Sample records for geographic object-based image

  1. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  2. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  3. Geographic Object-Based Image Analysis - Towards a new paradigm.

    PubMed

    Blaschke, Thomas; Hay, Geoffrey J; Kelly, Maggi; Lang, Stefan; Hofmann, Peter; Addink, Elisabeth; Queiroz Feitosa, Raul; van der Meer, Freek; van der Werff, Harald; van Coillie, Frieke; Tiede, Dirk

    2014-01-01

    The amount of scientific literature on (Geographic) Object-based Image Analysis - GEOBIA has been and still is sharply increasing. These approaches to analysing imagery have antecedents in earlier research on image segmentation and use GIS-like spatial analysis within classification and feature extraction approaches. This article investigates these development and its implications and asks whether or not this is a new paradigm in remote sensing and Geographic Information Science (GIScience). We first discuss several limitations of prevailing per-pixel methods when applied to high resolution images. Then we explore the paradigm concept developed by Kuhn (1962) and discuss whether GEOBIA can be regarded as a paradigm according to this definition. We crystallize core concepts of GEOBIA, including the role of objects, of ontologies and the multiplicity of scales and we discuss how these conceptual developments support important methods in remote sensing such as change detection and accuracy assessment. The ramifications of the different theoretical foundations between the ' per-pixel paradigm ' and GEOBIA are analysed, as are some of the challenges along this path from pixels, to objects, to geo-intelligence. Based on several paradigm indications as defined by Kuhn and based on an analysis of peer-reviewed scientific literature we conclude that GEOBIA is a new and evolving paradigm.

  4. Geographic Object-Based Image Analysis – Towards a new paradigm

    PubMed Central

    Blaschke, Thomas; Hay, Geoffrey J.; Kelly, Maggi; Lang, Stefan; Hofmann, Peter; Addink, Elisabeth; Queiroz Feitosa, Raul; van der Meer, Freek; van der Werff, Harald; van Coillie, Frieke; Tiede, Dirk

    2014-01-01

    The amount of scientific literature on (Geographic) Object-based Image Analysis – GEOBIA has been and still is sharply increasing. These approaches to analysing imagery have antecedents in earlier research on image segmentation and use GIS-like spatial analysis within classification and feature extraction approaches. This article investigates these development and its implications and asks whether or not this is a new paradigm in remote sensing and Geographic Information Science (GIScience). We first discuss several limitations of prevailing per-pixel methods when applied to high resolution images. Then we explore the paradigm concept developed by Kuhn (1962) and discuss whether GEOBIA can be regarded as a paradigm according to this definition. We crystallize core concepts of GEOBIA, including the role of objects, of ontologies and the multiplicity of scales and we discuss how these conceptual developments support important methods in remote sensing such as change detection and accuracy assessment. The ramifications of the different theoretical foundations between the ‘per-pixel paradigm’ and GEOBIA are analysed, as are some of the challenges along this path from pixels, to objects, to geo-intelligence. Based on several paradigm indications as defined by Kuhn and based on an analysis of peer-reviewed scientific literature we conclude that GEOBIA is a new and evolving paradigm. PMID:24623958

  5. Objected-oriented remote sensing image classification method based on geographic ontology model

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Liu, Z. J.; Gu, H. Y.

    2016-11-01

    Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.

  6. Contextually guided very-high-resolution imagery classification with semantic segments

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Du, Shihong; Wang, Qiao; Emery, William J.

    2017-10-01

    Contextual information, revealing relationships and dependencies between image objects, is one of the most important information for the successful interpretation of very-high-resolution (VHR) remote sensing imagery. Over the last decade, geographic object-based image analysis (GEOBIA) technique has been widely used to first divide images into homogeneous parts, and then to assign semantic labels according to the properties of image segments. However, due to the complexity and heterogeneity of VHR images, segments without semantic labels (i.e., semantic-free segments) generated with low-level features often fail to represent geographic entities (such as building roofs usually be partitioned into chimney/antenna/shadow parts). As a result, it is hard to capture contextual information across geographic entities when using semantic-free segments. In contrast to low-level features, "deep" features can be used to build robust segments with accurate labels (i.e., semantic segments) in order to represent geographic entities at higher levels. Based on these semantic segments, semantic graphs can be constructed to capture contextual information in VHR images. In this paper, semantic segments were first explored with convolutional neural networks (CNN) and a conditional random field (CRF) model was then applied to model the contextual information between semantic segments. Experimental results on two challenging VHR datasets (i.e., the Vaihingen and Beijing scenes) indicate that the proposed method is an improvement over existing image classification techniques in classification performance (overall accuracy ranges from 82% to 96%).

  7. Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis

    NASA Astrophysics Data System (ADS)

    Addink, Elisabeth A.; Van Coillie, Frieke M. B.; De Jong, Steven M.

    2012-04-01

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerable attention over the past 15 years for analyzing and interpreting remote sensing imagery. In contrast to traditional image analysis, GEOBIA works more like the human eye-brain combination does. The latter uses the object's color (spectral information), size, texture, shape and occurrence to other image objects to interpret and analyze what we see. GEOBIA starts by segmenting the image grouping together pixels into objects and next uses a wide range of object properties to classify the objects or to extract object's properties from the image. Significant advances and improvements in image analysis and interpretation are made thanks to GEOBIA. In June 2010 the third conference on GEOBIA took place at the Ghent University after successful previous meetings in Calgary (2008) and Salzburg (2006). This special issue presents a selection of the 2010 conference papers that are worked out as full research papers for JAG. The papers cover GEOBIA applications as well as innovative methods and techniques. The topics range from vegetation mapping, forest parameter estimation, tree crown identification, urban mapping, land cover change, feature selection methods and the effects of image compression on segmentation. From the original 94 conference papers, 26 full research manuscripts were submitted; nine papers were selected and are presented in this special issue. Selection was done on the basis of quality and topic of the studies. The next GEOBIA conference will take place in Rio de Janeiro from 7 to 9 May 2012 where we hope to welcome even more scientists working in the field of GEOBIA.

