for geochemical analysis.

    PubMed

    Witt, Emitt C; Wronkiewicz, David J; Shi, Honglan

    2013-01-01

    Fugitive road dust collection for chemical analysis and interpretation has been limited by the quantity and representativeness of samples. Traditional methods of fugitive dust collection generally focus on point-collections that limit data interpretation to a small area or require the investigator to make gross assumptions about the origin of the sample collected. These collection methods often produce a limited quantity of sample that may hinder efforts to characterize the samples by multiple geochemical techniques, preserve a reference archive, and provide a spatially integrated characterization of the road dust health hazard. To achieve a "better sampling" for fugitive road dust studies, a cyclonic fugitive dust (CFD) sampler was constructed and tested. Through repeated and identical sample collection routes at two collection heights (50.8 and 88.9 cm above the road surface), the products of the CFD sampler were characterized using particle size and chemical analysis. The average particle size collected by the cyclone was 17.9 μm, whereas particles collected by a secondary filter were 0.625 μm. No significant difference was observed between the two sample heights tested and duplicates collected at the same height; however, greater sample quantity was achieved at 50.8 cm above the road surface than at 88.9 cm. The cyclone effectively removed 94% of the particles >1 μm, which substantially reduced the loading on the secondary filter used to collect the finer particles; therefore, suction is maintained for longer periods of time, allowing for an average sample collection rate of about 2 g mi. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. The effect of sterilization on biological, organic geochemical and morphological information in natural samples

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Kvenvolden, K. A.; Philpott, D. E.

    1974-01-01

    The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized.

  16. Geochemical and biogeochemical investigations in national parks [Badania geochemiczne i biogeochemiczne w parkach narodowych

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.

    1998-01-01

    National parks hold a key position among nature protection areas including a diversity of resources - natural, cultural, recreational and scenic. These "inviolable sanctuaries" are simultaneosuly ecologic knots and pristine nature refuges due to the presence of a number of unique plant and animal species. These species make up a natural gene bank. Classically, the level of biologic degradation in national parks is determined on the basis of qualitative and quantitative studies of plant bioindicators. Their scope encompasses phytosociologic survey the purpose of which is to identify floral assemblages with a detailed list of species to record future changes in their number. The best biomonitors of air quality are epiphytic lichens, ground mosses and conifers. Geochemical and biogeochemical investigations are widely performed in the U.S.A. to evaluate the degree of pollution in the nature protection areas including national parks (Gough et al., 1988a, b; Crock et al., 1992a, 1993; Jackson et al., 1995). Variability of element concentrations in soils and plants is assessed by using unbalanced, nested analysis-of-variance (ANOVA). It enables obtaining important statistical information with a minimum number of samples. In some cases a combined grid and barbell sampling design is applied (Jackson et al., 1995). In specific mountainous parks a method of 2-3 transects parallel to the extent of range (crest) is recommended. To determine the impact of a single pollution source on a given park, traverse sampling beginning near the emitter is used (Crock et al., 1992, 1993). The obtained results are a "snapshot" of chemical composition of soils and plant bioindicators that can be a reference for any future changes in the concentration level of chemical elements and organics. In addition, baseline element and organics composition of the media mentioned above can be compared with that obtained for geochemical atlases of polluted urban and industrial areas. Geochemical and biogeochemical investigations are also used for determining natural or anthropogenic sources of pollution. The best way to trace them is sulfur isotopes (Jackson et al., 1996).

  17. WATEQ4F - a personal computer Fortran translation of the geochemical model WATEQ2 with revised data base

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk; Zachmann, D.W.

    1987-01-01

    A FORTRAN 77 version of the PL/1 computer program for the geochemical model WATEQ2, which computes major and trace element speciation and mineral saturation for natural waters has been developed. The code (WATEQ4F) has been adapted to execute on an IBM PC or compatible microcomputer. Two versions of the code are available, one operating with IBM Professional FORTRAN and an 8087 or 89287 numeric coprocessor, and one which operates without a numeric coprocessor using Microsoft FORTRAN 77. The calculation procedure is identical to WATEQ2, which has been installed on many mainframes and minicomputers. Limited data base revisions include the addition of the following ions: AlHS04(++), BaS04, CaHS04(++), FeHS04(++), NaF, SrC03, and SrHCO3(+). This report provides the reactions and references for the data base revisions, instructions for program operation, and an explanation of the input and output files. Attachments contain sample output from three water analyses used as test cases and the complete FORTRAN source listing. U.S. Geological Survey geochemical simulation program PHREEQE and mass balance program BALANCE also have been adapted to execute on an IBM PC or compatible microcomputer with a numeric coprocessor and the IBM Professional FORTRAN compiler. (Author 's abstract)

  18. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.

  19. Use of sediment-trace element geochemical models for the identification of local fluvial baseline concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.

    1991-01-01

    Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.

  20. Analysis of black carbon molecular markers by two chromatographic methods (GC-FID and HPLC-DAD)

    NASA Astrophysics Data System (ADS)

    Schneider, Maximilian P. W.; Smittenberg, Rienk H.; Dittmar, Thorsten; Schmidt, Michael W. I.

    2010-05-01

    The analysis of benzenepolycarboxylic acids (BPCA) as a quantitative measure for black carbon (BC) in soil and sediment samples is a well-established method [1, 2]. Briefly, the oxidation of polycondensated BC molecules forms seven molecular markers, which can be assigned to BC, and which subsequently can be quantified by GC-FID (gas chromatography with flame ionization detector). Recently this method has been refined for BC quantification in seawater samples measuring BPCA on HPLC-DAD (High performance liquid chromatography with diode array detector) [3]. However, a systematic comparison of BC as determined by both analytical techniques would be essential to the calculation of global BC budgets, but is lacking. Here we present data for the systematic comparison of the two BPCA methods, both for quantity and quality. We prepared chars under well-defined laboratory conditions. Chestnut hardwood chips and rice straw were pyrolysed at temperatures between 200 and 1000°C under constant N2 stream. The BC contents of the chars have been analysed using the BPCA extraction method followed by either GC-FID or HPLC-DAD quantification [4]. It appears that the GC-FID method yields systematically lower concentrations of BPCA in the chars compared to the HPLC-DAD method. Possible reasons for the observed difference are i) higher losses of sample material during preparation for GC-FID; ii) different quality of the linear regression used for quantification; iii) incomplete derivatisation of B5CA and B6CA, which is needed for GC-FID analysis. In a next step, we will test different derivatisation procedures (methylation with dimethyl sulfate or diazomethane, and silylation) for their influence on the GC-FID results. The aim of this study is to test if black carbon can be quantified in soil, sediment and water samples using one single method - a crucial step when attempting a global BC budget. References: [1] Brodowski, S., Rodionov, A., Haumeier L., Glaser, B., Amelung, W. (2005) Org. Geochem. 36, 1299-1310. [2] Glaser, B., Haumeier, L., Guggenberger, G., Zech, W. (1998) Org. Geochem. 29, 811-819. [3] Dittmar, T. (2008) Org. Geochem. 39. 396-407. [4] Schneider, M.P.W., Hilf, M., Vogt, U.F., Schmidt, M.W.I., Org. Geochem. (submitted)

  1. Silicon isotope amount ratios and molar masses for two silicon isotope reference materials: IRMM-018a and NBS28

    NASA Astrophysics Data System (ADS)

    Valkiers, S.; Ding, T.; Inkret, M.; Ruße, K.; Taylor, P.

    2005-04-01

    A new 2 kg batch of SiO2 crystals, IRMM-018a as well as the existing NBS28 silica sand (or RM 8546, obtained by I. Friedman from U.S. Geological Survey) have been characterised for their "absolute" silicon isotope composition and molar mass. The amount-of-substance measurements needed for that purpose were performed on the IRMM amount comparator (Avogadro II) on samples from these batches, which were converted to gaseous silicon tetra-fluoride (SiF4). The isotope amount ratio measurements were calibrated by means of synthesized isotope amount ratios realized in the form of synthetic Si isotope mixtures, the measurement procedure of which makes them SI-traceable. IRMM-018a is intended to be used as Isotope Reference Material for isotope amount measurements in geochemical and other isotope abundance studies of silicon. It is distributed in samples of about 0.1 mol and will replace IRMM-018 (exhausted).

  2. MetPetDB: A database for metamorphic geochemistry

    NASA Astrophysics Data System (ADS)

    Spear, Frank S.; Hallett, Benjamin; Pyle, Joseph M.; Adalı, Sibel; Szymanski, Boleslaw K.; Waters, Anthony; Linder, Zak; Pearce, Shawn O.; Fyffe, Matthew; Goldfarb, Dennis; Glickenhouse, Nickolas; Buletti, Heather

    2009-12-01

    We present a data model for the initial implementation of MetPetDB, a geochemical database specific to metamorphic rock samples. The database is designed around the concept of preservation of spatial relationships, at all scales, of chemical analyses and their textural setting. Objects in the database (samples) represent physical rock samples; each sample may contain one or more subsamples with associated geochemical and image data. Samples, subsamples, geochemical data, and images are described with attributes (some required, some optional); these attributes also serve as search delimiters. All data in the database are classified as published (i.e., archived or published data), public or private. Public and published data may be freely searched and downloaded. All private data is owned; permission to view, edit, download and otherwise manipulate private data may be granted only by the data owner; all such editing operations are recorded by the database to create a data version log. The sharing of data permissions among a group of collaborators researching a common sample is done by the sample owner through the project manager. User interaction with MetPetDB is hosted by a web-based platform based upon the Java servlet application programming interface, with the PostgreSQL relational database. The database web portal includes modules that allow the user to interact with the database: registered users may save and download public and published data, upload private data, create projects, and assign permission levels to project collaborators. An Image Viewer module provides for spatial integration of image and geochemical data. A toolkit consisting of plotting and geochemical calculation software for data analysis and a mobile application for viewing the public and published data is being developed. Future issues to address include population of the database, integration with other geochemical databases, development of the analysis toolkit, creation of data models for derivative data, and building a community-wide user base. It is believed that this and other geochemical databases will enable more productive collaborations, generate more efficient research efforts, and foster new developments in basic research in the field of solid earth geochemistry.

  3. A guide for the laboratory information management system (LIMS) for light stable isotopes--Versions 7 and 8

    USGS Publications Warehouse

    Coplen, Tyler B.

    2000-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic data based on the time of day of analysis. Whereas Finnigan ISODAT software is confined to using only a single peak for calculating delta values, LIMS now enables one to use the mean of two or more reference injections during a continuous flow analysis to calculate delta values. This is useful with Finnigan?s GasBench II online sample preparation system. Concentrations of carbon, nitrogen, and sulfur can be calculated based one or more isotopic reference materials analyzed with a group of samples. Both sample data and isotopic analysis data can now be exported to Excel files. A calculator for determining the amount of sample needed for isotopic analysis based on a previous amount of sample and continuous flow area is now an integral part of LIMS for Light Stable Isotopes. LIMS for Light Stable Isotopes can now assign an error code to Finnigan elemental analyzer analyses in which one of the electrometers has saturated due to analysis of too much sample material, giving rise to incorrect isotopic abundances. Information on downloading this report and downloading code and databases is provided at the Internet addresses: http://water.usgs.gov/software/geochemical.html or http://www.geogr.uni-jena.de/software/geochemical.html in the Eastern Hemisphere.

  4. Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1 degree by 3 degree quadrangles, Seward Peninsula, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.C.; King, H.D.; O'Leary, R.M.

    Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.

  5. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  6. Light is an active contributor to the vital effects of coral skeleton proxies

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, Anne; Reynaud, Stéphanie; Dissard, Delphine; Tisserand, Guillaume; Ferrier-Pagès, Christine

    2014-09-01

    Symbiotic colonies of the coral Acropora sp. were cultured in a factorial design of three temperatures (21, 25 and 28 °C) and two light intensities (200 and 400 μmol photon m-2 s-1), under constant conditions. A temperature of 25 °C and a light intensity of 200 μmol photon m-2 s-1 was the starting culture condition. Metabolic (photosynthesis, respiration, calcification and surface expansion rate) and geochemical measurements (δ18O, δ13C, Sr/Ca and Mg/Ca) were conducted on 6 colonies for each experimental condition. Metabolic measurements confirmed that respiration, photosynthesis, calcification and surface expansion rate responded to the combined effect of temperature and light. Under each light intensity, mean calcification rate was linearly correlated with mean photosynthetic activity. Geochemical measurements were also influenced by temperature and, to a lesser degree, by light. All geochemical proxies measured on 6 nubbins showed a wide scattering of values, regardless of the environmental condition. Compared to the other proxies, δ18O exhibited a different behavior. It was the only proxy exhibiting temperature tracer behavior. However, while mean values of Sr/Ca, Mg/Ca and δ13C were well correlated, the correlation between the later and mean δ18O differed with light level. This suggests that both skeleton deposition and temperature oxygen fractionation differs according to light intensity. Overall, the effect of light on geochemical values seems to compromise the use of proxy calibrations solely based on temperature influence. Under high light conditions, the great amplitude shown by individual net photosynthesis is directly proportional to the highly variable zooxanthellae density. As light is affecting all of the proxies, we thus assume that the strong geochemical variability observed could be explained by various algae densities, each nubbin responding according to its zooxanthellae amount. Accordingly, we suggest that each symbiosome (the assemblage of few corallites with their symbionts) presents its own vital effect influence over time. Therefore, at a bulk sample scale, light could be considered as one of the major causes of what is commonly referred to as the 'vital effect'. The meaning of δ18O calibration versus temperature established from distinct colonies differs from calibration calculated from samples collected following the growth axis of a single coral head. Finally, in order to quantitatively reconstruct climatic condition, we suggest a new paradigm based on the statistical treatment of the combination of time-series information from several proxies, all measured on the same sample from a continuous symbiosome.

  7. Data for the geochemical investigation of UMTRAP designated site at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report contains the methods of collection and the data used in the geochemical investigation of the former tailings and raffinate pond sites at Durango, Colorado. The methods of data interpretation and results of the investigation are described in the report, ''Geochemical Investigation of UMTRAP Designated Site at Durango, Colorado''. Data are from a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The waters, extracts, and solid samples were analyzedmore » for selected major and trace elements. A few samples were analyzed for radioisotopes.« less

  8. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.

    PubMed

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes

    2007-08-15

    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  9. Flameless atomic-absorption determination of gold in geological materials

    USGS Publications Warehouse

    Meier, A.L.

    1980-01-01

    Gold in geologic material is dissolved using a solution of hydrobromic acid and bromine, extracted with methyl isobutyl ketone, and determined using an atomic-absorption spectrophotometer equipped with a graphite furnace atomizer. A comparison of results obtained by this flameless atomic-absorption method on U.S. Geological Survey reference rocks and geochemical samples with reported values and with results obtained by flame atomic-absorption shows that reasonable accuracy is achieved with improved precision. The sensitivity, accuracy, and precision of the method allows acquisition of data on the distribution of gold at or below its crustal abundance. ?? 1980.

  10. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    USGS Publications Warehouse

    Nash, J.T.; Siems, D.F.

    1988-01-01

    The geochemical maps in this report are based on analytical results reported by Fairfield and others (1985), Hill and others (1986), and Siems and others (1986). These reports also describe the sample preparation and analytical methods and provide information on the location of the sample sites.

  11. Quality assurance and quality control of geochemical data—A primer for the research scientist

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and interpreting results. This primer has been developed to provide basic information and guidance about developing QA/QC protocols for geochemical studies. It is not intended to be a comprehensive guide but rather an introduction to key concepts tied to a list of relevant references for further reading. The guidelines are presented in stepwise order beginning with presampling considerations and continuing through final data interpretation. The goal of this primer is to outline basic QA/QC practices that scientists can use before, during, and after chemical analysis to ensure the validity of the data they collect with the goal of providing defendable results and conclusions.

  12. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples.

    PubMed

    Levine, Keith E; Redmon, Jennifer Hoponick; Elledge, Myles F; Wanigasuriya, Kamani P; Smith, Kristin; Munoz, Breda; Waduge, Vajira A; Periris-John, Roshini J; Sathiakumar, Nalini; Harrington, James M; Womack, Donna S; Wickremasinghe, Rajitha

    2016-10-01

    The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and fluoride, iron, manganese, sodium, and lead exceeding applicable drinking water standards in some instances. Current literature suggests that the etiology of CKDu is likely multifactorial, with no single biological or hydrogeochemical parameter directly related to disease genesis and progression. This preliminary screening identified that specific constituents may be present above levels of concern, but does not compare results against specific kidney toxicity values or cumulative risk related to a multifactorial disease process. The data collected from this limited investigation are intended to be used in the subsequent study design of a comprehensive and multifactorial etiological study of CKDu risk factors that includes sample collection, individual surveys, and laboratory analyses to more fully evaluate the potential environmental, behavioral, genetic, and lifestyle risk factors associated with CKDu.

  13. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope energy dispersive X-ray spectroscopy at the Department of Ceramics at the Jožef Stefan Institute. Geochemical characteristics of major and trace elements indicate that the values of major and trace elements are comparable to world average coal (Zhang et al., 2004). Isotopic composition of carbon and isotopic composition of nitrogen of investigated samples indicate values from to -29.4o to -23.7o and 1.8o to 5.9o respectively. Lower value of isotopic composition of carbon indicates higher gelification (values up to -29.4) and higher value of isotopic composition of nitrogen (values up to 5.9) indicate higher mineralization. The results of SEM/EDXS microscopy revealed that in calcified lignite chemical composition of calcite prevails. Traces of diagenetic pyrite were also found, indicating localized anoxic conditions during sedimentation. Values of isotopic composition of CCaCO3 range from -2 to +13 and indicate temperature of precipitation from 17.3 to 35 deg C, which is similar to results obtained in previous studies (Kanduč et al., 2012). References Krantz, D.E., Williams, D.F., Jones, D.S., 1987: Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeography, Palaeoclimatology, Palaeoecology 58, 249-266. Kanduč T., Markič M., Zavšek S., McIntosh J. 2012: carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes. International Journal of Coal Geology 89, 70-83. Jaćimović, R., Lazaru, A., Mihajlović, D., Ilić, R., Stafilov, T., 2002: Determination of major and trace elements in some minerals by k0-instrumental neutron activation analysis. Journal of Radioanalytical Nuclear Chemistry, 253, 427-434. McCrea, JM., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849. Ward C.R. (Ed.), 1984: Coal Geology and Coal Technology. Black-well, Oxford, 345 pp. Zhang J.Y., Zheng C.G., Ren D.Y., Chou C.L., Zheng R.S., Wang Z.P., Zhao F. H., Ge Y.T. 2004: Distribution of potentially hazardous trace elements in coals from Shoxi provinces, China. Fuel 83: 129-135.

  14. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various environmental applications. Copyright 2010 Elsevier B.V. All rights reserved.

  15. History and evaluation of national-scale geochemical data sets for the United States

    USGS Publications Warehouse

    Smith, David B.; Smith, Steven M.; Horton, John D.

    2013-01-01

    Six national-scale, or near national-scale, geochemical data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National Geochemical Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical methods; and (2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.

  16. Geochemical data for Colorado soils-Results from the 2006 state-scale geochemical survey

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.; Kilburn, James E.

    2010-01-01

    In 2006, soil samples were collected at 960 sites (1 site per 280 square kilometers) throughout the state of Colorado. These samples were collected from a depth of 0-15 centimeters and, following a near-total multi-acid digestion, were analyzed for a suite of more than 40 major and trace elements. The resulting data set provides a baseline for the natural variation in soil geochemistry for Colorado and forms the basis for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used and makes available all the soil geochemical data generated in the study.

  17. Surrogate model approach for improving the performance of reactive transport simulations

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.

  18. Mineralogical and geochemical anomalous data of the K-T boundary samples

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.

    1988-01-01

    Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).

  19. Penguin Bank: A Loa-Trend Hawaiian Volcano

    NASA Astrophysics Data System (ADS)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes existed at ~2.2 Ma when the Molokai Island volcanoes formed and has persisted until the present. References: Abouchami et al., 2005 Nature, 434:851-856 Xu et al., 2005 G3, doi: 10.1029/2004GC000830 Xu et al., 2007 G3, doi: 10.1029/2006GC001554

  20. Chain of custody; recommendations for acceptance and analysis of evidentiary geochemical samples

    USGS Publications Warehouse

    Murphy, Christine M.; Briggs, Paul H.; Adrian, Betty M.; Wilson, Steve A.; Hageman, Phil L.; Theodorakos, Pete M.

    1997-01-01

    Personnel from the Analytical Chemistry Services Group (ACSG), Mineral Resource Survey Program, formed a team to determine the policies for acceptance and analysis of geochemical samples. This team contacted law enforcement agencies that handle litigious samples, laboratories that work with samples of special nature, and the Solicitor General, Department of the Interior. Using the knowledge from these agencies as well as the expertise of ACSG personnel, sample control routine procedures, sample control evidentiary procedures, personnel policy governing chain-of-custody samples, and the general polices governing physical security of chain-of custody samples have been enacted.

  1. Geochemical characteristics of peat from two raised bogs of Germany

    NASA Astrophysics Data System (ADS)

    Mezhibor, A. M.

    2016-11-01

    Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.

  2. Geochemistry of the Springfield Plateau aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA

    USGS Publications Warehouse

    Adamski, J.C.

    2000-01-01

    Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict flow and increase water-rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright (C) 2000 John Wiley and Sons, Ltd.Geochemical data indicate that the Springfield Plateau carbonate aquifer has two distinct hydrochemical zones. With each hydrochemical zone, water from springs is geochemically and isotopically different from the water from wells. Spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Factors affecting the differences in the geochemical composition of groundwater between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zones.

  3. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.

  4. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  5. Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1 degree by 3 degree Quadrangles , Seward Peninsula, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, H.D.; Smith, S.C.; Sutley, S.J.

    Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1{degree} by 3{degree} Quadrangles , Seward Peninsula, Alaska is presented.

  6. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Devleena, E-mail: devleenatiwari@ngri.res.in; Kumar, T. Satish; Rasheed, M. A.

    2011-03-15

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospectivemore » for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.« less

  7. Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA)

    NASA Astrophysics Data System (ADS)

    Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.

    2006-10-01

    Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.

  8. Soil geochemical analyses as an indication of metal working at the excavation of a house in the Roman City at Silchester (UK)

    NASA Astrophysics Data System (ADS)

    Cook, S. R.; Fulford, M.; Ciarke, A.; Pearson, C.

    2003-05-01

    Silchesteris the site of a major late Iron Age and Roman town (Calleva Atrebatum), situated in northern Hampshire (England (UK)) and occupied between the late first century BC and the fifth or sixth century AD. Extensive evidence of the nature of the buildings and the plan of the town was obtained from excavations undertaken between 1890 and 1909. The purpose of this study was to use soil geochemical analyses to reinforce the archaeological evidence particularly with reference to potential metal working at the site Soil analysis has been used previously to distinguish different functions or land use activity over a site and to aid identification and interpretation of settlement features (Entwistle et al., 2000). Samples were taken from two areas of the excavation on a l-metre grid. Firstly from an area of some 500 square metres from contexts of late first/early second century AD date throughout the entirety of a large “town house” (House 1) from which there was prima facie evidence of metalworking.

  9. Merging metagenomics and geochemistry reveals environmental controls on biological diversity and evolution.

    PubMed

    Alsop, Eric B; Boyd, Eric S; Raymond, Jason

    2014-05-28

    The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Clustering based on the frequency in which orthologous proteins occur among metagenomes facilitated accurate prediction of the ordering of community functional composition along geochemical gradients, despite a lack of geochemical input. The consistency in the results obtained from the application of Markov clustering and multivariate methods to distinct natural systems underscore their utility in predicting the functional potential of microbial communities within a natural system based on system geochemistry alone, allowing geochemical measurements to be used to predict purely biological metrics such as microbial community composition and metabolism.

  10. Mars Sample Handling Protocol Workshop Series

    NASA Technical Reports Server (NTRS)

    Race, Margaret S. (Editor); Nealson, Kenneth H.; Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Devincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This report provides a record of the proceedings and recommendations of Workshop 3 of the Series, which was held in San Diego, California, March 19-21, 2001. Materials such as the Workshop agenda and participant lists as well as complete citations of all references and a glossary of terms and acronyms appear in the Appendices. Workshop 3 builds on the deliberations and findings of the earlier workshops in the Series, which have been reported separately. During Workshop 3, five individual sub-groups were formed to discuss the following topics: (1) Unifying Properties of Life, (2) Morphological organization and chemical properties, (3) Geochemical and geophysical properties, (4) Chemical Method and (5) Cell Biology Methods.

  11. Updated Reference Model for Heat Generation in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  12. Geochemical and mineralogical maps for soils of the conterminous United States

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Ellefsen, Karl J.

    2014-01-01

    The U.S. Geological Survey began sampling in 2007 for a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils in the conterminous United States as part of the North American Soil Geochemical Landscapes Project. The sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, a sample from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting data set provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report releases geochemical and mineralogical maps along with a histogram, boxplot, and empirical cumulative distribution function plot for each element or mineral.

  13. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  14. Results of a geochemical survey, Aban Al Ahmar Quadrangle, Sheet 25F, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Miller, W. Roger; Arnold, M.A.

    1988-01-01

    A major problem in the interpretation of the regional geochemical data resulted from incomplete removal of magnetite from the samples prior to analysis. The presence of magnetite can cause anomalous values of Ni, Fe, V, Cu, and Co in samples because of it's ability to incorporate these elements into its structure during magmatic crystallization.

  15. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  16. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  17. Geochemical map of the Wet Beaver Roadless Area, Coconino and Yavapai counties, Arizona

    USGS Publications Warehouse

    Gerstel, W.J.

    1985-01-01

    The geochemical survey of the Wet Beaver Roadless Area was conducted in May 1982 by the U.S. Geological Survey to aid in a mineral resource appraisal of the area. A total of 64 stream-sediment samples, 30 heavy-mineral concentrates from stream sediment, 7 rock samples, and 7 water samples was collected by S.C. Rose, D.E. Hendzel, and W.J. Gerstel, with helicopter support from Jack Ruby, pilot for Helicopters Unlimited.

  18. The source rock potential of the Karroo coals of the south western Rift Basin of Tanzania

    NASA Astrophysics Data System (ADS)

    Mpanju, F.; Ntomola, S.; Kagya, M.

    For many years geoscientists believed that coals (Type III Kerogen) generate gas only. The geochemical study of Durand and Parrante ( Petrolum Geochemistry and Exploration of Europe, pp. 255-265, 1983) revealed that coals have reasonable potential for oil generation. On this basis forty outcrop samples of Lower and Upper Permian age, i.e. coals and carbonaceous shales, were collected from the south western Rift Basin of Tanzania. The aim of the study was to determine the richness, type, maturity and hydrocarbon potential of the above samples. These samples were subjected to both geochemical and petrological analyses. Geochemical analyses included solvent extraction, TOC, GC, GC-MS and pyrolysis. The petrological analysis included vitrinite reflectance, spore fluorescence and maceral content. The geochemical analyses showed all samples to be rich in organic matter of Types II and III and samples from Songwe Kiwira, Namwele, Mbamba Bay, Njuga and Mhukuru coalfields were in an early mature-mature stage of hydrocarbon generation. Whereas samples from Ketewaka and Ngaka coalfields showed a GC-trace of early generated waxy oil. All samples contained organic matter derived from terrestrial material which was deposited under oxic environment. The Hydrogen Index of most coals and carbonaceous shales was greater than 200 indicating that they can generate oil or light oil. Petrological observations showed all samples to be in the range of 0.47-0.67% Ro and some of them were rich in both liptinite and vitrinite macerals. From both geochemical and petrological observations it was concluded that the Lower and Upper Permian coals and carbonaceous shales under study are probably capable of generating oil. The oil generated has the same characteristics as that generated by Cretaceous and Tertiary coals discovered from other parts of the world, i.e. Adjuna and Kutei Basins in Indonesia and the Gippsland Basin in Australia (Kirkland et al., AAPG Bull.71, 577, 1987).

  19. Experimental validation of Swy-2 clay standard's PHREEQC model

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.

  20. Geochemical map of the Rattlesnake Roadless Area, Coconino and Yavapai counties, Arizona

    USGS Publications Warehouse

    Gerstel, W.J.

    1985-01-01

    The geochemical survey of the Rattlesnake Roadless Area was conducted in May 1982 by the U.S. Geological Survey to aid in a mineral resource appraisal of the area. A total of 114 stream-sediment samples, 68 heavy-mineral concentrates from stream sediment, 20 rock samples, and 4 water samples was collected by S.C. Rose, D.E. Hendzel, and W.J. Gerstel, with helicopter support from Jack Ruby, pilot for Helicopters Unlimited. All sample localities are plotted on the map; sample localities showing anomalous barium and lead are also indicated on the map.

  1. Geochemical results from stream-water and stream-sediment samples collected in Colorado and New Mexico

    USGS Publications Warehouse

    Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.

    2013-01-01

    Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.

  2. A modified procedure for mixture-model clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.; Horton, John D.

    2014-01-01

    A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.

  3. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluatedmore » using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits.« less

  4. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep

    2012-01-01

    A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.

  5. Geochemical data for environmental studies of mineral deposits at Nabesna, Kennecott, Orange Hill, Bond Creek, Bremner, and Gold Hill, Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.

    1999-01-01

    Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.

  6. Regional Geochemistry - an Introduction

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens

    2017-04-01

    Building on the pioneering ideas and work of V. Vernadsky (1883-1945) and V.M. Goldschmidt (1888-1947) the Geological Surveys of Europe have more than 60 years experience with geochemical mapping at a large variety of scales. Surveys using hundreds of samples per km2 for mineral exploration projects, 1 to 4 sites per km2 for mapping the urban environment, 1 site per 2 to 10 km2 in county or country-wide mapping projects to 1 site per 1000 to 5000 km2 for mapping at the continental scale have been successfully completed. Sample materials for these surveys include groundwater, surface water, stream sediments, floodplain sediments, different soil horizons (preferably soil O, A, B and C horizon) and plant materials from moss to trees. Surveys combining several sample materials from local to sub-continental scale in multi-media, multi-element geochemical investigations reflecting the interplay of chemical elements between the different compartments (lithosphere, pedosphere, biosphere and hydrosphere) of the ecosystem have also been carried out. These surveys provide ample empirical evidence that different geochemical processes become visible at different scales. Not all sample materials are suitable for all scales. A variety of scales in combination with a variety of different sample materials are needed to fully understand geochemical processes in the critical zone. Examples are shown that highlight the importance of a strategy to optimize sampling density and design for the chosen scale already during the planning stages of a project. Anthropogenic element sources are visible at a local scale and the major impact of geology, mineralogy and climate (as a driving force for weathering) dominates geochemical maps at the continental scale. Interestingly, mineralisation can generate features which are visible at a variety of scales. Some further issues that need attention when carrying out geochemical surveys at a variety of scales are (a) the need for an excellent and well documented analytical quality control, (b) the choice of the elements to be analysed (as many as possible) (c) the required detection limits (the lowest possible) and (d) the choice of extraction (several if feasible).

  7. Homogeneity of the geochemical reference material BRP-1 (paraná basin basalt) and assessment of minimum mass

    USGS Publications Warehouse

    Cotta, Aloisio J. B.; Enzweiler, Jacinta; Wilson, Stephen A.; Perez, Carlos A.; Nardy, Antonio J. R.; Larizzatti, Joao H.

    2007-01-01

    Reference materials (RM) are required for quantitative analyses and their successful use is associated with the degree of homogeneity, and the traceability and confidence limits of the values established by characterisation. During the production of a RM, the chemical characterisation can only commence after it has been demonstrated that the material has the required level of homogeneity. Here we describe the preparation of BRP-1, a proposed geochemical reference material, and the results of the tests to evaluate its degree of homogeneity between and within bottles. BRP-1 is the first of two geochemical RM being produced by Brazilian institutions in collaboration with the United States Geological Survey (USGS) and the International Association of Geoanalysts (IAG). Two test portions of twenty bottles of BRP-1 were analysed by wavelength dispersive-XRF spectrometry and major, minor and eighteen trace elements were determined. The results show that for most of the investigated elements, the units of BRP-1 were homogeneous at conditions approximately three times more rigorous than those strived for by the test of “sufficient homogeneity”. Furthermore, the within bottle homogeneity of BRP-1 was evaluated using small beam (1 mm2) synchrotron radiation XRF spectrometry and, for comparison, the USGS reference materials BCR-2 and GSP-2 were also evaluated. From our data, it has been possible to assign representative minimum masses for some major constituents (1 mg) and for some trace elements (1-13 mg), except Zr in GSP-2, for which test portions of 74 mg are recommended.

  8. Levelling and merging of two discrete national-scale geochemical databases: A case study showing the surficial expression of metalliferous black shales

    USGS Publications Warehouse

    Smith, Steven M.; Neilson, Ryan T.; Giles, Stuart A.

    2015-01-01

    Government-sponsored, national-scale, soil and sediment geochemical databases are used to estimate regional and local background concentrations for environmental issues, identify possible anthropogenic contamination, estimate mineral endowment, explore for new mineral deposits, evaluate nutrient levels for agriculture, and establish concentration relationships with human or animal health. Because of these different uses, it is difficult for any single database to accommodate all the needs of each client. Smith et al. (2013, p. 168) reviewed six national-scale soil and sediment geochemical databases for the United States (U.S.) and, for each, evaluated “its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.” Each of the evaluated databases has strengths and weaknesses that were listed in that review.Two of these U.S. national-scale geochemical databases are similar in their sample media and collection protocols but have different strengths—primarily sampling density and analytical consistency. This project was implemented to determine whether those databases could be merged to produce a combined dataset that could be used for mineral resource assessments. The utility of the merged database was tested to see whether mapped distributions could identify metalliferous black shales at a national scale.

  9. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    PubMed

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  10. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    USGS Publications Warehouse

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of 13C values.In contrast to the single-sample-based models, the extended Gonfiantini & Zuppi model (Gonfiantini and Zuppi, 2003; Han et al., 2014) is a statistical approach. This approach can be used to estimate 14C ages when a curved relationship between the 14C and 13C values of the DIC data is observed. In addition to estimation of groundwater ages, the relationship between 14C and δ13C data can be used to interpret hydrogeological characteristics of the aquifer, e.g. estimating apparent rates of geochemical reactions and revealing the complexity of the geochemical environment, and identify samples that are not affected by the same set of reactions/processes as the rest of the dataset. The investigated water samples may have a wide range of ages, and for waters with very low values of 14C, the model based on statistics may give more reliable age estimates than those obtained from single-sample-based models. In the extended Gonfiantini & Zuppi model, a representative system-wide value of the initial 14C content is derived from the 14C and δ13C data of DIC and can differ from that used in single-sample-based models. Therefore, the extended Gonfiantini & Zuppi model usually avoids the effect of modern water components which might retain ‘bomb’ pulse signatures.The geochemical mass-balance approach constructs an adjustment model that accounts for all the geochemical reactions known to occur along an aquifer flow path (Plummer et al., 1983; Wigley et al., 1978; Plummer et al., 1994; Plummer and Glynn, 2013), and includes, in addition to DIC, dissolved organic carbon (DOC) and methane (CH4). If sufficient chemical, mineralogical and isotopic data are available, the geochemical mass-balance method can yield the most accurate estimates of the adjusted radiocarbon age. The main limitation of this approach is that complete information is necessary on chemical, mineralogical and isotopic data and these data are often limited.Failure to recognize the limitations and underlying assumptions on which the various models and approaches are based can result in a wide range of estimates of 14C0 and limit the usefulness of radiocarbon as a dating tool for groundwater. In each of the three generalized approaches (single-sample-based models, statistical approach, and geochemical mass-balance approach), successful application depends on scrutiny of the isotopic (14C and 13C) and chemical data to conceptualize the reactions and processes that affect the 14C content of DIC in aquifers. The recently developed graphical analysis method is shown to aid in determining which approach is most appropriate for the isotopic and chemical data from a groundwater system.

  11. Use of Geochemical Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable

    NASA Astrophysics Data System (ADS)

    Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie

    2016-04-01

    Geochemical correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that geochemical ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of geochemical indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of geochemical patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against geochemical relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that geochemical relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad application of geochemical indices without an understanding of site specific conditions could result in significant underestimation of anthropogenic impacts to soil and potential risks to the environment. The reliability and application of geochemical indices for estimation of background concentrations will be discussed, including comment on statistical limitations, (such as management of censored results and the behaviour of composition data) and miss-use/miss-interpretation of geochemical indices within the environmental assessment industry, including inferences of causation based on empirical relationships. HAMON, R. E., MCLAUGHLIN, M. J., GILKES, R. J., RATE, A. W., ZARCINAS, B., ROBERTSON, A., COZENS, G., RADFORD, N. & BETTENAY, L. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18, GB1014. MYERS, J. & THORBJORNSEN, K. 2004. Identifying Metals Contamination in Soil: A Geochemical Approach. Soil & Sediment Contamination, 13, 1-16.

  12. Geochemical maps of the Cornplanter Roadless Area, Warren County, Pennsylvania

    USGS Publications Warehouse

    Lesure, Frank G.; Day, Gordon W.

    1984-01-01

    The U.S. Geological Survey (USGS) made a reconnaissance geochemical survey of the Cornplanter Roadless Area (fig. 1) to test for indistinct or unexposed mineral deposits that might be recognized by their geochemical halos or patterns formed by the distribution of trace elements. Lesure, assisted by Andrew E. Grosz, collected 22 stream-sediment, 63 soil, and 23 rock samples from within and dear the study area during October 1980. All samples were analyzed for 31 elements using semi-quantitative spectrographic methods by Day in USGS laboratories, Denver, Colo. (table 1). In addition, the samples were also analyzed for zinc by means of an atomic absorption method by B.F. Arbogast and W.C. Martin, USGS laboratories, Denver Colo. J.T. Hanley and P.G. Schruben formatted the analytical data by computer methods for table 1. 

  13. Comments on “Arc magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences” by J. Omrani, P. Agard, H. Whitechurch, M. Bennoit, G. Prouteau, L. Jolivet

    NASA Astrophysics Data System (ADS)

    Aftabi, Alijan; Atapour, Habibeh

    2009-12-01

    Based on the imprecise geochemical data for 62 samples from Qom, Anar and Baft regions in central Iranian magmatic arc Omrani et al. (Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagsros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos 106, 380-398.), suggested that all studied magmatic rocks display the geochemical affinity of subduction-related calc-alkalic rock suites. Here, we demonstrate that the incorrect altered and variable geochemical data (e.g., Al 2O 3, Sr, Y, Ni, Cr, SiO 2, Na 2O, La/Yb and Th/Ce), show that most of the samples actually display calc-alkaline, shoshonitic and calc-alkalic-adakitic affinities. Furthermore, as a result of alteration, rock samples of similar age (e.g., Qom) indicate both adakitic and non-adakitic compositional signatures, which is misleading. On the basis of more than 400 previously published geochemical analyses, we suggest that, after eliminating the false geochemical signatures, the calc-alkaline and adakitic affinities of the central Iranian magmatic arc are due to flat subduction and might be related to a second phase of Miocene- Pliocene porphyry copper mineralization, which is a considerable exploration target and thus merits further investigation.

  14. Microbial Response in Peat Overlying Kimberlite Pipes in The Attawapiskat Area, Northern Ontario

    NASA Astrophysics Data System (ADS)

    Donkervoort, L. J.; Southam, G.