  8. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  9. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  10. Automated geographic registration and radiometric correction for UAV-based mosaics

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Sima, Chao; Yang, Chenghai; Cope, Dale A.

    2017-05-01

    Texas A and M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to science-based utilization of such mosaics are geographic registration and radiometric calibration. In our current research project, image files are taken to the computer laboratory after the flight, and semi-manual pre-processing is implemented on the raw image data, including ortho-mosaicking and radiometric calibration. Ground control points (GCPs) are critical for high-quality geographic registration of images during mosaicking. Applications requiring accurate reflectance data also require radiometric-calibration references so that reflectance values of image objects can be calculated. We have developed a method for automated geographic registration and radiometric correction with targets that are installed semi-permanently at distributed locations around fields. The targets are a combination of black (≍5% reflectance), dark gray (≍20% reflectance), and light gray (≍40% reflectance) sections that provide for a transformation of pixel-value to reflectance in the dynamic range of crop fields. The exact spectral reflectance of each target is known, having been measured with a spectrophotometer. At the time of installation, each target is measured for position with a real-time kinematic GPS receiver to give its precise latitude and longitude. Automated location of the reference targets in the images is required for precise, automated, geographic registration; and automated calculation of the digital-number to reflectance transformation is required for automated radiometric calibration. To validate the system for radiometric calibration, a calibrated UAV-based image mosaic of a field was compared to a calibrated single image from a manned aircraft. Reflectance values in selected zones of each image were strongly linearly related, and the average error of UAV-mosaic reflectances was 3.4% in the red band, 1.9% in the green band, and 1.5% in the blue band. Based on these results, the proposed physical system and automated software for calibrating UAV mosaics show excellent promise.

  11. Nationwide Hybrid Change Detection of Buildings

    NASA Astrophysics Data System (ADS)

    Hron, V.; Halounova, L.

    2016-06-01

    The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  12. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  13. Automatic landslide detection from LiDAR DTM derivatives by geographic-object-based image analysis based on open-source software

    NASA Astrophysics Data System (ADS)

    Knevels, Raphael; Leopold, Philip; Petschko, Helene

    2017-04-01

    With high-resolution airborne Light Detection and Ranging (LiDAR) data more commonly available, many studies have been performed to facilitate the detailed information on the earth surface and to analyse its limitation. Specifically in the field of natural hazards, digital terrain models (DTM) have been used to map hazardous processes such as landslides mainly by visual interpretation of LiDAR DTM derivatives. However, new approaches are striving towards automatic detection of landslides to speed up the process of generating landslide inventories. These studies usually use a combination of optical imagery and terrain data, and are designed in commercial software packages such as ESRI ArcGIS, Definiens eCognition, or MathWorks MATLAB. The objective of this study was to investigate the potential of open-source software for automatic landslide detection based only on high-resolution LiDAR DTM derivatives in a study area within the federal state of Burgenland, Austria. The study area is very prone to landslides which have been mapped with different methodologies in recent years. The free development environment R was used to integrate open-source geographic information system (GIS) software, such as SAGA (System for Automated Geoscientific Analyses), GRASS (Geographic Resources Analysis Support System), or TauDEM (Terrain Analysis Using Digital Elevation Models). The implemented geographic-object-based image analysis (GEOBIA) consisted of (1) derivation of land surface parameters, such as slope, surface roughness, curvature, or flow direction, (2) finding optimal scale parameter by the use of an objective function, (3) multi-scale segmentation, (4) classification of landslide parts (main scarp, body, flanks) by k-mean thresholding, (5) assessment of the classification performance using a pre-existing landslide inventory, and (6) post-processing analysis for the further use in landslide inventories. The results of the developed open-source approach demonstrated good success rates to objectively detect landslides in high-resolution topography data by GEOBIA.

  14. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Li, Manchun; Liu, Yongxue; Ma, Xiaoxue

    2015-04-01

    Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class.

  15. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis.

    PubMed

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-11-28

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35-100 m(2)) and large (≥100 m(2)) trees compared to small (<35 m(2)) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas.

  16. Tree Crown Mapping in Managed Woodlands (Parklands) of Semi-Arid West Africa Using WorldView-2 Imagery and Geographic Object Based Image Analysis

    PubMed Central

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-01-01

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35–100 m2) and large (≥100 m2) trees compared to small (<35 m2) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815

  17. Advanced data structures for the interpretation of image and cartographic data in geo-based information systems

    NASA Technical Reports Server (NTRS)

    Peuquet, D. J.

    1986-01-01

    A growing need to usse geographic information systems (GIS) to improve the flexibility and overall performance of very large, heterogeneous data bases was examined. The Vaster structure and the Topological Grid structure were compared to test whether such hybrid structures represent an improvement in performance. The use of artificial intelligence in a geographic/earth sciences data base context is being explored. The architecture of the Knowledge Based GIS (KBGIS) has a dual object/spatial data base and a three tier hierarchial search subsystem. Quadtree Spatial Spectra (QTSS) are derived, based on the quadtree data structure, to generate and represent spatial distribution information for large volumes of spatial data.

  18. Vector-Based Ground Surface and Object Representation Using Cameras

    DTIC Science & Technology

    2009-12-01

    representations and it is a digital data structure used for the representation of a ground surface in geographical information systems ( GIS ). Figure...Vision API library, and the OpenCV library. Also, the Posix thread library was utilized to quickly capture the source images from cameras. Both

  19. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration.

    PubMed

    Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T

    2014-07-01

    To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.

  20. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    NASA Astrophysics Data System (ADS)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  1. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  2. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  3. High-performance technology for indexing of high volumes of Earth remote sensing data

    NASA Astrophysics Data System (ADS)

    Strotov, Valery V.; Taganov, Alexander I.; Kolesenkov, Aleksandr N.; Kostrov, Boris V.

    2017-10-01

    The present paper has suggested a technology for search, indexing, cataloging and distribution of aerospace images on the basis of geo-information approach, cluster and spectral analysis. It has considered information and algorithmic support of the system. Functional circuit of the system and structure of the geographical data base have been developed on the basis of the geographical online portal technology. Taking into account heterogeneity of information obtained from various sources it is reasonable to apply a geoinformation platform that allows analyzing space location of objects and territories and executing complex processing of information. Geoinformation platform is based on cartographic fundamentals with the uniform coordinate system, the geographical data base, a set of algorithms and program modules for execution of various tasks. The technology for adding by particular users and companies of images taken by means of professional and amateur devices and also processed by various software tools to the array system has been suggested. Complex usage of visual and instrumental approaches allows significantly expanding an application area of Earth remote sensing data. Development and implementation of new algorithms based on the complex usage of new methods for processing of structured and unstructured data of high volumes will increase periodicity and rate of data updating. The paper has shown that application of original algorithms for search, indexing and cataloging of aerospace images will provide an easy access to information spread by hundreds of suppliers and allow increasing an access rate to aerospace images up to 5 times in comparison with current analogues.

  4. Geographical Topics Learning of Geo-Tagged Social Images.

    PubMed

    Zhang, Xiaoming; Ji, Shufan; Wang, Senzhang; Li, Zhoujun; Lv, Xueqiang

    2016-03-01

    With the availability of cheap location sensors, geotagging of images in online social media is very popular. With a large amount of geo-tagged social images, it is interesting to study how these images are shared across geographical regions and how the geographical language characteristics and vision patterns are distributed across different regions. Unlike textual document, geo-tagged social image contains multiple types of content, i.e., textual description, visual content, and geographical information. Existing approaches usually mine geographical characteristics using a subset of multiple types of image contents or combining those contents linearly, which ignore correlations between different types of contents, and their geographical distributions. Therefore, in this paper, we propose a novel method to discover geographical characteristics of geo-tagged social images using a geographical topic model called geographical topic model of social images (GTMSIs). GTMSI integrates multiple types of social image contents as well as the geographical distributions, in which image topics are modeled based on both vocabulary and visual features. In GTMSI, each region of the image would have its own topic distribution, and hence have its own language model and vision pattern. Experimental results show that our GTMSI could identify interesting topics and vision patterns, as well as provide location prediction and image tagging.

  5. Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Bijker, Wietske; Tolpekin, Valentyn A.; Stein, Alfred

    2012-04-01

    Municipalities need accurate and updated inventories of urban vegetation in order to manage green resources and estimate their return on investment in urban forestry activities. Earlier studies have shown that semi-automatic tree detection using remote sensing is a challenging task. This study aims to develop a reproducible geographic object-based image analysis (GEOBIA) methodology to locate and delineate tree crowns in urban areas using high resolution imagery. We propose a GEOBIA approach that considers the spectral, spatial and contextual characteristics of tree objects in the urban space. The study presents classification rules that exploit object features at multiple segmentation scales modifying the labeling and shape of image-objects. The GEOBIA methodology was implemented on QuickBird images acquired over the cities of Enschede and Delft (The Netherlands), resulting in an identification rate of 70% and 82% respectively. False negative errors concentrated on small trees and false positive errors in private gardens. The quality of crown boundaries was acceptable, with an overall delineation error <0.24 outside of gardens and backyards.

  6. Geographical topic learning for social images with a deep neural network

    NASA Astrophysics Data System (ADS)

    Feng, Jiangfan; Xu, Xin

    2017-03-01

    The use of geographical tagging in social-media images is becoming a part of image metadata and a great interest for geographical information science. It is well recognized that geographical topic learning is crucial for geographical annotation. Existing methods usually exploit geographical characteristics using image preprocessing, pixel-based classification, and feature recognition. How to effectively exploit the high-level semantic feature and underlying correlation among different types of contents is a crucial task for geographical topic learning. Deep learning (DL) has recently demonstrated robust capabilities for image tagging and has been introduced into geoscience. It extracts high-level features computed from a whole image component, where the cluttered background may dominate spatial features in the deep representation. Therefore, a method of spatial-attentional DL for geographical topic learning is provided and we can regard it as a special case of DL combined with various deep networks and tuning tricks. Results demonstrated that the method is discriminative for different types of geographical topic learning. In addition, it outperforms other sequential processing models in a tagging task for a geographical image dataset.

  7. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  8. Comparison of Fundus Autofluorescence Between Fundus Camera and Confocal Scanning Laser Ophthalmoscope–based Systems

    PubMed Central

    Park, Sung Pyo; Siringo, Frank S.; Pensec, Noelle; Hong, In Hwan; Sparrow, Janet; Barile, Gaetano; Tsang, Stephen H.; Chang, Stanley

    2015-01-01

    BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm2 via cSLO and 3.81 ± 1.94 mm2 via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer. PMID:24221461

  9. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  10. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  11. Hyperspectral discrimination of camouflaged target

    NASA Astrophysics Data System (ADS)

    Bárta, Vojtěch; Racek, František

    2017-10-01

    The article deals with detection of camouflaged objects during winter season. Winter camouflage is a marginal affair in most countries due to short time period of the snow cover. In the geographical condition of Central Europe the winter period with snow occurs less than 1/12 of year. The LWIR or SWIR spectral areas are used for detection of camouflaged objects. For those spectral regions the difference in chemical composition and temperature express in spectral features. Exploitation of the LWIR and SWIR devices is demanding due to their large dimension and expensiveness. Therefore, the article deals with estimation of utilization of VIS region for detecting of camouflaged object on snow background. The multispectral image output for the various spectral filters is simulated. Hyperspectral indices are determined to detect the camouflaged objects in the winter. The multispectral image simulation is based on the hyperspectral datacube obtained in real conditions.

  12. a Cognitive Approach to Teaching a Graduate-Level Geobia Course

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel A.