    2009-05-01

    Exploration for ore deposits occurring under thick, post-mineralized cover requires innovative methods and instrumentation [1]. Buried kimberlite pipes 'produce' geochemical conditions such as increased pH and decreased Eh in overlying peat [2] that intuitively select for bacterial populations that are best able to grow and, which in turn affect the geochemistry producing a linked signal. A microbiological study of peat was conducted over the Zulu kimberlite in the Attawapiskat area of the James Bay Lowlands to determine if the type of underlying rock influences the diversity and populations of microorganisms living in the overlying peat. Peat was sampled along an 800 m transect across the Zulu kimberlite, including samples underlain by limestone. Microbial populations and carbon source utilization patterns of peat samples were compared between the two underlying rock types. Results demonstrate an inverse relationship of increased anaerobic populations and lower biodiversity directly above the kimberlite pipe. These results support a reduced 'column' consistent with the model presented by Hamilton [3]. The combination of traditional bacterial enumeration and community- level profiling represents a cost-effective and efficient exploration technique that can serve to compliment both geophysical and geochemical surveys. [1] Goldberg (1998) J. Geochem. Explor. 61, 191-202 [2] Hattori and Hamilton (2008) Appl. Geochem. 23, 3767-3782 [3] Hamilton (1998) J. Geochem. Explor. 63, 155-172

  15. Electrical and geochemical properties of tufa deposits as related to mineral composition in the South Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Gomaa, Mohamed M.; Abou El-Anwar, Esmat A.

    2015-06-01

    The geochemical, petrographical, and electrical properties of rocks are essential to the investigation of the properties of minerals. In this paper we will try to present a study of the A. C. electrical properties of carbonate rock samples and their relation to petrographical and geochemical properties. Samples were collected from four formations from the Bir Dungul area, in the South Western Desert, Egypt. The electrical properties of the samples were measured using a non-polarizing electrode, at room temperature (~28 °C), and at a relative atmospheric humidity of (~45%), in the frequency range from 42 Hz to 5 MHz. The changes in the electrical properties were argued to the change in mineral composition. Generally, the electrical properties of rocks are changed due to many factors e.g., grain size, mineral composition, grain shape and inter-granular relations between grains. The dielectric constant of samples decreases with frequency, and increases with conductor concentration. Also, the conductivity increases with an increase of continuous conductor paths between electrodes. The petrographical and geochemical studies reveal that the deposition of the tufa deposits occurred in shallow lakes accompanied by a high water table, an alkaline spring recharge and significant vegetation cover. Diagenetically, tufa deposits were subjected to early and late diagenesis. Petrography and geochemistry studies indicated that the area of tufa deposits was deposited under the control of bacterial activity. Geochemically, the Sr content indicates that the tufa deposits formed from dissolved bicarbonate under the control of microbes and bacterial activity.

  16. Geochemical and mineralogical data for soils of the conterminous United States

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Kilburn, James E.; Fey, David L.

    2013-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Sampling and analytical protocols were developed at a workshop in 2003, and pilot studies were conducted from 2004 to 2007 to test and refine these recommended protocols. The final sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting dataset provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report (1) describes the sampling, sample preparation, and analytical methods used; (2) gives details of the quality control protocols used to monitor the quality of chemical and mineralogical analyses over approximately six years; and (3) makes available the soil geochemical and mineralogical data in downloadable tables.

  17. GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.

    NASA Astrophysics Data System (ADS)

    Asavin, A. M.

    2001-12-01

    There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.

  18. Vegetation of Upper Coastal Plain Depression Wetlands: Environmental Templates and Wetland Dynamics Within A Landscape Framework

    Treesearch

    Diane De Steven; Maureen M. Toner

    2004-01-01

    Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across...

  19. Selected translations of the Russian literature on the electrogeochemical sampling technique called CHIM (chastichnoe izvlechennye metallov)

    USGS Publications Warehouse

    Bloomstein, Edward I.; Bloomstein, Eleana; Hoover, D.B.; Smith, D.B.

    1990-01-01

    As part of our research into new methods for the assessment of mineral deposits, the U.S. Geological Survey has recently begun investigation of the CHIM method. As part of our studies, translation of a Russian manual on the CHIM methodology and eight articles from the Russian literature were transit ted to provide background for our own research. The translations were done by Earth Science Translation Services of Albuquerque, New Mexico, and are presented as received, without editing on our part. Below is a bibliography of the translated articles.For approximately the past 20 years Russian geoscientists have been applying an electrogeochemical sampling technique given the Russian acronym CHIM, derived from Chastichnoe Izvlechennye Metallov which translates as "partial extraction of metals". In this technique a direct current is introduced into the earth through collector electrodes similar to "porous pots" used in electrical geophysical applications. The solution in the cathode is dilute nitric acid, and current is passed through the cathode for times ranging from 6 hours to 48 hours or more. Electrical connections to the nitric acid are made through an inner conductor that is typically spectroscopically pure graphite. At the cathode, mobile cations collect on the graphite or in the nitric acid solution, both of which serve as the geochemical sampling media. These media are then analyzed by appropriate methods for the ions of interest. In most applications of the CHIM method only mobile cations are sampled, although Russian literature does refer to collection of anions as well. More recently the CHIM method has been applied by the Peoples Republic of China and the Indian Geological Survey.The literature indicates that the method has advantages over other geochemical sampling techniques by providing increased sensitivity to the metals being searched for, especially where deposits are covered by substantial overburden. In some cases success has been claimed with overburden in excess of 500 meters. The technique appears to have been applied principally to exploration for base- and precious-metal deposits, but does not appear to be limited to these. References are made in the literature to its application in the search for nickel, cobalt, molybdenum, uranium, tin, REE, tungsten, berylium, and oil and gas.

  20. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive.

    PubMed

    Sánchez-Montoya, María del Mar; Arce, Maria Isabel; Vidal-Abarca, María Rosario; Suárez, María Luisa; Prat, Narcís; Gómez, Rosa

    2012-05-01

    Type-specific physico-chemical reference conditions are required for the assessment of ecological status in the Water Framework Directive context, similarly to the biological and hydro-morphological elements. This directive emphasises that natural variability of quality elements in high status (reference condition) needs to be quantified. Mediterranean streams often present a marked seasonal pattern in hydrological, biological and geochemical processes which could affect physico-chemical reference conditions. This study establishes general physico-chemical reference conditions (oxygenation, nutrient, salinity and acidification conditions) for different Mediterranean stream types. 116 potential reference sites located in 23 Mediterranean catchments in Spain were sampled in spring, summer and autumn in 2003. All sites were subjected to a screening method for the selection of reference sites in Mediterranean streams (Mediterranean Reference Criteria) and classified using a pre-established stream typology that establishes five different stream types (temporary streams, evaporite-calcareous at medium altitude, siliceous headwaters, calcareous headwaters and large watercourses). Reference conditions (reference value and reference threshold equivalents to high-good class boundary) were calculated using two different methods according to the availability of reference sites: the reference site 75th percentile approach of all reference sites and the 25th percentile of the population approach. The majority of the studied potential reference sites (76 out of 116) were selected as reference sites. Regarding type-specific reference conditions, only siliceous headwaters could be considered different from the rest of stream types because lower conductivity and pH. All reference stream types presented seasonal differences as regards some parameters, except for temporary streams due to the high natural variation of this stream type. For those parameters which presented seasonal differences in a specific stream type, the least restrictive values were proposed as reference conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  2. Geochemical orientation for mineral exploration in the Hashemite Kingdom of Jordan

    USGS Publications Warehouse

    Overstreet, W.C.; Grimes, D.J.; Seitz, J.F.

    1982-01-01

    This report is a supplement to previous accounts of geochemical exploration conducted in the Hashemite Kingdom of Jordan by the Natural Resources Authority of the Royal Government of Jordan and the U.S. Geological Survey. The field work on which this report is based was sponsored by the U.S. Agency for International Development, U.S. Department of State. Procedures used in collecting various kinds of rocks, ores, slags, eluvial and alluvial sediments, heavy-mineral concentrates, and organic materials for use as geochemical sample media are summarized, as are the laboratory procedures followed for the analysis of these sample materials by semiquantitative spectrographic, atomic absorption, fluorometric, and X-ray diffraction methods. Geochemical evaluations of the possibilities for economic mineral deposits in certain areas are presented. The results of these preliminary investigations open concepts for further use in geochemical exploration in the search for metallic mineral deposits in Jordan. Perhaps the most desirable new activity would be hydrogeochemical exploration for uranium and base metals, accompanied by interpretation of such remote-sensing data as results of airborne radiometric surveys and computer-enhanced LANDSAT imagery. For more conventional approaches to geochemical exploration, however, several fundamental problems regarding proper choice of geochemical sample media for different geologic and geographic parts of the Country must be solved before effective surveys can be made. The present results also show that such common geochemical exploration techniques as the determination of the trace-element contents of soils, plant ash, and slags have direct application also toward the resolution of several archaeological problems in Jordan. These include the relation of trace-elements chemistry of local soils to the composition of botanic remains, the trace-elements composition of slags to the technological development of the extractive metallurgy of copper and iron in the region, and the use of charcoal from slags for the C-14 dating of periods of archaeometallurgical activity. Less directly, interpretations based on the distribution in time and space of the archaeometallurgical activities of the region might add to the knowledge of early climatic conditions and vegetative cover of the area.

  3. Geochemical Atlas of the San Jose and Golfito quadrangles, Costa Rica. Atlas Geoquimico de los cuadrangulos de San Jose y Golfito, Costa Rica (in English and Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Geochemical Atlas of the San Jose and Golfito 1:200,000-scale quadrangles, Costa Rica, was produced to help stimulate the growth of the Costa Rican mining industry and, thus, to benefit the economy of the country. As a result of the geochemical data presented in the Atlas, future exploration for metallic minerals in Costa Rica can be focused on specific areas that have the highest potential for mineralization. Stream-sediment samples were collected from drainage basins within the two quadrangles. These samples were analyzed for 50 elements and the results were displayed as computer-generated color maps. Each map shows the variation inmore » abundance of a single element within the quadrangle. Basic statistics, geological and cultural data are included as insets in each map to assist in interpretation. In the Golfito quadrangle, the geochemical data do not clearly indicate undiscovered gold mineralization. The areas known to contain placer (alluvial) gold are heavily affected by mining activity. Statistical treatment of the geochemical data is necessary before it will be possible to determine the gold potential of this quadrangle. In San Jose quadrangle, gold and the pathfinder elements, arsenic and antimony, are indicators of the gold mineralization characteristic of the Costa Rican gold district located in the Tilaran-Montes del Aguacate Range. This work shows that high concentrations of these elements occur in samples collected downstream from active gold mines. More importantly, the high concentrations of gold, arsenic, and antimony in sediment samples from an area southeast of the known gold district suggest a previously unknown extension of the district. This postulated extension underlain by Tertiary volcanic rocks which host the gold deposits within the gold district. The geochemical data, displayed herein, also indicate that drainage basins north of Ciudad Quesada on the flanks of Volcan Platanar have high gold potential.« less

  4. Major- and Trace-Element Concentrations in Soils from Northern California: Results from the Geochemical Landscapes Project Pilot Study

    USGS Publications Warehouse

    Morrison, Jean M.; Goldhaber, Martin B.; Holloway, JoAnn M.; Smith, David B.

    2008-01-01

    In 2004, the U.S. Geological Survey (USGS), the Geological Survey of Canada (GSC), and the Mexican Geological Survey (Servicio Geologico Mexicano, or SGM) initiated pilot studies in preparation for a soil geochemical survey of North America called the Geochemical Landscapes Project. The purpose of this project is to provide a better understanding of the variability in chemical composition of soils in North America. The data produced by this survey will be used to construct baseline geochemical maps for regions within the continent. Two initial pilot studies were conducted: (1) a continental-scale study involving a north-south and east-west transect across North America and (2) a regional-scale study. The pilot studies were intended to test and refine sample design, sampling protocols, and field logistics for the full continental soils geochemical survey. Smith and others (2005) reported the results from the continental-scale pilot study. The regional-scale California study was designed to represent more detailed, higher resolution geochemical investigations in a region of particular interest that was identified from the low-sample-density continental-scale survey. A 20,000-km2 area of northern California (fig. 1), representing a wide variety of topography, climate, and ecoregions, was chosen for the regional-scale pilot study. This study area also contains diverse geology and soil types and supports a wide range of land uses including agriculture in the Sacramento Valley, forested areas in portions of the Sierra Nevada, and urban/suburban centers such as Sacramento, Davis, and Stockton. Also of interest are potential effects on soil geochemistry from historical hard rock and placer gold mining in the foothills of the Sierra Nevada, historical mercury mining in the Coast Range, and mining of base-metal sulfide deposits in the Klamath Mountains to the north. This report presents the major- and trace-element concentrations from the regional-scale soil geochemical survey in northern California.

  5. Chemical elements in the environment: multi-element geochemical datasets from continental to national scale surveys on four continents

    USGS Publications Warehouse

    Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu

    2017-01-01

    During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.

  6. Geochemical anomalies from bottom ash in a road construction--comparison of the leaching potential between an ash road and the surroundings.

    PubMed

    Lind, Bo B; Norrman, Jenny; Larsson, Lennart B; Ohlsson, Sten-Ake; Bristav, Henrik

    2008-01-01

    A study was performed between June 2001 and December 2004 with the primary objective of assessing long-term leaching from municipal solid waste incineration bottom ash in a test road construction in relation to a reference road made up of conventional materials and the natural geochemical conditions in the surroundings. The metal leaching from the test road and the reference road was compared with the natural weathering in the regional surroundings for three time scales: 16, 80 and 1000 years. The results show that Cu and Zn cause a geochemical anomaly from the test road compared with the surroundings. The leaching of Cu from the test road is initially high but will decline with time and will in the long term be exceeded by natural weathering. Zn on the other hand has low initial leaching, which will increase with time and will in the long term exceed that of the test road and the surroundings by a factor of 100-300. For the other metals studied, Al, Na, K and Mg, there is only very limited leaching over time and the potential accumulation will not exceed the background values in a 1000 years.

  7. Assessment of geochemical and hydrologic conditions near Old Yuma Mine in Saguaro National Park, Arizona, 2014–17

    USGS Publications Warehouse

    Beisner, Kimberly R.; Gray, Floyd

    2018-03-13

    The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.

  8. Publications - GMC 18 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Authors: Unknown Publication Date: Unknown Publisher: Alaska Division of Geological & Geophysical information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon, rock-eval

  9. Conceptual models in exploration geochemistry-The Basin and Range Province of the Western United States and Northern Mexico

    USGS Publications Warehouse

    Lovering, T.G.; McCarthy, J.H.

    1978-01-01

    This summary of geochemical exploration in the Basin and Range Province is another in the series of reviews of geochemical-exploration applications covering a large region; this series began in 1975 with a summary for the Canadian Cordillera and Canadian Shield, and was followed in 1976 by a similar summary for Scandinavia (Norden). Rather than adhering strictly to the type of conceptual models applied in those papers, we have made use of generalized landscape geochemistry models related to the nature of concealment of ore deposits. This study is part of a continuing effort to examine and evaluate geochemical-exploration practices in different areas of the world. Twenty case histories of the application of geochemical exploration in both district and regional settings illustrate recent developments in techniques and approaches. Along with other published reports these case histories, exemplifying generalized models of concealed deposits, provide data used to evaluate geochemical-exploration programs and specific sample media. Because blind deposits are increasingly sought in the Basin and Range Province, the use of new sample media or anomaly-enhancement techniques is a necessity. Analysis of vapors or gases emanating from blind deposits is a promising new technique. Certain fractions of stream sediments show anomalies that are weak or not detected in conventional minus 80-mesh fractions. Multi-element analysis of mineralized bedrock may show zoning patterns that indicate depth or direction of ore. Examples of the application of these and other, more conventional methods are indicated in the case histories. The final section of this paper contains a brief evaluation of the applications of all types of sample media to geochemical exploration in the arid environment of the Basin and Range Province. ?? 1978.

  10. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  11. Specificity of Cs-137 redistribution in toposequence of arable soils cultivated after the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey

    2017-04-01

    Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field //Chemometrics and Intelligent Laboratory Systems, 99, 1-8. Korobova, E., Romanov S., 2011. Experience of mapping spatial structure of Cs-137 in natural landscape and patterns of its distribution in soil toposequence // Journal of Geochemical Exploration, 109, 1-3, 139-145. Korobova Elena, Sergey Romanov, Vladimir Samsonov, Fedor Moiseenko, 2008. Peculiarities of spatial structure of 137Cs contamination field in landscape toposequence: regularities in geo-field structure. Proceedings of the International Conference on Radioecology and Environmental Radioactivity, 15-20 June 2008, Bergen, Norway, Part 2, 182-186.

  12. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  13. Infertility and growth suppression in beef cattle associated with abnormalities in their geochemical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, A.A.; Selby, L.A.; Hutcheson, D.P.

    1973-01-01

    Infertility and growth suppression were reported in two beef-cattle herds located in a small valley in central Missouri. Clinical, epidemiological, and toxicological evaluation of the herds and ranches by personnel from the Environmental Health Surveillance Center suggested that the problem was related to the local geochemical environment. US Geological Survey personnel, engaged in a geochemical survey of the natural environment of Missouri, were asked to evaluate the site geochemically. Geochemical studies of waters, alluvial deposits, and vegetation revealed that aluminum, beryllium, cobalt, copper, molybdenum, and nickel occur in anomalous concentrations in these materials. The principal source of these elements ismore » believed to be clay, shale, limestone, coal, and pyrite that were exposed at the head of the valley when the clay was mined. Young beef cattle from two ranches which were pastured on the flood plain below the claypile experienced a severe growth suppression from an imbalance of minerals or other nutrients in their feed or water, or both. Metabolic disturbances in these cattle resembled chronic molybdenosis. Imbalances of copper and molybdenum, in addition to those of cobalt and other substances, may have contributed to this syndrome. 17 references.« less

  14. Maps and interpretation of geochemical anomalies, Chuckwalla Mountains Wilderness Study Area, Riverside County, California

    USGS Publications Warehouse

    Watts, K.C.

    1986-01-01

    This report discusses and interprets geochemical results as they are seen at the reconnaissance stage. Analytical results for all samples collected are released in a U.S. Geological Survey Open-File Report (Adrian and others, 1985). A statistical summary of the data from heavy-mineral concentrates and sieved stream sediments is shown in table 1. The analytical results for selected elements in rock samples are shown in table 2.

  15. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  16. Whole-rock and sulfide-mineral geochemical data for samples from volcanogenic massive sulfide deposits of the Bonnifield district, east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Koenig, Alan E.; Foley, Nora K.; Oscarson, Robert L.; Gans, Kathleen D.

    2011-01-01

    This Open-File Report presents geochemical data for outcrop and drill-core samples from volcanogenic massive sulfide deposits and associated metaigneous and metasedimentary rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range, east-central Alaska. The data consist of major- and trace-element whole-rock geochemical analyses, and major- and trace-element analyses of sulfide minerals determined by electron microprobe and laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) techniques. The PDF consists of text, appendix explaining the analytical methods used for the analyses presented in the data tables, a sample location map, and seven data tables. The seven tables are also available as spreadsheets in several file formats. Descriptions and discussions of the Bonnifield deposits are given in Dusel-Bacon and others (2004, 2005, 2006, 2007, 2010).

  17. A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey

    USGS Publications Warehouse

    Sutphin, David M.

    2005-01-01

    National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.

  18. Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin

    USGS Publications Warehouse

    Berger, P.M.; Roy, W.R.; Mehnert, E.

    2009-01-01

    The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.

  19. Database creation, data quality assessment, and geochemical maps (phase V, deliverable 59)—Final report on compilation and validation of geochemical data: Chapter D in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Lee, Gregory K.; Smith, Steven M.

    2015-01-01

    The geochemical sample media collected by the BGS and BRGM under the PRISM-I contract included rock, sediment, regolith, and soil samples. Details on sample collection procedures are in unpublished reports available from PRISM. These samples were analyzed under PRISM-I contract by ALS Chemex Laboratories using various combinations of modern methods including fire-assay inductively coupled plasma-atomic emission spectrometry (ICPAES) and ICP-mass spectrometry (ICP-MS) for Au; multi-acid digestion, atomic absorption spectroscopy (AAS) for Ag and As; 47-element, four-acid digestion, ICP-MS; 27-element, fouracid digestion, ICP-AES; special four-acid ICP-MS techniques for Pt and B; fire assay followed by ICP-AES for platinum-group elements; whole-rock analyses by wavelength dispersive X-ray fluorescence (XRF); special techniques for loss-on-ignition, inorganic C, and total S; and special ore-grade AAS techniques for Ag, Au, Cu, Ni, Pb, and Zn. Around 30,000 samples were analyzed by at least one technique. However, it is stressed here that: (1) there was no common sample medium collected at all sites, likely due to the vast geological and geomorphologic differences across the country, (2) the sample site distribution is very irregular, likely due in part to access constraints and sand dune cover, and (3) there was no common across-the-board trace element analytical package used for all samples. These three aspects fundamentally affect the ability to produce country-wide geochemical maps of Mauritania. Gold (Au), silver (Ag), and arsenic (As) were the three elements that were most commonly analyzed.

  20. The geochemical landscape of northwestern Wisconsin and adjacent parts of northern Michigan and Minnesota (geochemical data files)

    USGS Publications Warehouse

    Cannon, William F.; Woodruff, Laurel G.

    2003-01-01

    This data set consists of nine files of geochemical information on various types of surficial deposits in northwestern Wisconsin and immediately adjacent parts of Michigan and Minnesota. The files are presented in two formats: as dbase files in dbaseIV form and Microsoft Excel form. The data present multi-element chemical analyses of soils, stream sediments, and lake sediments. Latitude and longitude values are provided in each file so that the dbf files can be readily imported to GIS applications. Metadata files are provided in outline form, question and answer form and text form. The metadata includes information on procedures for sample collection, sample preparation, and chemical analyses including sensitivity and precision.

  1. Environmental geochemical studies of selected mineral deposits in Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Rosenkrans, Danny; Ballestrazze, Vanessa

    2000-01-01

    Environmental geochemical investigations at Wrangell-St. Elias National Park and Preserve, Alaska, between 1994 and 1997 included studies of the Kennecott stratabound copper mines and mill area; historic mines and mill in the Bremner District, gold placer mines at Gold Hill; the undisturbed porphyry, Cu-Mo deposits at Orange Hill and Bond Creek, and the historic mines and mill at Nabesna, The study was in cooperation with the National Park Service and focused on sample media including surface water, bedload sediment, rock, mine waste, and mill tailings samples. Results demonstrate that bedrock geology and mineral deposit type must be considered when environmental geochemical effects of historic or active mine areas are evaluated.

  2. Hydrologic setting and geochemical characterization of free-phase hydrocarbons in the alluvial aquifer at Mandan, North Dakota, November 2000

    USGS Publications Warehouse

    Hostettler, Frances D.; Rostad, Colleen E.; Kvenvolden, Keith A.; Delin, Geoffrey N.; Putnam, Larry D.; Kolak, Jonathan J.; Chaplin, Brain P.; Schaap, Bryan D.

    2001-01-01

    Free-phase hydrocarbons are present in the alluvial aquifer at Mandan, North Dakota. A large contaminant body of the hydrocarbons [light nonaqueous phase liquid (LNAPL)] floats on the water table about 20 feet below land surface. The main LNAPL body is about 6 feet thick, and the areal extent is about 657,000 square feet. A study was conducted to describe the hydrologic setting and characterize the geochemical composition of the free-phase hydrocarbons in the alluvial aquifer. Most of the study area is underlain by alluvium of the Heart River Valley that ranges in thickness from about 25 to 109 feet. The alluvium can be divided into three stratigraphic units silty clay, silty sand, and sand and is underlain by shales and sandstones. Monitoring wells were installed prior to this study, to an average depth of about 29 feet. Regional ground-water flow in the Heart River aquifer generally may be from west-northwest to eastsoutheast and is influenced by hydraulic connections to the river. Hydraulic connections also are probable between the aquifer and the Missouri River. Ground-water flow across the north boundary of the aquifer is minimal because of adjacent shales and sandstones of relatively low permeability. Recharge occurs from infiltration of precipitation and is spatially variable depending on the thickness of overlying clays and silts. Although the general water-table gradient may be from west-northwest to east-southeast, the flow directions can vary depending on the river stage and recharge events. Any movement of the LNAPL is influenced by the gradients created by changes in water-level altitudes.LNAPL samples were collected from monitoring wells using dedicated bailers. The samples were transferred to glass containers, stored in the dark, and refrigerated before shipment for analysis by a variety of analytical techniques. For comparison purposes, reference-fuel samples provided by the refinery in Mandan also were analyzed. These reference-fuel samples included a current diesel fuel, a closely related but slightly broader refinery-cut fuel, a crude-oil composite, unleaded regular gasoline, and additives. Four principal analytical techniques were used for geochemical characterization: Purge-and-trap gas chromatography/mass spectrometry (volatile components); capillary gas chromatography/mass spectrometry (semivolatile components); isotope ratio mass spectrometry (carbon isotopes; whole oils); and liquid chromatography/mass spectrometry with electrospray ionization (additives and other organic components). Volatile analytes included solvents, disinfection byproducts, halogenated hydrocarbons, and alkylbenzenes, including benzene, toluene, ethylbenzene, and meta-, para-, and orf/zo-xylenes. Semivolatile analytes included rt-alkanes, isoprenoid alkanes, cycloalkanes, and polycyclic aromatic hydrocarbons and related compounds (naphthalenes, phenanthrenes, and dibenzothiophenes and their alkylated derivatives). Of the additives, only the diesel-fuel additive with the red dye marker was amenable to electrospray ionization.Results indicate the LNAPL consists of closely correlatable diesel fuel at various stages of degradation. All LNAPL samples contained the red dye marker for diesel fuel. None of the samples contained chlorinated solvents associated with industries such as drycleaning or automotive maintenance. Solvents such as acetone, dimethyl ether, and methylene chloride and the gasoline additives methyl-t-butyl ether (MTBE), ethyl-t-butyl ether (ETBE), and t-amyl-methyl ether (TAME) were not found. With one possible exception, no evidence of a different diesel or other hydrocarbon fuel contribution was identified. At one site near the north edge of the main LNAPL body, evidence exists for traces of possible gasoline components in addition to the diesel fuel. The geochemical analysis of the LNAPL and correlations with other fuel products and additives strongly suggest episodic releases of a single, local-source, diesel fuel into the aquifer over an extended period of time.

  3. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  4. Publications - GMC 318 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    geochemical core data, Talkeetna Mountains A-5 quadrangle Authors: Unknown Publication Date: 2005 Publisher or please see our publication sales page for more information. Bibliographic Reference Unknown, 2005

  5. Application of the superfine fraction analysis method in ore gold geochemical prospecting in the Shamanikha-Stolbovsky Area (Magadan Region)

    NASA Astrophysics Data System (ADS)

    Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton

    2014-05-01

    The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify potential gold zones, and determine their formation affinity. Nadezhda Site. Contrast Au, Ag, Pb, Bi, Sb, As dispersion halos that form a linear anomalous geochemical field of ore body rank are identified. Predicted mineralization was related to the gold-sulfosalt mineral association according to the secondary dispersion halos chemical composition. Timsha Site. Contrast secondary Au, Ag, Sb, As, Hg, Pb, Bi dispersion halos are identified. These halos have rhythmically-banded structure, which can be caused by stringer morphological type of mineralization. Bands with anomalously high contents of elements have been interpreted by the authors as probable auriferous bodies. Four such bodies of 700 to 1500 m long were identified. Mineralization of the gold-sulfide formation similar to the "Carlin" type is predicted according to the secondary dispersion halos chemical composition as well as geological features. Temny Site. Contrast secondary Au, Ag, W, Sb dispersion halos are identified. A series of geochemical associations was identified based on factor analysis results. Au-Bi-W-Hg, and Pb-Sb-Ag-Zn associations, apparently related to the mineralization are of the greatest interest. Geochemical fields of these associations are closely spaced and overlapped in plan that may be caused by axial zoning of the subvertically dipping auriferous body. Three linear geochemical zones corresponding to potentially auriferous zones with pyrite type mineralization of the gold-quartz formation are identified within the anomalous geochemical field core zone. 3. In all these prospects, mining and drilling penetrated gold ore bodies within the identified potentially gold zones. The Nadezhda target now has the status of gold deposit.

  6. Biological and geochemical data of gravity cores from Mobile Bay, Alabama

    USGS Publications Warehouse

    Richwine, Kathryn A.; Marot, Marci; Smith, Christopher G.; Osterman, Lisa E.; Adams, C. Scott

    2013-01-01

    A study was conducted to understand the marine-influenced environments of Mobile Bay, Alabama, by collecting a series of box cores and gravity cores. One gravity core in particular demonstrates a long reference for changing paleoenvironmental parameters in Mobile Bay. Due to lack of abundance of foraminifers and (or) lack of diversity, the benthic foraminiferal data for two of the three gravity cores are not included in the results. The benthic foraminiferal data collected and geochemical analyses in this study provide a baseline for recent changes in the bay.

  7. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  8. A geochemical atlas of North Carolina, USA

    USGS Publications Warehouse

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.

  9. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  10. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  11. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  12. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., geochemical, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...

  13. Comparison of mine waste assessment methods at the Rattler mine site, Virginia Canyon, Colorado

    USGS Publications Warehouse

    Hageman, Phil L.; Smith, Kathleen S.; Wildeman, Thomas R.; Ranville, James F.

    2005-01-01

    In a joint project, the mine waste-piles at the Rattler Mine near Idaho Springs, Colorado, were sampled and analyzed by scientists from the U.S. Geological Survey (USGS) and the Colorado School of Mines (CSM). Separate sample collection, sample leaching, and leachate analyses were performed by both groups and the results were compared. For the study, both groups used the USGS sampling procedure and the USGS Field Leach Test (FLT). The leachates generated from these tests were analyzed for a suite of elements using ICP-AES (CSM) and ICP-MS (USGS). Leachate geochemical fingerprints produced by the two groups for composites collected from the same mine waste showed good agreement. In another set of tests, CSM collected another set of Rattler mine waste composite samples using the USGS sampling procedure. This set of composite samples was leached using the Colorado Division of Minerals and Geology (CDMG) leach test, and a modified Toxicity Characteristic Leaching Procedure (TCLP) leach test. Leachate geochemical fingerprints produced using these tests showed a variation of more than a factor of two from the geochemical fingerprints produced using the USGS FLT leach test. We have concluded that the variation in the results is due to the different parameters of the leaching tests and not due to the sampling or analytical methods.

  14. GANSEKI: JAMSTEC Deep Seafloor Rock Sample Database Emerging to the New Phase

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Ichiyama, Y.; Horikawa, H.; Sato, Y.; Soma, S.; Hanafusa, Y.

    2013-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) collects a lot of substantial samples as well as various geophysical data using its research vessels and submersibles. These samples and data, which are obtained by spending large amounts of human and physical resources, are precious wealth of the world scientific community. For the better use of these samples and data, it is important that they are utilized not only for initial purpose of each cruse but also for other general scientific and educational purposes of second-hand users. Based on the JAMSTEC data and sample handling policies [1], JAMSTEC has systematically stored samples and data obtained during research cruises, and provided them to domestic/foreign activities on research, education, and public relation. Being highly valued for second-hand usability, deep seafloor rock samples are one of the most important types of samples obtained by JAMSTEC, as oceanic biological samples and sediment core samples are. Rock samples can be utilized for natural history sciences and other various purposes; some of these purposes are connected to socially important issues such as earthquake mechanisms and mineral resource developments. Researchers and educators can access to JAMSTEC rock samples and associated data through 'GANSEKI [2]', the JAMSTEC Deep Seafloor Rock Sample Database. GANSEKI was established on the Internet in 2006 and its contents and functions have been continuously enriched and upgraded since then. GANSEKI currently provides 19 thousands of sample metadata, 9 thousands of collection inventory data and 18 thousands of geochemical data. Most of these samples are recovered from the North-western Pacific Ocean, although samples from other area are also included. The major update of GANSEKI held in May 2013 involved a replacement of database core system and a redesign of user interface. In the new GANSEKI, users can select samples easily and precisely using multi-index search, numerical constraints on geochemical data and thumbnail browsing of sample and thin-section photos. 'MyList' function allows users to organize, compare and download the data of selected samples. To develop a close network among online databases, the new GANSEKI allows multiple URL entries for individual samples. Now the curatorial staffs are working for maintaining references to other JAMSTEC databases such as 'DARWIN [3]' and 'J-EDI [4]'.

  15. Data for factor analysis of hydro-geochemical characteristics of groundwater resources in Iranshahr.

    PubMed

    Biglari, Hamed; Saeidi, Mehdi; Karimyan, Kamaleddin; Narooie, Mohammad Reza; Sharafi, Hooshmand

    2018-08-01

    Detection of Hydrogeological and Hydro-geochemical changes affecting the quality of aquifer water is very important. The aim of this study was to determine the factor analysis of the hydro-geochemical characteristics of Iranshahr underground water resources during the warm and cool seasons. In this study, 248 samples (two-time repetitions) of ground water resources were provided at first by cluster-random sampling method during 2017 in the villages of Iranshahr city. After transferring the samples to the laboratory, concentrations of 13 important chemical parameters in those samples were determined according to o water and wastewater standard methods. The results of this study indicated that 45.45% and 55.55% of the correlation between parameters has had a significant decrease and increase, respectively with the transition from warm seasons to cold seasons. According to the factor analysis method, three factors of land hydro-geochemical processes, supplying resources by surface water and sewage as well as human activities have been identified as influential on the chemical composition of these resources.The highest growth rate of 0.37 was observed between phosphate and nitrate ions while the lowest trend of - 0.33 was seen between fluoride ion and calcium as well as chloride ions. Also, a significant increase in the correlation between magnesium ion and nitrate ion from warm seasons to cold seasons indicates the high seasonal impact of the relation between these two parameters.

  16. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  17. Determination of ferrous and total iron in refractory spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyas, Josef

    2015-12-30

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less

  18. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    The aim of this study is to contribute to the assessment of natural hazards in a seismically active area of southern Italy through the joint analysis of historical sources and fluid geochemistry. In particular, our studies have been focalized in the Val d'Agri basin, in the Apennines extensional belt, since it hosts the largest oilfield in onshore Europe and normal-fault systems with high seismogenic potential (up to M7). The work was organized into three main themes: 1) literature search aimed at identifying fluid emissions during previous moderate-strong earthquakes; 2) consultation of local and national archives to identify historic local place names correlated to natural fluids emissions; 3) geochemical sampling of groundwater and gas issuing at surface, identified on the basis of the bibliographic sources. A reasoned reading of written documents and available historical data was performed. Moreover, we reworked information reported in historical catalogues, referred to liquid and gas hydrocarbon leakages occurred during seismic events of the past (in a range of magnitude from 5 to 7) in the Southern Apennines (with a particular focus on the Val d'Agri). Special attention was given to the phenomena of geochemical emissions related to major historical earthquakes that took place in the area, most notably that of 16 December 1857 (M = 7). A careful analysis of the Robert Mallet's report, a complete work aimed at describing the social impact and the effects on the environment produced by this earthquake through illustrated maps and diagrams, included several hundred monoscopic and stereoscopic photographs, was done. From archival sources (at national and/or local administrations), "sensitive" sites to the onset of leakage of liquid and gaseous hydrocarbons in the past were identified. A soil-gas survey (22 gas concentrations and flux measurements) and 35 groundwater samplings were carried out in specific sites recognized through the above studies. From a geochemical point of view, gathered results individuated Tramutola (Potenza) as a particularly interesting site, characterized by the presence of small oil springs at surface as well as deep-derived gas and hydrocarbons. The importance to track, map and monitor spill of fluids and, in particular, hydrocarbons also in quiescent times could constitute an additional element to set the "natural background noise" of the territory (baseline) not influenced or triggered by human activity.

  19. Publications - GMC 253 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    of the following Copper River basin oil and gas exploratory wells: Amoco Production Company Ahtna Inc Reference Unknown, 1995, Source rock geochemical and visual kerogen data from cuttings of the following

  20. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    USGS Publications Warehouse

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  1. Comparison on humus and soil geochemical baselines in Southern Finland

    NASA Astrophysics Data System (ADS)

    Minolfi, Giulia; Tarvainen, Timo; Jarva, Jaana

    2016-04-01

    Humus has been recognized since a survey in 1977 (Allen and Steinnes, 1980) as one of the best sampling media for mapping regional environmental contamination because of the strong geochemical contrast between anomalous and background concentrations resulting from its capacity to accumulate high levels of trace metals. This study is in the framework of the comparison between humus, topsoil and moss deposition data, in order to analyze the humus behavior and to find possible similarities to underlying geology and long-range atmospheric deposition. The analyzed samples are part of a geochemical mapping programme carried out by the Geological Survey of Finland (GTK); subsoil, topsoil and humus samples have been collected in a large area in Southern Finland since 2002. 816 sample pairs (humus and topsoil samples) were selected for statistical analysis. Statistical graphs, like histograms, CP plots and box plots, were realized for 31 elements, and showed that most of the elements have completely different distribution of concentrations in humus and in topsoil samples. Then the correlation between the element concentrations in humus and minerogenic topsoil has been evaluated measuring the Spearman rank correlation value and elaborating scatter plots between the element concentrations in humus and minerogenic topsoil, and between the content of the element vs. the content of organic C. The concentrations of some elements, like K, Mg, Fe, Al, in humus samples are controlled by the content of mineral matter, derived by the soil dust. Other elements, such as As, Bi, Cd, Co, Cu, Mn, Mo, Ni, Pb, Rb, Th, V and Zn showed evident outliers, with probable anthropogenic origin. In order to explain these anomalous high values in humus, the geographic distributions of these elements in humus and topsoil were analyzed and then compared to the deposition data obtained by the national moss data. High values appear in areas where the anthropogenic impact is strong, like the Harjavalta area, where older emissions from the smelter still cause anomaly patterns in some elements, and the more densely populated and industrialized areas, like the city of Tampere and the coastline from Porvoo to the capital region of Helsinki. According to the results presented here, the humus concentrations are more affected by the atmospheric impact than by the lithogenic contributes. Because of the great anthropogenic influence on humus concentrations, that causes locally high anomalies, even after many years, new humus samples should be collected, in order to improve the knowledge about humus behavior and anthropogenic input to the topmost layer of ground surface. REFERENCES Allen, R. O., & Steinnes, E. 1980. Contribution from long-range atmospheric transport to the heavy metal pollution of surface soil. D Drabløs, A Tollan (Eds.), Ecological impact of acid precipitation, SNSF Project, Oslo-Ås (1980), pp. 102-103.

  2. Geochemical and radionuclide profile of Tuzla geothermal field, Turkey.

    PubMed

    Baba, Alper; Deniz, Ozan; Ozcan, Hasan; Erees, Serap F; Cetiner, S Ziya

    2008-10-01

    Tuzla geothermal basin is situated in north-western Turkey on the Biga Peninsula, which is located at the west end of the Northern Anatolian Fault system. Soil and water samples were collected between August 2003 and June 2004 to initiate development of a geochemical profile of surface and subsurface waters in the geothermal basin and radionuclide concentrations in soils. All water samples were found to fall within Turkish Water Quality Class 4, meaning they were remarkably contaminated for any water consumption sector (industrial, human use or agricultural) based on sodium and chloride ions. Such waters could be used only after appropriate water treatment. The water samples are of the chloride type in terms of geochemical evaluation. Preliminary geochemical evidence shows that the N-S flowing part of the Tuzla River acts as a natural barrier within the basin. Heavy metal concentrations in the soil samples show slight elevations, especially those obtained from the east part of the basin where thermal springs are dominant. Geochemical calculations were carried out with PHREEQC software to determine equilibrium concentration of chemical species and saturation indices, by which it is suggested that chloride is the most important ligand to mobilize the heavy metals in the studied system. In addition, the activity concentration and gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides were determined in the soil using gamma-ray spectrometry. The soil activity ranged from 42.77 to 988.66 Bq kg(-1) (averaging 138 Bq kg(-1)) for ( 238 )U, 13.27 to 106.31 Bq kg(-1) (averaging 32.42 Bq kg(-1)) for ( 232 )Th, and 99.28 to 935.36 Bq kg(-1) (averaging 515.44 Bq kg(-1)) for ( 40 )K. The highest value of ( 238 )U was found in the soil samples obtained from an area close to the hot spring.

  3. A geochemical study of the Rio Pantanos area, Department of Antioquia, Colombia preliminary report

    USGS Publications Warehouse

    Alminas, Henry V.; Mosier, Elwin L.