    2016-06-01

    Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  13. GEOBIA For Land Use Mapping Using Worldview2 Image In Bengkak Village Coastal, Banyuwangi Regency, East Java

    NASA Astrophysics Data System (ADS)

    Alrassi, Fitzastri; Salim, Emil; Nina, Anastasia; Alwi, Luthfi; Danoedoro, Projo; Kamal, Muhammad

    2016-11-01

    The east coast of Banyuwangi regency has a diverse variety of land use such as ponds, mangroves, agricultural fields and settlements. WorldView-2 is a multispectral image with high spatial resolution that can display detailed information of land use. Geographic Object Based Image Analysis (GEOBIA) classification technique uses object segments as the smallest unit of analysis. The segmentation and classification process is not only based on spectral value of the image but also considering other elements of the image interpretation. This gives GEOBIA an opportunities and challenges in the mapping and monitoring of land use. This research aims to assess the GEOBIA classification method for generating the classification of land use in coastal areas of Banyuwangi. The result of this study is land use classification map produced by GEOBIA classification. We verified the accuracy of the resulted land use map by comparing the map with result from visual interpretation of the image that have been validated through field surveys. Variation of land use in most of the east coast of Banyuwangi regency is dominated by mangrove, agricultural fields, mixed farms, settlements and ponds.

  14. Cross-Service Investigation of Geographical Information Systems

    DTIC Science & Technology

    2004-03-01

    Figure 8 illustrates the combined layers. Information for the layers is stored in a database format. The two types of storage are vector and...raster models. In a vector model, the image and information are stored as geometric objects such as points, lines, or polygons. In a raster model...DNCs are a vector -based digital database with selected maritime significant physical features from hydrographic charts. Layers within the DNC are data

  15. Geographical classification of apple based on hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Zhao, Chunjiang; Peng, Yankun

    2013-05-01

    Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.

  16. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  17. Cancer-related Imaging in the Veterans Affairs Health Care System versus Medicare: Does a System with Lower Use Exhibit Less Geographic Variation?

    PubMed Central

    McWilliams, J. Michael; Dalton, Jesse B.; Landrum, Mary Beth; Frakt, Austin B.; Pizer, Steven D.; Keating, Nancy L.

    2014-01-01

    Background Geographic variations in use of medical services have been interpreted as indirect evidence of wasteful care. Less overuse of services, however, may not be reliably associated with less geographic variation. Objective To compare average use and geographic variation in use of cancer-related imaging between fee-for-service Medicare and the Department of Veterans Affairs (VA) health care system. Design Observational analysis of cancer-related imaging from 2003–2005, using Medicare and VA utilization data linked to cancer registry data. We used multilevel models to estimate mean differences in annual imaging use between cohorts of Medicare and VA patients within geographic areas and variation in use across areas for each cohort, adjusting for sociodemographic and tumor characteristics. Setting 40 hospital referral regions. Patients Older men with lung, colorectal, or prostate cancer, including 34,475 traditional Medicare beneficiaries (Medicare cohort) and 6,835 VA patients (VA cohort). Measurements 1)Per-patient count of imaging studies for which lung, colorectal, or prostate cancer was the primary diagnosis (each study weighted by a standardized price); 2)a direct measure of overuse—advanced imaging for prostate cancer at low risk of metastasis. Results Adjusted annual use of cancer-related imaging was lower in the VA cohort than the Medicare cohort (price-weighted count, $197 vs. $379/patient; P<0.001), as was annual use of advanced imaging for prostate cancer at low risk of metastasis ($41 vs. $117/patient; P<0.001). Geographic variation in cancer-related imaging use was similar in magnitude in the VA and Medicare cohorts. Limitations Observational study design. Conclusions Use of cancer-related imaging was lower in the VA health care system than in fee-for-service Medicare, but lower use was not associated with less geographic variation. Geographic variation in service use may not be a reliable indicator of the extent of overuse. Primary Funding Source Doris Duke Charitable Foundation and Department of Veterans Affairs Office of Policy and Planning. PMID:25437407

  18. Research on image evidence in land supervision and GIS management

    NASA Astrophysics Data System (ADS)

    Li, Qiu; Wu, Lixin

    2006-10-01

    Land resource development and utilization brings many problems. The numbers, the scale and volume of illegal land use cases are on the increasing. Since the territory is vast, and the land violations are concealment, it is difficulty for an effective land supervision and management. In this paper, the concepts of evidence, and preservation of evidence were described first. The concepts of image evidence (IE), natural evidence (NE), natural preservation of evidence (NPE), general preservation of evidence (GPE) were proposed based on the characteristics of remote sensing image (RSI) which has a characteristic of objectiveness, truthfulness, high spatial resolution, more information included. Using MapObjects and Visual Basic 6.0, under the Access management to implement the conjunction of spatial vector database and attribute data table; taking RSI as the data sources and background layer; combining the powerful management of geographic information system (GIS) for spatial data, and visual analysis, a land supervision and GIS management system was design and implemented based on NPE. The practical use in Beijing shows that the system is running well, and solved some problems in land supervision and management.

  19. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  20. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Feng, Xuezhi; Xiao, Pengfeng; He, Guangjun; Zhu, Liujun

    2015-04-01

    Segmentation of remote sensing images is a critical step in geographic object-based image analysis. Evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and optimize their parameters. In this study, we propose region-based precision and recall measures and use them to compare two image partitions for the purpose of evaluating segmentation quality. The two measures are calculated based on region overlapping and presented as a point or a curve in a precision-recall space, which can indicate segmentation quality in both geometric and arithmetic respects. Furthermore, the precision and recall measures are combined by using four different methods. We examine and compare the effectiveness of the combined indicators through geometric illustration, in an effort to reveal segmentation quality clearly and capture the trade-off between the two measures. In the experiments, we adopted the multiresolution segmentation (MRS) method for evaluation. The proposed measures are compared with four existing discrepancy measures to further confirm their capabilities. Finally, we suggest using a combination of the region-based precision-recall curve and the F-measure for supervised segmentation evaluation.

  1. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  2. Virtual Surveyor based Object Extraction from Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Habib, Md. Ahsan

    Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.

  3. Object-based landslide detection in different geographic regions

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Hölbling, Daniel; Eisank, Clemens; Blaschke, Thomas

    2015-04-01

    Landslides occur in almost all mountainous regions of the world and rank among the most severe natural hazards. In the last decade - according to the world disaster report 2014 published by the International Federation of Red Cross and Red Crescent Societies (IRFC) - more than 9.000 people were killed by mass movements, more than 3.2 million people were affected and the total amount of disaster estimated damage accounts to more than 1.700 million US dollars. The application of remote sensing data for mapping landslides can contribute to post-disaster reconstruction or hazard mitigation, either by providing rapid information about the spatial distribution and location of landslides in the aftermath of triggering events or by creating and updating landslide inventories. This is especially valid for remote and inaccessible areas, where information on landslides is often lacking. However, reliable methods are needed for extracting timely and relevant information about landslides from remote sensing data. In recent years, novel methods such as object-based image analysis (OBIA) have been successfully employed for semi-automated landslide mapping. Several studies revealed that OBIA frequently outperforms pixel-based approaches, as a range of image object properties (spectral, spatial, morphometric, contextual) can be exploited during the analysis. However, object-based methods are often tailored to specific study areas, and thus, the transferability to regions with different geological settings, is often limited. The present case study evaluates the transferability and applicability of an OBIA approach for landslide detection in two distinct regions, i.e. the island of Taiwan and Austria. In Taiwan, sub-areas in the Baichi catchment in the North and in the Huaguoshan catchment in the southern-central part of the island are selected; in Austria, landslide-affected sites in the Upper Salzach catchment in the federal state of Salzburg are investigated. For both regions, SPOT-5 images are combined with digital elevation models (DEM) for developing a consistent semi-automated landslide detection approach using eCognition (Trimble) software. Suitable image objects are generated by means of multiresolution segmentation. Expert knowledge, i.e. reported facts on features (e.g. mean object slope, mean NDVI) and thresholds that are commonly chosen by professionals for digital landslide mapping, is considered during classification. The applicability of a range of features is tested and the most promising parameters, i.e. features that produce appropriate results for both regions, are selected for landslide detection. However, minor adaptations of particular thresholds are necessary due to the distinct environmental conditions of the test sites. In order to reduce the number of required adjustments to a minimum, relational features and spectral indices are primarily used for classification. The obtained results are finally compared to manually digitized reference polygons and existing landslide inventories in order to quantify the applicability of the developed object-based landslide detection approach in different geographic regions.

  4. From fields to objects: A review of geographic boundary analysis

    NASA Astrophysics Data System (ADS)

    Jacquez, G. M.; Maruca, S.; Fortin, M.-J.

    Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.

  5. Harvesting geographic features from heterogeneous raster maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi

    2010-11-01

    Raster maps offer a great deal of geospatial information and are easily accessible compared to other geospatial data. However, harvesting geographic features locked in heterogeneous raster maps to obtain the geospatial information is challenging. This is because of the varying image quality of raster maps (e.g., scanned maps with poor image quality and computer-generated maps with good image quality), the overlapping geographic features in maps, and the typical lack of metadata (e.g., map geocoordinates, map source, and original vector data). Previous work on map processing is typically limited to a specific type of map and often relies on intensive manual work. In contrast, this thesis investigates a general approach that does not rely on any prior knowledge and requires minimal user effort to process heterogeneous raster maps. This approach includes automatic and supervised techniques to process raster maps for separating individual layers of geographic features from the maps and recognizing geographic features in the separated layers (i.e., detecting road intersections, generating and vectorizing road geometry, and recognizing text labels). The automatic technique eliminates user intervention by exploiting common map properties of how road lines and text labels are drawn in raster maps. For example, the road lines are elongated linear objects and the characters are small connected-objects. The supervised technique utilizes labels of road and text areas to handle complex raster maps, or maps with poor image quality, and can process a variety of raster maps with minimal user input. The results show that the general approach can handle raster maps with varying map complexity, color usage, and image quality. By matching extracted road intersections to another geospatial dataset, we can identify the geocoordinates of a raster map and further align the raster map, separated feature layers from the map, and recognized features from the layers with the geospatial dataset. The road vectorization and text recognition results outperform state-of-art commercial products, and with considerably less user input. The approach in this thesis allows us to make use of the geospatial information of heterogeneous maps locked in raster format.

  6. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  7. KBGIS-2: A knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Smith, T.; Peuquet, D.; Menon, S.; Agarwal, P.

    1986-01-01

    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2.

  8. Object-based Landslide Mapping: Examples, Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris

    2016-04-01

    Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple types of landslides. Unlike in these northern European countries, landslides in Taiwan can be effectively delineated based on spectral differences as the surrounding is most often densely vegetated. In this tropical/subtropical region the fast information provision after Typhoon events is important. This need can be addressed in OBIA by automatically calculating thresholds based on vegetation indices and using them for a first rough identification of areas affected by landslides. Moreover, the differentiation in landslide source and transportation area is of high relevance in Taiwan. Finally, an example from New Zealand, where landslide inventory mapping is important for estimating surface erosion, will demonstrate the performance of OBIA compared to visual expert interpretation and on-screen mapping. The associated challenges and opportunities related to case studies in each of these regions are discussed and reviewed. In doing so, open research issues in object-based landslide mapping based on EO data are identified and highlighted.

  9. Automated geographic registration and radiometric correction for UAV-based mosaics

    USDA-ARS?s Scientific Manuscript database

    Texas A&M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to s...

  10. Methodology for cork plank characterization (Quercus suber L.) by near-infrared spectroscopy and image analysis

    NASA Astrophysics Data System (ADS)

    Prades, Cristina; García-Olmo, Juan; Romero-Prieto, Tomás; García de Ceca, José L.; López-Luque, Rafael

    2010-06-01

    The procedures used today to characterize cork plank for the manufacture of cork bottle stoppers continue to be based on a traditional, manual method that is highly subjective. Furthermore, there is no specific legislation regarding cork classification. The objective of this viability study is to assess the potential of near-infrared spectroscopy (NIRS) technology for characterizing cork plank according to the following variables: aspect or visual quality, porosity, moisture and geographical origin. In order to calculate the porosity coefficient, an image analysis program was specifically developed in Visual Basic language for a desktop scanner. A set comprising 170 samples from two geographical areas of Andalusia (Spain) was classified into eight quality classes by visual inspection. Spectra were obtained in the transverse and tangential sections of the cork planks using an NIRSystems 6500 SY II reflectance spectrophotometer. The quantitative calibrations showed cross-validation coefficients of determination of 0.47 for visual quality, 0.69 for porosity and 0.66 for moisture. The results obtained using NIRS technology are promising considering the heterogeneity and variability of a natural product such as cork in spite of the fact that the standard error of cross validation (SECV) in the quantitative analysis is greater than the standard error of laboratory (SEL) for the three variables. The qualitative analysis regarding geographical origin achieved very satisfactory results. Applying these methods in industry will permit quality control procedures to be automated, as well as establishing correlations between the different classification systems currently used in the sector. These methods can be implemented in the cork chain of custody certification and will also provide a certainly more objective tool for assessing the economic value of the product.