    1972-01-01

    Geochemical sampling in the Western Cordillera has delineated an 18 km 2 area anomalous in copper, molybdenum, and silver. Highly anomalous metal contents are found in stream sediment, soil, and outcrop samples collected within this area. The area is underlain by intrusive granodiorite to quartz diorite that has porphyritic and granitoid phases. Most of the outcrop samples contain disseminated pyrite, chalcopyrite, and bornite. A geochemical reconnaissance sampling program in the Western Cordillera, formulated by Andros Jimeno V., Director, Instituto National de Investigaciones Geologico-Mineras (INGEOMINAS), and Earl M. Irving, U. S. Geological Survey (USGS) Chief of Party in Colombia, was carried out from 1969 to 1971 by geologists of the INGEOMINAS office in Medellin. This work was part of a cooperative program of INGEOMINAS and the USGS sponsored by the Government of Colombia and the Agency for International Development, U. S. Department of State. Seventeen generally east-trending traverses were completed across the Western Cordillera. These traverses, generally paralleling major drainages, cross the range at intervals of 10 to 30 km.

  4. USGS field activities 11BHM03 and 11BHM04 on the west Florida shelf, Gulf of Mexico, September and November 2011

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Barrera, Kira E.

    2014-01-01

    During September and November 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from September 20 to 28 (11BHM03) and the second was from November 2 to 4 (11BHM04). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).

  5. USGS field activities 11BHM01 and 11BHM02 on the west Florida shelf, Gulf of Mexico, May and June 2011

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Taylor, Carl A.; Barrera, Kira E.

    2014-01-01

    During May and June 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from May 3 to 9 (11BHM01) and the second was from June 25 to 30 (11BHM02). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).

  6. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    USGS Publications Warehouse

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

  7. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    NASA Astrophysics Data System (ADS)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  8. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  9. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    NASA Astrophysics Data System (ADS)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  10. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample catalog. This is followed by an explanation of the categories of sample information (column headers) in Tables 1 and 2. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of 2004?7 Mount St. Helens dome samples in table 3. Intra-laboratory results for the USGS AGV-2 standard are presented (tables 4 and 5), which demonstrate the compatibility of chemical data from different sources.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.

    The reclamation effort typically deals with consequences of mining activity instead of being planned well before the mining. Detailed assessment of principal hydro- and geochemical processes participating in pore and groundwater chemistry evolution was carried out at three surface mine localities in North Dakota-the Fritz mine, the Indian Head mine, and the Velva mine. The geochemical model MINTEQUA2 and advanced statistical analysis coupled with traditional interpretive techniques were used to determine site-specific environmental characteristics and to compare the differences between study sites. Multivariate statistical analysis indicates that sulfate, magnesium, calcium, the gypsum saturation index, and sodium contribute the most tomore » overall differences in groundwater chemistry between study sites. Soil paste extract pH and EC measurements performed on over 3700 samples document extremely acidic soils at the Fritz mine. The number of samples with pH <5.5 reaches 80%-90% of total samples from discrete depth near the top of the soil profile at the Fritz mine. Soil samples from Indian Head and Velva do not indicate the acidity below the pH of 5.5 limit. The percentage of samples with EC > 3 mS cm{sup -1} is between 20% and 40% at the Fritz mine and below 20% for samples from Indian Head and Velva. The results of geochemical modeling indicate an increased tendency for gypsum saturation within the vadose zone, particularly within the lands disturbed by mining activity. This trend is directly associated with increased concentrations of sulfate anions as a result of mineral oxidation. Geochemical modeling, statistical analysis, and soil extract pH and EC measurements proved to be reliable, fast, and relatively cost-effective tools for the assessment of soil acidity, the extent of the oxidation zone, and the potential for negative impact on pore and groundwater chemistry.« less

  12. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover systemmore » which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to /sup 226/Ra in the sediments derived from the tailings or milling activities.« less

  13. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development.

    PubMed

    Pelak, Adam J; Sharma, Shikha

    2014-12-01

    Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Remote Geochemical and Mineralogical Analyses under Venus Atmospheric Conditions by Raman - Laser Induced Breakdown Spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.

    2016-12-01

    The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface geochemical and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and geochemical composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results of these combined Raman-LIBS investigations will be presented and discussed. [1] Wiens R.C., et al. (2005) Spect. Acta A 61, 2324; [2] Sharma, S. K. et al. (2007) Spect. Acta A, 68 , 1036 (2007); [3] Clegg, S.M. et al. (2014) Appl. Spec. 68, 925; [4] Barsukov VL (1992) In Venus Geology, Geochemistry, and Geophysics, Univ. Arizona Press, pp. 165.

  15. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach.

    PubMed

    Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan

    2015-07-15

    Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be unambiguously linked and integrated. SESAR operates a registry for Earth samples that assigns and administers the International GeoSample Numbers (IGSN) as a global unique identifier for samples. Registration of EarthScope samples with SESAR and use of the IGSN will ensure their unique identification in publications and data systems, thus facilitating interoperability among sample-based data relevant to EarthScope CI and globally. It will also make these samples visible to global audiences via the SESAR Global Sample Catalog.

  17. Geochemical data for stream-sediment, heavy-mineral-concentrate and rock samples collected from the Fortyseven Creek gold-arsenic-antimony-tungsten prospect, southwestern Alaska

    USGS Publications Warehouse

    Gray, John E.; Lee, G.K.; O'Leary, R. M.; Theodorakos, P.M.

    1999-01-01

    In the summer of 1991, we conducted a reconnaissance geochemical survey around the Fortyseven Creek Au-As-Sb-W prospect that is located in the southwestern part of the Sleetmute quadrangle. At that time, this project was a small part of a more comprehensive Alaska Mineral Resource Assessment Program (AMRAP) study of the Sleemute quadrangle. AMRAP studies were conducted by the U.S. Geological Survey (USGS) to fulfill requirements of the Alaska National Interests Lands Conservation Act (Public Law 96-487, 1980) to survey certain federal lands to determine their mineral potential. Although AMRAP is no longer in operation, this study represents a small topical study that was conducted during the Sleetmute quadrangle AMRAP study. The objective of the Fortyseven Creek work was to characterize the geochemistry of samples collected downstream from the Fortyseven Creek prospect, as well as mineralized and altered rock samples collected from the prospect. In this report, we describe the samples collected in 1991, the methods used for the analysis of the samples, and the geochemical data for these samples. The data in this report are also available in digital form on computer diskette in Gray and others (1999). An interpretation of these data appears in Gray and others (1998).

  18. The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, C. A.; Hodges, K. V.

    2012-01-01

    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist

  19. Assessment of CO2-Induced Geochemical Changes in Soil/Mineral-Water Systems

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Choi, H. J.

    2016-12-01

    Although the storage of CO2 in deep geological formations is considered the most promising sequestration path, there is still a risk that it may leak into the atmosphere. To ensure the secure operation of CO2 storage sites, thus, it is necessary to implement CO2 leakage monitoring systems. Furthermore, the leakage may alter geochemical properties of overlying geological units to have adverse environmental consequences. By elucidating geochemical changes due to CO2 leakage, it is possible to develop effective CO2 monitoring techniques and predict the influence of CO2 leakage. A series of batch experiments were conducted to simulate CO2-induced geochemical changes in soil/mineral-water systems. Soil samples, obtained from Eumseong basin in Eumseong-gun, Chungcheongbuk-do, were dried for 6 hours at 60° and then divided into two size fractions: < 106 and 106-212 mm. Minerals including mica/illite, vermiculite, and feldspar were purchased and purified if necessary. Prior to batch experiments, soils and minerals were characterized for surface area, mineralogy, elemental composition, carbon and nitrogen contents, pH buffering capacity, and metal extractability. Batch experiments were initiated by reacting 100% CO2 atmosphere with aqueous suspensions of 120 g soils or 50 g minerals in 3,000 mL of 10 mM CsClO4 at room temperature. In parallel, the batches having the same soil/mineral compositions were run under the ambient air as controls. To prevent microbial activities, all batches were sterilized with 0.03% HCHO. To track geochemical changes, pH and electrical conductivity were monitored. Also, while solutions were regularly sampled and analyzed for trace metals as well as main cations and anions, solid phases were sampled to observe changes in mineralogical compositions. Geochemical changes in both solution and solid phases during the initial 6 month reaction will be presented. Acknowledgement: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  20. Leachate Geochemical Results for Ash Samples from the June 2007 Angora Wildfire Near Lake Tahoe in Northern California

    USGS Publications Warehouse

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Adams, Monique; Lamothe, Paul J.; Todorov, Todor I.; Anthony, Michael W.

    2008-01-01

    This report releases leachate geochemical data for ash samples produced by the Angora wildfire that burned from June 24 to July 2, 2007, near Lake Tahoe in northern California. The leaching studies are part of a larger interdisciplinary study whose goal is to identify geochemical characteristics and properties of the ash that may adversely affect human health, water quality, air quality, animal habitat, endangered species, debris flows, and flooding hazards. The leaching study helps characterize and understand the interactions that occur when the ash comes in contact with rain or snowmelt, and helps identify the constituents that may be mobilized as run-off from these materials. Similar leaching studies were conducted on ash and burned soils from the October 2007 southern California wildfires (Hageman and others, 2008; Plumlee and others, 2007).

  1. Hydrocarbon source potential of the Tanezzuft Formation, Murzuq Basin, south-west Libya: An organic geochemical approach

    NASA Astrophysics Data System (ADS)

    El Diasty, W. Sh.; El Beialy, S. Y.; Anwari, T. A.; Batten, D. J.

    2017-06-01

    A detailed organic geochemical study of 20 core and cuttings samples collected from the Silurian Tanezzuft Formation, Murzuq Basin, in the south-western part of Libya has demonstrated the advantages of pyrolysis geochemical methods for evaluating the source-rock potential of this geological unit. Rock-Eval pyrolysis results indicate a wide variation in source richness and quality. The basal Hot Shale samples proved to contain abundant immature to early mature kerogen type II/III (oil-gas prone) that had been deposited in a marine environment under terrigenous influence, implying good to excellent source rocks. Strata above the Hot Shale yielded a mixture of terrigenous and marine type III/II kerogen (gas-oil prone) at the same maturity level as the Hot Shale, indicating the presence of only poor to fair source rocks.

  2. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Reconnaissance geochemical survey of the At Taif-Al Bahah region, southern Hijaz, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Du Bray, E.A.; Doebrich, J.L.

    1982-01-01

    An area south of At Taif containing significant tungsten was confirmed and found to be larger than initially determined. A possible porphyry copper pluton was discovered 50 km south-southeast of At Taif. Thirty kilometers south of At Taif, a low-grade tin anomaly associated with an S-type granite was identified. In addition, the sampling identified seven anomalous areas attributable to rock geochemically atypical of the study region. Finally, although samples from the A1 Lith-Hajrah area collected for an earlier study were found to contain anomalous concentrations of tungsten, samples collected there during this study do not support those findings.

  4. Characteristics and habitat of deep vs. shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2016-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  5. A case study to detect the leakage of underground pressureless cement sewage water pipe using GPR, electrical, and chemical data.

    PubMed

    Liu, Guanqun; Jia, Yonggang; Liu, Hongjun; Qiu, Hanxue; Qiu, Dongling; Shan, Hongxian

    2002-03-01

    The exploration and determination of leakage of underground pressureless nonmetallic pipes is difficult to deal with. A comprehensive method combining Ground Penetrating Rader (GPR), electric potential survey and geochemical survey is introduced in the leakage detection of an underground pressureless nonmetallic sewage pipe in this paper. Theoretically, in the influencing scope of a leakage spot, the obvious changes of the electromagnetic properties and the physical-chemical properties of the underground media will be reflected as anomalies in GPR and electrical survey plots. The advantages of GPR and electrical survey are fast and accurate in detection of anomaly scope. In-situ analysis of the geophysical surveys can guide the geochemical survey. Then water and soil sampling and analyzing can be the evidence for judging the anomaly is caused by pipe leakage or not. On the basis of previous tests and practical surveys, the GPR waveforms, electric potential curves, contour maps, and chemical survey results are all classified into three types according to the extent or indexes of anomalies in orderto find out the leakage spots. When three survey methods all show their anomalies as type I in an anomalous spot, this spot is suspected as the most possible leakage location. Otherwise, it will be down grade suspected point. The suspect leakage spots should be confirmed by referring the site conditions because some anomalies are caused other factors. The excavation afterward proved that the method for determining the suspected location by anomaly type is effective and economic. Comprehensive method of GRP, electric potential survey, and geochemical survey is one of the effective methods in the leakage detection of underground nonmetallic pressureless pipe with its advantages of being fast and accurate.

  6. Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Dimuccio, Luca Antonio; Rodrigues, Nelson; Larocca, Felice; Pratas, João; Amado, Ana Margarida; de Carvalho, Luís A. E. Batista

    2017-02-01

    This study examines the geochemical and mineralogical variations in the ferruginous mineralisations that crop out within Grotta della Monaca, which is considered to be the most striking and best known example of a prehistoric iron mine-cave from the southern Apennines (Calabria, Italy). Previous archaeological research identified three local and distinct ancient exploitation phases of these ferruginous mineralisations: (1) an Upper Palaeolithic phase; (2) a Late Neolithic phase; and (3) a post-Medieval phase. These materials, which have various forms of complex mineralogical admixtures and range in colour from yellow-orange to red and darker brown shades, mainly consist of iron oxides/hydroxides (essentially goethite and lepidocrocite), which are often mixed with subordinate and variable amounts of other matrix components (carbonates, sulphates, arsenates, silicates and organic matter). Such ferruginous mineralisations generally correspond to geochemically heterogeneous massive dyke/vein/mammillary/stratiform facies that are exposed within the local caves along open fractures and inclined bedding planes and that partially cover cave wall niches/notches/pockets and ceiling cupolas/holes. Selected samples/sub-samples are analysed through a multi-technique approach with a handheld portable X-ray Fluorescence, X-ray Diffraction, micro-Raman and Fourier Transform Infrared spectroscope (both conventional and attenuated total reflection), which is combined with subsequent multivariate statistical analysis of the elemental concentration data. The geochemical and mineralogical results are used to individualise similar compositional clusters. As expected, the identified groups, each of which has very specific geochemical-mineralogical ;fingerprints; and spatial distributions, enable us to identify the sampled ferruginous mineralisations. These specific mineral resources can be compared to similar raw materials that are found in other neighbouring archaeological sites, with obvious implications toward understanding local exploitation strategies through time and the exchanges and kinship networks of these materials.

  7. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    NASA Astrophysics Data System (ADS)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake's mesotrophic state index classification. The results will be compared to previous sampling events, used to calculate enrichment factors of geochemical constituents, and used to create a geochemical and planktonic map of the lake through time.

  8. Pattern recognition analysis and classification modeling of selenium-producing areas

    USGS Publications Warehouse

    Naftz, D.L.

    1996-01-01

    Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.

  9. Geochemical prospecting for copper and nickel in the Wulgai and Tor Tangi areas southeast of Hindubagh, Quetta Division, Pakistan

    USGS Publications Warehouse

    Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher

    1975-01-01

    Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.

  10. Geochemical patterns in soils in and around Siddipet, Medak District, Andhra Pradesh, India.

    PubMed

    Dantu, Sujatha

    2010-11-01

    This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0-25 cm and subsoil 70-95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.

  11. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota.

    PubMed

    Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D

    2017-02-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects. Published by Elsevier B.V.

  12. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.

    2012-01-01

    In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  13. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    PubMed

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  14. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  15. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  16. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Tonopah 1 by 2 degree Quadrangle, Nevada

    USGS Publications Warehouse

    John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.

    1991-01-01

    The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.

  17. Geophysical, geochemical, mineralogical, and enivronmental data for rock samples collected in a mineralized volcanic environment, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    McCafferty, A.E.; Horton, R.J.; Stanton, M.R.; McDougal, R.R.; Fey, D.L.

    2011-01-01

    * provide measurements to study the geochemical, mineralogical, and geophysical characteristics of rocks having weak to extreme degrees of alteration and to develop an understanding of how these characteristics change with alteration type. Data are provided in two digital formats: an Arc/Info geodatabase and a Microsoft Excel spreadsheet.

  18. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  19. The role of atomic absorption spectrometry in geochemical exploration

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  20. Water and Sediment Chemical Data and Data Summary for Samples Collected in 1999 and 2001 in the Goodpaster River Basin, Big Delta B-2 Quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, Larry; Wanty, Richard; Vohden, Jim; Crock, Jim; Day, Warren

    2006-01-01

    We report the chemical analysis for water and sediment collected from the Big Delta B-2 quadrangle. These data are part of a study located in the Big Delta B-2 quadrangle that focused on the integration of geology and bedrock geochemistry on with the biogeochemistry of water, sediments, soil, and vegetation. The discovery of the Pogo lode gold deposit in the northwest corner of the quadrangle was the impetus for this study. The study objectives were to create a geologic map, evaluate the bedrock geochemical influence on the geochemical signature of the surficial environment, and define landscape-level predevelopment geochemical baselines. Important to baseline development is an evaluation of what, if any, geochemical difference exists between the mineralized and non-mineralized areas within a watershed or between mineralized and non-mineralized watersheds. The analytic results for the bedrock, soils, and vegetation are reported elsewhere. Presented here, with minimal interpretation, is the analytic data for the water and sediment samples collected in the summers of 1999 and 2001, and a summary statistics of these analyses.

  1. Geochemical and mineralogical sampling of the Devonian shales in the Broadtop synclinorium, Appalachian basin, in Virginia, West Virginia, Maryland, and Pennsylvania

    USGS Publications Warehouse

    Enomoto, Catherine B.; Coleman, James L.; Swezey, Christopher S.; Niemeyer, Patrick W.; Dulong, Frank T.

    2015-01-01

    The presence of conventional anticlinal gas fields in the study area that are productive from the underlying Lower Devonian Oriskany Sandstone suggests that an unconventional (or continuous) shale gas system may be in place within the Marcellus Shale in the study area. Results of this study indicate that the Marcellus Shale in the Broadtop synclinorium generally is similar in organic geochemical nature throughout its extent, and based on the sample analyses, there are no clearly identifiable high potential areas (or “sweet spots”) in the study area. This report contains analyses of 132 outcrop and well drill-cuttings samples.

  2. Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis.

    PubMed

    Connors, Brendan; Somers, Andrew; Day, David

    2016-05-01

    While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed. © The Author(s) 2016.

  3. Laboratory measurements of electric properties of composite mine dump samples from Colorado and New Mexico

    USGS Publications Warehouse

    Anderson, Anita L.; Campbell, David L.; Beanland, Shay

    2001-01-01

    Individual mine waste samples were collected and combined to form one composite sample at each of eight mine dump sites in Colorado and New Mexico. The samples were air-dried and sieved to determine the geochemical composition of their <2mm size fraction. Splits of the samples were then rehydrated and their electrical properties were measured in the US Geological Survey Petrophysical Laboratory, Denver, Colorado (PetLab). The PetLab measurements were done twice: in 1999, using convenient amounts of rehydration water ranging from 5% to 8%; and in 2000, using carefully controlled rehydrations to 5% and 10% water. This report gives geochemical analyses of the <2mm size fraction of the composite samples (Appendix A), PetLab graphs of the 1999 measurements (Appendix B), Petlab graphs of the 2000 measurements (Appendix C), and Cole-Cole models of the PetLab data from the 2000 measurements (Appendix D).

  4. A Comparative Analysis of the Influence of Surface Mining on Hydrological and Geochemical Response of Selected Headwater Streams in the Elk Valley, British Columbia, Canada.

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Shatilla, N. J.; Szmudrowska, B.; Rastelli, J.; Wellen, C.

    2014-12-01

    Surface mining is a common method of accessing coal. Blasting of overburden rock allows access to mineable ore. In high-elevation environments, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. As part of a multi-year R&D program examining the influence of surface mining on watershed hydrological and water quality responses in the Elk Valley, British Columbia, this study reports on how surface mining affects streamflow hydrological and geochemical response at four reference and four mine-influenced catchments. The hydrology of this environment is dominated by snowmelt and steep topographic gradients. Flows were attenuated in mine-influenced catchments, with spring freshet delayed and more muted responses to precipitation events observed. Dissolved ions were an order of magnitude greater in mine-influenced streams, with more dilution-based responses to flows compared with chemostatic behavior observed in reference streams. Stable isotope signatures in stream water suggested that in both mine-influenced and reference watersheds, stream water was derived from well mixed groundwater as annual variability of stream isotope signatures was dampened compared with precipitation signatures. However, deflection of stream isotopes in response to precipitation were more apparent in reference watersheds. As a group, mine influenced catchments had a heavier isotope signature than reference watersheds, suggesting an enhanced influence of rainfall on recharge. Transit time distributions indicate existing waste rock spoils increase the average time water takes to move through the catchment.

  5. The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats.

    PubMed

    Aubé, Johanne; Senin, Pavel; Pringault, Olivier; Bonin, Patricia; Deflandre, Bruno; Bouchez, Olivier; Bru, Noëlle; Biritxinaga-Etchart, Edurne; Klopp, Christophe; Guyoneaud, Rémy; Goñi-Urriza, Marisol

    2016-10-15

    Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Map showing distribution of copper in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of copper in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  7. Map showing distribution of barium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  8. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  9. Determination of geochemical and natural radioactivity characteristics in Bilecik Marble, Turkey

    NASA Astrophysics Data System (ADS)

    Yerel Kandemir, Suheyla; Ozbay, Nurgul

    2014-05-01

    Natural stones are one of the oldest known building materials. There are more than 400 natural stone in Turkey. Recently, the demand for the natural stone types in markets has been increasing rapidly. For this reason, the geochemical and natural radioactivity characteristics of natural stone are very important. Bilecik province is located at the northwest part of Turkey and it is surrounded by Sakarya, Bursa, Eskisehir and Kutahya city. Bilecik is one of the important marble industry regions of Turkey. Thus, the geochemical and natural radioactivity characteristics of Bilecik marble are very important. In this study, Bilecik marble was collected to determine the geochemistry and natural radioactivity. Then, analyses of geochemical and natural radioactivity in the marble samples are interpreted. ACKNOWLEDGMENT This study is supported by Bilecik Seyh Edebali University scientific project (Project Number =2011-02-BIL.03-04).

  10. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  11. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X-ray diffraction was used to determine clay mineralogy. Trace-metal concentrations were best correlated when normalized with respect to sediment aluminum concentrations. Normalizations indicate that most major and trace-metal concentrations fall within 95% prediction limits of the expected value. This finding suggests that little significant metal contamination occurred within this system prior to 1994 sediment sampling. Exceptions include lead, mercury, copper, zinc, potassium, and phosphorous. Lead and mercury are elements that generally enter this watershed through atmospheric deposition; thus, anomalous levels of these metals are not necessarily associated with activities within the watershed of the Steinhatchee River estuary. Anomalous concentrations of other metals such as zinc, copper, and phosphorous probably do originate within the Steinhatchee watershed. Copper failed to correlate well with any geochemical or granulometric normalizer, and this condition was not limited to a single facies or area within the estuary. This finding may indicate copper contamination in the system. Increased zinc and copper levels may be attributed to marine paints. Phosphorous levels also appeared to be elevated in a few locations in the two marsh facies sampled. This may be due to nutrient loading from two small communities, Jena and Steinhatchee, or from the application of this element in fertilizer to reduce moisture stress to young planted pines on tree farms within the watershed.The Florida Geological Survey/US Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. The data are intended to provide a benchmark for comparison with metal concentration data measurements. Seventy nine short cores were collected from 66 sample locations and analyzed. Metal concentrations were normalized against geochemical reference elements and against total weight percen

  12. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  13. Multielement geochemical dataset of surficial materials for the northern Great Basin

    USGS Publications Warehouse

    Coombs, Mary Jane; Kotlyar, Boris B.; Ludington, Steve; Folger, Helen W.; Mossotti, Victor G.

    2002-01-01

    This report presents geochemical data generated during mineral and environmental assessments for the Bureau of Land Management in northern Nevada, northeastern California, southeastern Oregon, and southwestern Idaho, along with metadata and map representations of selected elements. The dataset presented here is a compilation of chemical analyses of over 10,200 stream-sediment and soil samples originally collected during the National Uranium Resource Evaluation's (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the Department of Energy and its predecessors and reanalyzed to support a series of mineral-resource assessments by the U.S. Geological Survey (USGS). The dataset also includes the analyses of additional samples collected by the USGS in 1992. The sample sites are in southeastern Oregon, southwestern Idaho, northeastern California, and, primarily, in northern Nevada. These samples were collected from 1977 to 1983, before the development of most of the present-day large-scale mining infrastructure in northern Nevada. As such, these data may serve as an important baseline for current and future geoenvironmental studies. Largely because of the very diverse analytical methods used by the NURE HSSR program, the original NURE analyses in this area yielded little useful geochemical information. The Humboldt, Malheur-Jordan-Andrews, and Winnemucca-Surprise studies were designed to provide useful geochemical data via improved analytical methods (lower detection levels and higher precision) and, in the Malheur-Jordan-Andrews and Winnemucca Surprise areas, to collect additional stream-sediment samples to increase sampling coverage. The data are provided in *.xls (Microsoft Excel) and *.csv (comma-separated-value) format. We also present graphically 35 elements, interpolated ("gridded") in a geographic information system (GIS) and overlain by major geologic trends, so that users may view the variation in elemental concentrations over the landscape and reach their own conclusions regarding correlation among geochemistry, geologic features, and known mineral deposits. Quality-control issues are discussed for the grids and data.

  14. Aqueous geochemical data from the analysis of stream-water samples collected in June and July 2006-Taylor Mountains 1:250,00-scale quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2011-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle, Alaska. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project entitled ?Geologic and Mineral Deposit Data for Alaskan Economic Development.? Data presented here are from samples collected in June and July 2006. The data are being released at this time with minimal interpretation. This is the third release of aqueous geochemical data from this project; aqueous geochemical data from samples collected in 2004 and 2005 were published previously. The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountains quadrangle is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. Generally, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. All field blank major-ion and trace-element concentrations were below detection.

  15. High resolution trace element records from the deep sea hydrocoral Stylaster venustus: Implications for stylasterids as a paleoceanographic archive

    NASA Astrophysics Data System (ADS)

    Aranha, R. S.; Layne, G. D.; Edinger, E.; Piercey, G.

    2009-12-01

    Stylasterids are one of the lesser known groups of deep sea corals, but appear to have potential to serve as viable geochemical archives for reconstructing temperature, salinity and nutrient regimes in the deep ocean. This group of hydrocorals are present in most, if not all of the world’s major oceans. Stylasterid species dominantly have aragonitic skeletons, with a small percentage of species having calcitic skeletons (1). A recent study on the biomineralization of a deep sea stylasterid (Errina dabneyi) has revealed that during the organism’s growth, a steady dissolution and reprecipitation of skeletal material occurs in the central canals of the skeleton. This skeletal modification likely alters the stable isotope and/or trace element profiles of these corals, making them potentially less reliable as geochemical archives, depending on the scale of sampling (2). Recent specimens of Stylaster venustus were collected in July, 2008 from the Olympic Coast National Marine sanctuary off the coast of Washington at depths of 200 - 350 m. We used a Cameca IMS 4f Secondary Ion Mass Spectrometer (SIMS) to perform high spatial resolution (<25 µm) spot analyses of Sr/Ca, Mg/Ca and Na/Ca in detailed traverses across the basal cross-sections from three of these specimens. We identified the remineralized material by remnant porous texture and/or a substantially different trace element composition. Spot analyses corresponding to the remineralized material were eliminated from the dataset. In all three specimens we observed a pronounced inverse correlation (r = -0.36) of Mg/Ca and Sr/Ca profiles throughout the length of the transects . A positive correlation (r =0.46) between Na/Ca and Mg/Ca profiles was also noted in two of the specimens analyzed. These correlations strongly imply that the coral skeleton is recording either cyclical or episodic variations in temperature, with possible overprinting from other environmental variation. The exact relationship between the visible banding in the skeletal cross-section and any cyclicity of trace element profiles is currently ambiguous. However, our analyses demonstrate that microanalytical techniques are a viable means of extracting trace element records from these corals. Further statistical analysis of the trace element transects, in combination with a variety of imaging analyses of the same samples, should help us elucidate what portion of the geochemical signal is temperature dependent and what magnitude of temperature change is actually being recorded. Correlating these trace element profiles with instrumental temperature records will help confirm that useful geochemical archives are preserved by stylasterid skeletons. References: (1) Cairns SD and Macintyre IG. 1992. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria:Hydrozoa).Palaios 7: 96-107. (2) Wisshak M, López Correa M, Zibrowius H, Jakobsen J & Freiwald. (in press). Skeletal reorganisation affects geochemical signals, exemplified in the stylasterid hydrocoral Errina dabneyi (Azores Archipelago). Marine Ecology Progress Series.

  16. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  17. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database

    NASA Astrophysics Data System (ADS)

    Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2017-10-01

    We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.

  18. Geochemical background/baseline values in top soils of Campania region: assessment of the toxic elements threat to ecosystem and human health

    NASA Astrophysics Data System (ADS)

    de Vivo, B.; Lima, A.; Albanese, S.; Bove, M.; Cicchella, D.; Civitillo, D.; Cosenza, A.; Grezzi, G.

    2009-04-01

    In the late years an intense geochemical prospecting activity on the whole territory of Campania region (Southern Italy) has been carried aiming at the definition of the geochemical backgrounds/baselines at both regional and local scale. At the end of 2003 the first edition of an atlas containing 200 maps showing the distribution patterns of 40 chemical elements on the whole regional territory was published (De Vivo et al., 2003, 2006a; Albanese et al., 2007a). The atlas provided a base knowledge of environmental status of the region and allowed to individuate some critical areas to be further investigated by topsoils sampling follow up activity; the topsoils are considered as the best media in order to examine closely the sources and the distribution patterns of harmful elements at a local scale. The topsoils sampling was mainly focused on anthropized areas (at urban and metropolitan scale), industrial settlments, brownfields and intensely cultivated zones, aimed at: • showing the distribution of concentration values and to determine baseline values (or backgrounds, depending on local conditions) of each analyzed element (38) in the top soils; • assessing harmful elements pollution levels and their geographic distribution; • providing reliable analytical data for assessment of toxic element pollution threat to ecosystem and human health; • creating a sound basis for policy makers and legislators who need to address the public concerns regarding environmental pollution. Five atlases (De Vivo et al., 2006b; Albanese et al., 2007b; Lima et al., 2007; Fedele et al., 2007 Cicchella et al., 2009) were produced reporting soil geochemical maps compiled using 1620 samples collected both in the metropolitan and provincial area of Napoli and in the cities of Avellino, Benevento, Caserta and Salerno. Further studies were also carried out taking into account Pb isotopes (Cicchella et al., 2008a), PGE's (Cicchella et al., 2003; 2008b) and bioavailability of harmful elements (Albanese, 2008) distributions to better discriminate the influence of human activities on urban environment. A detailed analysis of harmful elements distribution and some organic compounds (PCB and PAH's) was also completed for the Bagnoli brownfield area, in the western sector of the city of Napoli (Tarzia et al., 2002; De Vivo and Lima, 2008; Albanese et al, in press). Since Bagnoli is located inside an active volcanic field (Campi Flegrei) characterized by a strong geothermal activity that generates hydrothermal fluids, the definition of the anthropic impact on environment for this area was complicated by the presence of two main contamination sources, one natural (originating from the hydrothermal activity) and one anthropogenic (from the industrial activity). At present, a geochemical prospecting based on soil and water sampling is also being completed on two contiguous areas mainly devoted to agriculture in correspondence of the north-western coastal sector of Campania Region territory (Domitio-Flegreo Littoral e Agro Aversano). The latter studies aim at defining the impact of agricultural activities (including the use of fertilizers) on soil and deep waters. All the geochemical data obtained for the whole territory of Campania have been also spatially compared with cancer mortality data distribution (Montella et al., 1996) to individuate, at least, some spatial correspondences between high concentration levels of harmful elements and mortality incidence (Albanese et al., 2008). An interesting overlapping has been found for the Napoli metropolitan area for some elements and cancer types: Zn-Cd-rich areas overlap with areas of high prostate-cancer mortality; bladder and pancreatic cancer are correlated with Pb-Sb-rich areas, whereas, bronchial-tracheal-lung cancer is correlated with As-, Cd- and Pb-rich areas. References ALBANESE, S., DE VIVO, B., LIMA, A. & CICCHELLA, D. 2007a. J. Geoch. Expl., 93, 21-34. ALBANESE, S., LIMA, A., DE VIVO, B. & CICCHELLA, D. 2007b. Geochemical Environmental Atlas of the Soils of Avellino. Aracne Editrice, Roma. ALBANESE, S. 2008. Geochemistry: Expl., Env., Anal., 8, 49-57. ALBANESE S., DE LUCA M. L., DE VIVO B., LIMA A. and GREZZI G., 2008. In: Environmental Geochemistry: Site characterization, Data analysis and Case histories (De Vivo B., Belkin H. E. and Lima A., Eds). Elsevier, Amsterdam, 391-404. ALBANESE, S., CIVITILLO, D., COSENZA, A., DE VIVO, B., & LIMA., A., J. Geoch. Explor.. In press. CICCHELLA, D., DE VIVO, B. & LIMA, A. 2003. Science of the Total Environment, 308 (1-3), 121-131. CICCHELLA, D., DE VIVO, B. & LIMA, A. 2005. Geochemistry: Expl., Env., Anal., 5, 29-40. CICCHELLA, D., DE VIVO, B., LIMA, A., ALBANESE, S., MCGILL, R.A.R. & PARRISH, R.R. 2008a. Geochemistry: Expl.,. Env., Ana.s, 8, 103-112. CICCHELLA, D., FEDELE, L., DE VIVO, B., ALBANESE, S. & LIMA, A. 2008b. Geochemistry: Expl., Env., Anal., 8, 31-40. CICCHELLA, D., ALBANESE, S., DE VIVO, B., LIMA, A., GREZZI, G. & ZUPPETTA, A. 2009. Geochemical Environmental Atlas of the soils of Benevento. Aracne Editrice, Roma. DE VIVO B. and LIMA A., 2008. In: Environmental Geochemistry: Site characterization, Data analysis and Case histories (De Vivo B., Belkin H. E. and Lima A., Eds). Elsevier, Amsterdam, 355-385. DE VIVO, B., LIMA, A., ALBANESE, S. & CICCHELLA, D. 2003. Geochemical Environmental Atlas of Campania Region. De Frede Editore, Napoli. DE VIVO, B., LIMA, A., ALBANESE, S. & CICCHELLA, D. 2006a. Geochemical Environmental Atlas of Campania Region. Aracne Editrice, Roma. DE VIVO, B., CICCHELLA, D., LIMA, A. & ALBANESE, S. 2006b. Geochemical Environmental Atlas of the Urban and Provincial Soils of Napoli. Aracne Editrice, Roma. FEDELE, L., DE VIVO, B., LIMA, A., CICCHELLA, D. & ALBANESE, S. 2007. Geochemical Environmental Atlas of the Soils of Salerno. Aracne Editrice, Roma. LIMA, A., DE VIVO, B., GREZZI, G., ALBANESE, S. & CICCHELLA, D. 2007. Geochemical Environmental Atlas of the Soils of Caserta. Aracne Editrice, Roma. MONTELLA, M., BIDOLI, E., DE MARCO, M. R., REDIVO, A., AND FRANCESCI, S. 1996. Atlante della mortalita` per tumori nella Regione campania, 1998-92. Lega Italiana per la Lotta contro i Tumori, Istituto Nazionale Tumori, Napoli. TARZIA, M., DE VIVO, B., SOMMA, R., AYUSO, R.A., MCGILL, R.A.R. & PARRISH, R.R. 2002. Anthropogenic versus natural pollution: an environmental study of an industrial site under remediation (Naples, Italy). Geochemistry: Expl., Env., Anal., 2, 45-56.

  19. Soil Geochemical Data for the Wyoming Landscape Conservation Initiative Study Area

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.

    2010-01-01

    In 2008, soil samples were collected at 139 sites throughout the Wyoming Landscape Conservation Initiative study area in southwest Wyoming. These samples, representing a density of 1 site per 440 square kilometers, were collected from a depth of 0-5 cm and analyzed for a suite of more than 40 major and trace elements following a near-total multi-acid extraction. In addition, soil pH, electrical conductivity, total nitrogen, total and organic carbon, and sodium adsorption ratio were determined. The resulting data set provides a baseline for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used, and makes available all the soil geochemical data generated in the study.

  20. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.

    PubMed

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes

    NASA Astrophysics Data System (ADS)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.

  2. Geologic reconnaissance and geochemical sampling survey of molybdenum mineralization near Schiestler Peak, Temple Peak Quadrangle, Sublette County, Wyoming

    USGS Publications Warehouse

    Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.

    1982-01-01

    A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.

  3. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    NASA Astrophysics Data System (ADS)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a contributor to prokaryotic abundance but given the elements strong multicollinearity with sulfate, iron was removed from the model (as sulfate acts more conservatively across the range of pH sampled, 2.5-9.0). Geochemical variables that have been reported to influence viral abundances under laboratory and field experiments (i.e. Ca2+, DOC, temperature) had minimal effect in the natural environment despite 2 to 3 orders of magnitude range in the data. However, log transformed viral abundance did revealed a significant relationship with pH (Pearson correlation coefficient of r = 0.70) when using principle component analysis. Prokaryotic abundance did not reveal significant correlations with geochemical parameters (all r < 0.38).

  4. A New Sample Transect through the Sierra Madre Occidental Silicic Large Igneous Province in Southern Chihuahua State, Mexico: First Stratigraphic, Petrologic, and Geochemical Results

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Davila Harris, P.; Brown, S. R.; Anderson, L.; Moreno, N.

    2014-12-01

    We completed a field sampling transect across the northern Sierra Madre Occidental silicic large igneous province (SMO) in December 2013. Here we present the first stratigraphic, petrological, and geochemical data from the transect between Hidalgo del Parral and Guadalupe y Calvo, Chihuahua, Mexico. This is the first new transect across the SMO in 25 years and the only one between existing NE - SW transects at Chihuahua - Hermosillo and Durango - Mazatlan. The 245 km-long transect along Mexican Highway 24 crosses the boundary between the extended (Basin and Range) and non-extended (Sierra Madre Occidental plateau) parts of the SMO, and allows sampling of previously undescribed Oligocene (?) - early Miocene (?) rhyolitic ignimbrites and lavas, and occasional post-rhyolite, Miocene (?) SCORBA basaltic andesite lavas. 54 samples of rhyolitic ignimbrites (40) and lavas (7), and basaltic andesite lavas (7) were sampled along the transect, including 8 canyon sections with more than one unit. The ignimbrites are overwhelming rhyodacitic (plagioclase and hornblende or biotite phyric) or rhyolitic (quartz (+/- sanidine) in additon to plagioclase and hornblende or biotite phyric) and sparsely to highly phyric. Preliminary petrographic (phenocryst abundances) and geochemical (major and trace element) will be presented and compared to existing data from elsewhere in the SMO. Future work will include U-Pb zircon dating and whole rock and in-zircon radiogenic isotopes analyses.

  5. Reconnaissance Strategy for Seep Chemosynthetic Communities in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Roberts, H. H.; Fisher, C. R.; Bernard, B. B.; Joye, S.; Carney, R.; Hunt, J.; Shedd, W.

    2007-05-01

    The Continental Slope of the Gulf of Mexico hosts diverse chemosynthetic communities at oil and gas seeps. Exploration is needed to extend knowledge of the Gulf of Mexico chemosynthetic ecosystem in the zones anticipated to receive energy exploration and production activities over the coming decades. A nested survey approach can be used to identify representative sampling sites within this vast offshore area. Potential sites where chemosynthetic community could occur are selected on the basis geophysical, geochemical, and satellite remote-sensing indicators. Photo-reconnaissance using cost-effective camera systems is then used to confirm the presences or absence of chemosynthetic communities at high-probability sites. Follow-up sampling can then proceed with submersibles or ROVs to acquire tissue and or geochemical samples. However, because access is limited, submersible dives may not be possible at all sites. Two examples of this approach have recently been applied in the northern and southern Gulf of Mexico, respectively. We compared community characterizations obtained from the initial reconnaissance with more detailed characterizations forthcoming from submersible sampling. Our results show that major differences in community type and geochemical substrata are evident from preliminary reconnaissance, while details of animal densities and species compositions require targeted sampling with submersibles. However, given the limited access to submersibles, cost-effective surveys with deep-sea camera systems would greatly expand understanding of the zoogeography of chemosynthetic fauna in the Gulf of Mexico and Caribbean Sea.

  6. Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  7. Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  8. Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  9. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  10. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Walker Lake 1 degree x 2 degrees Quadrangle, California and Nevada

    USGS Publications Warehouse

    Stewart, John Harris; Chaffee, M.A.; Dohrenwend, J.C.; John, D.A.; Kistler, R.W.; Kleinhampl, F.J.; Menzie, W.D.; Plouff, Donald; Rowan, L.C.; Silberling, Norman J.

    1984-01-01

    The Walker Lake 1? by 2? quadrangle in eastern California and western Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Walker Lake 1? by 2? quadrangle.

  11. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Medford 1 degree x 2 degrees Quadrangle, Oregon and California

    USGS Publications Warehouse

    Smith, James G.; Blakely, R.J.; Johnson, M.G.; Page, N.J.; Peterson, J.A.; Singer, D.A.; Whittington, C.L.

    1986-01-01

    The Medford 1 ? by 2 ? quadrangle in southern Oregon and northern California was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Medford 1 ? by 2 ? quadrangle.

  12. Publications - RDF 2005-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , and non-carbonate carbon data from rocks collected in the Solomon, Bendeleben, and Nome quadrangles for more information. Quadrangle(s): Bendeleben; Nome; Solomon Bibliographic Reference Werdon, M.B , geochemical, and non-carbonate carbon data from rocks collected in the Solomon, Bendeleben, and Nome

  13. Publications - GMC 66 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 66 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division of Geological

  14. Publications - GMC 68 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 68 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Report Report Information gmc068.pdf (48.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic

  15. HANDBOOK: ASSESSING THE FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE. Summaries of Recent Research

    EPA Science Inventory

    This handbook has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. sers of the document will get a better understanding of the factors that affect 1) geochemical waste-reservoir reactions o...

  16. Determination of tungsten in geochemical reference material basalt Columbia River 2 by radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Samuel S.; Beck, Chelsie L.; Bowen, James M.

    Environmental tungsten (W) analyses are inhibited by a lack of reference materials and practical methods to remove isobaric and radiometric interferences. We present a method that evaluates the potential use of commercially available sediment, Basalt Columbia River-2 (BCR-2), as a reference material using neutron activation analysis (NAA) and mass spectrometry. Tungsten concentrations using both methods are in statistical agreement at the 95% confidence interval (92 ± 4 ng/g for NAA and 100 ±7 ng/g for mass spectrometry) with recoveries greater than 95%. These results indicate that BCR-2 may be suitable as a reference material for future studies.

  17. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Garland, P.A.; White, M.B.

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location,more » quadrangle name, geoformational feature, and keyword.« less

  18. Geochemical Data on Waters, gases, scales, and rocks from the Dixie Valley Region, Nevada (1996-1999)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, Fraser; Bergfeld, Deborah; Janik, C.J.

    2002-08-01

    This report tabulates an extensive geochemical database on waters, gases, scales, rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples from which the data were obtained were collected and analyzed during 1996 to 1999. These data provide useful information for ongoing and future investigations on geothermal energy, volcanism, ore deposits, environmental issues, and groundwater quality in this region.

  19. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer

    Harto, Christopher

    2013-05-22

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  20. A comparison study on detection of key geochemical variables and factors through three different types of factor analysis

    NASA Astrophysics Data System (ADS)

    Hoseinzade, Zohre; Mokhtari, Ahmad Reza

    2017-10-01

    Large numbers of variables have been measured to explain different phenomena. Factor analysis has widely been used in order to reduce the dimension of datasets. Additionally, the technique has been employed to highlight underlying factors hidden in a complex system. As geochemical studies benefit from multivariate assays, application of this method is widespread in geochemistry. However, the conventional protocols in implementing factor analysis have some drawbacks in spite of their advantages. In the present study, a geochemical dataset including 804 soil samples collected from a mining area in central Iran in order to search for MVT type Pb-Zn deposits was considered to outline geochemical analysis through various fractal methods. Routine factor analysis, sequential factor analysis, and staged factor analysis were applied to the dataset after opening the data with (additive logratio) alr-transformation to extract mineralization factor in the dataset. A comparison between these methods indicated that sequential factor analysis has more clearly revealed MVT paragenesis elements in surface samples with nearly 50% variation in F1. In addition, staged factor analysis has given acceptable results while it is easy to practice. It could detect mineralization related elements while larger factor loadings are given to these elements resulting in better pronunciation of mineralization.

  1. Geochemistry of soils from the San Rafael Valley, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Folger, Helen W.; Gray, Floyd

    2013-01-01

    This study was conducted to determine whether surficial geochemical methods can be used to identify subsurface mineraldeposits covered by alluvium derived from surrounding areas. The geochemical investigation focused on an anomalous geo-physical magnetic high located in the San Rafael Valley in Santa Cruz County, Arizona. The magnetic high, inferred to be asso-ciated with a buried granite intrusion, occurs beneath Quaternary alluvial and terrace deposits. Soil samples were collected at a depth of 10 to 30 centimeters below land surface along transects that traverse the inferred granite. The samples were analyzed by inductively coupled plasma-mass spectrometry and by the partial-leach Mobile Metal Ion™ method. Principal component and factor analyses showed a strong correlation between the soils and source rocks hosting base-metal replacement deposits in the Harshaw and Patagonia Mining Districts. Factor analysis also indicated areas of high metal concentrations associated with the Meadow Valley Flat. Although no definitive geochemical signature was identified for the inferred granite, concentrations otungsten and iron in the surrounding area were slightly elevated.

  2. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  3. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    USGS Publications Warehouse

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  4. Concerning evaluation of eco-geochemical background in remediation strategy

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for plants and animals (Kovalsky, 1974; Letunova, Kovalsky, 1978, Ermakov, 1999). Obtained zones of different eco-geochemical risk need particular strategy basing on maximum possible correspondence to the natural geochemical conditions. For example, the assessment of effects of the nuclear accident in any case needs taking into account the synergetic results of ionizing radiation in different eco-geochemical conditions. In this respect the most contaminated areas should be withdrawn from living but some spatial arable lands can be used for seeds or technical crops production. The less contaminated areas still used in agriculture need shifting to fodder or species giving non-contaminated products (e.g. oil). Wet meadows of superaqueous landscapes with a relatively high radionuclide transfer to the plants should be excluded from grazing but other areas with lower transfer to forage may be used. In all the cases the resultant remediation should achieve first of all the maximum decrease of the summary negative health effect for the residents or working personnel. References Vernadsky V.I., 1926. Biosphere. Leningrad, Nauch. khim.-tekhn. izd-vo, 147 p. Vernadsky V.I., 1960. Selected works, Vol. 5. Moscow, izd-vo AN SSSR, 422 p. Kovalsky V.V., 1974. Geochemical ecology. Moscow, Nauka, Letunova S.V., Kovalsky V.V., 1978. Geochemical ecology of microorganisms. Moscow, Nauka, 148 pp. Ermakov V.V., 1999.Geochemical ecology as a result of the system-based study of the biosphere. Problems of biogeochemistry and geochemical ecology. Transactions of the Biogeochem. Lab., 23, Moscow, Nauka, 152-182.

  5. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    NASA Astrophysics Data System (ADS)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  6. Geochemical (LA-ICP-MS) investigations of baddeleyite from the Palaeoproterozoic mafic and Palaeozoic alkaline intrusions in the Arctic part of the Baltic shield

    NASA Astrophysics Data System (ADS)

    Drogobuzhskaya, Svetlana; Bayanova, Tamara; Novikov, Andrey

    2017-04-01

    Baddeleyite is a zirconium dioxide mineral, which is very important, but less common as zircon. While the zircon microelementary composition study is widely applicable, the baddeleyite geochemical features are poorly known. The first data on REE concentrations and distribution in baddeleyite were published in the past century. Baddeleyite is used as a geochronometer for dating mafic and alkaline rocks. It may be noted that the data on its geochemical composition are quite contradictory with a strongly varying Ce anomaly value and absent Eu anomaly in some samples. The new data on the elementary composition of baddeleyite (REE, Hf, U, Th, Y, and Ti) from the Monchegorsk pluton mafic rocks (2.5 Ga) and Kovdor and Vuoriyarvi deposits (380 Ma) was obtained. The sample morphology was studied using an electronic spectroscopy method (Hitachi S-430), and the position of local analysis on baddeleyite crystals was chosen based on analyzed optic images of minerals. The content of REE and other elements was measured using LA-ICP-MS technique on quadrupole mass-spectrometer ELAN 9000 DRC-e (Perkin Elmer) with laser evaporator UP-266 MACRO (New Wave Research) with a wave length of 266 nm for sampling. The laser ablation was made in argon atmosphere in a 35 and 70 μm diameter spot or when scanning to a line with a pulse repetition rate of 10 Hz and pulse energy of 14-15 J/cm2. The device was calibrated using the NIST SRM 612 standard with a REE, U, and Th concentration of about 40 ppm. The baddeleyite from reference rocks of mafic intrusions are characterized by medium concentrations of Hf (0.69-1.9 %), Th (7.6-21.1), REE (50.3-162), U (164-357), Y (5.0-149) ppm for the sample M-2 from Monchegorsk. Another rocks of alkaline intrusions are depleted in Th (0.25-5.9), REE (9.2-103), U (1.8-48.1), Y(2.9-65.9) ppm and Hf (0.20-1.9%) for the sample Bd-400 from Vuoriyarvi and Hf (0.18-1.3 %), Th (0.4-5.2), REE (2.1-17.7), U (4.2-32.6), Y(2.2-68.4) ppm for the samples Bd-300 and Bd-300 prism. from Kovdor. The titanium content in the samples widely varies being 10-37 ppm for sample Bd-300 and 28-72 ppm for Bd-300 prism., 47-150 ppm for sample Bd-400 and 0.31-0.79% for older baddeleyite M-2. The average baddeleyite crystallization and U-Pb system closure temperature calculated using a zircon-applied method is 804-888°C (Kovdor) and 984°C (Vuoriyarvi). The baddeleyite from the Monchegorsk pluton has shown high crystallization temperatures of about 1,000 degrees centigrade. The research is supported by RFBR Grant No. 16-05-00305 and dedicated to the blessed memory of mentors: academicians of the RAS V.T. Kalinnikov and F.P. Mitrofanov.

  7. Merged aeroradiometric data for Alaska; a web site for distribution of gridded data and plot files

    USGS Publications Warehouse

    Saltus, R.W.; Riggle, F.E.; Clark, B.T.; Hill, P.L.

    1999-01-01

    The National Uranium Resource Evaluation (NURE) program was conducted by the U.S. Government between 1974 and 1983. The NURE program was administered by the Grand Junction, CO, office of the Department of Energy. The program included airborne gamma-ray spectrometry and magnetic data collection as well as extensive geochemical sample collection and processing. Aeroradiometric and aeromagnetic surveys of 98 1° by 3° quadrangles were flown in Alaska between 1975 and 1980. The data were flown in 15 surveys by Texas Instruments (T.I.), Lockwood, Kessler, and Bartlett (LKB), and AeroServices (Aero) under contract to the U.S. Government. A series of contractor reports document the surveys on a quadrangle by quadrangle basis. We list references to these reports on the detailed survey index pages accessible through the Survey Irfo page.

  8. Restoration of Circum-Arctic Upper Jurassic source rock paleolatitude based on crude oil geochemistry

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.

    2008-01-01

    Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive relationships exist between tectonic and geochemical paleolatitude for each family. Standard error of prediction for geochemical paleolatitude ranges from 0.9?? to 2.6?? of tectonic paleolatitude, which translates to a relative standard error of prediction in the range 1.5-4.8%. The results suggest that the observed effect of source rock paleolatitude on crude oil composition is caused by (i) stable carbon isotope fractionation during photosynthetic fixation of carbon and (ii) species diversity at different latitudes during Late Jurassic time. ?? 2008 Elsevier Ltd. All rights reserved.

  9. Geochemical signature of NORM waste in Brazilian oil and gas industry.

    PubMed

    De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C

    2018-09-01

    The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems

    USGS Publications Warehouse

    Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.

    2009-01-01

    The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.

  11. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.

    PubMed

    Keller, C Brenhin; Schoene, Blair

    2012-05-23

    The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.

  12. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    USGS Publications Warehouse

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  13. Geochemical analysis of soils and sediments, Coeur d'Alene drainage basin, Idaho: sampling, analytical methods, and results

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed; Lindsay, James

    2001-01-01

    (Fe), manganese (Mn), arsenic (As), and cadmium (Cd). In general inter-laboratory correlations are better for samples within the compositional range of the Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Analyses by EWU are the most accurate relative to the NIST standards (mean recoveries within 1% for Pb, Fe, Mn, and As, 3% for Zn and 5% for Cd) and are the most precise (within 7% of the mean at the 95% confidence interval). USGS-EDXRF is similarly accurate for Pb and Zn. XRAL and ACZ are relatively accurate for Pb (within 5-8% of certified NIST values), but were considerably less accurate for the other 5 elements of concern (10-25% of NIST values). However, analyses of sample splits by more than one laboratory reveal that, for some elements, XRAL (Pb, Mn, Cd) and ACZ (Pb, Mn, Zn, Fe) analyses were comparable to EWU analyses of the same samples (when values are within the range of NIST SRMs). These results suggest that, for some elements, XRAL and ACZ dissolutions are more effective on the matrix of the CdA samples than on the matrix of the NIST samples (obtained from soils around Butte, Montana). Splits of CdA samples analyzed by CHEMEX were the least accurate, yielding values 10-25% less than those of EWU.

  14. A geochemical examination of humidity cell tests

    USGS Publications Warehouse

    Maest, Ann; Nordstrom, D. Kirk

    2017-01-01

    Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use in modeling the environmental performance at mine sites. Improved guidance is needed for more consistent interpretation and use of HCT results that rely on identifying: the geochemical processes; the mineralogy, including secondary mineralogy; the available surface area for reactions; and the influence of hydrologic processes on leachate concentrations in runoff, streams, and groundwater.

  15. Kriging - a challenge in geochemical mapping

    NASA Astrophysics Data System (ADS)

    Stojdl, Jiri; Matys Grygar, Tomas; Elznicova, Jitka; Popelka, Jan; Vachova, Tatina; Hosek, Michal

    2017-04-01

    Geochemists can easily provide datasets for contamination mapping thanks to recent advances in geographical information systems (GIS) and portable chemical-analytical instrumentation. Kriging is commonly used to visualise the results of such mapping. It is understandable, as kriging is a well-established method of spatial interpolation. It was created in 1950's for geochemical data processing to estimate the most likely distribution of gold based on samples from a few boreholes. However, kriging is based on the assumption of continuous spatial distribution of numeric data that is not realistic in environmental geochemistry. The use of kriging is correct when the data density is sufficient with respect to heterogeneity of the spatial distribution of the geochemical parameters. However, if anomalous geochemical values are focused in hotspots of which boundaries are insufficiently densely sampled, kriging could provide misleading maps with the real contours of hotspots blurred by data smoothing and levelling out individual (isolated) but relevant anomalous values. The data smoothing can thus it results in underestimation of geochemical extremes, which may in fact be of the greatest importance in mapping projects. In our study we characterised hotspots of contamination by uranium and zinc in the floodplain of the Ploučnice River. The first objective of our study was to compare three methods of sampling: random (based on stochastic generation of sampling points), systematic (square grid) and judgemental sampling (based on judgement stemming from principles of fluvial deposition) as the basis for pollution maps. The first detected problem in production of the maps was the reduction of the smoothing effect of kriging using appropriate function of empirical semivariogram and setting the variation of at microscales smaller than the sampling distances to minimum (the "nugget" parameter of semivariogram). Exact interpolators such as Inverse Distance Weighting (IDW) or Radial Basis Functions (RBF) provides better solutions in this respect. The second detected problem was heterogeneous structure of the floodplain: it consists of distinct sedimentary bodies (e.g., natural levees, meander scars, point bars), which have been formed by different process (erosion or deposition on flooding, channel shifts by meandering, channel abandonment). Interpolation through these sedimentary bodies has thus not much sense. Solution is to identify boundaries between sedimentary bodies and interpolation of data with this additional information using exact interpolators with barriers (IDW, RBF or stratified kriging) or regression kriging. Those boundaries can be identified using, e.g., digital elevation model (DEM), dipole electromagnetic profiling (DEMP), gamma spectrometry, or an expertise by a geomorphologist.

  16. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. PLS analysis suggests that the major element compositions can be determined with root mean square errors ca. 5% (absolute) for SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}(total), MgO, and CaO, and ca. 2% or less for TiO{sub 2}, Cr{sub 2}O{sub 3}, MnO, K{sub 2}O, and Na{sub 2}O. Finally, the Raman experiments have been conducted under supercritical CO{sub 2} involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. The Raman data have shown that the individual minerals can easily be identified individually or in mixtures.« less

  17. Geochemical surveys in the United States in relation to health.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes. -Author

  18. The Problem of Sample Contamination in a Fluvial Geochemistry Research Experience for Undergraduates.

    ERIC Educational Resources Information Center

    Andersen, Charles B.

    2001-01-01

    Introduces the analysis of a river as an excellent way to teach geochemical techniques because of the relative ease of sample collection and speed of sample analysis. Focuses on the potential sources of sample contamination during sampling, filtering, and bottle cleaning processes, and reviews methods to reduce and detect contamination. Includes…

  19. Chemical Geology: An Annotated Bibliography. CEGS Programs Publication Number 11.

    ERIC Educational Resources Information Center

    Billings, Gale K.

    The annotated bibliography is intended to aid geologists whose primary background is not in geochemistry. The references thus range from chemistry texts to papers on complex geochemical applications. The emphasis has been on those books and papers concerned with the application of chemical concepts to geology. Citations are arranged topically to…

  20. Publications - GMC 72 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 72 Publication Details Title: Organic carbon, rock-eval pyrolysis, kerogen type, maturation , and vitrinite reflectance geochemical data, and a source rock evaluation for the Exxon OCS-Y-0280-1 publication sales page for more information. Bibliographic Reference Texaco, Inc., 1987, Organic carbon, rock

  1. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok

    2013-12-01

    Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.

  2. Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, Jenni L.; Wilson, Colin J. N.; Millet, Marc-Alban; Leonard, Graham S.; Timm, Christian; McGee, Lucy E.; Smith, Ian E. M.; Smith, Euan G. C.

    2017-07-01

    Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial evolutionary trends are noted, although a relationship between short repose periods and closely spaced eruption locations is identified for a number of centres. In addition, no temporal-geochemical trends are noted, but a relationship between geochemical signature and eruption volume is highlighted.

  3. Exposing USGS sample collections for broader discovery and access: collaboration between ScienceBase, IEDA:SESAR, and Paleobiology Database

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Bristol, S.; Lehnert, K. A.; Arko, R. A.; Peters, S. E.; Uhen, M. D.; Song, L.

    2014-12-01

    The U.S. Geological Survey (USGS) is an exemplar of the need for improved cyberinfrastructure for its vast holdings of invaluable physical geoscience data. Millions of discrete paleobiological and geological specimens lie in USGS warehouses and at the Smithsonian Institution. These specimens serve as the basis for many geologic maps and geochemical databases, and are a potential treasure trove of new scientific knowledge. The extent of this treasure is virtually unknown and inaccessible outside a small group of paleogeoscientists and geochemists. A team from the USGS, the Integrated Earth Data Applications (IEDA) facility, and the Paleobiology Database (PBDB) are working to expose information on paleontological and geochemical specimens for discovery by scientists and citizens. This project uses existing infrastructure of the System for Earth Sample Registration (SESAR) and PBDB, which already contains much of the fundamental data schemas that are necessary to accommodate USGS records. The project is also developing a new Linked Data interface for the USGS National Geochemical Database (NGDB). The International Geo Sample Number (IGSN) is the identifier that links samples between all systems. For paleontological specimens, SESAR and PBDB will be the primary repositories for USGS records, with a data syncing process to archive records within the USGS ScienceBase system. The process began with mapping the metadata fields necessary for USGS collections to the existing SESAR and PBDB data structures, while aligning them with the Observations & Measurements and Darwin Core standards. New functionality needed in SESAR included links to a USGS locality registry, fossil classifications, a spatial qualifier attribution for samples with sensitive locations, and acknowledgement of data and metadata licensing. The team is developing a harvesting mechanism to periodically transfer USGS records from within PBDB and SESAR to ScienceBase. For the NGDB, the samples are being registered with IGSNs in SESAR and the geochemical data are being published as Linked Data. This system allows the USGS collections to benefit from disciplinary and institutional strengths of the participating resources, while simultaneously increasing the discovery, accessibility, and citation of USGS physical collection holdings.

  4. Petrographic and Geochemical Characterization of the Cambumbia STOCK in Andean Central Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Rojas Lequerica, S.; Jaramillo Mejía, J.; Concha Perdomo, A.

    2012-12-01

    The Cambumbia Stock is located on the western flank of the Central Cordillera of the northern Andes. The goals of this study were to petrographic and geochemically characterize the Cambumbia igneous body and to establish its petrogenetic history. 41 samples were collected, 28 for petrographic analysis and 14 for elementary chemical determination by ICP-MS. Petrographically the samples were classified as hornblende and pyroxene-gabbros varying to diorites, gabbronorites and tonalites, the rock texture varies from medium to coarse granular grain, with local microporfiritic texture. It was concluded from the major elements analysis that the samples correspond to the sub-alkaline series with low K content, mainly in the calc-alkaline series, within the gabbros and diorites fields. By using the SiO2 vs TiO2 (Jaramillo, 1980), Th/Yb vs Ta/Yb (Pearce, 1984) (Fig. 1) and Zr/117-Th-Nb/16 (Wood, 1979) diagrams it was determined that these rocks were generated in two geotectonic environments: one type MOR (extension) and other island arc (subduction, compression). Petrographic and geochemical comparisons between the rocks of Cambumbia Stock and Diorite and Gabbro El Pueblito (Giraldo, 2009) (located about 25 km to the north-west) may postulate a possible genetic link between them. Recently, a U/Pb age was obtained by the Universidad de Caldas in zircon in 2009 (not published data), yielded an age of 233.41 ± 3.4 Ma (Middle Triassic). This age is consistent with the global event of the extension and fragmentation of Pangea supercontinent. In addition, the mantle nature of the source and the petrogenetic evolution of the magmatic system were established. References GIRALDO, M.I., (2009): Esquema geodinámica de la parte noroccidental de la cordillera Central de Colombia. (Thesis). p.56-68. Universidad Nacional de Colombia, Medellín. JARAMILLO, J.M. (1980): Petrology and geochemistry of the Nevado del Ruiz Volcano northern Andes, Colombia (Thesis). 167 p. University of Houston, Faculty of the Department of Geology, Houston. PEARCE, J.A., HARRIS, N.B.W., and TINDLE, A.G., (1984), Trace element discrimination diagrams for the tectonic interpretation: Journal of Petrology, v. 25, p. 956-983. WOOD, D., JORON, J.L., & TREUIL, M. (1979): A re-appaisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci. Lett., 326-336. Th/Yb Vs Ta/Yb diagram

  5. Gemas: Geochemical mapping of the agricultural and grasing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; Fabian, Karl; Birke, Manfred; Demetriades, Alecos; Matschullat, Jörg; Gemas Project Team

    2017-04-01

    Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples)) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 42 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes, magnetic susceptibility and total C, N and S. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling, the two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soils) and for some further elements only in the mobile metal ion (MMI) extraction. For several trace elements deficiency issues are a larger threat to plant, animal and finally human health at the European scale than toxicity. Taking the famous step back to see the whole picture at the continental scale and to understand the relative importance of the processes leading to element enrichment/depletion in soil may hold unexpected promise for mineral exploration as well as for environmental sciences.

  6. A Simplified View of the Geochemical Diversity Surrounding Home Plate

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Morris, R. V.; Clark, B. C.; Gellert, R.

    2008-01-01

    The Home Plate feature (Fig. 1) within the Inner Basin of the Columbia Hills consists of layered rocks and has been interpreted as an accumulation of pyroclastic deposits [1]. Samples analyzed by the Alpha Particle X-ray Spectrometer within 25 meters of the eastern margin of Home Plate exhibit a strikingly diverse range of geochemical compositions, including the highest levels of Mg, Si, K, Zn, and Ni measured at Gusev Crater. This wide range of chemical variability across the 40+ samples analyzed on and near Home Plate can be represented by contributions from only six primary components. This reconstruction is not reflected in the M ssbauer mineralogy suggesting that significant alteration of the contributing components has occurred.

  7. Application of artificial neural networks to chemostratigraphy

    NASA Astrophysics Data System (ADS)

    Malmgren, BjöRn A.; Nordlund, Ulf

    1996-08-01

    Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.

  8. Isotope-Geochemical Evidence for the Nature of Protolite Eclogite of the Kokchetav Massif (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Shatsky, V. S.; Skuzovatov, S. Yu.; Ragozin, A. L.; Dril, S. I.

    2018-03-01

    In the present paper, the results of our isotope-geochemical studies on eclogites of the ultrahighpressure metamorphic complex of the Kokchetav massif are reported. The fact that the distribution of nonmobile elements in most of the samples was close to that of E-type MORB basalts is shown by using geochemical multielement diagrams normalized to N-MORB. Six samples were found to have a negative anomaly over niobium that may have resulted from contamination with crustal material. For eclogites of the Kokchetav massif, the 147Sm/144Nd ratio was found to range widely from 0.143 to 0.367. The ɛNd-values calculated for the age of the highly barometric stage of metamorphism (530 million years) varied from-10.3 to +8.1. Eclogites show a dispersion of model ages from 1.95 billion years to 670 million years. On the graphs in the ɛNd( T)-87Sr/86Sr and ɛNd( T)- T coordinates, eclogites were shown to form trends that can be interpreted as a result of contamination of the eclogite protolith by the host rocks. Based on the data obtained, it is proposed that the basalts of rift zones that may have geochemical characteristics of N-MORB basalts and at the same time may be contaminated by the continental crust may have served as proxies for eclogite protoliths of the Kokchetav massif.

  9. Community-Based Development of Standards for Geochemical and Geochronological Data

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.

    2007-12-01

    The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.

  10. Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996-2006

    USGS Publications Warehouse

    Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.

    2010-01-01

    As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L

  11. Chemical data and lead isotopic compositions of geochemical baseline samples from streambed sediments and smelter slag, lead isotopic compositions in fluvial tailings, and dendrochronology results from the Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Unruh, Daniel M.; Fey, David L.; Church, Stan E.

    2000-01-01

    IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.

  12. Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins

    NASA Astrophysics Data System (ADS)

    Price, Allison A.; Jackson, Matthew G.; Blichert-Toft, Janne; Kurz, Mark D.; Gill, Jim; Blusztajn, Jerzy; Jenner, Frances; Brens, Raul; Arculus, Richard

    2017-03-01

    We present new Sr-Nd-Pb-Hf-He isotopic data for 65 volcanic samples from the northern Lau and North Fiji Basins. This includes 47 lavas obtained from 40 dredge sites spanning an east-west transect across the Lau and North Fiji basins, 10 ocean island basalt (OIB)-type lavas collected from seven Fijian islands, and eight OIB lavas sampled on Rotuma. For the first time, we are able to map clear north-south and east-west geochemical gradients in 87Sr/86Sr across the northern Lau and North Fiji Basins: lavas with the most geochemically enriched radiogenic isotopic signatures are located in the northeast Lau Basin, while signatures of geochemical enrichment are diminished to the south and west away from the Samoan hot spot. Based on these geochemical patterns and plate reconstructions of the region, these observations are best explained by the addition of Samoa, Rurutu, and Rarotonga hot spot material over the past 4 Ma. We suggest that underplated Samoan material has been advected into the Lau Basin over the past ˜4 Ma. As the slab migrated west (and toward the Samoan plume) via rollback over time, younger and hotter (and therefore less viscous) underplated Samoan plume material was entrained. Thus, entrainment efficiency of underplated plume material was enhanced, and Samoan plume signatures in the Lau Basin became stronger as the trench approached the Samoan hot spot. The addition of subducted volcanoes from the Cook-Austral Volcanic Lineament first from the Rarotonga hot spot, then followed by the Rurutu hot spot, contributes to the extreme geochemical signatures observed in the northeast Lau Basin.

  13. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Brandon R; Graw, Michael; Brodie, Eoin L

    2013-11-01

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining themore » results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.« less

  14. Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida

    NASA Astrophysics Data System (ADS)

    Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.

    2008-05-01

    Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.

  15. Petrographic and geochemical characteristic of volcanic rocks from Tasik Kenyir and Kampung Awah, East Malaya block, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Roselee, Muhammad Hatta; Umor, Mohd Rozi; Ghani, Azman Abdul; Badruldin, Muhamad Hafifi; Quek, Long Xiang

    2018-04-01

    Kampung Awah and Tasik Kenyir are geologically located in East Malaya Blocks. These block is also known as western margin of Indochina terrane. Apart from sedimentary formations, East Malaya Blocks is also dominated by plutonic and volcanic rocks of mafic to rhyolitic compositions. Petrography and geochemical data suggest that Kampung Awah and Tasik Kenyir are one of locations which consists of volcanic rocks of generally basaltic to basaltic andesite compositions. Volcanic rocks from both area consists of plagioclcase, clinopyroxene, orthpyroxene as main mineral constituents with minor occurrences of hornblende. Geochemical data also indicate that volcanic rocks from both area were formed during subduction of the Paleo-tethys oceanic underneath the East Malaya Block or Indochina terrane. Most of the samples are metaluminous which indicate the volcanics are derived from igneous origin. This paper will contribute new geochemical data of mafic volcanics from Kampung Awah and Tasik Kenyir with the support of petrographic and field evidence to deduce the magma evolution and the tectonic setting.

  16. Assessing the sources and bioaccessibility of Lead in Soils from London

    NASA Astrophysics Data System (ADS)

    Cave, Mark R.; Wragg, Joanna; Chenery, Simon

    2013-04-01

    The lead content of soil is important since it is toxic to humans and particularly because children tend to more readily absorb lead than do adults: children absorb up to 40% into the bloodstream from ingested or inhaled lead, versus 5-15% in adults. Studies have shown that relatively low concentrations of lead in blood can lead to significant decrease in IQ of children (e.g. Jakubowski, 2011) leading to neuropathy and hypertension in adults. The British Geological Survey has recently completed a systematic high-density geochemical soil survey of the Greater London Area (GLA) in which over 6000 surface soil samples were collected and analysed for 50 elements. The Pb content of the soils range from 11 mg/kg to greater than 10000 mg/kg with mean and median values of 301 and 185 mg/kg, respectively. The ingestion bioaccessible fraction of Pb was measured using an in-vitro bioaccessibility test showing that 68% of the total Pb in London soils is bioaccessible. Measurement of Pb isotopic ratios in selected soils matched with those found in London air particulates and, to a lesser extent, with petrol lead. Self modelling mixture resolution of the 50 element geochemical data set was used to identify geochemically distinct components in the data with Pb being associated with 11 of the components which were of both natural and anthropogenic origin. Relationships between the soil components, the bioaccessible fraction and the Pb isotope ratios provided an indication of the sources of mobile lead in the London soils. References JAKUBOWSKI, M. 2011. Low-level environmental lead exposure and intellectual impairment in children - the current concepts of risk assessment. International Journal of Occupational Medicine and Environmental Health, Vol. 24, 1-7. APPLETON, J D, CAVE, M R, and WRAGG, J. 2012. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environmental Pollution, Vol. 171, 265-272.

  17. Geochemical and mineralogical characterization of the Eagle Ford Shale: Results from the USGS Gulf Coast #1 West Woodway core

    USGS Publications Warehouse

    Birdwell, Justin E.; Boehlke, Adam; Paxton, Stanley T.; Whidden, Katherine J.; Pearson, Ofori N.

    2017-01-01

    The Eagle Ford shale is a major continuous oil and gas resource play in southcentral Texas and a source for other oil accumulations in the East Texas Basin. As part of the U.S. Geological Survey’s (USGS) petroleum system assessment and research efforts, a coring program to obtain several immature, shallow cores from near the outcrop belt in central Texas has been undertaken. The first of these cores, USGS Gulf Coast #1 West Woodway, was collected near Waco, Texas, in September 2015 and has undergone extensive geochemical and mineralogical characterization using routine methods to ascertain variations in the lithologies and chemofacies present in the Eagle Ford at this locale. Approximately 270 ft of core was examined for this study, focusing on the Eagle Ford Group interval between the overlying Austin Chalk and underlying Buda Limestone (~20 ft of each). Based on previous work to identify the stratigraphy of the Eagle Ford Group in the Waco area and elsewhere (Liro et al., 1994; Robison, 1997; Ratcliffe et al., 2012; Boling and Dworkin, 2015; Fairbanks et al., 2016, and references therein), several lithological units were expected to be present, including the Pepper Shale (or Woodbine), the Lake Waco Formation (or Lower Eagle Ford, including the Bluebonnet, Cloice, and Bouldin or Flaggy Cloice members), and the South Bosque Member (Upper Eagle Ford). The results presented here indicate that there are three major chemofacies present in the cored interval, which are generally consistent with previous descriptions of the Eagle Ford Group in this area. The relatively high-resolution sampling (every two ft above the Buda, 432.8 ft depth, and below the Austin Chalk, 163.5 ft depth) provides great detail in terms of geochemical and mineralogical properties supplementing previous work on immature Eagle Ford Shale near the outcrop belt.

  18. Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, J.; Suess, S. E.; Cloud, P.

    Evidence of biochemical and geochemical evolution was sought in insoluble carbonaceous matter from 30 selected pre-Phanerozoic sediments ranging in age from about 3.8 to about 0.7 x 10 9 years. The carbon isotope ratios observed were in the range of -20 to -32 per mil with reference to the Peedee belemnite standard, similar to those previously reported. No systematic trends are obvious to us. Stepwise pyrolysis-gas-chromatography showed only molecules with fewer than 8 carbon atoms at the level of sensitivity of 10 -9 g of organics in a 10 mg rock sample. Carbon, hydrogen, and nitrogen analyses showed noncarbonate carbonmore » from less than 0.1 percent to more than 3 percent, with very small amounts of N. The H/C (atomic) ratios on HCl-leached and HF-treated samples were generally less than 0.3. Evidence of low pyrolysis yields (micro-analysis) and low H/C atomic ratios (macro-analysis) implies that the carbonaceous solids in even the least metamorphosed of these ancient sediments have evolved far toward amorphous carbon or graphite and do not yield useful ''biochemical fossils.''« less

  19. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.

    2017-01-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects.

  20. Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance

    USGS Publications Warehouse

    Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.

    1995-01-01

    The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.

  1. Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants.

    PubMed

    Xia, Wenbin; Gao, Hui; Wang, Xianhai; Zhou, Chunhua; Liu, Yunguo; Fan, Ting; Wang, Xin

    2009-05-30

    Two soil samples were collected at mining areas located in southern Hunan Province, China. EDTA extraction of Pb, Zn, Cu and Cd from these two tailing soils was studied using column leaching experiments. The redistributions of heavy metals (HMs) were determined using the modified BCR (Community Bureau of Reference) sequential extraction procedure, before and after EDTA extraction. The results indicated that EDTA was an effective extractant because of its strong chelating ability for various HMs. The proportions of Pb, Zn, Cu and Cd in the four fractions varied largely after EDTA extraction. The extraction efficiency of EDTA of the acid-extractable fraction (AEX) was significant in shallow soil column, while in deeper soil column, decrease of the extraction efficiency of reduced (RED), oxidizable (OX) and residual fractions (RES) was obtained, which was mainly due to the decrease of EDTA concentration.

  2. Geochemical variations of rare earth elements in Marcellus shale flowback waters and multiple-source cores in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.

    2013-12-01

    Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.

  3. Use of lichens in detecting environmental risk and in geochemical prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, G.; Sabatino, G.; Triscari, M.

    1995-10-01

    This paper provides data on variations in the contents of As, Sb, Ni, V, Pb, Cu, Au, Zn, Sc, and Al, measured in the thalli of a saxicolous lichen species, X anthoria calcicola Ochsner s.l., collected in northeastern Sicily, near an industrial zone and along a belt crossing areas of known ores containing sulfides of heavy metals. A total of 91 lichen samples were collected on roof tiles (39) and on rocks (52). In the industrial zone, analysis of lichen thalli revealed high contents of nickel and vanadium, decreasing at increasing distances from the source of contamination. The results havemore » also revealed the versatility of Xanthoria calcicola in geochemical prospecting for heavy metals such as Pb, Zn, As, Au, Sb, Ni, V, and Cu. The contents of these elements in the analyzed lichens highlight the same geochemical associations observed in prospecting surveys on samples of river sediments and identify similar anomalies. Interpretation of data in terms of enrichment factors (EFs) turned out to be particularly useful. 31 refs., 7 figs., 2 tabs.« less

  4. Assessment of Possible Application of Geochemistry to Distinguish Limnic and Paralic Coal-Bearing Parts of the Carboniferous in the Upper Silesian Coal Basin

    NASA Astrophysics Data System (ADS)

    Kokowska-Pawłowska, Magdalena; Krzeszowska, Ewa

    2017-12-01

    The paper presents the results of geochemical analyses of samples from the Poruba Beds of the paralic series and from the Zaleskie Beds of the limnic series Upper Silesian Coal Basin (USCB). The contents of the following trace elements and oxides were evaluated using spectrometric method: Cr, Th, U, V, AL2O3, MgO, K2O, P2O5. The following indicators, most commonly used in chemostratigraphy and in the identification of the marine and non-marine sediments ratios, were analyzed: U, Th, Th/U, K2O, Th/K2O, P2O5, Al2O3, P2O5/ Al2O3, V, Cr, V/Cr, and (K2O/Al2O3) / (MgO/Al2O3). The research showed that those ratios may be used to identify sedimentary environments and geochemical correlations of the sedimentary rock sequences in the USCB. Geochemical ratios discussed in the paper allowed distinguishing two populations of samples representing paralic and limnic series.

  5. Segmentation of singularity maps in the context of soil porosity

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.

    2016-04-01

    Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).

  6. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  7. A strong enrichment of potentially toxic elements (PTEs) in Nord-Trøndelag (central Norway) forest soil.

    PubMed

    Reimann, C; Fabian, K; Schilling, J; Roberts, D; Englmaier, P

    2015-12-01

    Analysis of soil C and O horizon samples in a recent regional geochemical survey of Nord-Trøndelag, central Norway (752 sample sites covering 25,000 km2), identified a strong enrichment of several potentially toxic elements (PTEs) in the O horizon. Of 53 elements analysed in both materials, Cd concentrations are, on average, 17 times higher in the O horizon than in the C horizon and other PTEs such as Ag (11-fold), Hg (10-fold), Sb (8-fold), Pb (4-fold) and Sn (2-fold) are all strongly enriched relative to the C horizon. Geochemical maps of the survey area do not reflect an impact from local or distant anthropogenic contamination sources in the data for O horizon soil samples. The higher concentrations of PTEs in the O horizon are the result of the interaction of the underlying geology, the vegetation zone and type, and climatic effects. Based on the general accordance with existing data from earlier surveys in other parts of northern Europe, the presence of a location-independent, superordinate natural trend towards enrichment of these elements in the O horizon relative to the C horizon soil is indicated. The results imply that the O and C horizons of soils are different geochemical entities and that their respective compositions are controlled by different processes. Local mineral soil analyses (or published data for the chemical composition of the average continental crust) cannot be used to provide a geochemical background for surface soil. At the regional scale used here surface soil chemistry is still dominated by natural sources and processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    PubMed

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  9. Calculation of individual isotope equilibrium constants for implementation in geochemical models

    USGS Publications Warehouse

    Thorstenson, Donald C.; Parkhurst, David L.