  11. Quick multitemporal approach to get cloudless improved multispectral imagery for large geographical areas

    NASA Astrophysics Data System (ADS)

    Colaninno, Nicola; Marambio Castillo, Alejandro; Roca Cladera, Josep

    2017-10-01

    The demand for remotely sensed data is growing increasingly, due to the possibility of managing information about huge geographic areas, in digital format, at different time periods, and suitable for analysis in GIS platforms. However, primary satellite information is not such immediate as desirable. Beside geometric and atmospheric limitations, clouds, cloud shadows, and haze generally contaminate optical images. In terms of land cover, such a contamination is intended as missing information and should be replaced. Generally, image reconstruction is classified according to three main approaches, i.e. in-painting-based, multispectral-based, and multitemporal-based methods. This work relies on a multitemporal-based approach to retrieve uncontaminated pixels for an image scene. We explore an automatic method for quickly getting daytime cloudless and shadow-free image at moderate spatial resolution for large geographical areas. The process expects two main steps: a multitemporal effect adjustment to avoid significant seasonal variations, and a data reconstruction phase, based on automatic selection of uncontaminated pixels from an image stack. The result is a composite image based on middle values of the stack, over a year. The assumption is that, for specific purposes, land cover changes at a coarse scale are not significant over relatively short time periods. Because it is largely recognized that satellite imagery along tropical areas are generally strongly affected by clouds, the methodology is tested for the case study of the Dominican Republic at the year 2015; while Landsat 8 imagery are employed to test the approach.

  12. One's own country and familiar places in the mind's eye: different topological representations for navigational and non-navigational contents.

    PubMed

    Boccia, M; Piccardi, L; Palermo, L; Nemmi, F; Sulpizio, V; Galati, G; Guariglia, C

    2014-09-05

    Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  14. Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data

    NASA Astrophysics Data System (ADS)

    Han, X.; Wu, J.

    2018-04-01

    The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.

  15. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  16. The Pedagogical Benefits of Participatory GIS for Geographic Education

    ERIC Educational Resources Information Center

    Sinha, Gaurav; Smucker, Thomas A.; Lovell, Eric J.; Velempini, Kgosietsile; Miller, Samuel A.; Weiner, Daniel; Wangui, Elizabeth Edna

    2017-01-01

    In this article, participatory geographic information systems GIS (PGIS) is explored and established as a powerful platform for geographic education. PGIS pedagogy can help educators meet diverse learning objectives pertaining to: (1) local knowledge and place-based thinking; (2) community engagement; (3) field mapping with geospatial…

  17. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique.

    PubMed

    Cao, Yang; Zhang, Chaojie; Chen, Quansheng; Li, Yanyu; Qi, Shuai; Tian, Lin; Ren, YongLin

    2015-08-01

    Identifying stored-product insects is essential for granary management. Automated, computer-based classification methods are rapidly developing in many areas. A hyperspectral imaging technique could potentially be developed to identify stored-product insect species and geographical strains. This study tested and adapted the technique using four geographical strains of each of two insect species, the rice weevil and maize weevil, to collect and analyse the resultant hyperspectral data. Three characteristic images that corresponded to the dominant wavelengths, 505, 659 and 955 nm, were selected by multivariate image analysis. Each image was processed, and 22 morphological and textural features from regions of interest were extracted as the inputs for an identification model. We found the backpropagation neural network model to be the superior method for distinguishing between the insect species and geographical strains. The overall recognition rates of the classification model for insect species were 100 and 98.13% for the calibration and prediction sets respectively, while the rates of the model for geographical strains were 94.17 and 86.88% respectively. This study has demonstrated that hyperspectral imaging, together with the appropriate recognition method, could provide a potential instrument for identifying insects and could become a useful tool for identification of Sitophilus oryzae and Sitophilus zeamais to aid in the management of stored-product insects. © 2014 Society of Chemical Industry.

  18. From high spatial resolution imagery to spatial indicators : Application for hydromorphy follow-up on Bourgneuf wetland

    NASA Astrophysics Data System (ADS)

    Bailly, J. S.; Puech, C.; Lukac, F.; Massé, J.

    2003-04-01

    On Atlantic coastal wetlands, the understanding of hydrological processes may refer to hydraulic surface structures characterization as small ditches or channels networks, permanent and temporary water bodies. Moreover to improve the understanding, this characerization should be realized regarding different seasons and different spatial scales: elementary parcel, managment unit and whole wetland scales. In complement to usual observations on a few local ground points, high spatial resolution remote sensing may be a good information support for extraction and characterization on elementary objects, especially water bodies, permanents or temporary ones and ditches. To carry out a floow-up on wetlands, a seasonal image acquisition rate, reachable from most of satelite systems, is in that case informative for hydrological needs. In this work, georeferencing methods on openfield wetlands have been handled with care in order to use diachronic images or combined geographical data; lack of relief, short vegetation and well structured landscape make this preprocess easier in comparison to other landscape situations. In this presentation we focus on spatial hydromorphy parameters constructed from images with specific processes. Especially, hydromorphy indicators for parcels or managment units have been developped using an IRC winter-spring-summer metric resolution set of images: these descriptors are based on water areas evolution or hydrophyl vegetations presence traducing hydrodynamic submersion behaviour in temporary water bodies. An other example presents a surface water network circulation indicator elaborated on IRC aerial photography combined with vectorized geographic database. This indicator is based on ditches width and vegetation presence : a specific process uses vectorized geo data set to define transects across ditches on which classified image analysis is carried out (supervised classification). These first results proposing hydromorphy descriptors from very high resolution don't give complete indicators for follow-up and monitoring of coastal wetlands, but their combinaison, aggregation should present good technical bases to carry it out with success.