    2002-01-01

    Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.

  10. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for subsequent in-situ 40Ar/39Ar laser probe analysis; in the past such samples may have been characterised using SEM, but recent work [1] suggests that charging of a sample during electron-beam excitation can cause redistribution of K, thus disturb the 40Ar/39Ar system. Finally, we assess data accuracy and precision by presenting quantitative analyses of a number of standards. [1] Flude et al., The effect of SEM imaging on the Ar/Ar system in feldspars, V51C-2215 Poster, AGU Fall Meeting 2010

  11. A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    NASA Astrophysics Data System (ADS)

    Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav

    2017-02-01

    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.

  12. Map showing distribution of gold in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, W.R.; Motooka, J.M.; McHugh, J.B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of gold in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the Selected References of this report. The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  13. Map showing distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  14. Map showing distribution of thorium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  15. Map showing distribution of zinc in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of zinc in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  16. Map showing distribution of lead in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of lead in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  17. Map showing distribution of cadmium and antimony in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of cadmium and antimony in the nonmagnetic fraction of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  18. Map showing distribution of molybdenum in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  19. Map showing distribution of bismuth and cadmium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  20. Map showing distribution of silver in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  1. Map showing distribution of tin in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of tin in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  2. Map showing distribution of uranium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of uranium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.

  3. Aqueous Geochemical Data From the Analysis of Stream-Water Samples Collected in June and July 2005--Taylor Mountains 1:250,000 Scale Quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2006-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project 'Geologic and Mineral Deposit Data for Alaskan Economic Development.' Data presented here are from samples collected in June and July of 2005. The data are being released at this time with minimal interpretation. This is the second release of aqueous geochemical data from this project; 2004 aqueous geochemical data were published previously (Wang and others, 2006). The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. In general, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. With the exception of a total mercury concentration of 0.33 ng/L detected in a field blank, field blank major-ion and trace-elements concentrations were below detection.

  4. Uncertainty in Random Forests: What does it mean in a spatial context?

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Fouedjio, Francky

    2017-04-01

    Geochemical surveys are an important part of exploration for mineral resources and in environmental studies. The samples and chemical analyses are often laborious and difficult to obtain and therefore come at a high cost. As a consequence, these surveys are characterised by datasets with large numbers of variables but relatively few data points when compared to conventional big data problems. With more remote sensing platforms and sensor networks being deployed, large volumes of auxiliary data of the surveyed areas are becoming available. The use of these auxiliary data has the potential to improve the prediction of chemical element concentrations over the whole study area. Kriging is a well established geostatistical method for the prediction of spatial data but requires significant pre-processing and makes some basic assumptions about the underlying distribution of the data. Some machine learning algorithms, on the other hand, may require less data pre-processing and are non-parametric. In this study we used a dataset provided by Kirkwood et al. [1] to explore the potential use of Random Forest in geochemical mapping. We chose Random Forest because it is a well understood machine learning method and has the advantage that it provides us with a measure of uncertainty. By comparing Random Forest to Kriging we found that both methods produced comparable maps of estimated values for our variables of interest. Kriging outperformed Random Forest for variables of interest with relatively strong spatial correlation. The measure of uncertainty provided by Random Forest seems to be quite different to the measure of uncertainty provided by Kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. In conclusion, our preliminary results show that the model driven approach in geostatistics gives us more reliable estimates for our target variables than Random Forest for variables with relatively strong spatial correlation. However, in cases of weak spatial correlation Random Forest, as a nonparametric method, may give the better results once we have a better understanding of the meaning of its uncertainty measures in a spatial context. References [1] Kirkwood, C., M. Cave, D. Beamish, S. Grebby, and A. Ferreira (2016), A machine learning approach to geochemical mapping, Journal of Geochemical Exploration, 163, 28-40, doi:10.1016/j.gexplo.2016.05.003.

  5. Geochemical and petrographic data for intrusions peripheral to the Big Timber Stock, Crazy Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Van Gosen, Bradley S.

    2015-01-01

    The Paleocene Fort Union Formation hosts a compositionally diverse array of Eocene plugs, dikes, and sills arrayed around the Eocene Big Timber stock in the Crazy Mountains of south-central Montana. The geochemistry and petrography of the sills have not previously been characterized or interpreted. The purpose of this report is (1) to present available geochemical and petrographic data for several dozen samples of these rocks and (2) to provide a basic interpretive synthesis of these data.

  6. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    USGS Publications Warehouse

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could potentially be inundated during high-flow events. Sampling began in 2009 and was completed in 2010. A total of 74 geochemical samples were collected from fluvial deposits at reference sites, and 473 samples were collected from potentially contaminated sites. Sediment samples collected were analyzed for 23 metals, including arsenic and mercury. Sequential replicate, split duplicate, and field quality-control samples were analyzed for quality assurance of data-collection methods. The metal concentrations in sediment samples and location information are presented in this report in electronic format (Microsoft Excel), along with non-parametric summary statistics of those data. Cross-sectional topography is graphed with arsenic and mercury concentrations on transects at the potentially contaminated sites. The mean arsenic concentration in reference sediment samples was 8 milligrams per kilogram (mg/kg), compared to 250, 650, and 76 mg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively. The mean mercury concentration in reference sediment samples was 16 micrograms per kilogram (μg/kg), compared to 130, 370, and 71 μg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively.

  7. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years.Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (δD) and oxygen-18 (δ18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  8. An alternative to fully coupled reactive transport simulations for long-term prediction of chemical reactions in complex geological systems

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Kühn, Michael

    2014-05-01

    Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007

  9. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.

  10. The Geochemical Earth Reference Model (GERM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudigel, H.; Albarede, F.; Shaw, H.

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less

  11. Fallon, Nevada FORGE Fluid Geochemistry

    DOE Data Explorer

    Blankenship, Doug; Ayling, Bridget

    2018-03-13

    Fluid geochemistry analysis for wells supporting the Fallon FORGE project. Samples were collected from geothermal wells using standard geothermal water sampling techniques, including filtration and acidification of the cation sample to pH < 2 prior to geochemical analysis. Analyses after 2005 were done in reputable commercial laboratories that follow standard protocols for aqueous chemistry analysis.

  12. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  13. Petrographic and geochemical analyisis for determination of provenance of the Slovenj Gradec Miocene Basin fill (Western Central Paratethys)

    NASA Astrophysics Data System (ADS)

    Ivančič, Kristina; Trajanova, Mirka; Skaberne, Dragomir; Šmuc, Andrej

    2017-04-01

    The Slovenj Gradec Basin (SGB) is located in northern Slovenia between eastern margin of the Northern Karavanke and the western Pohorje Mts. Structurally, it belongs to Eastern Alps. It is filled with Miocene clastic sediments. Modal composition of sandstones was determined on thin sections by point-counter and presented with the QFL and QmFLt diagrams. Their geochemical composition was determined by classical method and by Inductively Coupled Plasma-Mass Spectrometry. Based on petrography, sedimentary fill of the SGB consists mostly of lithic grains and quartz, derived from metamorphic and carbonate rocks. Locally, fragments of granitoids occur. Binder consists of carbonate, subordinately quartz cement, and carbonate matrix. Recycled orogen (lithic and transitional recycled) provenance of the grains was determined. Geochemical composition shows that: - Sandstones from the SGB belong to the fields of shale, wacke, litharenite, arkose and subarkose (Pettijohn, 1972). - In the ternary diagram of weathering trends (cf. Nesbitt & Young 1984), the samples group near the CaO+Na2OAl2O3 conjunctive. Calculated minimum CIA (Fedo et al., 1995) is 40.06, indicating that the source rocks were not subjected to considerable weathering. - According to discriminant function (cf. Roser & Korsch, 1988) all samples from SGB originate from quartzose sedimentary rocks. - For determination of tectonic setting of source rocks (Verma & Armstrong-Altrin, 2013) the studied samples plot in the field of collision zone. - In the multidimensional discriminant function diagram for the discrimination of active and passive margin after Verma and Armstrong (2016), the samples plot into the field of passive margin. The data indicate that source rocks of the SGB sedimentary fill were derived from Eastern Alps and Southern Alps. It is suggested that SGB was detached from the Styrian and Mura-Zala Basins in the course of the Pohorje Mts. oblique transpressive uplift during the late Miocene to Pliocene (Trajanova, 2013). Consequently, the area of the wider SGB was still an integral part of the Central Paratethys until late Miocene. References Fedo, C.M., Nesbitt, H.W. & Young, G.M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), pp.921-924. Nesbitt, H. W., & Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48 (7), 1523-1534. Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone, second ed., Springer, New York, heidelberg, Berlin 618, pp. Roser, B.P. & Korsch, R.J., 1988. Provenance signatures of sandstone-mudstonen suites determined using discriminant function of major-element data. Chemical Geology, 67(1-2), pp.119-139. Trajanova, M. 2013: Starost pohorskega magmatizma; nov pogled na nastanek pohorskega tektonskega bloka (Age of the Pohorje Mountains magmatism; new view on the origin of the Pohorje tectonic block). PhD thesis. 183 pp., Ljubljana. Verma, S.P. & Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, pp.117-133. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1-12.

  14. Unravelling regolith material types using Mg/Al and K/Al plot to support field regolith identification in the savannah regions of NW Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Arhin, Emmanuel; Zango, Saeed M.

    2015-12-01

    The XRF analytical method was used to measure the weight % of the major oxides in regolith samples. The metal weight % of Mg, K and Al were calculated from their oxides and were normalised relative to immobile Al calculated from its oxide. The plot of Mg/Al and K/Al identified the regolith of the study area to consist of 137 transported clays, 4 ferruginous sediments or ferricrete, 2 lateritic duricrust and 4 saprolites. Surface regolith that had undergone secondary transformation and shows compositional overlaps were 4 transported clays with Fe-oxide impregnation may be referred to as nodular laterite and 5 ferruginous saprolites. The variable regolith materials features identified from the 154 samples enabled the characterisation and identification of the different sample materials because an overprint of bedrock geochemistry is reflected in the regolith. Plot of Mg/Al and K/Al highlighted the compositional variability of the regolith samples and refute the notion of the homogeneity of all the sampled materials in the area. The study thus recognized Mg/Al versus K/Al plots to be used in supporting field identification of regolith mapping units particularly in complex regolith terrains of savannah regions of Ghana and in similar areas where geochemical exploration surveys are being carried out under cover.

  15. Geochemistry and the Understanding of Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.

  16. Geochemical characterisation of pyrite oxidation and environmental problems related to release and transport of metals from a coal washing low-grade waste dump, Shahrood, northeast Iran.

    PubMed

    Doulati Ardejani, Faramarz; Jodieri Shokri, Behshad; Moradzadeh, Ali; Shafaei, Seyed Ziadin; Kakaei, Reza

    2011-12-01

    Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.

  17. Only pick the right grains: Modelling the bias due to subjective grain-size interval selection for chronometric and fingerprinting approaches.

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian

    2016-04-01

    Many modern approaches of radiometric dating or geochemical fingerprinting rely on sampling sedimentary deposits. A key assumption of most concepts is that the extracted grain-size fraction of the sampled sediment adequately represents the actual process to be dated or the source area to be fingerprinted. However, these assumptions are not always well constrained. Rather, they have to align with arbitrary, method-determined size intervals, such as "coarse grain" or "fine grain" with partly even different definitions. Such arbitrary intervals violate principal process-based concepts of sediment transport and can thus introduce significant bias to the analysis outcome (i.e., a deviation of the measured from the true value). We present a flexible numerical framework (numOlum) for the statistical programming language R that allows quantifying the bias due to any given analysis size interval for different types of sediment deposits. This framework is applied to synthetic samples from the realms of luminescence dating and geochemical fingerprinting, i.e. a virtual reworked loess section. We show independent validation data from artificially dosed and subsequently mixed grain-size proportions and we present a statistical approach (end-member modelling analysis, EMMA) that allows accounting for the effect of measuring the compound dosimetric history or geochemical composition of a sample. EMMA separates polymodal grain-size distributions into the underlying transport process-related distributions and their contribution to each sample. These underlying distributions can then be used to adjust grain-size preparation intervals to minimise the incorporation of "undesired" grain-size fractions.

  18. Factors controlling the regional distribution of vanadium in ground water

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (> or = 50 μg/L) and moderate (25 to 49 μg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.

  19. Geochemistry of glacial sediments in the area of the Bend massive sulfide deposit, north-central Wisconsin

    USGS Publications Warehouse

    Woodruff, L.G.; Attig, J.W.; Cannon, W.F.

    2004-01-01

    Geochemical exploration in northern Wisconsin has been problematic because of thick glacial overburden and complex stratigraphic record of glacial history. To assess till geochemical exploration in an area of thick glacial cover and complex stratigraphy samples of glacial materials were collected from cores from five rotasonic boreholes near a known massive sulfide deposit, the Bend deposit in north-central Wisconsin. Diamond drilling in the Bend area has defined a long, thin zone of mineralization at least partly intersected at the bedrock surface beneath 30-40 m of unconsolidated glacial sediments. The bedrock surface has remnant regolith and saprolite resulting from pre-Pleistocene weathering. Massive sulfide and mineralized rock collected from diamond drill core from the deposit contain high (10s to 10,000s ppm) concentrations of Ag, As, Au, Bi, Cu, Hg, Se, Te, and Tl. Geochemical properties of the glacial stratigraphic units helped clarify the sequence and source areas of several glacial ice advances preserved in the section. At least two till sheets are recognized. Over the zone of mineralization, saprolite and preglacial alluvial and lacustrine samples are preserved on the bedrock surface in a paleoriver valley. The overlying till sheet is a gray, silty carbonate till with a source hundreds of kilometers to the northwest of the study area. This gray till is overlain by red, sandy till with a source to the north in Proterozoic rocks of the Lake Superior area. The complex glacial stratigraphy confounds down-ice geochemical till exploration. The presence of remnant saprolite, preglacial sediment, and far-traveled carbonate till minimized glacial erosion of mineralized material. As a result, little evidence of down-ice glacial dispersion of lithologic or mineralogic indicators of Bend massive sulfide mineralization was found in the samples from the rotasonic cores. This study points out the importance of determining glacial stratigraphy and history, and identifying favorable lithologies required for geochemical exploration. Drift prospecting in Wisconsin and other areas near the outer limits of the Pleistocene ice sheets may not be unsuccessful, in part, because of complex stratigraphic sequences of multiple glaciations where deposition dominates over erosion. ?? 2004 Elsevier B.V. All rights reserved.

  20. Regional geochemical studies in the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.

    1981-01-01

    The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. Geochemical maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that geochemical sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement geochemical surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide geochemical information not readily discernible from plots of single elements alone. ?? 1981.

  1. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  2. Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill samples from the Powder River basin, Wyoming

    USGS Publications Warehouse

    See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J.

    1995-01-01

    Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill aquifers were investigated. Backfill and ground-water samples were collected at coal mines in the Powder River Basin, Wyoming. Backfill was generally dominated by aluminum (14,400 to 49,000 mg/kg (milligrams per kilogram)), iron (3,330 to 23,200 mg/kg), and potassium (7,950 to 18,000 mg/kg). Backfill saturated-paste selenium concentrations ranged from 1 to 156 mg/kg (microsiemens per kilogram). Ground-water total selenium concentrations ranged from 3 to 125 mg/L. Dissolved organic carbon in all ground-water samples was dominated by hydrophobic and hydrophilic acids (38 to 84 percent). Selenite sorption/desorption experiments were conducted using background solutions of distilled-deionized water, 0.1 molar calcium chloride, and isolated hydrophobic and hydrophilic acids. Selenite sorption was larger when 0.1 molar calcium chloride was used. The addition of hydrophilic acid decreased selenite sorption more than the addition of hydrophobic acids. Geochemical modelling was used to predict the solid phases controlling dissolved selenium concentrations and to evaluate the effects of dissolved organic carbon on selenium solubility. Results suggested that 55 to 90 percent of selenium in backfill precipitation/dissolution extracts was dominated by magnesium selenate ion pairs. Dissolved organic carbon had little effect on selenium speciation. A redox chamber was constructed to control Eh and pH in water and backfill-core sample suspensions. The response of selenite and selenate in water samples to redox conditions did not follow thermodynamic predictions. Reduction of selenate in water samples did not occur at any of the redox levels tested.

  3. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical endmembers, and mixing between these endmembers. Ongoing work seeks to better constrain groundwater ages and mixing models through the coupled use of conventional aqueous geochemical and isotopic analysis and the ultra-trace constituents.

  4. Lithological properties of sedimentary environments in the shallow subsurface of the Northern Netherlands

    NASA Astrophysics Data System (ADS)

    Harting, Ronald; Bosch, Aleid; Gunnink, Jan

    2014-05-01

    Society has an increasing demand from the subsurface, which in the Dutch shallow subsurface (upper 30 to 40 meters) mainly focuses on natural aggregate resources, groundwater, infrastructure and dike safety. This stimulates the demand for knowledge about the composition and heterogeneity of the subsurface and its physical and chemical properties, including the uncertainties involved. Physical and chemical properties of sediments in the subsurface have been under investigation for decades; however, the usefulness of this data for applied research and the understanding of these properties is limited. This is due to several factors: studies consist mainly of separately collected datasets, targeted at a limited amount of parameters, focused on a small number of geological units, distributed unevenly with depth and usually collected from clustered drillings with limited spatial extent or are analysed with different techniques and methods, often on disturbed samples. These factors result in a heterogeneous and biased dataset not suitable to function as a reference dataset or to statistically determine regional characteristics of geological units. To overcome these shortcomings, the Geological Survey of the Netherlands is establishing a nation-wide reference dataset for physical and chemical properties. In 2006, a drilling campaign was started using cone penetration tests, cored drillings and geophysical well logs, choosing the sites for a good geographical distribution. The lithological properties of the undisturbed cores are visually described and interpreted for lithostratigraphy and inferred sedimentary environment based on lithofacies. The location of the samples in the cores are chosen based on this description and interpretation, resulting in an evenly distributed dataset of in situ samples with respect to geological units as well as an adequate number of samples suitable for statistical analysis. Analyses are uniformly performed for grain size distribution, permeability (both high and low permeable lithologies) and geochemical methods (X-Ray Fluorescence, Thermo-Gravimetric Analysis, Total Carbon, Total Sulphur and Total Organic Carbon). These analyses result in a large number of lithological, hydrological and geochemical parameters, i.e. clay content, sand median, vertical and horizontal permeability and CaCO3-content. We present the results from the analysis of lithological properties for the Northern Netherlands. Besides geology, these properties can be applied directly in studies concerning (amongst others) groundwater, natural aggregates and dike safety. We demonstrate the use of sedimentary environments based on lithofacies as a useful tool for comparison between lithostratigraphic units and lithofacies. These lithofacies match distinct parts of the marine, fluvial, glacial, eolian or organogenic environment, i.e. tidal channel sand, floodbasin clay and subglacial till. This results in lithological properties illustrating the heterogeneity within a geological unit and between equal depositional environments in different lithostratigraphic units. The acquired data have so far been used in several applied studies, i.e. improving parameterisation of 3D models leading to increased accuracy in groundwater models and dike safety studies concerning dike failure due to undermining. Recently, grain size distributions measured with different methods were recalibrated into a homogeneous dataset using this reference set, which greatly enlarged the dataset to be incorporated in the parameterisation of a 3D voxel model.

  5. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  6. Geochemical signatures of tsunami deposits - what do they tell us?

    NASA Astrophysics Data System (ADS)

    Chague-Goff, Catherine; Goff, James R.

    2010-05-01

    In the last two and half decades, but even more since the 2004 Indian Ocean Tsunami (IOT), there has been a significant increase in the amount of literature dealing with recent, historical and palaeotsunamis. Much has been written and debated about the diagnostic criteria of historical and palaeotsunami deposits. Most of the diagnostic criteria or proxies used reflect the expertise of the researchers involved and thus tend to be biased towards sedimentology, stratigraphy and micropalaeontology, with some reference to geomorphology, archaeology, anthropology and palynology. It should however be noted that all criteria have never been reported from one site, and neither are they all found in one single deposit. Thus, the lack of one or more proxies should not be taken as unique evidence to refute the tsunamigenic origin of a specific deposit. Although geochemical signatures have long been used as indicators for palaeosalinity in sedimentary sequences, there appears to have been some reluctance to use them to help in the identification of historical and palaeotsunami deposits. Like other proxies, geochemistry alone may not provide a definite answer to the origin of a deposit. Furthermore, poor preservation due to environmental conditions or as a result of post-diagenetic processes, might complicate the interpretation of geochemical signatures left by tsunami inundation. Similar taphonomic problems are also faced for microfossil proxies. However, geochemistry provides another piece to the puzzle, and together with other proxies, it can help identify palaeotsunami deposits. Geochemical signatures can also provide clues about the landward limit of runup of a tsunami, beyond the area of sediment deposition. This was recently documented following the 2004 IOT and the 2009 South Pacific tsunami. A summary of examples of geochemical signatures recorded in interstitial water and sediment of recent, historical and palaeotsunami deposits is presented.

  7. Geochemical evidence for mélange melting in global arcs

    PubMed Central

    Nielsen, Sune G.; Marschall, Horst R.

    2017-01-01

    In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of geochemical data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with models that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated. PMID:28435882

  8. Geochemical evidence for mélange melting in global arcs.

    PubMed

    Nielsen, Sune G; Marschall, Horst R

    2017-04-01

    In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of geochemical data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with models that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated.

  9. Geochemical reconnaissance study of Vassar Meadow (Adams Rib) wetlands and vicinity, Eagle County, Colorado

    USGS Publications Warehouse

    Owen, Douglass E.; Breit, George N.

    1995-01-01

    Wetlands are known to be efficient filters of metals dissolved in ground and surface waters. This paper presents the results of geochemical reconnaissance sampling done at the request of the U.S. Environmental Protection Agency in wetlands in Vassar Meadow, Eagle County, Colorado. Ten wetlands were sampled and found to be variously enriched in chromium, molybdenum, and uranium. The uranium and chromium concentrations (and, to a lesser extent, molybdenum) represent an environmental concern should they be released as a result of anthropogenic disturbance. The metal accumulation in these wetlands documents that the wetlands have been functioning as filters that protect water quality in East Brush Creek by lowering the dissolved metal content in water.

  10. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2017-09-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  11. Impact of geochemical stressors on shallow groundwater quality

    USGS Publications Warehouse

    An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.

    2005-01-01

    Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.

  12. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: geochronological and geochemical constraints on the Carboniferous metabasites

    NASA Astrophysics Data System (ADS)

    He, Huiying; Wang, Yuejun; Zhang, Yanhua; Qian, Xin; Zhang, Yuzhi

    2018-03-01

    Hainan of Southeast Asia has been regarded as a key area for understanding the Late Paleozoic tectonic regime and amalgamation process of the Indochina with South China Blocks that are not well constrained. This paper presents a set of new geochronological, elemental, and Sr-Nd isotopic data for the Paleozoic Bangxi and Chenxing metabasites in Central Hainan. The geochronological data show that the representative samples yield the 40Ar/39Ar plateau age of 328.1 ± 2.6 Ma and zircon U-Pb age of 330.7 ± 4.4 Ma, respectively. They are SiO2- and TiO2-poor, Al2O3-rich mafic rocks. The Chenxing samples are characterized by left-sloping chondrite-normalized REE and N-MORB-like multi-elemental patterns. The Bangxi samples have the E-MORB-like geochemical affinity. All samples show high ɛ Nd(t) values ranging from +5.61 to +9.85. Such signatures suggest their origination of a MORB-like source with the input of subduction-derived components. Our investigation has verified the presence of the Carboniferous metabasites with both MORB- and arc- like geochemical affinities at the Bangxi-Chenxing area in Central Hainan. In combination with the available data from the Jinshajiang, Ailaoshan, and Song Ma suture zones, it is proposed for the development of a Carboniferous back-arc basin along the Ailaoshan-Song Ma and Central Hainan suture zones in response to the subduction of the Paleotethyan main Ocean.

  13. Reconnaissance geochemical survey of Al Jurdhawiyah and Wadi al Jarir quadrangles, sheets 25/42 D and 25/42 C, Kingdom of Saudia Arabia

    USGS Publications Warehouse

    Samater, Rashid M.

    1983-01-01

    A reconnaissance wadi-sediment geochemical survey was conducted in the Al Jurdhawiyah (sheet 28/42 D) and Wadi al Jarir (sheet 2G/42 C) quadrangles in order to identify anomalies potentially related to mineralized rock. Sieved bulk-sediment fractions and pan concentrates were created from the original samples collected from wadis in the two quadrangles. A semiquantitative 30-element spectrographic analysis was completed on both the sieved bulk-sediment fraction and the pan concentrate of each sample. The results were statistically analyzed in an attempt to identify anomalous regions. Anomaly threshold values were calculated for most elements; the threshold value of an element in a data set is defined as the geometric mean value plus two standard deviations. The Bald al Jimalah West tin-tungsten deposit (MODS 02661) in the southern part of the Al Jurdhawiyah quadrangle was identified by one pan-concentrate sample containing anomalous concentrations of tin and tungsten. Samples near the Bald al Jimalah East ancient lead-zinc-silver mines (MODS 00960) contain strongly anomalous concentrations of tin and lead and to a lesser extent of tungsten and copper. Both of these regions and other regions containing anomalous concentrations of certain elements are recommended for additional studies. A comparison of results obtained from sieved bulk-sediment fractions and pan concentrates indicates that the latter is the better medium for these geochemical investigations.

  14. Is there a specific geochemical signature of urban soils dedicated to stormwater infiltration?

    NASA Astrophysics Data System (ADS)

    Delolme, Cécile; Poulenard, Jérôme; Dorioz, Jean-Marcel; Bedell, Jean-Philippe; Winiarski, Thierry

    2014-05-01

    Stormwater infiltration devices are widely used in urban areas to recharge aquifers. They consequently store and concentrate on small surfaces, suspended particles coming from the erosion of the urban watershed carried out by stormwater are deposited at the surface of the receiving soil. This leads to a sedimentary layer that could be considered as a technosol where pedogenesis is occurring in relation with the receiving underlying soil. The knowledge related to these specific soils comes from a very small number of urban catchment. Moreover, few data are available concerning their main agronomic characteristics and the presence of others contaminants related to urban, industrial or agricultural activities. Our objective was to see if there is a generic specific geochemical signature that could characterize these technosols or if it is mostly explained by the catchment characteristics. For the first time, the surface soil of 19 infiltration basins situated in the East of Lyon were sampled in spring 2012 and chosen to represent a diversity of urban catchment typology. A mean representative surface layer sample was obtained with a mixture of 8 to 20 subsamples (depending on the basin surface) collected randomly on each basin. Numerous geochemical parameters were measured : pH, Total Organic Matter, Total Organic Carbon, carbonate content, texture, visible and infra-red spectra, phosphorus speciation, total nitrogen, total Zn, Cu, Ni, Cd, Pb, Cr, 7 pesticides, 16 PAHs, sum of 17 Dioxines, sum of the 7 indicator PCB, alkylphenols. A first analysis of the results underlines the great variability of the different parameters due to the diversity of management and design of basins. Nevertheless a stable chemical "signature" can be precised in relation to the concomitant presence of componants in rather stable proportions. We confirm that these specific urban soils are highly organic (4 to 20% dry weight) with high total PAHs and heavy metals contents with a silty texture. We show specifically that these soils are good phosphorus sink (1 to 3 g/kg dw) with a great proportion of available P . Dioxines and PCB are detected in all the 19 samples with contents varying from 2 to 30 ng/kg dw for the sum of 17 dioxines and 8 to 500 mg/kg dw for the sum of the 7 indicator PCB. Diuron was measured in half of the basins and para-ter-octylphénol (30 to 100 mg/kg dw) and 4-nonylphénol (300 to 1300 mg/kg dw) were quantified in all the samples. In order to see if there is a co-structure between the geochemical properties of the 19 sites and the catchment characteristics, a STATIS analysis was used to carry out a multi-table analysis with the 6 tables characterizing the sites (catchment characteristics, heavy metal content, main geochemical properties, organic pollutant content, infra-red spectra, visible spectra) and is still under way. This first results of this analysis confirm that the geochemical characteristics are independant from land use and mostly linked to an "urban geochemical specificity" in relation to air quality and urban surfaces characteristics.

  15. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  16. The relationship between orbital, earth-based, and sample data for lunar landing sites

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  17. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    NASA Astrophysics Data System (ADS)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  18. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  19. Geologic and geochemical study of tin-bearing rhyolites in the Broken Ridge area, southern Wah Wah Mountains, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duttweiler, K.A.; Griffitts, W.R.

    This study was undertaken to document the geologic, petrologic, and geochemical relationships of the tin-bearing rhyolitic lava flows and domes of the 12-m.y.-old Steamboat Mountain Formation of Thompson and Perry in the area of Broken Ridge. Early phases of volcanic activity produced a crystal-rich, topaz-bearing rhyolite flow followed by eruption of a crystal-poor rhyolite from many local centers. These geochemical characteristics are typical of other topaz-bearing rhyolites in the western United States and suggest that such rhyolites formed as highly differentiated magmas. The 23-m.y.-old Bible Spring fault zone was reactivated after emplacement of the rhyolite flows that resulted in amore » series of high-angle normal faults. Multiple hydrothermal events resulted in widespread alteration along the faults and concentration of Be, F, Sn, Nb, Mo, Cu, Zn, W, and Ba. Alteration types include silicification, argillization, and alunitization. Crystalline cassiterite and wood tin are widespread and locally abundant in heavy-mineral-concentrate samples from the Broken Ridge area. The only visible cassiterite in the rocks occurs with specular hematite in veins within the silicified topaz-bearing rhyolite, immediately adjacent to a vent breccia. Trace element anomalies of Sn, Mo, Nb, and Be in rock samples well-define the vein area. The combined geologic, geochemical, and structural data suggest that an intrusive may be at depth directly beneath Broken Ridge.« less

  20. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    NASA Astrophysics Data System (ADS)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  1. Maximizing data holdings and data documentation with a hierarchical system for sample-based geochemical data

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Lehnert, K. A.; Walker, J. D.; Chan, C.; Ash, J.; Johansson, A. K.; Rivera, T. A.

    2011-12-01

    Sample-based measurements in geochemistry are highly diverse, due to the large variety of sample types, measured properties, and idiosyncratic analytical procedures. In order to ensure the utility of sample-based data for re-use in research or education they must be associated with a high quality and quantity of descriptive, discipline-specific metadata. Without an adequate level of documentation, it is not possible to reproduce scientific results or have confidence in using the data for new research inquiries. The required detail in data documentation makes it challenging to aggregate large sets of data from different investigators and disciplines. One solution to this challenge is to build data systems with several tiers of intricacy, where the less detailed tiers are geared toward discovery and interoperability, and the more detailed tiers have higher value for data analysis. The Geoinformatics for Geochemistry (GfG) group, which is part of the Integrated Earth Data Applications facility (http://www.iedadata.org), has taken this approach to provide services for the discovery, access, and analysis of sample-based geochemical data for a diverse user community, ranging from the highly informed geochemist to non-domain scientists and undergraduate students. GfG builds and maintains three tiers in the sample based data systems, from a simple data catalog (Geochemical Resource Library), to a substantially richer data model for the EarthChem Portal (EarthChem XML), and finally to detailed discipline-specific data models for petrologic (PetDB), sedimentary (SedDB), hydrothermal spring (VentDB), and geochronological (GeoChron) samples. The data catalog, the lowest level in the hierarchy, contains the sample data values plus metadata only about the dataset itself (Dublin Core metadata such as dataset title and author), and therefore can accommodate the widest diversity of data holdings. The second level includes measured data values from the sample, basic information about the analytical method, and metadata about the samples such as geospatial information and sample type. The third and highest level includes detailed data quality documentation and more specific information about the scientific context of the sample. The three tiers are linked to allow users to quickly navigate to their desired level of metadata detail. Links are based on the use of unique identifiers: (a) DOI at the granularity of datasets, and (b) the International Geo Sample Number IGSN at the granularity of samples. Current developments in the GfG sample-based systems include new registry architecture for the IGSN to advance international implementation, growth and modification of EarthChemXML to include geochemical data for new sample types such as soils and liquids, and the construction of a hydrothermal vent data system. This flexible, tiered, model provides a solution for offering varying levels of detail in order to aggregate a large quantity of data and serve the largest user group of both disciplinary novices and experts.

  2. Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington

    NASA Astrophysics Data System (ADS)

    Sawlan, M.; Hagstrum, J. T.; Wells, R. E.

    2011-12-01

    We have completed comprehensive geochemical (GC) and paleomagnetic (PM) sampling of individual lava flows from eight reference stratigraphic sections in the Grande Ronde Basalt (GRB), Columbia River Basalt Group [Hagstrum et al., 2009, GSA Ann. Mtg, Portland (abst); Hagstrum et al., 2010, AGU Fall Mtg, San Francisco (abst)]. These sections, distributed across the Columbia Plateau and eastern Columbia River Gorge, contain as many as 30 flows, are up to 670 m thick, span upper magneto-stratigraphic zones R2 and N2, and, in some locations, also contain one or more N1 flows. In concert with GC and PM sampling, we have carried out detailed geologic mapping of these sections, typically at a scale of 1:3,000 to 1:5,000, using GPS, digital imagery from the National Aerial Imagery Program (NAIP), and compilation in GIS. GRB member and informal unit names of Reidel et al. [1989, GSA Sp. Paper 239] generally have been adopted, although two new units are identified and named within the N2 zone. Notably, a distinctive PM direction for intercalated lavas of several lower N2 units indicates coeval eruption of compositionally distinct units; this result contrasts with the scenario of serial stratigraphic succession of GRB units proposed by Reidel et al. [1989]. Our objectives in the mapping include: Confirming the integrity of the stratigraphic sequences by documenting flow contacts and intraflow horizons (changes in joint patterns or vesicularity); assessing fault displacements; and, establishing precisely located samples in geologic context such that selected sites can be unambiguously reoccupied. A geologic map and GC-PM data for the Bingen section, along the north side of the Columbia River, are presented as an example of our GRB reference section mapping and sampling. One of our thicker sections (670 m) along which 30 flows are mapped, the Bingen section spans 7 km along WA State Hwy 14, from near the Hood River Bridge ESE to Locke Lake. This section cuts obliquely through a broad, NE-trending anticline of the Yakima Fold Belt, with the section base (N1) beneath the fold crest and R2 and N2 flows exposed in the fold's SE limb. In addition to addressing our main mapping objectives, observations made in the course of mapping at Bingen and other sections have led to insights into the cooling, fracturing and emplacement of GRB lavas. A distinctive set of fractures, termed quench fractures, comprise subvertical, curviplanar fractures and flanking mini-columnar joints, and are attributed to ascent of steam, generated by conduction heating of groundwater, through recently emplaced flows [Sawlan and Moore, 2011, GSA Rocky Mtn-Cord. Sec. Mtg, Logan (abst)]. Quench fractures are widespread across the GRB extent and occur in flows at Bingen. We have identified small lava tubes (<2 m wide) in several sections, in both high-Mg and low-Mg flows. In relation to the large volumes of GRB flows, the lava tubes are notably diminutive. At Bingen and in the Buttermilk Canyon section (near Lone Rock, OR), pahoehoe toes are recognized in flows also containing lava tubes. While observations of lava tubes and pahoehoe toes are few to date, ropy pahoehoe and layered upper flow crusts are common in high-Mg flows. These characteristics - tubes, toes, ropes and crusts - indicate emplacement as pahoehoe flows.

  3. Bronze Age pottery from the Aeolian Islands: definition of Temper Compositional Reference Units by an integrated mineralogical and microchemical approach

    NASA Astrophysics Data System (ADS)

    Brunelli, D.; Levi, S. T.; Fragnoli, P.; Renzulli, A.; Santi, P.; Paganelli, E.; Martinelli, M. C.

    2013-12-01

    An integrated microchemical-petrographic approach is here proposed to discriminate the provenance of archaeological pottery artefacts from distinct production centres. Our study focuses on a statistically significant sampling ( n=186) of volcanic temper-bearing potteries representative of the manufacturing and dispersion among the islands of the Aeolian Archipelago during the Bronze Age. The widespread establishment of new settlements and the abundant recovery of Aeolian-made ceramic in southern Italy attest for the increased vitality of the Archipelago during the Capo Graziano culture (Early Bronze Age-Middle Bronze Age 2; 2300-1430 BC). Potteries from three of the main known ancient communities (Lipari, Filicudi and Stromboli) have been studied integrating old collections and newly excavated material. Volcanic tempers have been first investigated through multivariate analyses of relative abundances of mineral and rock clasts along with petrographic characters. In addition, we performed in-situ mineral chemistry microanalyses by Electron Microprobe and Laser Ablation—Inductively Coupled Plasma Mass Spectrometry to assess major and trace element composition of the most common mineral phases. Four Temper Compositional Reference Units have been recognised based on compositional trends. Two units (AI and AX) are unequivocally distinct by their peculiar trace element enrichment and petrographic composition; they mostly contain samples from the sites of Lipari and Stromboli, respectively. Units AIV and AVIII, restricted to the sites of Filicudi and Stromboli, show distinct petrographic characters but overlapped geochemical fingerprints.

  4. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  5. The Eastern Gas Shales Project (EGSP) Data System: A case study in data base design, development, and application

    USGS Publications Warehouse

    Dyman, T.S.; Wilcox, L.A.

    1983-01-01

    The U.S. Geological Survey and Petroleum Information Corporation in Denver, Colorado, developed the Eastern Gas Shale Project (EGSP)Data System for the U.S. Department of Energy, Morgantown, West Virginia. Geological, geochemical, geophysical, and engineering data from Devonian shale samples from more than 5800 wells and outcrops in the Appalachian basin were edited and converted to a Petroleum Information Corporation data base. Well and sample data may be retrieved from this data system to produce (1)production-test summaries by formation and well location; (2)contoured isopach, structure, and trendsurface maps of Devonian shale units; (3)sample summary reports for samples by location, well, contractor, and sample number; (4)cross sections displaying digitized log traces, geochemical, and lithologic data by depth for wells; and (5)frequency distributions and bivariate plots. Although part of the EGSP Data System is proprietary, and distribution of complete well histories is prohibited by contract, maps and aggregated well-data listings are being made available to the public through published reports. ?? 1983 Plenum Publishing Corporation.

  6. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater.

    PubMed

    Li, Ping; Jiang, Zhou; Wang, Yanhong; Deng, Ye; Van Nostrand, Joy D; Yuan, Tong; Liu, Han; Wei, Dazhun; Zhou, Jizhong

    2017-10-15

    Microbial functional potential in high arsenic (As) groundwater ecosystems remains largely unknown. In this study, the microbial community functional composition of nineteen groundwater samples was investigated using a functional gene array (GeoChip 5.0). Samples were divided into low and high As groups based on the clustering analysis of geochemical parameters and microbial functional structures. The results showed that As related genes (arsC, arrA), sulfate related genes (dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, SO 4 2- , NH 4 + or CH 4 concentrations, respectively. Canonical correspondence analysis (CCA) results indicated that some geochemical parameters including As, total organic content, SO 4 2- , NH 4 + , oxidation-reduction potential (ORP) and pH were important factors shaping the functional microbial community structures. Alkaline and reducing conditions with relatively low SO 4 2- , ORP, and high NH 4 + , as well as SO 4 2- and Fe reduction and ammonification involved in microbially-mediated geochemical processes could be associated with As enrichment in groundwater. This study provides an overall picture of functional microbial communities in high As groundwater aquifers, and also provides insights into the critical role of microorganisms in As biogeochemical cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  8. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  9. Geochemical Investigation of the Arbuckle-Simpson Aquifer, South-Central Oklahoma, 2004-06

    USGS Publications Warehouse

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.

    2009-01-01

    A geochemical reconnaissance investigation of the Arbuckle-Simpson aquifer in south-central Oklahoma was initiated in 2004 to characterize the ground-water quality at an aquifer scale, to describe the chemical evolution of ground water as it flows from recharge areas to discharge in wells and springs, and to determine the residence time of ground water in the aquifer. Thirty-six water samples were collected from 32 wells and springs distributed across the aquifer for chemical analysis of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and age-dating tracers. In general, the waters from wells and springs in the Arbuckle-Simpson aquifer are chemically suitable for all regulated uses, such as public supplies. Dissolved solids concentrations are low, with a median of 347 milligrams per liter (mg/L). Two domestic wells produced water with nitrate concentrations that exceeded the U.S. Environmental Protection Agency's nitrate maximum contaminant level (MCL) of 10 mg/L. Samples from two wells in the confined part of the aquifer exceeded the secondary maximum contaminant level (SMCL) for chloride of 250 mg/L and the SMCL of 500 mg/L for dissolved solids. Water samples from these two wells are not representative of water samples from the other wells and springs completed in the unconfined part of the aquifer. No other water samples from the Arbuckle-Simpson geochemical reconnaissance exceeded MCLs or SMCLs, although not every chemical constituent for which the U.S. Environmental Protection Agency has established a MCL or SMCL was analyzed as part of the Arbuckle-Simpson geochemical investigation. The major ion chemistry of 34 of the 36 samples indicates the water is a calcium bicarbonate or calcium magnesium bicarbonate water type. Calcium bicarbonate water type is found in the western part of the aquifer, which is predominantly limestone. Calcium magnesium bicarbonate water is found in the eastern part of the aquifer, which is predominantly a dolomite. The major ion chemistry for these 34 samples is consistent with a set of water-rock interactions. Rainfall infiltrates the soil zone, where the host rock, limestone or dolomite, dissolves as a result of uptake of carbon dioxide gas. Some continued dissolution of dolomite and precipitation of calcite occur as the water flows through the saturated zone. The major ion chemistry of the two samples from wells completed in the confined part of the aquifer indicates the water is a sodium chloride type. Geochemical inverse modeling determined that mixing of calcite-saturated recharge water with brine and dissolving calcite, dolomite, and gypsum accounts for the water composition of these two samples. One of the two samples, collected at Vendome Well in Chickasaw National Recreation Area, had a mixing fraction of brine of about 1 percent. The brine component of the sample at Vendome Well is likely to account for the relatively large concentrations of many of the trace elements (potassium, fluoride, bromide, iodide, ammonia, arsenic, boron, lithium, selenium, and strontium) measured in the water sample. Carbon-14, helium-3/tritium, and chlorofluorocarbons were used to calculate ground-water ages, recharge temperatures, and mixtures of ground water in the Arbuckle-Simpson aquifer. Thirty four of 36 water samples recharged the aquifer after 1950, indicating that water is moving quickly from recharge areas to discharge at streams and springs. Two exceptions to this classification were noted in samples 6 and 15 (Vendome Well). Ground-water ages determined for these two samples by using carbon-14 are 34,000 years (site 6) and 10,500 years (site 15). Concentrations of dissolved argon, neon, and xenon in water samples were used to determine the temperature of the water when it recharged the aquifer. The mean annual air temperature at Ada, Oklahoma, is 16 degrees Celsius (C) and the median temperature of the 30 reconnaissance water samples was 18.1 C. The av

  10. DNA-based methods of geochemical prospecting

    DOEpatents

    Ashby, Matthew [Mill Valley, CA

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  11. Peralkaline and peraluminous granites and related mineral deposits of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Elliott, James E.

    1983-01-01

    Existing geochemical and geologic data for many parts of the Arabian Shield were compiled as a basis for evaluating the resource potential of the granites of the Shield. Commodities associated with granites that have potential for economic mineral deposits include tin, tungsten, molybdenum, beryllium, niobium, tantalum, zirconium, uranium, thorium, rare-earth elements, and fluorite. Prospecting methods useful in discriminating those granites having significant economic potential include reconnaissance geologic mapping, petrographic and mineralogic studies, geochemical sampling of rock and wadi sediment, and radiometric surveying.

  12. A geochemical record of the mining history of the Erme Estuary, south Devon, UK.

    PubMed

    Price, Gregory D; Winkle, Karen; Gehrels, W Roland

    2005-12-01

    The concentration of selected trace metals (Cu, Pb and Zn) in salt-marsh sediments from within the Erme Estuary have been measured in order to assess possible historical sources of pollution. The Erme Estuary, south Devon, UK is an Area of Outstanding Natural Beauty and has remained largely unaffected by industrialisation, although a number of small silver-lead mines were in operation in the 1800s. Five cores reveal comparable geochemical profiles. An increase of lead at approximately 40 cm depth is observed, reaching maximum values of 427 ppm. Less distinct trends are revealed by zinc and copper, probably reflecting the lack of widespread mining for ores of these elements within the catchment and possible post-depositional mobility rendering the metal concentrations non-contemporaneous with the chemostratigraphy of lead. The geochemical analysis of the salt-marsh sediments provides a fairly robust chemostratigraphic scheme and the likely sources of mine waste can be pinpointed within the catchment. Based upon reference to the historical mining record of these mines chemostratigraphic dating of the sediments can be achieved in order to provide an estimate of salt-marsh accretion rates and sea-level rise.

  13. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  14. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1. [490 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadranglemore » name, geoformational feature, taxonomic name, and keyword.« less

  15. Preliminary study of a potential CO2 reservoir area in Hungary

    NASA Astrophysics Data System (ADS)

    Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória

    2014-05-01

    Since the first international agreement in 1997 (the Kyoto Protocol) the reduction of greenhouse gas emission has a key role in the European Union's energy and climate change policy. Following the Directive 2009/31/EC we are experiencing a significant change in the Hungarian national activity. Since the harmonization procedure, which was completed in May 2012, the national regulation obligates the competent authority to collect and regularly update all geological complexes that are potential for CO2 geological storage. In Hungary the most abundant potential storage formations are mostly saline aquifers of the Great Hungarian Plain (SE-Hungary), with sandstone reservoir and clayey caprock. The Neogene basin of the Great Hungarian Plain was subsided and then filled by a prograding delta system from NW and NE during the Late Miocene, mostly in the Pannonian time. The most potential storage rock was formed as a fine-grained sandy turbidite interlayered by thin argillaceous beds in the deepest part of the basin. It has relatively high porosity, depth and more than 1000 m thickness. Providing a regional coverage for the sandy turbidite, a 400-500 m thick argillaceous succession was formed in the slope environment. The composition, thickness and low permeability is expected to make it a suitable, leakage-safe caprock of the storage system. This succession is underlain by argillaceous rocks that were formed in the basin, far from sediment input and overlain by interfingering siltstone, sandstone and claystone succession formed in delta and shoreline environments and in the alluvial plain. Core samples have been collected from the potential reservoir rock and its cap rock in the Great Hungarian Plain's succession. The water compositions of the studied depth were known from well-log database. Using the information, acquired from these archive documents, we have constructed input data for geochemical modeling in order to to study the effect of pCO2 injection in the potential CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.

  16. Distribution of Major and trace elements in Koppunuru area, Guntur district, Andhra Pradesh, India.

    PubMed

    Arumugam, K; Srinivasalu, S; Purvaja, R; Ramesh, R

    2018-06-01

    From koppunuru study area totally 58 samples were collected in 7 different boreholes, minimum depth of 28 m and Maximum depth of 157.7 m. The borehole samples geochemical analysis (major and trace elements) was carried out at Atomic Minerals Directorate for Exploration & Research (AMD), Hyderabad, India. Major and trace element studies have been conducted on the Neoproterozoic Palnad sub-basin Andhra Pradesh, South India, to determine their Geochemistry, Uranium mineralization and provenance characteristics. Geochemically, this sedimentary basin has a different litho - unit like as gritty quartzite, conglomerate, and Shale. This study area mainly dominated by Uranium deposited and radioactive elements are predominately deposit. Strong positive correlation between Uranium and Lead ( r = 0.887) suggested radiogenic nature of this system.

  17. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  18. A computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters

    USGS Publications Warehouse

    Johnsson, P.A.; Lord, D.G.

    1987-01-01

    ARCHEM, a computer program written in FORTRAN 77, is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water, and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic concentration. Ionic ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductances are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses. (Author 's abstract)

  19. Volcanic and geochemical evolution of the Carboniferous Teplice Rhyolite, Central-European Variscides (Germany and Czech Republic)

    NASA Astrophysics Data System (ADS)

    Casas, Raymundo; Breitkreuz, Christoph; Rapprich, Vladislav; Lapp, Manuel; Schulz, Bernhard

    2017-04-01

    The Altenberg-Teplice Volcanic Complex (ATVC; 325 Ma) represents one of the earliest magmatic centers of the Late- to Post-tectonic period of the Variscan orogeny in Central Europe. The ca. 35×18 km ATVC is located in the Erzgebirge/Krušné hory (Germany/Czech Republic) and hosts two principal extrusive units: (1) an initial volcanosedimentary succession preserved in the Schönfeld-Altenberg Depression Complex (Walther et al., in press) and (2) a thick volcanic pile produced during the peak eruptive stage, known as the Teplice Rhyolite (TR). The TR represents mainly a caldera-fill sequence (Benek, 1991), whose volcanic and geochemical evolution has not been fully defined. Seven petrotypes have been mapped in the TR on the Czech side (Jiránek et al., 1987). To the north, on German territory, Lobin (1986) distinguished eight petrotypes. The TR is dominated by thick sheets of welded and non-welded crystal clast-rich (< 45 %) ignimbrites, which are intercalated with rhyolitic lava-dome complexes. The ATVC has been intruded by late high-volume granite porphyritic melts and several plutons associated, in parts, with Sn-, Li mineralization. Two important drillings expose over 600 m of TR volcanics. Samples from (1) the Mi-4 borehole (Mikulov, Czech Republic) have been geochemically evaluated and a vertical reverse chemical zoning (Zr, Rb) was identified and interpreted in terms of a continuous eruption (Breiter et al., 2001). In (2) the well 2112-87 near Schmiedeberg in Germany, ignimbrites are separated by two rhyolitic, lithophysae-bearing lava units, suggesting a multistage caldera evolution. In the South of the ATVC out- and subcrops reveal a caldera outflow facies. In Czech Republic, ignimbrites prevail with a single belt of late-stage rhyolitic lavas on the eastern margin. We present sixty new whole-rock and mineral chemical data (biotite) to define the geochemical evolution, the composition and the chemical character of the TR rocks. Currently, Nd-Sr isotopes are being measured on whole-rock samples; U/Pb dating and chemical composition of TR zircons are planned. In this binational project, for the first time detailed facies and geochemical analyses are being combined in order to reconstruct the volcanic evolution and magma genesis of the ATVC. References Benek, R., 1991. Aspects of volume calculation of paleovolcanic eruptive products - the example of the Teplice rhyolite (east Germany). Zeitschrift für Geologische Wissenschaften 19 (in German), 379-389. Breiter, K., Novák, J. K., Chlupáčová, M., 2001. Chemical Evolution of Volcanic Rocks in the Altenberg-Teplice Caldera (Eastern Krušné Hory Mts., Czech Republic, Germany). Geolines 13, 17-22. Jiránek, J., Kříbek, B., Mlčoch, B., Procházka, J., Schovánek, P., Schovánková, D., Schulmann, K., Šebesta, J., Šimůnek, Z., Štemprok, M., 1987. The Teplice rhyolite. Unpublished report Czech Geological Survey, Praha (in Czech), 114 pp. Lobin, M., 1986. Structure and development of the Permosiles in the middle and eastern Erzgebirge. Unpublished Disertation, Mining Academy Freiberg (in German), 63 pp. Walther, D., Breitkreuz, C., Rapprich, V., Kochergina, Y., Chlupáčová, M., Lapp, M., Stanek, K., Magna, T., in press. The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): volcanosedimentary and magmatic evolution. Journal of Geosciences 61.

  20. Geographic Size Variation and Intra-Tektite Geochemical Heterogeneity of Muong Nong Tektites: Insights for Cratering Process and Fall Location.

    NASA Astrophysics Data System (ADS)

    Schonwalder, D. A.; Sieh, K.; Herrin, J. S.; Wiwegwin, W.; Charusiri, P.; Singsomboun, K.; Sihavong, V.

    2017-12-01

    Australasian tektites cover 10% of Earth's surface and are the result of a 790 ka meteorite impact [1]. We have suggested that the search of the impact crater has long been mysterious because it lies buried beneath the volcanic field of the Bolaven Plateau (BP), southern Laos. [2]. Here we report our initial textural and geochemical work on 700 Muong Nong (MN) tektites collected in Laos and Thailand, including physical inspections and geochemical point-analyses of selected samples using a Field Emission Electron Probe Microanalyzer. We integrated our results with published data to identify any geographic patterns related to proposed crater site on the BP. Mung Nong tektite masses display a clear pattern in relation to BP. Within 50 km of the BP source, they do not exceed 10 gr. Mass then increases with radius to peak of 1 to 10 kg between 100 and 600 km, beyond which mass decreases steadily. We also see large geochemical heterogeneities within single tektites (e.g. 72.80±4.38 wt. % SiO2), and intra-sample compositions consisting with mixing of three principal source rocks on the BP, basalt-sourced laterites, basalt and sandstone. We infer that the geographical pattern in mass distribution of the MN tektites result from fragmentation of brittle, partially molten material during crater excavation and by debris interactions occurring in the ejecta blanket. The smaller and closest-to-crater tektites experienced greater interactions with crater walls and other ejecta during crater excavation, whereas the larger tektites that fell farther from the impact site, experienced lesser fragmentation because they had higher ejection trajectories that had less involvement in crater excavation. Intra-tektite compositional trends suggest the involvement of three protoliths, all of them found at the BP. 1. Schwarz et al. (2016) Geochem. Cosmo. Acta 178 2. Sieh et al. (2015) AGU Fall Mtg. T54A-04

  1. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data reported on different bases.

  2. Hydrologic Responses to CO2 Injection in Basalts Based on Flow-through Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Hingerl, F.; Garing, C.; Bird, D. K.; Benson, S. M.; Maher, K.

    2015-12-01

    Experimental studies of basalt-CO2 interactions have increased our ability to predict geochemical responses within a mafic reservoir during geologic CO2 sequestration. However, the lack of flow-through experiments prevents the use of coupled hydrologic-geochemical models to predict evolution of permeability and porosity, critical parameters for assessing storage feasibility. We present here results of three flow-through experiments on an intact basalt core during which we employed X-ray Computed Tomography (CT) to quantify porosity evolution and fluid flow. Using a single core of glassy basaltic tuff from the Snake River Plain (Menan Buttes complex), we performed tracer tests using a solution of NaI (~100,000 ppm) before and after injection of CO2-saturated water at reservoir conditions (90 bar, 50°C) to image porosity and flow path distribution. During the tracer tests, CT scans were taken at 2.5-minute intervals, and outlet fluid was discretely sampled at the same intervals and subsequently measured via ICP-MS, enabling interpretation of the tracer breakthrough curve through both imaging and geochemical analyses. Comparison of the porosity distribution from before and after injection of CO2 shows an overall decrease in core-averaged porosity from 34% to 31.1%. Permeability decreased exponentially from ~4.9x10-12 m2 to 1.18 x10-12 m2. The decrease in porosity and permeability suggests geochemical transformations in the mineral assemblage of the core, which we observe through petrographic analysis of an unaltered sample of the same lithology in contrast with the altered core. There is a significant increase in grain coatings, as well as reduction in the grain size, suggesting dissolution re-precipitation mechanisms. Finally, to develop a framework for the coupled geochemical and hydrologic responses observed experimentally, we have calibrated a reactive transport model at the core scale using the TOUGHREACT simulator [1]. [1] Xu et al. (2011) Comput. Geosci.

  3. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  4. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE PAGES

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; ...

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  5. Determination of pre-mining geochemical conditions and paleoecology in the Animas River Watershed, Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Brouwers, E.M.; Holmes, C.W.; Blair, Robert

    1999-01-01

    Determination of the pre-mining geochemical baseline in bed sediments and the paleoecology in a watershed impacted by historical mining activity is of utmost importance in establishing watershed restoration goals. We have approached this problem in the Animas River watershed using geomorphologic mapping methods to identify old pre-mining sediments. A systematic evaluation of possible sites resulted in collection of a large number of samples of pre-mining sediments, overbank sediments, and fluvial tailings deposits from more than 50 sites throughout the watershed. Chemical analysis of individual stratigraphic layers has resulted in a chemical stratigraphy that can be tied to the historical record through geochronological and dendochronological studies at these sites. Preliminary analysis of geochemical data from more than 500 samples from this study, when coupled with both the historical and geochronological record, clearly show that there has been a major impact by historical mining activities on the geochemical record preserved in these fluvial bed sediments. Historical mining activity has resulted in a substantial increase in metals in the very fine sand to clay sized component of the bed sediment of the upper Animas River, and Cement and Mineral Creeks. Enrichment factors for metals in modern bed sediments, relative to the pre-mining sediments, range from a factor of 2 to 6 for arsenic, 4 to more than 10 for cadmium, 2 to more than 10 for lead, 2 to 5 for silver, and 2 to more than 15 for zinc. However, the pre-mining bed sediment geochemical baseline is high relative to crustal abundance levels of many orerelated metals and the watershed would readily be identified as a highly mineralized area suitable for mineral exploration if it had not been disturbed by historical mining activity. We infer from these data that the water chemistry in the streams was less acidic prior to historical mining activity in the watershed. Paleoentologic evidence does not indicate a healthy aquatic habitat in any of the stream reaches investigated above the confluence of the Animas River with Mineral Creek (fig. 1) prior to the impact of historical mining activity. The absence of paleoentologic remains is interpreted to reflect the poor preservation regime of the bed sediment materials sampled. The fluvial sediments sampled in this study represent higher energy environments than are conducive to the preservation of most aquatic organisms including fish remains. We interpret the sedimentological data to indicate that there has been substantial loss of riparian habitat in the upper Animas River above Howardsville as a result of historical mining activity.

  6. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    NASA Astrophysics Data System (ADS)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive categories for both aquifer systems. DIC concentration is strongly sensitive to increased pCO2 for both aquifers; however, CO2 outgassing during sampling complicates direct field measurement of DIC. Interpretation of data from in-situ push-pull aquifer tests is ongoing and will be used to augment results summarized here. We are currently designing groundwater monitoring plans for two additional industrial-scale sites where we will further test the sensitivity and utility of our sampling approach.

  7. "MERAPIDATA": New Petrologic and Geochemical Database of the Merapi Volcano, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Borisova, A. Y.; Martel, C.; Pratomo, I.; Toutain, J.; Sumarti, S.; Surono, S.

    2011-12-01

    Petrologic and geochemical databases of erupted products are critical for monitoring and predicting the evolution of active volcanoes. To monitor the activity of one of the most dangerous volcanoes in the world, Merapi Volcano in Indonesia, in the framework of the new instrumental site VELI (Volcans Explosifs - Laboratoires Indonésiens labelled by INSU in 2009 in France), we generated "MERAPIDATA", a complete database of available petrologic and geochemical data published in the literature on pyroclastic flows, tephra, lavas and xenoliths coupled with the exact ages of historical flows [1] or estimated ages based on 14C geochronology [2]. "MERAPIDATA" permits to access complete petrologic, geochemical, and geochronological information (e.g., major, trace element and Sr-Nd-Pb-O isotopic composition of the bulk volcanic rocks, xenoliths, minerals and glasses; textural information; type of eruption; classification) of a given volcanic product or series. In addition to ~300 published volcanic products, new data on 2 pyroclastic flows, 1 tephra and 4 ash samples collected on northern and western slopes of the volcano in October and November 2010 during subplinian type eruption have been added to "MERAPIDATA". The 2010 ash sample chemistry allows classifying them as high-K basaltic andesite. The ash samples demonstrate major and trace element compositions typical for the high-K series. For the first time, we obtained complete data on the Merapi ash samples which characterized by low L.O.I. ≤ 0.58 wt%, CO2total ≤ 0.05 wt%, H2Ototal = 0.3 - 0.5 wt%, Stotal ≤ 0.13 wt% and moderate Cl (550 - 1120 ppm) contents. The ash-leachates produced by leaching experiments demonstrate constant F/Cl ratios (0.05 ± 0.01) and Ca-Na-K enrichment (Ca/Na= 3 - 7, Na/K = 1 - 5). Sr-Nd-Pb-O isotopic analyses on the 2010 Merapi products are in progress. New petrologic (e.g., melt and fluid inclusion data, T - P - fO2 - aH2O - aCO2) and geochemical (e.g., volatile, major, trace element and isotopic composition of the bulk volcanic rocks and glassy matrix) data will permit to explain unexpected subplinian type of the 2010 eruption. The complete "MERAPIDATA" programmed with MS Access 2007 will be available in English version for open access at the website of the Observatory of Midi-Pyrénées (Toulouse, France): "http://www.get.obs-mip.fr/index.php/Annuaire/Borisova-Anastassia/MERAPIDATA". [1] Camus et al., (2000). JVGR 100, 139-163. [2] Gertisser & Keller (2003). JVGR 123, 1-23.

  8. Proximate environmental forcing in fine-scale geochemical records of calcareous couplets (Upper Cretaceous and Palaeocene of the Basque-Cantabrian Basin, eastern North Atlantic)

    NASA Astrophysics Data System (ADS)

    Jiménez Berrocoso, Álvaro; Elorza, Javier; MacLeod, Kenneth G.

    2013-02-01

    Calcareous couplets are key elements in reconstructing the evolution of a sedimentary basin due to the influence of forcing mechanisms such as climate, sea level and tectonism on their depositional patterns. Proposed forcing mechanisms, however, are often not mutually exclusive and even constraining the relative importance of different processes is problematic. Added to the question of discriminating forcing mechanisms, a major challenge is to produce high-sampling density so that observations lie within temporal resolutions equal to or finer than the timescales on which different forcing operates. Here, we show fine-scale (1 sample/~ 2 cm) CaCO3, δ18O and δ13C records and sedimentological observations from three different sites (Isla de Castro, Sopelana-Ma, and Sopelana-Da) with calcareous couplets in the Basque Cantabrian Basin (eastern North Atlantic) to illustrate the potential of fine-sampling strategies to help distinguish proximate environmental forcing. Partial redistribution of carbonate during burial diagenesis has been proposed for these sediments. Our CaCO3, δ18O and δ13C data could thus be dismissed as diagenetic signals if only one sample was collected from each bed. Detailed observations of the fine-scale geochemical records, however, challenge purely diagenetic explanations. Combined with sedimentology, the CaCO3, δ18O and δ13C values, partially altered by diagenesis, are interpreted to have resulted from alternating climates. The proximate forcing through which alternating climates caused the geochemical patterns, though, was different in each section, due to their specific palaeogeographic positions in the basin and the properties of the seawater masses. The proximity of continental areas of high relief to the Isla de Castro section supported a high continental influence during its deposition. The Sopelana-Ma sediments are assigned to a transgressive system tract, a condition that is interpreted to have promoted a high influence of oceanic processes in its depositional setting. Finally, a relatively cool, oxygen-rich water mass with high oxidation potential influenced the geochemical and depositional patterns of Sopelana-Da. Beyond the climatic and oceanographic dynamics inferred for a basin that linked the western Tethys with Boreal domains during major marine transgressions of the Late Cretaceous to Palaeocene, an implication of our work is that if similar fine-scale geochemical records were applied to calcareous couplets spanning major events in Earth's history (e.g., ocean anoxic events), alternative forcing scenarios leading to and out of these events could be discriminated.

  9. Benthic foraminiferal micro-ecology and the geochemical environments they sample

    NASA Astrophysics Data System (ADS)

    Jacobsen, Brittani; Loubere, Paul; Yavorska, Iryna; Klitgaard-Kristensen, Dorthe; Jernas, Patrycja

    2010-05-01

    Benthic foraminifera inhabit, and are adapted to, microenvironments ranging from within the water column to centimeters into the sediments. These influence the geochemistry of the foraminiferal shell, and the paleoceanographic tracers we extract from that geochemistry. For a number of proxies it is important to know what geochemical environments the foraminifera are calcifying in, and whether species are consistent in the habitats they select for calcification. We examine these issues by sampling pore water chemistry and living species distributions on the microscale that the foraminifera themselves experience. We maintained cores from the Norwegian margin under in-situ conditions while measuring oxygen microprofiles and small scale sampling for foraminifera using rose Bengal and cell tracker green staining. In addition we sampled cores for porosity and pore water carbon isotopes using two extraction techniques so as to measure isotope profiles and degree of sediment irrigation via infaunal structures. The primary forcing variable we examined was changing labile organic carbon flux to the seabed. Under moderate to higher fluxes we found evidence for extensive bio-irrigation which influenced the composition of pore waters and microhabitats available to foraminifera. Macro-meiofaunal burrows and tubes produced a mosaic of pore water geochemical conditions rather than smooth gradients from the sediment-water interface. We found species adapted to particular conditions living at various subsurface depths, where their preferred conditions existed. We also found evidence that foraminiferal species responded to larger organism activities (feeding activities) and products (fecal deposits). It appears that taxa select for particular conditions rather than simply living at specific subsurface depths, recording whatever geochemistry happens to exist at that level.

  10. Applicability of direct total reflection X-ray fluorescence analysis for selenium determination in solutions related to environmental and geochemical studies

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Floor, G. H.; Hidalgo, M.; Kregsamer, P.; Roman-Ross, G.; Streli, C.; Queralt, I.

    2010-12-01

    A significant amount of environmental studies related to selenium determination in different environmental compartments have been published in the last years due to the narrow range between the Se nutritious requirement as essential element and toxic effects upon exposure. However, the direct analysis of complex liquid samples like natural waters and extraction solutions presents significant problems related to the low Se concentrations and the complicated matrix of this type of samples. The goal of the present research was to study the applicability of direct TXRF analysis of different type of solutions commonly used in environmental and geochemical studies, confirm the absence or presence of matrix effects and evaluate the limits of detection and accuracy for Se determination in the different matrices. Good analytical results were obtained for the direct analysis of ground and rain water samples with limits of detection for Se two orders of magnitude lower than the permissible Se concentration in drinking waters ([Se] = 10 μg/L) according to the WHO. However, the Se detection limits for more complex liquid samples such as thermal waters and extraction solutions were in the μg/L range due to the presence of high contents of other elements present in the matrix (i.e., Br, Fe, Zn) or the high background of the TXRF spectrum that hamper the Se determination at trace levels. Our results give insight into the possibilities and drawbacks of direct TXRF analysis and to a certain extent the potential applications in the environmental and geochemical field.

  11. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butz, T.R.; Dean, N.E.; Bard, C.S.

    1980-05-31

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less

  12. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    USGS Publications Warehouse

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  13. Exercises in Applied Geochemistry

    ERIC Educational Resources Information Center

    Shackleton, W. G.

    1977-01-01

    Reviews exercises in the analysis of samples and interpretations of results from the geochemical survey portion of a three year teacher education program in geology presented at Salisbury College of Advanced Education. (SL)

  14. A 1.5 Ma record of plume-ridge interaction at the Western Galápagos Spreading Center (91°40‧-92°00‧W)

    NASA Astrophysics Data System (ADS)

    Herbrich, Antje; Hauff, Folkmar; Hoernle, Kaj; Werner, Reinhard; Garbe-Schönberg, Dieter; White, Scott

    2016-07-01

    Shallow (elevated) portions of mid-ocean ridges with enriched geochemical compositions near hotspots document the interaction of hot, geochemically-enriched plume mantle with shallow depleted upper mantle. Whereas the spatial variations in geochemical composition of ocean crust along the ridge axis in areas where plume-ridge interaction is taking place have been studied globally, only restricted information exists concerning temporal variations in geochemistry of ocean crust formed through plume-ridge interaction. Here we present a detailed geochemical study of 0-1.5 Ma ocean crust sampled from the Western Galápagos Spreading Center (WGSC) axis to 50 km north of the axis, an area that is presently experiencing a high influx of mantle material from the Galápagos hotspot. The tholeiitic to basaltic andesitic fresh glass and few bulk rock samples have incompatible element abundances and Sr-Nd-Pb isotopic compositions intermediate between depleted normal mid-ocean-ridge basalt (N-MORB) from >95.5°W along the WGSC and enriched lavas from the Galápagos Archipelago, displaying enriched (E-)MORB type compositions. Only limited and no systematic geochemical variations are observed with distance from the ridge axis for <1.0 Ma old WGSC crust, whereas 1.0-1.5 Ma old crust trends to more enriched isotopic compositions in 87Sr/86Sr, 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb isotope ratios. On isotope correlation diagrams, the data set displays correlations between depleted MORB and two enriched components. Neither the geographically referenced geochemical domains of the Galápagos Archipelago nor the end members used for principal component analysis can successfully describe the observed mixing relations. Notably an off-axis volcanic cone at site DR63 has the appropriate composition to serve as the enriched component for the younger WGSC and could represent a portion of the northern part of the Galápagos plume not sampled south of the WGSC. Similar compositions to samples from volcanic cone DR63 have been found in the northern part of the 11-14 Ma Galápagos hotspot track offshore Costa Rica, indicating that this composition is derived from the northern portion of the Galápagos plume. The older WGSC requires involvement of an enriched mantle two (EMII) type source, not recognized thus far in the Galápagos system, and is interpreted to reflect entrained material either from small-scale heterogeneities within the upper mantle or from the mantle transition zone. Overall the source material for the 0-1.5 Ma WGSC ocean crust appears to represent mixing of depleted upper mantle with Northern Galápagos Plume material of relatively uniform composition in relatively constant proportions.

  15. Geochemical baseline level and function and contamination of phosphorus in Liao River Watershed sediments of China.

    PubMed

    Liu, Shaoqing; Wang, Jing; Lin, Chunye; He, Mengchang; Liu, Xitao

    2013-10-15

    The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of geochemical background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P geochemical baseline level (GBL) and develop P geochemical baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The geochemical background and baseline information of P are of great importance in managing P levels within the LRW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  17. Current State of an Intelligent System to Aid in Tephra Layer Correlation

    NASA Astrophysics Data System (ADS)

    Hanson-Hedgecock, S.; Bursik, M.; Rogova, G.

    2007-12-01

    We are developing a computer based intelligent system to correlate tephra layers by using the lithologic, mineralogic, and geochemical characteristics of field samples, to aid geologists in interpreting eruption patterns of volcanic chains and fields. The intelligent system is used to define groups of tephra source vents by utilizing geochemical data, and to correlate tephra layers based on lithostratigraphic characteristics. Understanding the eruption history of a volcano from stratigraphic studies is important for forecasting future eruptive behavior and hazards. In volcanic chains and fields with a complex eruptive history and no central vent, determining the spatio- temporal eruption patterns is difficult. Sedimentologic and chemical variability, and sparse sampling often result in relatively large variances and imprecision in the dataset. Lithostratigraphic and geochemical interpretation also depends on ones' level of expertise and can be subjective. The processing of lithostratigraphic features is conducted by a hybrid classifier, composed of supervised artificial neural networks (ANNs) combined within the framework of the Dempster-Shafer theory of evidence. Since lithostratigraphic features vary with distance from source, hypothetical vent locations are determined by using expert domain knowledge and geostatistical methods. Geochemical data are processed by a suit of fuzzy k- means classifiers. Each fuzzy k-means classifier assigns observations to multiple clusters with various degrees, called membership coefficients. The assignment minimizes a function of the total distance between the centers of clusters and the individual geochemical data patterns weighed by the membership coefficients. Improved clustering results of geochemical data are achieved by the fusion of individual clustering results with an evidential combination method. Lithostratigraphic data from individual tephra beds of the North Mono eruption sequence are used to test the effectiveness of the intelligent system for tephra layer correlation. Geochemical data from tephra bedsets of the Mono and Inyo Craters, CA, are used to test the effectiveness of the intelligent system for eruption sequence correlation. The intelligent system aids correlation by showing matches and disparities between data patterns from different outcrops that may have been overlooked in initial interpretations. Initial results show that the lithostratigraphic classifier is able to accurately differentiate known layers 76% of the time. Output from the lithostratigraphic classifier can furthermore be plotted directly as isopleth maps that can aid in rapid recognition of tephra layers as well as determination of eruption characteristics, e.g. eruption volume, plume height, etc. The intelligent system produces a useful recognition result, while dealing with the uncertainty from sparse data and the imprecise description of layer characteristics.

  18. Geochemical signatures of possible deep-seated ore deposits in Tertiary volcanic centers, Arizona and New Mexico, U.S.A.

    USGS Publications Warehouse

    Watts, K.C.; Hassemer, J.R.

    1989-01-01

    A reconnaissance geochemical survey of stream drainages within 21,000 km2 of southeastern Arizona and southwestern New Mexico shows broad zones of low-level to moderate contrast anomalies, many associated with mid-Tertiary eruptive centers and Tertiary fault zones. Of these eruptive centers, few are known to contain metallic deposits, and most of those known are minor. This, however, may be more a function of shallow erosion level than an indication of the absence of mineralization, since hydrothermal alteration and Fe-Mn-oxide staining are widespread, and geochemical anomalies are pervasive over a larger part of the region than outcrop observations would predict. Accordingly, interpretations of the geochemical data use considerations of relative erosion levels, and inferred element zonalities, to focus on possible undiscovered deposits in the subsurface of base-, precious-, and rare-metal deposits of plutonic-volcanic association. In order to enhance the identification of specific deep targets, we use the empirically determined ratio: Ag+Mn+Pb+Zn+Ba Au+Mo+Cu+Bi+W This ratio is based on reported metal contents of nonmagnetic heavy-mineral samples from the drainage sediment, determined by emission spectrographic analysis. Before the ratio was computed for each sample site, the data were normalized to a previously estimated regional threshold value. A regional isopleth map was then prepared, using a cell-averaging computer routine, with contours drawn at the 25th, 50th, 75th, 80th, 90th, 95th and 99th percentiles of the computed data. ?? 1989.

  19. Applications of New Synthetic Uranium Reference Materials for Research in Geochemistry

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Alonso, Adolfo; Aregbe, Yetunde; Eykens, Roger; Jacobsson, Ulf; Kuehn, Heinz; Verbruggen, Andre; Weyer, Stefan

    2010-05-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. Firstly, the double spike IRMM-3636 with a 233U/236U ratio of 1:1 was prepared which allows internal mass fractionation correction for high precision 235U/238U ratio measurements. The 234U abundance of this double spike material is low enough to allow an accurate and precise correction of 234U/238U ratios, even for measurements of close to equilibrium uranium samples. The double spike IRMM-3636 is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.005mg/g. Secondly, the 236U single spike IRMM-3660 was prepared and is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. Thirdly, a "Quad"-isotope reference material, IRMM-3101, has been prepared which is characterized by 233U/235U/236U/238U=1/1/1/1. This material is useful for checking Faraday cup efficiencies and inter-calibration of MIC (multiple ion counting) detectors. The quad-IRM is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. As one example for the significant influence of synthetic reference materials for geochemical research, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of IRMM-074, results with smaller uncertainties were obtained, which are shifted by about 0.04% compared to the commonly used values published earlier by Cheng et al. in 2000. This has a significant impact for U isotope measurements in geochemistry. As another example for a geochemical application, by using the new double spike IRMM-3636, the 235U/238U ratios for several commonly used natural U standard materials from NIST/NBL and IRMM, such as e.g. NBS960 (=NBL CRM-112a), NBS950a,b and IRMM-184, have been re-measured at IRMM and other laboratories with improved precision and accuracy. The (preliminary) new result of 137.839(24) for the 238U/235U ratio of NBL CRM-112a is deviating by -0.030% from the well-known and widely used old consensus value of 137.88. For this old consensus value no uncertainty has ever been assigned, but it is outside the uncertainty limits of the new measurement result. The new result is based on measurements made at several laboratories worldwide, such as University of Frankfurt (Germany), National Taiwan University, NERC (University of Nottingham, UK), UNM (University of Minnesota, US), Thermo Fisher Scientific, LLNL (Lawrence Livermore National Laboratory, US.DOE), SAL/IAEA and IRMM. The (preliminary) new result of 137.839(24) can therefore be proposed as a new consensus value for the 238U/235U ratio of NBL CRM-112a. In contrast to the older consensus value, this new result is traceable to the common SI system of units and has an uncertainty assigned to it. For the close to natural standard IRMM-184, the re-measured 238U/235U ratio of 137.683(23) agrees quite well with the certified value of 137.697(41), the calculated difference is only -0.010(35)% which is insignificant. As a conclusion, the IRMM-3636 Double Spike has been successfully applied for measurements of important uranium isotopic standards like NBL CRM-112a and IRMM-184, with improved uncertainties at the level of 0.016% and traceability to the SI system.

  20. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Weis, Dominique; Maerschalk, Claude; Agranier, Arnaud; Albarède, Francis

    2003-02-01

    The present work reports multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements of the isotopic compositions of Hf and Pb in the first 3 km of the deep core retrieved by the Hawaii Scientific Drilling Project. The measurements cover all the samples from the standard geochemical reference set, glasses from the deep hole, and replicates from the pilot hole. Both Hf and Pb are less radiogenic in Mauna Loa compared to Mauna Kea. The transition between Mauna Kea and Mauna Loa lavas in the deep core is progressive for ɛHf and 208Pb/204Pb, but a sharp discontinuity is observed for 208Pb*/206Pb*. There is no correlation between the alkalinity of the samples and isotopic composition. In detail, the Hf isotope compositions of samples from the pilot hole are not all identical to those of the HSDP-2 core for samples retrieved from a similar depth, suggesting that steep topography existed at the time of emplacement or that a different eruptive sequence was recorded. The strong correlation between 208Pb*/206Pb* and 3He/4He (He data from M. D. Kurz et al. (Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project, submitted to Geochemistry Geophysics Geosystems, 2002)) requires the episodic incorporation of a component that resembles the basalts erupted by either Kilauea or the Loihi eruptive centers (this component is referred to as K/L). The data suggest that some 500 kyr ago, Mauna Kea was tapping a mantle source similar to that tapped by Kilauea today. Isotopic variability of Pb and He cannot be accounted for by radiogenic ingrowth in a closed system, but requires the mixing of mantle source components with distinct outgassing histories. The time series of isotopic and concentration data in Mauna Kea samples spanning about 350,000 years of age indicate the recurrence of geochemical patterns in the melting column. Ignoring the most recent alkalic samples, we find that the dominant fluctuations of ɛHf and 207Pb/204Pb correspond to a period of 50,000 years. For La/Yb, Zr/Nb, 87Sr/86Sr, 206Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb, a dominant period of ca. 18,000 years is obtained. Once provision is made for the existence of harmonics, the consistency between the isotopic spectrum of the pilot hole and the HDSP-2 core is very good. The input of the K/L component does not seem to be periodic. We use these recurrence intervals in conjunction with the upwelling rate deduced from buoyancy flux and seismic evidence of the maximum dimension of scatterers to constrain the radius of the Hawaiian plume conduit to be in the range of 10-50 km and the upwelling velocity to be in the range of 0.13-3 m/yr. Plausible vertical length scales of heterogeneities in the conduit are 6.5-160 km.

  1. The Fine Geochemical Structure of the Hawaiian Mantle Plume: Relation to the Earth's Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Weis, D.; Harrison, L.

    2017-12-01

    The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear geochemical trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. Geochemical differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume models. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store geochemical heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.

  2. Central Colorado Assessment Project - Application of integrated geologic, geochemical, biologic, and mineral resource studies

    USGS Publications Warehouse

    Klein, T.L.; Church, S.E.; Caine, Jonathan S.; Schmidt, T.S.; deWitt, E.H.

    2008-01-01

    Cooperative studies by USDA Forest Service, National Park Service supported by the USGS Mineral Resources Program (MRP), and National Cooperative Geologic Mapping Programs (NCGMP) contributed to the mineral-resource assessment and included regional geologic mapping at the scale 1:100,000, collection and geochemical studies of stream sediments, surface water, and bedrock samples, macroinvertebrate and biofilm studies in the riparian environment, remote-sensing studies, and geochronology. Geoscience information available as GIS layers has improved understanding of the distribution of metallic, industrial, and aggregate resources, location of areas that have potential for their discovery or development, helped to understand the relation of tectonics, magmatism, and paleohydrology to the genesis of the metal deposits in the region, and provided insight on the geochemical and environmental effects that historical mining and natural, mineralized rock exposures have on surface water, ground water, and aquatic life.