  19. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  20. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  1. KBGIS-II: A knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj

    1986-01-01

    The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.

  2. Crowd-sourced pictures geo-localization method based on street view images and 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Yuan, Yi; Xia, Nan; Chen, Song; Chen, Yanming; Yang, Kang; Ma, Lei; Li, Manchun

    2018-07-01

    People are increasingly becoming accustomed to taking photos of everyday life in modern cities and uploading them on major photo-sharing social media sites. These sites contain numerous pictures, but some have incomplete or blurred location information. The geo-localization of crowd-sourced pictures enriches the information contained therein, and is applicable to activities such as urban construction, urban landscape analysis, and crime tracking. However, geo-localization faces huge technical challenges. This paper proposes a method for large-scale geo-localization of crowd-sourced pictures. Our approach uses structured, organized Street View images as a reference dataset and employs a three-step strategy of coarse geo-localization by image retrieval, selecting reliable matches by image registration, and fine geo-localization by 3D reconstruction to attach geographic tags to pictures from unidentified sources. In study area, 3D reconstruction based on close-range photogrammetry is used to restore the 3D geographical information of the crowd-sourced pictures, resulting in the proposed method improving the median error from 256.7 m to 69.0 m, and the percentage of the geo-localized query pictures under a 50 m error from 17.2% to 43.2% compared with the previous method. Another discovery using the proposed method is that, in respect of the causes of reconstruction error, closer distances from the cameras to the main objects in query pictures tend to produce lower errors and the component of error parallel to the road makes a more significant contribution to the Total Error. The proposed method is not limited to small areas, and could be expanded to cities and larger areas owing to its flexible parameters.

  3. Effects of image spatial and radiometric resolutions on the detection of cotton plants

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely detection of volunteer and regrowth cotton plants is important for the eradication of boll weevils in south Texas. Airborne remote sensing imagery has the potential to identify volunteer and regrowth cotton plants over large geographic regions. The objective of this study was to ...

  4. The Application Research of National Geography Census Data in the Departmental Investigation and Management-Taking Land Management as AN Example

    NASA Astrophysics Data System (ADS)

    Jiang, N.

    2018-04-01

    According to the "Natural priority, Status quo priority" principle of acquisition, the national geography census data has the characteristics of objectivity, impartiality and accuracy. It provides a new perspective for the management and decision-making support of other industries as a "third party" and plays an important role in the professional management and investigation of various departments including land, transportation, forestry and water conservancy. Taking land resources supervision as an example, the Yellow River Delta efficient eco-economic zone as the research area, based on the national geographic census data and the land survey data, this paper established the correspondence of the two types of data through the reclassification of the land cover classification data, calculated the spatial coincidence rate of the same land class and the circulation relations among different land classes through the spatial overlay analysis and the calculation of space transfer matrix, quantified the differences between the data and objectively analysed the causes of the differences; On this basis, combined with land supervision hot spots, supplemented by multi-source remote sensing images and socio-economic data, analysed the application of geographic census data in the land regulation from multi-point.

  5. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  6. Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems

    NASA Astrophysics Data System (ADS)

    Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.

    2015-05-01

    Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.

  7. Referenceless perceptual fog density prediction model

    NASA Astrophysics Data System (ADS)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan C.

    2014-02-01

    We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and "fog aware" statistical features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding fogless image, without side geographical camera information, without training on human-rated judgments, and without dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images.

  8. Citing geospatial feature inventories with XML manifests

    NASA Astrophysics Data System (ADS)

    Bose, R.; McGarva, G.

    2006-12-01

    Today published scientific papers include a growing number of citations for online information sources that either complement or replace printed journals and books. We anticipate this same trend for cartographic citations used in the geosciences, following advances in web mapping and geographic feature-based services. Instead of using traditional libraries to resolve citations for print material, the geospatial citation life cycle will include requesting inventories of objects or geographic features from distributed geospatial data repositories. Using a case study from the UK Ordnance Survey MasterMap database, which is illustrative of geographic object-based products in general, we propose citing inventories of geographic objects using XML feature manifests. These manifests: (1) serve as a portable listing of sets of versioned features; (2) could be used as citations within the identification portion of an international geospatial metadata standard; (3) could be incorporated into geospatial data transfer formats such as GML; but (4) can be resolved only with comprehensive, curated repositories of current and historic data. This work has implications for any researcher who foresees the need to make or resolve references to online geospatial databases.

  9. Processing Satellite Imagery To Detect Waste Tire Piles

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed. The TIRe model identifies the darkest objects in the images and, on the basis of spatial and spectral image characteristics, discriminates against other dark objects, which can include vegetation, some bodies of water, and dark soils. The TIRe model can identify piles of as few as 100 tires. The output of the TIRe model is a binary mask showing areas containing suspected tire piles and spectrally similar features. This mask is overlaid on the original satellite imagery and examined by a trained image analyst, who strives to further discriminate against non-tire objects that the TIRe model tentatively identified as tire piles. After the analyst has made adjustments, the mask is used to create a synoptic, geographically accurate tire-pile survey map, which can be overlaid with a road map and/or any other map or set of georeferenced data, according to a customer s preferences.