  3. Determination of molybenum in soils and rocks: A geochemical semimicro field method

    USGS Publications Warehouse

    Ward, F.N.

    1951-01-01

    Reconnaissance work in geochemical prospecting requires a simple, rapid, and moderately accurate method for the determination of small amounts of molybdenum in soils and rocks. The useful range of the suggested procedure is from 1 to 32 p.p.m. of molybdenum, but the upper limit can be extended. Duplicate determinations on eight soil samples containing less than 10 p.p.m. of molybdenum agree within 1 p.p.m., and a comparison of field results with those obtained by a conventional laboratory procedure shows that the method is sufficiently accurate for use in geochemical prospecting. The time required for analysis and the quantities of reagents needed have been decreased to provide essentially a "test tube" method for the determination of molybdenum in soils and rocks. With a minimum amount of skill, one analyst can make 30 molybdenum determinations in an 8-hour day.

  4. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  5. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less

  6. Geochemical and isotopic characterization of groundwater origins in a Mediterranean karst system (southern France)

    NASA Astrophysics Data System (ADS)

    Seidel, J. L.; Ladouche, B.; Batiot-Guilhe, C.

    2013-12-01

    Geochemical and isotopic ratio (11B/10B and 87Sr/86Sr) results are reported for better determining the groundwater origins in the Lez Karst system (southern France). The Lez spring is the main perennial outlet of the system and supplies with drinking water the metropolitan area of Montpellier. According to the hydrodynamic conditions, five water-types discharge at the Lez spring with important mineralization fluctuations (Caetano Bicalho et al., 2012). This geochemical response suggests that hydrodynamics targets groundwater circulation, resulting from different water end-member solicitation and mixing. Previous studies using conventional natural tracers do not succeed to identify all the water compartments supporting the flow during the hydrologic cycle (Marjolet & Salado, 1977; Joseph et al., 1988) and to explain the mineralization variation of the Lez spring. The present study combines a basic geochemical survey data with boron and strontium isotope ratio data for a better characterization of the Lez spring geochemical functioning. Groundwater samples were collected at the Lez spring and surrounding springs and wells under different hydrologic conditions from 2009 to 2011. Major, trace and rare earth elements were determined at AETE analytical platform (OREME, Univ. Montpellier 2) by ionic chromatography and Q-ICP-MS respectively. d11B and 87Sr/86Sr were determined at BRGM/MMA Orleans by TIMS. The geochemical survey has been extended at a larger scale by sampling the main geochemical end- members already identified to replace the Lez spring waters in the regional geochemical context. From this geochemical study, valuable informations have been provided on the reservoir types and water origins flowing in high and low stage periods. For the highly mineralized waters occurring in the fall first rainy events or severe low stages, a deep contribution is highlighted but B and Sr isotopic data do not ascertain the two Triassic end-members (halite or gypsum) as possible sources of the mineralization increase. However, the Lez spring REE profiles, despite a close Cretaceous end-member signature, exhibit an evolution between the Bajocian and the highly depleted Triassic signature. A better characterization of the regional deep basement end-member and a multi-isotopic approach (d7Li, d11B, d18O, D and 87Sr/86Sr) have been undertaken for a conclusive identification of the Lez spring water type. This study could be generalized to the coastal karstic systems of the Mediterranean region. Caetano Bicalho C., Batiot-Guilhe C., Seidel J. L., Van Exter S. and Jourde H. (2012). Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J. Hydrol., 450-451, 206-218. Joseph, C., Rodier, C., Soulte, M., Sinegre, F., Baylet, R., Deltour, P., 1988. Approche des transferts de pollution bactérienne dans une crue karstique par l'étude des paramètres physico-chimiques. Rev. Sci. l'eau 1-2, 73-106. Marjolet, G., Salado, J., 1976. Contribution à l'étude de l'aquifère karstique de la source du Lez (Hérault). Etude du chimisme des eaux de la source du Lez et de son bassin Tome IX - FASC II., Université des Sciences et Techniques du Languedoc (Montpellier 2), Montpellier 101 pp.

  7. 10 CFR 960.3-1-4-2 - Site nomination for characterization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...

  8. 10 CFR 960.3-1-4-2 - Site nomination for characterization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...

  9. 10 CFR 960.3-1-4-2 - Site nomination for characterization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...

  10. 10 CFR 960.3-1-4-2 - Site nomination for characterization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... testing of core samples for the evaluation of geochemical and engineering rock properties, and chemical... industrial activities; and extrapolations of regional data to estimate site-specific characteristics and...

  11. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    USGS Publications Warehouse

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.

  12. JAMSTEC DARWIN Database Assimilates GANSEKI and COEDO

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Toyoda, Y.; Horikawa, H.; Sasaki, T.; Fukuda, K.; Hase, H.; Saito, H.

    2017-12-01

    Introduction: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives data and samples obtained by JAMSTEC research vessels and submersibles. As a common property of the human society, JAMSTEC archive is open for public users with scientific/educational purposes [1]. For publicizing its data and samples online, JAMSTEC is operating NUUNKUI data sites [2], a group of several databases for various data and sample types. For years, data and metadata of JAMSTEC rock samples, sediment core samples and cruise/dive observation were publicized through databases named GANSEKI, COEDO, and DARWIN, respectively. However, because they had different user interfaces and data structures, these services were somewhat confusing for unfamiliar users. Maintenance costs of multiple hardware and software were also problematic for performing sustainable services and continuous improvements. Database Integration: In 2017, GANSEKI, COEDO and DARWIN were integrated into DARWIN+ [3]. The update also included implementation of map-search function as a substitute of closed portal site. Major functions of previous systems were incorporated into the new system; users can perform the complex search, by thumbnail browsing, map area, keyword filtering, and metadata constraints. As for data handling, the new system is more flexible, allowing the entry of variety of additional data types. Data Management: After the DARWIN major update, JAMSTEC data & sample team has been dealing with minor issues of individual sample data/metadata which sometimes need manual modification to be transferred to the new system. Some new data sets, such as onboard sample photos and surface close-up photos of rock samples, are getting available online. Geochemical data of sediment core samples will supposedly be added in the near future. Reference: [1] http://www.jamstec.go.jp/e/database/data_policy.html [2] http://www.godac.jamstec.go.jp/jmedia/portal/e/ [3] http://www.godac.jamstec.go.jp/darwin/e/

  13. Reference Materials for Trace Element Microanalysis of Carbonates by SIMS and other Mass Spectrometric Techniques

    NASA Astrophysics Data System (ADS)

    Layne, G. D.

    2009-12-01

    Today, many areas of geochemical research utilize microanalytical determinations of trace elements in carbonate minerals. In particular, there has been an explosion in the application of Secondary Ion Mass Spectrometry (SIMS) to studies of marine biomineralization. SIMS provides highly precise determinations of Mg and Sr at the concentration levels normally encountered in corals, mollusks or fish otoliths. It is also a highly effective means for determining a wide range of other trace elements at ppm levels (e.g., Na, Fe, Mn, Ba, REE, Pb, Th, and U) in a variety of naturally occurring calcite and aragonite matrices - and so is potentially valuable in studies of diagenesis, hydrothermal fluids and carbonatitic magmas. For SIMS, modest time per spot (often <5 min), lateral spatial resolution (<10 μm), sample volume consumption (<10 ng) and overall reproducibility compare extremely favorably with other microanalytical techniques for these applications. However, accuracy and reproducibility are currently wholly limited by the homogeneity of available solid reference material - which is far inferior to the tenths of a percent levels of precision achieved by SIMS. Due to variation in the sputtered ion yields of most elements with the major element composition of the sample matrix, accuracy of SIMS depends intimately on matrix-matched solid reference materials. Despite its rapidly increasing use for trace element analyses of carbonates, there remains a dearth of certified reference materials suitable for calibrating SIMS. The pressed powders used by some analysts to calibrate LA-ICP-MS do not perform well for SIMS - they are not perfectly dense or homogeneous to the desired level at the micron scale of sampling. Further, they often prove incompatible with the sample high vacuum compatibility requirement for stable SIMS analysis (10-8 to 10-9 torr). Some naturally occurring calcite has apparent utility as a reference material. For example, equigranular calcite from some zones of carbonatite intrusions (sovites) and recrystallized calcites from highly metamorphosed metallic ore deposits. Most calcite marbles, though possibly appropriate as Sr standards, show substantial inhomogeneity in Mg, Mn and Ba. Some hydrothermal “Iceland Spar” calcite may prove useful as a reference for extremely low concentrations of Mg, Sr and Ba. The best carbonatitic calcites currently in use appear homogeneous to better than 2-3% for Sr (and somewhat less homogeneous for Mg). But these standards still require numerous replicate analyses during analytical sessions to reduce the overall uncertainty to <<1.0%.The availability of appropriate certified solid reference materials with a high degree of homogeneity would greatly benefit the utilization and inter-comparison of SIMS determinations in carbonates, while substantially reducing the time consumed in calibration. Some studies would also benefit from the extension of this effort to the characterization of appropriate standards of other rhombohedral carbonates (especially dolomite and Fe-rich calcite).

  14. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    PubMed

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was validated by national standards and the results are in agreement with certified values. The method is simple, rapid, is an advanced analytical method for the determination of trace amounts of geochemical samples' boron, molybdenum, silver, tin and lead, and has a certain practicality.

  15. Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.

    2017-12-01

    Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has two cones. To provide a stronger age constraint on the eruption, samples for optically stimulated luminescence (OSL) dating were collected from the sandy silt unit below the tephra in two pits. Data for these dates are being analyzed.

  16. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  17. Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains

    USGS Publications Warehouse

    Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, Donald O.

    2000-01-01

    An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.

  18. Geochemical stratigraphy of two regolith cores from the Central Highlands of the moon

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.

    1991-01-01

    High-resolution concentration profiles are presented for 20-22 chemical elements in the under 1-mm grain-size fractions of 60001-7 and 60009/10. Emphasis is placed on the stratigraphic features of the cores, and the fresh results are compared with those of previous petrographic and geochemical studies. For elements associated with major mineral phases, the variations in concentration in both cores exceed that observed in some 40 samples of surface and trench soils. Most of the variation in lithophile element concentrations at depths of 18 to 21 cm results from the mixing of two components - oil that is relatively mafic and rich in incompatible trace elements (ITEs), and coarse-grained anorthosite. The linearity of mixing lines on two-element concentration plots argues that the relative abundances of these various subcomponents are sufficiently uniform from sample to sample and from region to region in the core that the mixture behaves effectively as a single component. Soils at depths of 52-55 cm exhibit very low concentrations of ITEs.

  19. The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America

    USGS Publications Warehouse

    Reeves, J. B.; Smith, D.B.

    2009-01-01

    In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east-west across the USA, and north-south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0-5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000-400 cm-1) and near-infrared (10,000-4000 cm-1) at 4 cm-1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional analysis of soils from this continental-scale geochemical survey. The extreme sample diversity, likely caused by the widely varied parent material, land use at the site of collection (e.g., grazing, recreation, agriculture, etc.), and climate resulted in poor calibrations even for Ctotal, Corganic and Ccarbonate. The results indicated potential for mid-IR and NIRS to differentiate soils containing high concentrations (>100 mg/kg) of some metals (e.g., Co, Cr, Ni) from low-level samples (<50 mg/kg). However, because of the small number of high-level samples, it is possible that differentiation was based on factors other than metal concentration. Results for Mg and Sr were good, but results for other metals examined were fair to poor, at best. In essence, it appears that the great variation in chemical and physical properties seen in soils from this continental-scale survey resulted in each sample being virtually unique. Thus, suitable spectroscopic calibrations were generally not possible.

  20. Determination of premining geochemical background and delineation of extent of sediment contamination in Blue Creek downstream from Midnite Mine, Stevens County, Washington

    USGS Publications Warehouse

    Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining geochemical background determined upstream of the mine site. Postmining metal concentrations in sediment are lower than during the mining period, but remain elevated relative to premining geochemical background. Furthermore, the sediment composition of surface sediment in the Blue Creek delta is contaminated. Base-metal contamination by arsenic, cadmium, lead, and zinc in sediment in the delta in Blue Creek cove is dominated by suspended sediment from the Coeur d?Alene mining district. Uranium contamination in surface sediment in the delta of Blue Creek cove extends at least 500 meters downstream from the mouth of Blue Creek as defined by the 1,290-ft elevation boundary between lands administered by the National Park Service and the Spokane Indian Tribe. Comparisons of the premining geochemical background to sediment sampled during the period the mine was in operation, and to the sediment data from the postmining period, are used to delineate the extent of contaminated sediment in Blue Creek cove along the thalweg of Blue Creek into Lake Roosevelt. The extent of contamination out into Lake Roosevelt by mining remains open.

  1. An integrated geophysical and geochemical exploration of critical zone weathering on opposing montane hillslope

    NASA Astrophysics Data System (ADS)

    Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.

    2017-12-01

    Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance of fracture opening in controlling both saprolite and regolith thickness within this watershed.

  2. Reconnaissance geochemical survey of the Farah Garan-Kutam mineral belt, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Samater, R.M.; Johnson, P.R.; Bookstrom, A.A.

    1991-01-01

    In the present survey, geochemical anomalies locate all the sites of mineralization known from previous work. The survey is therefore technically a success. However, a large number of these anomalies probably result from contamination of the wadi systems by metal dispersed from ancient mine workings, and this particular survey, overall, may be of limited value as a guide to the discovery of hitherto unknown mineralization. Nevertheless, the survey outlines two areas that may mark extensions to known mineralization, and a number of other areas in which no mineralization is known. Based on a consideration of the character of the bedrock geology, the value of each reported analytical result in relation to the respective element thresholds, and the number of anomalous samples that cluster in any given area, four areas are recommended for high-priority follow-up sampling.

  3. Geochemical evidence for diversity of dust sources in the southwestern United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  4. Geochemical patterns in soils of the karst region, Croatia

    USGS Publications Warehouse

    Prohic, E.; Hausberger, G.; Davis, J.C.

    1997-01-01

    Soil samples were collected at 420 locations in a 5-km grid pattern in the Istria and Gorski Kotar areas of Croatia, and on the Croatian islands of Cres, Rab and Krk, in order to relate geochemical variation in the soils to underlying differences in geology, bedrock lithology, soil type, environment and natural versus anthropogenic influences. Specific objectives included assessment of possible agricultural and industrial sources of contamination, especially from airborne effluent emitted by a local power plant. The study also tested the adequacy of a fixed-depth soil sampling procedure developed for meager karstic soils. Although 40 geochemical variables were analyzed, only 15 elements and 5 radionuclides are common to all the sample locations. These elements can be divided into three groups: (1) those of mostly anthropogenic origin -Pb, V, Cu and Cr; (2) those of mixed origin - radionuclides and Zn; and (3) those of mostly geogene origin -Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni and Co. Variation in Pb shows a strong correlation with the pattern of road traffic in Istria. The distributions of Ca, Na and Mg in the flysch basins of southern Istria and Slovenia are clearly distinguishable from the distributions of these elements in the surrounding carbonate terrains, a consequence of differences in bedrock permeability, type of drainage and pH. The spatial pattern of Cs from the Chernobyl nuclear power plant accident reflects almost exclusively the precipitation in Istria during the days immediately after the explosion. ?? 1997 Elsevier Science B.V.

  5. Paleoclimatological study using stalagmites from Java Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Matsuoka, H.; Ohsawa, S.; Yamada, M.; Kitaoka, K.; Kiguchi, M.; Ueda, J.; Yoshimura, K.; Kurisaki, K.; Nakai, S.; Brahmantyo, B.; Maryunani, K. A.; Tagami, T.; Takemura, K.; Yoden, S.

    2006-12-01

    In the last decade, decoding geochemical records in stalagmites has been widely recognized as a powerful tool for the elucidation of paleoclimate/environment of the terrestrial areas. The previous data are mainly reported from areas that are located in middle latitude. However, this study aims at reconstructing past climate variations in the Asian equatorial regions by using oxygen isotopes and other geochemical proxies recorded in Indonesian stalagmites.. Especially, we focus on the detection of the precipitation anomaly that reflects the El Niño Southern Oscillation (ENSO). We performed geological surveys in Buniayu limestone caves, Sukabumi, West Java, and Karangbolong, Central Java, Indonesia and collected a series of stalagmites/stalactites and drip water samples. Detailed textures of stalagmite samples were observed using thin sections to identify "annual" bandings. Moreover, we also measured both (1) annual luminescent banding that can be viewed by ultraviolet-light stimulation and (2) uranium series disequilibrium ages using the MC-ICP-MS for each stalagmite to construct the age model. We also carried out 3H-3He dating and stable isotope measurements of drip water samples to understand hydrogeology in study areas. Based on these frameworks, oxygen isotopes and other geochemical proxies will be analyzed for annual or sub-annual time scales. The proxy data will then be compared with meteorological data set, such as local precipitation, in the past 50 years. Finally, we will reconstruct for longer timescales the past climate, particularly the precipitation anomaly, in the region to detect ancient ENSO.

  6. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, James; Decker, David; Patterson, Gary

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC)more » were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical reactions. The DIC carbon-14 corrected ages can be further constrained by measuring the carbon isotopes of DOC. Because the only source of organic carbon in aquifers is almost always greater than 40,000 years old, any organic carbon that may be added to the groundwater would contain no carbon-14. Thus, ground-water ages determined by carbon isotopes of DOC should be maximum ages that can be used to constrain DIC corrected ages.« less

  7. Hydrogeochemical investigations of some historic mining areas in the western Humboldt River basin, Nevada

    USGS Publications Warehouse

    Nash, J.T.

    2001-01-01

    Productive historic mines in 13 mining districts, of many geochemical types, were investigated in May of 1998. Reconnaissance field observations were made and samples of mine dumps, mine drainage waters, and mill tailings have been collected to characterize the geochemical signature of these materials and to determine their actual or potential contamination of surface or ground waters. Field observations suggest that visible indicators of acidic mine drainage are rare, and field measurements of pH and chemical analyses of several kinds of materials indicate that only a few sites release acid or significant concentrations of metals.

  8. Thermal history of the periphery of the Junggar Basin, Northwestern China

    USGS Publications Warehouse

    King, J. David; Yang, Jianqiang; Pu, Fan

    1994-01-01

    Geochemical analysis of rock core samples show that the basin periphery has experienced low thermal stress; present-day heat flows are in the range of 25–35 mW/m2 and have not been significantly higher than the worldwide mean of approx. 63 mW/m2 since the mid-Permian. Present day heat flows were determined from corrected borehole temperatures and rock thermal conductivities. Paleo-heat flows were determined by first-order reaction kinetic modeling of several geochemical paleothermometers (vitrinite reflectance, clay mineral diagenesis and relative proportions of sterane and hopane biological marker diastereomers).

  9. Thermal history of the periphery of the Junggar Basin, Northwestern China

    USGS Publications Warehouse

    King, J.D.; Yang, J.; Pu, F.

    1994-01-01

    Geochemical analysis of rock core samples show that the basin periphery has experienced low thermal stress; present-day heat flows are in the range of 25-35 mW/m2 and have not been significantly higher than the worldwide mean of approx. 63 mW/m2 since the mid-Permian. Present day heat flows were determined from corrected borehole temperatures and rock thermal conductivities. Paleo-heat flows were determined by first-order reaction kinetic modeling of several geochemical paleothermometers (vitrinite reflectance, clay mineral diagenesis and relative proportions of sterane and hopane biological marker diastereomers). ?? 1994.

  10. Hyperspectral mapping and vulnerability modeling of effects of excessive overland flow on riparian arboreal ecosystems

    NASA Astrophysics Data System (ADS)

    Oduor, P. G.; Nakamura, A.

    2008-12-01

    The destruction of suitability of soil substrates to support riparian ecosystems due to periodic flooding, artificial or excessive water diversions, and overirrigation can last for decades and greatly affect biotic communities habiting these environments. Hyperspectral remote sensing technology with close to 1 m by 1 m pixel resolution and geographic information systems (GIS) offer a viable tool in the rapid analysis of the extent of biochemical, geochemical, and mineralogical changes that can occur due to excessive overland drainage within riparian zones. Hyperspectral data approximate continuous reflectance/emittance spectral measurements over a selected interval of the electromagnetic spectrum. With the advent of new and sophisticated digital sensors - with increased sensitivity - it has become possible to sample the reflection spectra of surficial materials. The interaction of low - pH waters, metals, and sulphate - contaminated water from agricultural practices initiates a sequence of pH-buffering reactions often accompanied by the precipitation of metal-bearing hydroxide and hydroxysulfate minerals that remove dissolved metals from moving water. This precipitation can be detected using hyperspectral imaging. Spectra can be examined for individual absorption features caused by specific chemical bonds in any solid, liquid, or gas. Limited geochemical and mineralogical data for some elements exist from other studies, however, there are no comparable libraries associated with biochemical signatures, a distinct indicator of mineralogical changes in soil composition. In this study we offer unique algorithms to identify and categorize biochemical, geochemical, and mineralogical spectra related to excessive overland drainage, a potential source of environmental problems within many agricultural districts. The common thematic map elements derived from the hyperspectral images are then incorporated into a GIS database. The reflection spectra of the soil substrates on the ground-as defined by image pixels-are in turn compared to laboratory and/or field-derived data. Classification is then based on the similarity of each pixel to a particular spectrum. Band ratioing or math may be done to discriminate potential spectral identities associated with commonly observed substrates in homogeneous patch of target vegetation, soil and water bodies. Geochemical and mineralogical spectral signatures are then determined from a statistical comparison of the reference spectra with the spectra of the pixels being compared with it. The resulting map is finally thresholded to achieve an acceptable confidence level. The imagery developed can then be modeled to determine the potential impact of excessive drainage on agricultural districts and/or related secondary effects due to mineral dissolution or precipitation.

  11. Variation of Geochemical Signatures and Correlation of Biomarkers in Icelandic Mars Analogue Environments

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Amador, E. S.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z. A.; Jacobsen, M. B.; McCaig, H. C.; Murukesan, G.; Rennie, V.; Schwieterman, E. W.; Stevens, A. H.; Tan, G.; Yin, C.; Stockton, A.; Cullen, D.; Geppert, W.

    2015-12-01

    Exploration missions to Mars rely on rovers to perform deep analyses over small sampling areas; however, landing site selection is done using large-scale but low-resolution remote sensing data. Using Earth analogue environments to estimate the small-scale spatial and temporal distributions of key geochemical signatures and (for habitability studies) biomarkers helps ensure that the chosen sampling strategies meet mission science goals. We conducted two rounds of analogue expeditions to recent Icelandic lava fields. In July 2013, we tested correlation between three common biomarker assays: cell quantification via fluorescence microscopy, ATP quantification via bioluminescence, and quantitative PCR with universal primer sets. Sample sites were nested at four spatial scales (1 m, 10 m, 100 m, and > 1 km) and homogeneous at 'remote imaging' resolution (overall temperature, apparent moisture content, and regolith grain size). All spatial scales were highly diverse in ATP, bacterial 16S, and archaeal 16S DNA content; nearly half of sites were statistically different in ATP content at α = 0.05. Cell counts showed significant variation at the 10 m and 100 m scale; at the > 1 km scale, the mean counts were not distinguishable, but the median counts were, indicating differences in underlying distribution. Fungal 18S DNA content similarly varied at 1 m, 10 m, and 100 m scales only. Cell counts were not correlated with ATP or DNA content at any scale. ATP concentration and DNA content for all three primer sets were positively correlated. Bacterial DNA content was positively correlated with archaeal and fungal DNA content, though archaeal correlation was weak. Fungal and archaeal correlation was borderline. In July 2015, we repeated the sampling strategy, with the addition of a smaller-scale sampling grid of 10 cm and a third > 1 km location. This expedition also measured reflectance of the tephra cover and preserved mineral samples for future Raman spectroscopy in order to better distinguish between effects of geochemical variation and intrinsic biomarker variation.

  12. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach.

    PubMed

    Szuszkiewicz, Marcin; Łukasik, Adam; Magiera, Tadeusz; Mendakiewicz, Maria

    2016-07-01

    Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include selected parameters, both magnetic (mass magnetic susceptibility - χ, frequency-dependent magnetic susceptibility - χfd and thermomagnetic susceptibility measurement - TSM), and geochemical (selected heavy metal contents: Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn). Additionally, the enrichment factor (EF) and index of geoaccumulation (Igeo) were calculated. Our results suggest the following: (1) the χ/Fe ratio may be a reliable indicator for determining changes of magnetic signal origin in soil profiles; (2) magnetic and geochemical signals are simultaneously higher (the increment of χ and lead and zinc was noted) in topsoil horizons because of the deposition of technogenic magnetic particles (TMPs); (3) EF and Igeo evaluated for lead and zinc unambiguously showed anthropogenic influence in terms of increasing heavy metal contents in topsoil regardless of bedrock or soil type; (4) magnetic susceptibility measurements supported by TSM curves for soil samples of different genetic horizons are a helpful tool for interpreting the origin and nature of the mineral phases responsible for the changes of magnetic susceptibility values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Geochemical, isotopic, and dissolved gas characteristics of groundwater in a fractured crystalline-rock aquifer, Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Tetrachloroethylene (PCE), a volatile organic compound, was detected in groundwater from deep (more than (>) 300 feet (ft) below land surface) fractures in monitoring wells tapping a crystalline-rock aquifer beneath operable unit 1 (OU1) of the Savage Municipal Well Superfund site (Weston, Inc., 2010). Operable units define remedial areas of contaminant concern. PCE contamination within the fractured-rock aquifer has been designated as a separate operable unit, operable unit 3 (OU3; Weston, Inc., 2010). PCE contamination was previously detected in the overlying glacial sand and gravel deposits and basal till, hereafter termed the Milford-Souhegan glacial-drift (MSGD) aquifer (Harte, 2004, 2006). Operable units 1 and 2 encompass areas within the MSGD aquifer, whereas the extent of the underlying OU3 has yet to be defined. The primary original source of contamination has been identified as a former manufacturing facility—the OK Tool manufacturing facility; hence OU1 sometimes has been referred to as the OK Tool Source Area (New Hampshire Department of Environmental Services, undated). A residential neighborhood of 30 to 40 houses is located in close proximity (one-quarter of a mile) from the PCE-contaminated monitoring wells. Each house has its own water-supply well installed in similar rocks as those of the monitoring wells, as indicated by the New Hampshire State geologic map (Lyons and others, 1997). An investigation was initiated in 2010 by the U.S. Environmental Protection Agency (USEPA) region 1, and the New Hampshire Department of Environmental Services (NHDES) to assess the potential for PCE transport from known contaminant locations (monitoring wells) to the residential wells. The U.S. Geological Survey (USGS) and the NHDES entered into a cooperative agreement in 2011 to assist in the evaluation of PCE transport in the fractured-rock aquifer. Periodic sampling over the last decade by the USEPA and NHDES has yet to detect PCE in groundwater from the residential-supply wells (as of 2012). However, part of assessing the potential for PCE transport involves understanding the origin of the groundwater in the monitoring and residential wells. One of the tools in delineating the movement of groundwater to wells, particularly in complex, highly heterogeneous fractured-rock aquifers, is the understanding of the geochemical and isotopic composition of groundwater (Lipfert and Reeve, 2004; Harte and others, 2012). This report summarizes findings from analyses of geochemical, isotopic, and dissolved gas characteristics of groundwater. Samples of groundwater were collected in 2011 from monitoring wells and nearby residential-supply wells in proximity to OU1.

  14. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    NASA Astrophysics Data System (ADS)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of sediment-derived fluids through the mantle wedge [1]. References: [1] Deschamps et al. (2013), Lithos, 178, 96-127.

  16. Statistical studies of selected trace elements with reference to geology and genesis of the Carlin gold deposit, Nevada

    USGS Publications Warehouse

    Harris, Michael; Radtke, Arthur S.

    1976-01-01

    Linear regression and discriminant analyses techniques were applied to gold, mercury, arsenic, antimony, barium, copper, molybdenum, lead, zinc, boron, tellurium, selenium, and tungsten analyses from drill holes into unoxidized gold ore at the Carlin gold mine near Carlin, Nev. The statistical treatments employed were used to judge proposed hypotheses on the origin and geochemical paragenesis of this disseminated gold deposit.

  17. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  18. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-03-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  19. Assessment and hydro-geochemical characterization for evaluation of corrosion and scaling potential of groundwater in South West Delhi, India.

    PubMed

    Acharya, Sanigdha; Sharma, S K; Khandegar, Vinita

    2018-06-01

    In the present study, hydro-geochemical characteristics of groundwater samples collected from South West Delhi, India, have been assessed. 50 sampling locations were recorded with the help of global positioning system, to assess the groundwater quality and evaluate the corrosion and scaling potential. Hydro-geochemical characterization for different parameters such as pH, temperature (T), electrical conductivity (EC), total dissolved solids (TDS), salinity (SA), total hardness (TH), total alkalinity ( H C O 3 - ), levels of anions such as calcium (Ca +2 ), magnesium (Mg +2 ), sodium (Na + ), potassium (K + ) and cations which include chloride (Cl - ), Flouride (F - ), sulfates ( S O 4 - 2 ), Nitrates ( N O 3 - ) was done using standard APHA methods. The corrosion and scaling potential of groundwater was evaluated by five stability indices: Langelier saturation index (LSI), Ryznar stability index (RSI), Aggressive index (AI), Learson-Skold index (Ls) and Puckorius scaling index (PSI). The dataset classified groundwater as polluted and this indicates that the water is not safe for domestic, agricultural and industrial usage and will need further treatment. This dataset is beneficial for policymakers, and researchers in the field of water purification, quality management and in preventing the economic and safety concerns related to corrosion and scaling of groundwater.

  20. Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust

    NASA Astrophysics Data System (ADS)

    Kocaarslan, Ayça; Ersoy, E. Yalçın

    2018-06-01

    This study discusses the geochemical features of the Early-Middle Miocene and Pliocene basaltic (SiO2 = 46-52; MgO = 6-10 wt%) to andesitic (SiO2 = 59; MgO = 4 wt%) rocks exposed in the Gürün and Kangal basins (Sivas, eastern part of central Anatolia), respectively. The basaltic rocks are characterized by alkaline to tholeiitic affinities, while the more evolved andesitic samples show calc-alkaline affinity. Trace element variations reveal that they can be evaluated in three sub-groups, each represented by different contents of trace elements for given Nb contents. Primary magmas of each groups were likely produced by different degrees of partial melting ( 1-2, 2-3, 7-10% respectively) from a common mantle source, subsequently underwent different degrees of fractionation and crustal contamination. Derivation from a common mantle source of the primitive magmas of each group is supported by similar Sr, Nd and Pb isotopic ratios. Increasing degrees of partial melting seem to be responsible for the alkaline to tholeiitic variation among the basaltic samples, while higher degrees of crustal contamination (AFC) resulted in calc-alkaline affinity of the more evolved samples. Most primitive Pliocene samples show intra-plate (anorogenic) geochemical features, while the more evolved Miocene calc-alkaline samples resemble geochemically subduction-related (orogenic) magmatic rocks. However, on the basis of detailed geochemical models, we propose that the calc-alkaline affinity among the Miocene samples can also be gained by crustal contamination of their primary magmas which were also anorogenic in character. If this is true, overall, the Miocene and Pliocene basaltic to andesitic rocks in the Gürün and Kangal basins appear to may have formed by variable degrees of partial melting of a common anorogenic mantle that had not been subject to subduction-related metasomatism. This is an alternative approach to the general view assuming the Early-Middle Miocene magmatic activity in the region was derived from subduction-modified mantle sources in response to subduction of the Arabian Plate under the Anatolian Plate. This hypothesis further implies that either delamination of the sub-continental lithosphere or slab break-off processes beneath the central to eastern Anatolia might took place well before the Miocene, thus allowing upwelling unaltered mantle to provide the source of the Miocene to Pliocene volcanic rocks.

  1. Applications of New Synthetic Uranium Reference Materials for Geochemistry Research (Invited)

    NASA Astrophysics Data System (ADS)

    Richter, S.; Weyer, S.; Alonso, A.; Aregbe, Y.; Kuehn, H.; Eykens, R.; Verbruggen, A.; Wellum, R.

    2009-12-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. The preparation of several new synthetic uranium reference materials at IRMM during the recent five years has provided significant impacts on geochemical research. As an example, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of IRMM-074, results with smaller uncertainties were obtained, which are shifted by about 0.04% compared to the commonly used values published earlier by Cheng et al. in 2000. This has a significant impact for U isotope measurements in geochemistry.. As a further example, the new double spike IRMM-3636 with a 233U/236U ratio of 1:1 and an expanded uncertainty as low as 0.016% (coverage factor k=2, 95% confidence level) was prepared gravimetrically. This double spike allows internal mass fractionation correction for high precision 235U/238U ratio measurements of close to natural samples. Using the new double spike IRMM-3636, the 235U/238U ratios for several commonly used natural U standard materials from NIST/NBL and IRMM, such as e.g. NBS960 (=NBL CRM-112a), NBS950a,b and IRMM-184, have been re-measured with improved precision and accuracy. The (preliminary) result of 137.836(23) for the 238U/235U ratio of NBS960, measured using the new gravimetrically prepared 233U/236U-Double Spike IRMM-3636, is deviating by -0.032% from the well-known and widely used consensus value of 137.88. For the consensus value no uncertainty has ever been assigned, but it is outside the uncertainty limits of the new measurement result. The re-measured 238U/235U ratio of 137.689(22) of IRMM-184 agrees quite well with the certified value of 137.697(41), the calculated difference is only -0.006(34)% which is insignificant. The results for both NBS960 and IRMM-184, obtained using multi-dynamic TIMS at IRMM and using high efficiency MC-ICPMS at the University of Frankfurt, agree well with each other. As a conclusion, the IRMM-3636 Double Spike has been successfully applied for measurements of important uranium isotopic standards like NBS960 and IRMM-184, with improved uncertainties at the level of 0.016%.

  2. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  3. Geochemical evidence for mixing of three components in martian orthopyroxenite ALH 84001. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Lindstrom, M. M.

    1994-01-01

    ALH 84001, a ferroan martian orthopyroxenite, originally consisted of three petrographically defined components: a cumulus assemblage of orthopyroxene + chromite, a trapped melt assemblage of orthopyroxene(?) + chromite + maskelynite + apatite + augite +/- pyrite, and a metasomatic assemblage of carbonate +/- pyrite. We present the results of Instrumental Neutron Activation Analysis (INAA) study of five bulk samples of ALH 84001, combined with Scanning Ion Mass Spectrometer (SIMS) data on the orthopyroxene, in order to attempt to set limits on the geochemical characteristics of the latter two components, and therefore on the petrogenesis of ALH 84001. The INAA data support the petrographic observations, suggesting that there are at least three components in ALH 84001. We will assume that each of the three geochemically required components can be equated with one of the petrographically observed components. Both trapped melt and metasomatic components in ALH 84001 have higher Na than orthopyroxene based on compositions of maskelynite, apatite, and carbonate. For the metasomatic component, we will assume its Na content is that of carbonate, while for a trapped melt component, we will use a typical Na content inferred for martian meteorite parent melts, approximately 1 wt% Na2O. Under these assumptions, we can set limits on the Light Rare Earth Elements/Heavy Rare Earth Elements (LREE/HREE) ratios of the components, and use this information to compare the petrogenesis of ALH 84001 with other martian meteorites. The above calculations assume that the bulk samples are representative of different portions of ALH 84001. We will also evaluate the possible heterogeneous distribution of mineral phases in the bulk samples as the cause of compositional heterogeneity in our samples.

  4. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  5. 43 CFR 3836.12 - What work qualifies as assessment work?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...

  6. 43 CFR 3836.12 - What work qualifies as assessment work?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...

  7. 43 CFR 3836.12 - What work qualifies as assessment work?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...

  8. 43 CFR 3836.12 - What work qualifies as assessment work?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...

  9. Magnetic and geochemical characterization of Andosols developed on basalts in the Massif Central, France

    NASA Astrophysics Data System (ADS)

    Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales

    2015-05-01

    Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming geochemical analyses. Our primary aim of this study is to describe the magnetic and geochemical properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and geochemical methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. Geochemical data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).

  10. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  11. Publications - GMC 351 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 351 Publication Details Title: Geochemical analysis of Alaska North Slope NPR-A oil samples at Reservoir, and North Slope Borough US Navy South Barrow #12 - Sag River Reservoir Authors: Organic analysis of Alaska North Slope NPR-A oil samples at the Alaska GMC from: Umiat (generic) Nanushuk Reservoir

  12. Geophysics- and geochemistry-based assessment of the geochemical characteristics and groundwater-flow system of the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system in Doña Ana County, New Mexico, and El Paso County, Texas, 2010–12

    USGS Publications Warehouse

    Teeple, Andrew P.

    2017-06-16

    One of the largest rechargeable groundwater systems by total available volume in the Rio Grande/Río Bravo Basin (hereinafter referred to as the “Rio Grande”) region of the United States and Mexico, the Mesilla Basin/Conejos-Médanos aquifer system, supplies water for irrigation as well as for cities of El Paso, Texas; Las Cruces, New Mexico; and Ciudad Juárez, Chihuahua, Mexico. The U.S. Geological Survey in cooperation with the Bureau of Reclamation assessed the groundwater resources in the Mesilla Basin and surrounding areas in Doña Ana County, N. Mex., and El Paso County, Tex., by using a combination of geophysical and geochemical methods. The study area consists of approximately 1,400 square miles in Doña Ana County, N. Mex., and 100 square miles in El Paso County, Tex. The Mesilla Basin composes most of the study area and can be divided into three parts: the Mesilla Valley, the West Mesa, and the East Bench. The Mesilla Valley is the part of the Mesilla Basin that was incised by the Rio Grande between Selden Canyon to the north and by a narrow valley (about 4 miles wide) to the southeast near El Paso, Tex., named the Paso del Norte, which is sometimes referred to in the literature as the “El Paso Narrows.”Previously published geophysical data for the study area were compiled and these data were augmented by collecting additional geophysical and geochemical data. Geophysical resistivity measurements from previously published helicopter frequency domain electromagnetic data, previously published direct-current resistivity soundings, and newly collected (2012) time-domain electromagnetic soundings were used in the study to detect spatial changes in the electrical properties of the subsurface, which reflect changes that occur within the hydrogeology. The geochemistry of the groundwater system was evaluated by analyzing groundwater samples collected in November 2010 for physicochemical properties, major ions, trace elements, nutrients, pesticides (reported but not used in the assessment), and environmental tracers. The data obtained from these samples (with the exception of the pesticide data) were used to gain insights into processes controlling the groundwater movement through the groundwater system in the study area. Results from the geophysical and geochemical assessments facilitated the interpretation of the geochemical characteristics of the groundwater sources and geochemical groups within the groundwater system.The groundwater-flow system in the study area consists primarily of the Mesilla Basin aquifer system, which can be divided into four hydrogeologic units by using an informal classification scheme based on basin-fill stratigraphy and sedimentology with an emphasis on aquifer characteristics. The four hydrogeologic units are (1) the Rio Grande alluvium, which is the shallow aquifer of the Mesilla Basin within the confines of the Mesilla Valley, and the three hydrogeologic units that compose the Santa Fe Group: (2) the lower part of the Santa Fe Group, which is the least productive zone, (3) the middle part of the Santa Fe Group, which is the primary water-bearing hydrogeologic unit in the basin and is generally saturated, and (4) the upper part of the Santa Fe Group, which is the most productive water-bearing unit within the Santa Fe Group but is only partially saturated in the north and largely unsaturated in the south and western parts of the Mesilla Basin.The helicopter frequency domain electromagnetic survey results indicated that approximately half of the resistivity values were less than 10 ohm-meters at depths of 50 and 100 feet with a transition where the resistivity values changed from relatively high values (greater than 20 ohm-meters) to relatively low resistivity values (less than 10 ohm-meters) near Vado, New Mexico. Slightly more than 25 percent of the gridded resistivity values from the three-dimensional grid of the combined inverse modeling results of the direct-current resistivity and time-domain electromagnetic soundings were equal to or less than 10 ohm-meters with large regions of low resistivity becoming apparent in the southernmost part of the study area near the Paso Del Norte where these low resistivity features are spatially the widest at or below the top of the bedrock. These low resistivity values might represent clayey deposits, sediments composed largely of sand and gravel saturated with saline water, or both. Historical dissolved-solids-concentration data within the surface geophysical subset area of the study area were compiled and compared to the inverse modeling results of the combined direct-current resistivity and time-domain soundings; this comparison was done to strengthen the interpretation made from the combined inverse modeling results that the low resistivity features were representative of sand and gravel deposits saturated with saline water and not clayey deposits.Water-level altitudes within the Rio Grande alluvium generally decreased from north to south, with a west to east decrease in water-level altitudes near Las Cruces, New Mexico, as a result of groundwater pumping. Groundwater flow within the Santa Fe Group is more complex than the groundwater flow within the Rio Grande alluvium because of the larger lateral and vertical extent of the Santa Fe Group compared to the Rio Grande alluvium. Groundwater from the Organ Mountains flows directly south towards the Paso del Norte. Groundwater from the Robledo Mountains, the Rough and Ready Hills, and the Sleeping Lady Hills generally flows to the southeast. Groundwater flowing near the north end of the midbasin uplift generally continues east towards the Rio Grande and then flows south on the east side of the midbasin uplift. Groundwater flowing near the west side of the midbasin uplift generally continues south parallel to the faults that make up the midbasin uplift and then flows east towards the Paso del Norte when it reaches the south end of the midbasin uplift. Groundwater from the Aden Hills and the East and West Potrillo Mountains flows to the south end of the midbasin uplift and then continues east towards the Paso del Norte. Throughout most of the Mesilla Valley, the vertical hydraulic gradient was downward because the water-level altitude in the Rio Grande alluvium was higher than it was in the Santa Fe Group, but in some areas (typically in the middle and southern parts of the Mesilla Valley), the vertical hydraulic gradient was substantially reduced or even reversed to an upward hydraulic gradient.The geochemistry data indicate that there was a complex system of multiple geochemical endmembers and mixing between these endmembers with recharge to the Rio Grande alluvium and Santa Fe Group composed mostly of seepage from the Rio Grande, inflows from deeper or neighboring water systems, and mountain-front recharge. Five distinct geochemical groups were identified in the Mesilla Basin study area: (1) ancestral Rio Grande (pre-Pleistocene) geochemical group, (2) modern Rio Grande (Pleistocene to present) geochemical group, (3) mountain-front geochemical group, (4) deep groundwater upwelling geochemical group, and (5) unknown freshwater geochemical group. The ancestral Rio Grande groundwater was water that recharged into the system as seepage losses from the ancestral Rio Grande; this groundwater generally flows from north to south-southeast towards the Paso del Norte. Groundwater on the west side of the midbasin uplift generally flows south until it reaches the southern part of the study area; from the southern part of the study area, the groundwater flows east towards the Paso del Norte. Groundwater on the east side of the midbasin uplift flows south-southeast towards the Paso del Norte where it mixes with groundwater from the modern Rio Grande, uplifted areas in the west, and the deep saline source. The water type of the modern Rio Grande geochemical group ranged from calcium-sulfate water type in the northern part of the study area to sodium-chloride-sulfate water type in the southern part of the study area; from north to south there was a substantial increase in specific conductance, strontium-87/strontium-86 ratio, potassium, and the trace metals of iron and lithium, changing the water chemistry such that it became similar to the water chemistry of the deep groundwater upwelling geochemical group. From age-dating results, water in the modern Rio Grande geochemical group was recharged to the Rio Grande alluvium within the past 10 years. The mountain-front geochemical group was generally old water (apparent age was greater than 10,000 carbon-14 years before present) that was somewhat mineralized and has relatively high concentrations of fluoride and silica, which might indicate longer exposure to volcanic and siliciclastic rocks or aluminosilicate minerals. There were five different locations of recharge determined from the groundwater geochemistry within the mountain-front geochemical group, all having a slightly different geochemical signature: (1) the Rough and Ready Hills, Robledo Mountains, and the Sleeping Lady Hills, (2) the Doña Ana Mountains, (3) the Aden Hills and West Potrillo Mountains, (4) the East Potrillo Mountains, and (5) the Sierra Juárez in Mexico. The groundwater from the Rough and Ready Hills, Robledo Mountains, the Sleeping Lady Hills, and the Doña Ana Mountains generally flows toward the Rio Grande and eventually mixes together and with the modern Rio Grande groundwater. The groundwater originating from the Aden Hills and East and West Potrillo Mountains generally flows east to southeast at a slow rate and eventually mixes and continues east, where it mixes with groundwater from the ancestral Rio Grande geochemical group and with the groundwater from the Sierra Juárez. The groundwater from the Sierra Juárez flows north and then east towards the Paso del Norte where it mixes with groundwater from the uplifted areas in the west, ancestral and modern Rio Grande groundwater, and the upwelling groundwater from a deep saline source. The deep groundwater upwelling geochemical group had the highest concentrations of bicarbonate, potassium, silica, aluminum, iron, and lithium within the study area, indicating that it had been in contact with carbonate and siliciclastic rocks for a much longer period of time and at higher temperatures compared to the other geochemical groups, and was most likely ancient marine groundwater originating from the Paleozoic and Cretaceous carbonate rocks which was upwelling into the Mesilla Basin aquifer system in the southeastern part of the study area through the extensive fault systems. Direct-current resistivity and time-domain electromagnetic soundings support the interpretation of ancient marine groundwater upwelling into the Mesilla Basin aquifer system, as do the analytical results from wells, and the helicopter frequency domain electromagnetic data collected along the Rio Grande. The hydrogen-2/hydrogen-1 ratio and oxygen-18/oxygen-16 ratio isotopic results for samples in the unknown freshwater geochemical group did not plot on the Rio Grande evaporation line, indicating this group did not have a Rio Grande signature (that is, there was no isotopic evidence of a component of Rio Grande water) and it also had the lowest mineralized content of any geochemical group in the study area.

  13. Miscellaneous geochemical data from waters in the Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Johnson, Raymond H.; Yager, Douglas B.

    2013-01-01

    This report releases geochemistry data in waters from the upper Animas River watershed that have been analyzed by inductively coupled plasma–mass spectrometry. These samples were collected at various sites and at various dates (41 sites and 86 samples from 2008 to 2010). A main data table is provided and the text discusses the sampling methods and locations in relation to other published reports.

  14. Analyses and descriptions of geochemical samples from the Rich Mountain Roadless Area, Fannin and Gilmer counties, Georgia

    USGS Publications Warehouse

    Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.

    1983-01-01

    Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.

  15. Maps showing abundance and distribution of mercury in rock samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949). 

  16. Scoresum - A technique for displaying and evaluating multi-element geochemical information, with examples of its use in regional mineral assessment programs

    USGS Publications Warehouse

    Chaffee, M.A.

    1983-01-01

    A technique called SCORESUM was developed to display a maximum of multi-element geochemical information on a minimum number of maps for mineral assessment purposes. The technique can be done manually for a small analytical data set or can be done with a computer for a large data set. SCORESUM can be used with highly censored data and can also weight samples so as to minimize the chemical differences of diverse lithologies in different parts of a given study area. The full range of reported analyses for each element of interest in a data set is divided into four categories. Anomaly scores - values of O (background), 1 (weakly anomalous), 2 (moderately anomalous), and 3 (strongly anomalous) - are substituted for all of the analyses falling into each of the four categories. A group of elements based on known or suspected association in altered or mineralized areas is selected for study and the anomaly scores for these elements are summed for each sample site and then plotted on a map. Some of the results of geochemical studies conducted for mineral assessments in two areas are briefly described. The first area, the Mokelumne Wilderness and vicinity, is a relatively small and geologically simple one. The second, the Walker Lake 1?? ?? 2?? quadrangle, is a large area that has extremely complex geology and that contains a number of different mineral deposit environments. These two studies provide examples of how the SCORESUM technique has been used (1) to enhance relatively small but anomalous areas and (2) to delineate and rank areas containing geochemical signatures for specific suites of elements related to certain types of alteration or mineralization. ?? 1983.

  17. Penetrator role in Mars sample strategy

    NASA Technical Reports Server (NTRS)

    Boynton, William; Dwornik, Steve; Eckstrom, William; Roalstad, David A.

    1988-01-01

    The application of the penetrator to a Mars Return Sample Mission (MRSM) has direct advantages to meet science objectives and mission safety. Based on engineering data and work currently conducted at Ball Aerospace Systems Division, the concept of penetrators as scientific instruments is entirely practical. The primary utilization of a penetrator for MRSM would be to optimize the selection of the sample site location and to help in selection of the actual sample to be returned to Earth. It is recognized that the amount of sample to be returned is very limited, therefore the selection of the sample site is critical to the success of the mission. The following mission scenario is proposed. The site selection of a sample to be acquired will be performed by science working groups. A decision will be reached and a set of target priorities established based on data to give geochemical, geophysical and geological information. The first task of a penetrator will be to collect data at up to 4 to 6 possible landing sites. The penetrator can include geophysical, geochemical, geological and engineering instruments to confirm that scientific data requirements at that site will be met. This in situ near real-time data, collected prior to final targeting of the lander, will insure that the sample site is both scientifically valuable and also that it is reachable within limits of the capability of the lander.

  18. Using Paleomagnetic, Geochemical and Structural Data to Recognize Post-metamorphic Tectonic Events in the Caledonide Terranes of Western Svalbard.

    NASA Astrophysics Data System (ADS)

    Michalski, K.; Manby, G.; Nejbert, K.; Domańska Siuda, J.; Burzyński, M.

    2015-12-01

    A total of 170 oriented palaeomagnetic samples of Proterozoic-Lower Palaeozoic metacarbonates and metabasites from 28 sites in Hornsund and Oscar II Land, Western Spitsbergen (Fig. 1A) were investigated at the Polish Academy of Sciences Institute of Geophysics . Petrographic and rock-magnetic analyses revealed that the ferromagnetic carriers are dominated by metamorphic pyrrhotite and Low-Ti magnetite. Simultaneous in situ laser ablation 40Ar/39Ar age determination of the samples indicate that a 426-380 Ma Caledonian sensu lato thermal overprint was followed by younger events in the 377-326 Ma and ca. 300 Ma intervals (Fig. 1B). The latter two ages appear to coincide with recently published seismic data indicating that Late Devonian - Carboniferous rifting was followed by similar crustal extension in the SW Barents shelf area in Late Carboniferous time. Published in situ palaeomagnetic directions from Hornsund area in SW Svalbard fit the Silurian sector of the Baltica reference path suggesting that the geometry of the sampled Caledonian Sofekammen Syncline was not modified during following Svalbardian or Eurekan deformation events (Fig. 1C). In contrast, palaeomagnetic directions obtained from Oscar II Land are distant from Caledonian sector of Baltica reference path (Fig. 1C). It is suggested here, that the most significant mechanism responsible for the rotation of the palaeomagnetic directions and modification of geometry of Caledonian tectonic structures of Oscar II Land was listric normal faulting related to the opening of the North Atlantic -Arctic Ocean Basins. Late Cretaceous- Early Tertiary Eurekan folding and thrust faulting appear to have had minor influence on the palaeomagnetic directions obtained. This study is part of the Polish National Science Centre - DEC 2011/03/D/ST10/05193 PALMAG 2012-2016 funded project . Fig. 1. A. Geological sketch map of Western Spitsbergen. B. Probability diagrams derived from insitu 40Ar/39Ar laser ablation age determinations for Oscar II/Haakon VII Land. C. The most stable palaeomagnetic components from Hornsund (squares) and Oscar II Land (ovals) against the reference path for the Batica paleomagnetic directions recalculated for the area of Western Spitsbergen; equal area; open/ full symbols -upper/lower hemisphere.

  19. Geochemical and physical drivers of microbial community structure in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.

    2012-12-01

    Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and geochemical compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to model the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.

  20. Petrogenesis of High-CaO Lavas Recovered from Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, S.

    2015-12-01

    Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.

  1. Publications - GMC 349 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    '-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well Authors: Humble Geochemical Services Publication cuttings samples (4650'-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well: Alaska Division of

  2. Publications - RDF 2016-6 v. 1.1 | Alaska Division of Geological &

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska 345.0 K Metadata - Read me Keywords Alaska Range; Analyses; Analyses and Sampling; Analytical Lab

  3. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  4. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  5. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  6. Automatic measurements and computations for radiochemical analyses

    USGS Publications Warehouse

    Rosholt, J.N.; Dooley, J.R.

    1960-01-01

    In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.

  7. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    PubMed

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

    PubMed

    Perez, Pablo A; Hintelman, Holger; Quiroz, Waldo; Bravo, Manuel A

    2017-11-01

    In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g -1 . These data are to the best of our knowledge the first MMHg measurements reported for Chile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Yu, H.; Huang, F.

    2017-12-01

    Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and Geoanalytical Research, 40: 417-32. Conway et al., 2013. 'A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry', Analytica chimica acta, 793: 44-52. Moynier et al., 2017. 'The isotope geochemistry of zinc and copper', Reviews in Mineralogy and Geochemistry, 82: 543-600.

  10. Geochemical signals of progressive continental rupture in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.

    2003-04-01

    Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis geochemical variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the geochemical data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled geochemical signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have geochemical signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent with values observed previously in central Ethiopia that are associated with moderately high 3He/4He values (<19 RA; Marty et al. 1996) and interpreted as reflecting involvement of a mantle plume. Taken together, these data support a model in which upwelling plume material sampled in central Ethiopia incorporates depleted mantle during ascent beneath the more highly extended portions of the African Rift.

  11. The geochemical evolution of riparian ground water in a forested piedmont catchment

    USGS Publications Warehouse

    Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter

    2003-01-01

    The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering. An accurate model of the geochemical evolution of riparian ground water is necessary to accurately model the geochemical evolution of stream water at PMRW.

  12. Anthrax and the Geochemistry of Soils in the Contiguous ...

    EPA Pesticide Factsheets

    Journal Article Soil geochemical data from sample sites located in counties that reported cases or outbreaks of anthrax since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX) that did not report cases or outbreaks. These data identified the elements Ca, Mn, P and Sr as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence) within the total data set or in a majority of the states. Preliminary elemental threshold values present prospective investigative tools that can be refined through future high-resolution studies and present a path forward for understanding the geochemical constraints of other pathogens.

  13. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    NASA Astrophysics Data System (ADS)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.

  14. The distribution of selected elements and minerals in soil of the conterminous United States

    USGS Publications Warehouse

    Woodruff, Laurel G.; Cannon, William F.; Smith, David; Solano, Federico

    2015-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1600 km2, 4857 sites) geochemical and mineralogical survey of soil of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Three soil samples were collected, if possible, from each site; (1) a sample from a depth of 0 to 5 cm, (2) a composite of the soil A-horizon, and (3) a deeper sample from the soil C-horizon or, if the top of the C-horizon was at a depth greater than 100 cm, from a depth of approximately 80–100 cm. The < 2 mm fraction of each sample was analysed for a suite of 45 major and trace elements following near-total multi-acid digestion. The major mineralogical components in samples from the soil A- and C-horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling ended in 2010 and chemical and mineralogical analyses were completed in May 2013. Maps of the conterminous United States showing predicted element and mineral concentrations were interpolated from actual soil data for each soil sample type by an inverse distance weighted (IDW) technique using ArcGIS software. Regional- and national-scale map patterns for selected elements and minerals apparent in interpolated maps are described here in the context of soil-forming factors and possible human inputs. These patterns can be related to (1) soil parent materials, for example, in the distribution of quartz, (2) climate impacts, for example, in the distribution of feldspar and kaolinite, (3) soil age, for example, in the distribution of carbonate in young glacial deposits, and (4) possible anthropogenic loading of phosphorus (P) and lead (Pb) to surface soil. This new geochemical and mineralogical data set for the conterminous United States represents a major step forward from prior national-scale soil geochemistry data and provides a robust soil data framework for the United States now and into the future.

  15. MoonDB: Restoration and Synthesis of Lunar Petrological and Geochemical Data

    NASA Technical Reports Server (NTRS)

    Lehnert, Kerstin A.; Cai, Yue; Mana, Sara; Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.

    2016-01-01

    About 2,200 samples were collected from the Moon during the Apollo missions, forming a unique and irreplaceable legacy of the Apollo program. These samples, obtained at tremendous cost and great risk, are the only samples that have ever been returned by astronauts from the surface of another planetary body. These lunar samples have been curated at NASA Johnson Space Center and made available to the global research community. Over more than 45 years, a vast body of petrological, geochemical, and geochronological studies of these samples have been amassed, which helped to expand our understanding of the history and evolution of the Moon, the Earth itself, and the history of our entire solar system. Unfortunately, data from these studies are dispersed in the literature, often only available in analog format in older publications, and/or lacking sample metadata and analytical metadata (e.g., information about analytical procedure and data quality), which greatly limits their usage for new scientific endeavors. Even worse is that much lunar data have never been published, simply because no forum existed at the time (e.g., electronic supplements). Thousands of valuable analyses remain inaccessible, often preserved only in personal records, and are in danger of being lost forever, when investigators retire or pass away. Making these data and metadata publicly accessible in a digital format would dramatically help guide current and future research and eliminate duplicated analyses of precious lunar samples.

  16. Instrument developments for chemical and physical characterization, mapping and sampling of extreme environments (Antarctic sub ice environment)

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Powell, R. D.; Griffith, I.; Lawson, T.; Schiraga, S.; Ludlam, G.; Oen, J.

    2009-12-01

    A number of instrumentation is currently under development designed to enable the study of subglacial environments in Antarctica through narrow kilometer long boreholes. Instrumentation includes: - slim line Sub-Ice ROV (SIR), - Geochemical Instrumentation Package for Sub Ice Environments (GIPSIE) to study geochemical fluxes in water and across the sediment water interface (CO2, CH4, dO, NH4, NO3, Si, PO4, pH, redox, T, H2, HS, O2, N2O, CTD, particle size, turbidity, color camera, current meter and automated water sampler) with real-time telemetry for targeted sampling, - long term energy-balance mooring system, - active source slide hammer sediment corer, and - integration of a current sensor into the ITP profiler. The instrumentation design is modular and suitable for remote operated as well as autonomous long-term deployment. Of interest to the broader science community is the development of the GIPSIE and efforts to document the effect of sample recovery from depth on the sample chemistry. The GIPSIE is a geochemical instrumentation package with life stream telemetry, allowing for user controlled targeted sampling of water column and the water sediment interphase for chemical and biological work based on actual measurements and not a preprogrammed automated system. The porewater profiler (pH, redox, T, H2, HS, O2, N2O) can penetrate the upper 50 cm of sediment and penetration is documented with real time video. Associated with GIPSIE is an on-site lab set-up, utilizing a set of identical sensors. Comparison between the insitu measurements and measurements taken onsite directly after samples are recovered from depth permits assessing the effect of sample recovery on water and sediment core chemistry. Sample recovery related changes are mainly caused by changes in the pressure temperature field and exposure of samples to atmospheric conditions. Exposure of anaerobic samples to oxygen is here a specific concern. Recovery from depth effects in generally pH, solubility of gases and nutrients and can initiate complex chemical reaction, the product of which is later measured in the lab. Further information on the instrument developments can be found at http://jove.geol.niu.edu/faculty/svogel/Technology/Technology-index.html

  17. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.B.; Garland, P.A.

    1977-10-01

    This bibliography was compiled by selecting 580 references from the Bibliographic Information Data Base of the Department of Energy's (DOE) National Uranium Resource Evaluation (NURE) Program. This data base and five others have been created by the Ecological Sciences Information Center to provide technical computer-retrievable data on various aspects of the nation's uranium resources. All fields of uranium geology are within the defined scope of the project, as are aerial surveying procedures, uranium reserves and resources, and universally applied uranium research. References used by DOE-NURE contractors in completing their aerial reconnaissance survey reports have been included at the request ofmore » the Grand Junction Office, DOE. The following indexes are provided to aid the user in locating reference of interest: author, keyword, geographic location, quadrangle name, geoformational index, and taxonomic name.« less

  18. Complete zircon and chromite digestion by sintering of granite, rhyolite, andesite and harzburgite rock reference materials for geochronological purposes

    NASA Astrophysics Data System (ADS)

    Bokhari, Syed Nadeem H.; Meisel, Thomas

    2014-05-01

    Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has to be increased for an accurate content determination and complete release of analytes for geochronological studies. Larger test portion size reduces the heterogeneity issues in granites in particular [2]. No significant blanks issues were observed and interferences were controlled using QQQ MS mode of ICP-MS. References [1] Meisel, T., N. Schöner, et al. (2002). "Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductively Coupled Plasma-Mass Spectrometry." Geostandards Newsletter 26(1): 53-61. [2] Bokhari SNH., Meisel T (2013) "The Determination of Homogeneity of Geological Reference Material" Mineralogical Magazine, 77(5): 731.

  19. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name,more » geoformational feature, taxonomic name, and keyword.« less

  20. Geochemical data from groundwater at the proposed Dewey Burdock uranium in-situ recovery mine, Edgemont, South Dakota

    USGS Publications Warehouse

    Johnson, Raymond H.

    2012-01-01

    This report releases groundwater geochemistry data from samples that were collected in June 2011 at the Dewey Burdock proposed uranium in-situ recovery site near Edgemont, South Dakota. The sampling and analytical methods are summarized, and all of the data, including quality assurance/quality control information are provided in data tables.

  1. Expected Geochemical and Mineralogical Properties of Meteorites from Mercury: Inferences from Messenger Data

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; McCoy, T. J.

    2016-01-01

    Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.

  2. Geochemistry of obsidian from Krasnoe Lake on the Chukchi Peninsula (Northeastern Siberia)

    NASA Astrophysics Data System (ADS)

    Popov, V. K.; Grebennikov, A. V.; Kuzmin, Ya. V.; Glascock, M. D.; Nozdrachev, E. A.; Budnitsky, S. Yu.; Vorobey, I. E.

    2017-09-01

    This report considers features of the geochemical composition of obsidian from beach sediments of Krasnoe Lake along the lower course of the Anadyr River, as well as from lava-pyroclastic rocks constituting the lake coastal outcrops and the surrounding branches of Rarytkin Ridge. The two geochemical types of obsidian, for the first time distinguished and researched, correspond in their chemical composition to lavas and ignimbrite-like tuffs of rhyolites from the Rarytkin area. The distinguished types represent the final stage of acidic volcanism in the West Kamchatkan-Koryak volcanic belt. It was assumed that the accumulation of obsidian in coastal pebble beds was caused by the erosion of extrusive domes and pyroclastic flows. The geochemical studies of obsidian artifacts from archeological sites of the regions of the Sea of Okhotsk, the Kolyma River, and the Chukchi Peninsula along with the correlation of geological and archeological samples show that Krasnoe Lake was an important source of "archeological" obsidian in Northeastern Siberia.

  3. Geophysical and geochemical data from the area of the Pebble Cu-Au-Mo porphyry deposit, southwestern Alaska: Contributions to assessment techniques for concealed mineral resources

    USGS Publications Warehouse

    Anderson, E.D.; Smith, S.M.; Giles, S.A.; Granitto, Matthew; Eppinger, R.G.; Bedrosian, P.A.; Shah, A.K.; Kelley, K.D.; Fey, D.L.; Minsley, B.J.; Brown, P.J.

    2011-01-01

    In 2007, the U.S. Geological Survey began a multidisciplinary study in southwest Alaska to investigate the setting and detectability of mineral deposits in concealed volcanic and glacial terranes. The study area hosts the world-class Pebble porphyry Cu-Au-Mo deposit, and through collaboration with the Pebble Limited Partnership, a range of geophysical and geochemical investigations was carried out in proximity to the deposit. The deposit is almost entirely concealed by tundra, glacial deposits, and post-mineralization volcanic rocks. The discovery of mineral resources beneath cover is becoming more important because most of the mineral resources at the surface have already been discovered. Research is needed to identify ways in which to assess for concealed mineral resources. This report presents the uninterpreted geophysical measurements and geochemical and mineralogical analytical data from samples collected during the summer field seasons from 2007 to 2010, and makes the data available in a single Geographic Information System (GIS) database.

  4. Establishing geochemical background levels of selected trace elements in areas having geochemical anomalies: The case study of the Orbetello lagoon (Tuscany, Italy).

    PubMed

    Romano, Elena; Bergamin, Luisa; Croudace, Ian W; Ausili, Antonella; Maggi, Chiara; Gabellini, Massimo

    2015-07-01

    The determination of background concentration values (BGVs) in areas, characterised by the presence of natural geochemical anomalies and anthropogenic impact, appears essential for a correct pollution assessment. For this purpose, it is necessary to establish a reliable method for determination of local BGVs. The case of the Orbetello lagoon, a geologically complex area characterized by Tertiary volcanism, is illustrated. The vertical concentration profiles of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were studied in four sediment cores. Local BGVs were determined considering exclusively samples not affected by anthropogenic influence, recognized by means of multivariate statistics and radiochronological dating ((137)Cs and (210)Pb). Results showed BGVs well-comparable with mean crustal or shale values for most of the considered elements except for Hg (0.87 mg/kg d.w.) and As (16.87 mg/kg d.w.), due to mineralization present in the catchment basin draining into the lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE PAGES

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; ...

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  6. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  7. Mineralogical and Geochemical Trends in a Fluviolacustrine Sequence in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E.; Ming, D.; Morris, R.; Blake, D.; Vaniman, D.; Bristow, T.; Chipera, S.; Yen, A.; Grotzinger, J.; DesMarais, D.

    2016-01-01

    The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones.

  8. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  9. Regional Geochemical Results from the Reanalysis of NURE Stream Sediment Samples - Eagle 3? Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Crock, J.G.; Briggs, P.H.; Gough, L.P.; Wanty, R.B.; Brown, Z.A.

    2007-01-01

    This report presents reconnaissance geochemical data for a cooperative study in the Fortymile Mining District, east-central Alaska, initiated in 1997. This study has been funded by the U.S. Geological Survey (USGS) Mineral Resources Program. Cooperative funds were provided from various State of Alaska sources through the Alaska Department of Natural Resources. Results presented here represent the initial reconnaissance phase for this multidisciplinary cooperative study. In this phase, 239 sediment samples from the Eagle 3? Quadrangle of east-central Alaska, which had been collected and analyzed for the U.S. Department of Energy's National Uranium Resource Evaluation program (NURE) of the 1970's (Hoffman and Buttleman, 1996; Smith, 1997), are reanalyzed by newer analytical methods that are more sensitive, accurate, and precise (Arbogast, 1996; Taggart, 2002). The main objectives for the reanalysis of these samples were to establish lower limits of determination for some elements and to confirm the NURE data as a reliable predictive reconnaissance tool for future studies in Alaska's Eagle 3? Quadrangle. This study has wide implications for using the archived NURE samples and data throughout Alaska for future studies.

  10. Multiple-element semiquantitative analysis of one-milligram geochemical samples by D.C. arc emission spectrography

    USGS Publications Warehouse

    Rait, N.

    1981-01-01

    A modified method is described for a 1-mg sample multi-element semiquantitative spectrographic analysis. This method uses a direct-current arc source, carbon instead of graphite electrodes, and an 80% argon-20% oxygen atmosphere instead of air. Although this is a destructive method, an analysis can be made for 68 elements in all mineral and geochemical samples. Carbon electrodes have been an aid in improving the detection limits of many elements. The carbon has a greater resistance to heat conductance and develops a better tip, facilitating sample volatilization and counter balancing the cooling effect of a flow of the argon-oxygen mixture around the anode. Where such an argon-oxygen atmosphere is used instead of air, the cyanogen band lines are greatly diminished in intensity, and thus more spectral lines of analysis elements are available for use; the spectral background is also lower. The main advantage of using the carbon electrode and the 80% argon-20% oxygen atmosphere is the improved detection limits of 36 out of 68 elements. The detection limits remain the same for 23 elements, and are not as good for only nine elements. ?? 1981.

  11. Exploration Geochemistry.

    ERIC Educational Resources Information Center

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  12. Age, geochemical composition, and distribution of Oligocene ignimbrites in the northern Sierra Nevada, California: Implications for landscape morphology, elevation, and drainage divide geography of the Nevadaplano

    USGS Publications Warehouse

    Cassel, Elizabeth J.; Calvert, Andrew T.; Graham, Stephan A.

    2009-01-01

    To gain a better understanding of the topographic and landscape evolution of the Cenozoic Sierra Nevada and Basin and Range, we combine geochemical and isotopic age correlations with palaeoaltimetry data from widely distributed ignimbrites in the northern Sierra Nevada, California. A sequence of Oligocene rhyolitic ignimbrites is preserved across the modern crest of the range and into the western foothills. Using trace and rare earth element geochemical analyses of volcanic glass, these deposits have been correlated to ignimbrites described and isotopically dated in the Walker Lane fault zone and in central Nevada (Henry et al., 2004, Geologic map of the Dogskin mountain quadrangle; Washoe County, Nevada; Faulds et al., 2005, Geology, v. 33, p. 505–508). Ignimbrite deposits were sampled within the northern Sierra Nevada and western Nevada, and four distinct geochemical compositions were identified. The majority of samples from within the northern Sierra Nevada have compositions similar to the tuffs of Axehandle Canyon or Rattlesnake Canyon, both likely sourced from the same caldera complex in either the Clan Alpine Mountains or the Stillwater Range, or to the tuff of Campbell Creek, sourced from the Desatoya Mountains caldera. New 40Ar/39Ar age determinations from these samples of 31.2, 30.9, and 28.7 Ma, respectively, support these correlations. Based on an Oligocene palinspastic reconstruction of the region, our results show that ignimbrites travelled over 200 km from their source calderas across what is now the crest of the Sierra Nevada, and that during that time, no drainage divide existed between the ignimbrite source calderas in central Nevada and sample locations 200 km to the west. Palaeoaltimetry data from Sierra Nevada ignimbrites, based on the hydrogen isotopic composition of hydration water in glass, reflect the effect of a steep western slope on precipitation and indicate that the area had elevations similar to the present-day range. These combined results suggest that source calderas were likely located in a region of high elevation to the east of the Oligocene Sierra Nevada, which had a steep western slope that allowed for the large extent and broad distribution of the ignimbrites.

  13. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo eruption of 1957 belongs to these primitive clusters and is the only known to have erupted outside the current rift valley in historical times. We thus infer there is a distributed hazard of vent opening susceptibility additional to the susceptibility associated with the main Virunga edifices. This study suggests that the statistical analysis of such geochemical database may help to understand complex volcanic plumbing systems and the spatial distribution of volcanic hazards in active and poorly known volcanic areas such as the Virunga Volcanic Province.

  14. Major and trace (including REEs) element stratigraphy in the first 90 m (around 1 Myr) of ANDRILL AND-1B drillcore.

    NASA Astrophysics Data System (ADS)

    Rugi, Francesco; Becagli, Silvia; Ghedini, Costanza; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Monien, Donata; Kuhn, Gerhard; Giorgetti, Giovanna; Talarico, Franco

    2010-05-01

    An integrated system Inductively Coupled Plasma - Sector Field Mass Spectrometry (ICP-SFMS) and Inductively Coupled Plasma - Atomic Emission Spectrophotometry (ICP - AES) has been applied to quantify 39 major and trace elements (including Rare Earths Elements -REE) in Antarctic glaciomarine sediments collected in the framework of ANDRILL. This project aims to study the role of the Antarctic Continent within the global climatic system, by the recovery and analysis of two deep sediment cores (AND-1B, MIS and AND-2A, SMS), drilled close to the margin of the Ross Ice Shelf. The main goals of ANDRILL were to obtain a stratigraphic record that documents key steps in Antarctica's Cenozoic climatic and glacial history, and in the tectonic evolution of the Transantarctic Mountains and the West Antarctic rift System. In particular, the study of the geochemical composition of sediments along the two ANDRILL cores can provide information about the possible source of terrigenous material deposited over the drilling site (Harwood et al., 2006). Preliminary results with a spatial resolution of about 1 m for the geochemical composition of the interval 24.66- 85.24 m of depth of marine sediments from AND-1B core covering about the last 1 Ma, are here shown. The concentration ratio of each measured element with respect to Al concentration, used as terrigenous reference, was calculated in order to remove the possible effect on elemental concentrations of differences in average sediment grain-size along the core and possible dilution effects and point out specified metal enrichments. The presented data and depth profiles (e.g. Fe/Al, Mn/Al, Co/Al, Cr/Al, Eu/Al and Europium anomaly) relative to sediments deposited during the last Ma at the MIS site, show an evident discontinuity from samples collected above and below 58.4 m of depth, corresponding to about 0.45 Ma BP, following the latest AND-1B dating model (85.24 m of depth corresponding to about 0.988 Ma; the chronological datum of the sediments is developed from 40Ar/39Ar ages volcanic deposits, Naish et al. 2009). This difference of geochemical composition suggests different rock sources for the material deposited before and after about 0.45 Ma BP. In particular the geochemical composition of the upper sediments is similar to the one of McMurdo Volcanic Group (MVG) whereas the lower sediments are close to the compositions of samples collected in the Transantarctic Mountain (TAM). Such a different composition could be linked to the climatic discontinuity known as Mid-Brunhes Event (MBE), dated 430 Kyr BP, which marks the boundary between two different global climatic conditions, with the youngest part characterized by a larger temperature gap between short and warm interglacials and long and cold glacials, with respect to the oldest part. Bibliography: Harwood, D. et al. (2006), Deep drilling with the ANDRILL program in Antarctica, Sci. Drill., 3, 43-45. Naish T. et al. (2009), Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322-328.

  15. Geochemistry of serpentinites in subduction zones: A review

    NASA Astrophysics Data System (ADS)

    Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko

    2013-04-01

    Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zones geodynamics. Their presence and effective role in this environment is acknowledged notably by geophysical, geochemical and field observations of (paleo-) subduction zones. In this context, with the increasing amount of studies concerning serpentinites in subduction environments, a huge geochemical database was created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical analyses of abyssal, mantle wedge and subducted serpentinites. The aim was to better understand the geochemical evolution of these rocks during their subduction history as well as their impact in the global geochemical cycle. When studying serpentinites, it is often a challenge to determine the nature of the protolith and their geological history before serpentinisation. The present-day (increasing) geochemical database for serpentinites indicates little to no mobility of incompatible elements at the scale of the hand-sample in most serpentinized peridotites. Thus, Rare Earth Elements (REE) distribution can be used to identify the initial protolith for abyssal and mantle wedge serpentinites, as well as magmatic processes such as melt/rock interactions taking place before serpentinisation. In the case of subducted serpentinites, the interpretation of trace element data is more difficult due to secondary enrichments independent of the nature of the protolith, notably in (L)REE. We propose that these enrichments reflect complex interactions probably not related to serpentinisation itself, but mostly to fluid/rock or sediment/rock interactions within the subduction channel, as well as intrinsic feature of the mantle protolith which could derive from the continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous studies have been carried out, notably using in situ approaches, to better constrain the geochemical budget of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) stored in serpentinites and serpentine phases. These elements are good markers of the fluid/rock interactions taking place during serpentinisation. Today, the control of serpentinites on the behaviour of these elements, from their incorporation to their gradually release during subduction, is better understood. Serpentinites must be considered as a component of the FME budget in subduction zones and their role, notably on arc magmas composition, is undoubtedly underestimated presently in the global geochemical cycle.

  16. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn occurred as a result of chemical precipitation of these metals from ground water upstream in the Red River. Comparisons of the geochemistry of the post-1979 sediment core with both mine wastes and with premining sediment from the vicinity of the Questa mine indicate that both are possible sources for this new component of sediment. Existing data have not resolved this enigma.

  17. Natural radioactivity in stream sediments of Oltet River, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40 show a good correlation between them and reflect the lithological features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and potassium bearing mineral determines the movement of rock particles under moving water effect, and redistribution in alluvial sediments with preservation of the native features. In this zone under the action of biochemical processes and other chemical weathering agents, uranium is released from rocks and penetrates in the superficial circulation area or groundwater. Through this geochemical process the amounts of thorium and potassium released are modest, leaching of uranium being the dominant feature (uranyl ion). The downstream lignite seams are the secondary geochemical barriers in accumulation of uranium; the radiometric data obtained for stream sediments emphasize this enrichment.

  18. Prospects for Dating the South Pole-Aitken Basin through Impact-Melt Rock Samples

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Coker, R. F.; Petro, N. E.

    2016-01-01

    Much of the present debate about the ages of the nearside basins arises because of the difficulty in understanding the relationship of recovered samples to their parent basin. The Apollo breccias are from basin ejecta formations, which are ballistically-emplaced distal deposits that have mixed provenances. The Nectaris, Imbrium, and Serenitatis basins all have mare-basalt fill obscuring their original melt sheets, so geochemical ties are indirect. Though the geological processes acting to vertically and laterally mix materials into regolith are the same as at the Apollo sites, the SPA interior is a fundamentally different geologic setting than the Apollo sites. The South Pole-Aitken basin was likely filled by a large impact melt sheet, possibly differentiated into cumulate horizons. It is on this distinctive melt sheet that the regolith has formed, somewhat diluting but not erasing the prominent geochemical signature seen from orbital assets. By analogy to the Apollo 16 site, a zeroth-order expectation is that bulk samples taken from regolith within SPA will contain abundant samples gardened from the SPA melt sheet. However, questions persist as to whether the SPA melt sheet has been so extensively contaminated with foreign ejecta that a simple robotic scoop sample of such regolith would be unlikely to yield the age of the basin.

  19. Geochemical appraisal of fluoride-laden groundwater in Suri I and II blocks, Birbhum district, West Bengal

    NASA Astrophysics Data System (ADS)

    Das, Shreya; Nag, S. K.

    2017-09-01

    The present study has been carried out covering two blocks—Suri I and II in Birbhum district, West Bengal, India. The evaluation focuses on occurrence, distribution and geochemistry in 26 water samples collected from borewells spread across the entire study area homogeneously. Quantitative chemical analysis of groundwater samples collected from the present study area has shown that samples from two locations—Gangta and Dhalla contain fluoride greater than the permissible limit prescribed by WHO during both post-monsoon and pre-monsoon sampling sessions. Significant factor controlling geochemistry of groundwater has been identified to be rock-water interaction processes during both sampling sessions based on the results of Gibb's diagrams. Geochemical modeling studies have revealed that fluorite (CaF2) is, indeed, present as a significant fluoride-bearing mineral in the groundwaters of this study area. Calcite or CaCO3 is one of the most common minerals with which fluorite remains associated, and saturation index calculations have revealed that the calcite-fluorite geochemistry is the dominant factor controlling fluoride concentration in this area during both post- and pre-monsoon. High fluoride waters have also been found to be of `bicarbonate' type showing increase of sodium in water with decrease of calcium.

  20. Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zeng, Zhigang; Cui, Lukai; Yin, Xuebo

    2018-04-01

    The East Pacific Rise (EPR) is a typical fast spreading ridge. To gain a better understanding of the magmatism under ridges, Mid Ocean Ridge Basalts (MORBs) with remarkably heterogeneous compositions are obtained from (EPR) 1°-2°S and multielement geochemical and radioisotope analyses are conducted. Results show that these MORBs have wide variation ranges in trace element concentrations and isotopic ratios. Sample 07 has low concentrations of incompatible elements, and very low 87Sr/86Sr, and high 143Nd/144Nd from 0.70213 to 0.702289 and 0.513234 to 0.513289, respectively. However, other samples show enrichment in incompatible elements to varying degrees, and medium values of 87Sr/86Sr and 143Nd/144Nd from 0.702440 to 0.702680 and 0.513086 to 0.513200, respectively. This study proposes that one depleted source and two enriched sources contribute to the formation of MORBs from EPR 1°-2°S. Samples 02 and 10 are formed by mixing between one enriched source and one depleted source, while sample 07 is crystallized from the depleted source with no mixing process involved. However, the formation of samples 06 and 11 are different, and thus further research is required to determine genesis.

Top