  10. Mapping Arctic Coastline Change With Object-Based Image Analysis of Temporally and Geographically Distributed Landsat Archive Data

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2011-12-01

    As a global phenomenon, climate change produces global effects. However, many of these effects are more intense in coastal and high latitude regions. Current longer periods of ice-free conditions, in combination with a rising sea level and thawing permafrost, can result in accelerated Arctic Ocean coastline change and erosion. Areas dominantly composed of ice-cemented peats and silt-rich permafrost have proven to be especially susceptible to rapid erosion. Anderson et al. (2009; Geology News) have measured erosion rates at sites along the Alaskan Arctic Ocean coast of 15 m per year. The continental scope of these changes, as well as the remote and inhospitable nature of the study area make geologic remote sensing techniques particularly well suited for studying coastal erosion along the 45,000 km of Arctic Ocean coastline. While it is valuable to determine current patterns of erosion, it is equally important to map historic rates in order to determine if coastal erosion is accelerating, if it is in a new behavioral regime, if there are areas of emergent erosion patterns, or if what is currently measured is only a single instance in a complex and constantly shifting pattern of an overall balance of erosion and deposition at high latitudes. Even in relatively stable conditions, coastline processes are dynamic and complex, making it especially important to ensure the best possible accuracy in a study of this kind. Remote sensing solutions in the earth sciences have often run in to obstacles concerning a lack of historic data and baselines as well as issues in the systemization of accurate feature mapping. Using object-based image analysis techniques on Landsat archive data allows for the possibility of a multi-decadal map of Arctic Ocean coastline changes. Landsat data (from sensors MSS 1-3 and TM/ETM 4, 5, and 7) provide imagery as frequently as every 16 days since July 1972, are well-calibrated both radiometrically and geometrically, and are freely available from USGS EROS Data Center Archive. Hand-digitization of Arctic Ocean coastline changes over several decades would require an impractical amount of time and expense and would introduce additional error due to analyst differences in image feature interpretation. Object-based image analysis techniques have been shown (Hulslander, et al., 2008; GEOBIA 2008 Proceedings) to produce results similar to but more consistent than those from groups of human analysts. Earlier work has shown (Hulslander, 2010; AGU Fall Meeting) that using object-based analysis on Landsat Archive data can be used to map Arctic Ocean coastline change within a Landsat scene. Here, results show that this approach can be extended and automated to stably map Arctic Ocean coastline change in Landsat datasets distributed both geographically and temporally. Furthermore, these preliminary results indicate the possibility of producing a pan-Arctic Ocean coastline map on a roughly triennial basis for the past 30-plus years.

  11. UAV Monitoring for Enviromental Management in Galapagos Islands

    NASA Astrophysics Data System (ADS)

    Ballari, D.; Orellana, D.; Acosta, E.; Espinoza, A.; Morocho, V.

    2016-06-01

    In the Galapagos Islands, where 97% of the territory is protected and ecosystem dynamics are highly vulnerable, timely and accurate information is key for decision making. An appropriate monitoring system must meet two key features: on one hand, being able to capture information in a systematic and regular basis, and on the other hand, to quickly gather information on demand for specific purposes. The lack of such a system for geographic information limits the ability of Galapagos Islands' institutions to evaluate and act upon environmental threats such as invasive species spread and vegetation degradation. In this context, the use of UAVs (unmanned aerial vehicles) for capturing georeferenced images is a promising technology for environmental monitoring and management. This paper explores the potential of UAV images for monitoring degradation of littoral vegetation in Puerto Villamil (Isabela Island, Galapagos, Ecuador). Imagery was captured using two camera types: Red Green Blue (RGB) and Infrarred Red Green (NIR). First, vegetation presence was identified through NDVI. Second, object-based classification was carried out for characterization of vegetation vigor. Results demonstrates the feasibility of UAV technology for base-line studies and monitoring on the amount and vigorousness of littoral vegetation in the Galapagos Islands. It is also showed that UAV images are not only useful for visual interpretation and object delineation, but also to timely produce useful thematic information for environmental management.

  12. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area

    Treesearch

    Ronald E. McRoberts

    2010-01-01

    Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...

  13. Predicting Database Requirements for Geographic Information Systems in the Year 2000: Long-Term Design Issues for GRASS

    DTIC Science & Technology

    1992-08-01

    Image Processing. Reading, Massachusetts: Addison-Wesley (1977). Graefe, G., "Parallelizing the Volcano Query Processor," Proc. IEEE COMPCON 90...Approach to a Next Generation of Hypermedia System," Proc. IEEE COMPCON 90 (February 1990), pp 520-527. Jellinghaus, R., " Eiffel Linda: An Object

  14. Applications based on restored satellite images

    NASA Astrophysics Data System (ADS)

    Arbel, D.; Levin, S.; Nir, M.; Bhasteker, I.

    2005-08-01

    Satellites orbit the earth and obtain imagery of the ground below. The quality of satellite images is affected by the properties of the atmospheric imaging path, which degrade the image by blurring it and reducing its contrast. Applications involving satellite images are many and varied. Imaging systems are also different technologically and in their physical and optical characteristics such as sensor types, resolution, field of view (FOV), spectral range of the acquiring channels - from the visible to the thermal IR (TIR), platforms (mobilization facilities; aircrafts and/or spacecrafts), altitude above ground surface etc. It is important to obtain good quality satellite images because of the variety of applications based on them. The more qualitative is the recorded image, the more information is yielded from the image. The restoration process is conditioned by gathering much data about the atmospheric medium and its characterization. In return, there is a contribution to the applications based on those restorations i.e., satellite communication, warfare against long distance missiles, geographical aspects, agricultural aspects, economical aspects, intelligence, security, military, etc. Several manners to use restored Landsat 7 enhanced thematic mapper plus (ETM+) satellite images are suggested and presented here. In particular, using the restoration results for few potential geographical applications such as color classification and mapping (roads and streets localization) methods.

  15. The influence of the Bible geographic objects peculiarities on the concept of the spatiotemporal geoinformation system

    NASA Astrophysics Data System (ADS)

    Linsebarth, A.; Moscicka, A.

    2010-01-01

    The article describes the infl uence of the Bible geographic object peculiarities on the spatiotemporal geoinformation system of the Bible events. In the proposed concept of this system the special attention was concentrated to the Bible geographic objects and interrelations between the names of these objects and their location in the geospace. In the Bible, both in the Old and New Testament, there are hundreds of geographical names, but the selection of these names from the Bible text is not so easy. The same names are applied for the persons and geographic objects. The next problem which arises is the classification of the geographical object, because in several cases the same name is used for the towns, mountains, hills, valleys etc. Also very serious problem is related to the time-changes of the names. The interrelation between the object name and its location is also complicated. The geographic object of this same name is located in various places which should be properly correlated with the Bible text. Above mentioned peculiarities of Bible geographic objects infl uenced the concept of the proposed system which consists of three databases: reference, geographic object, and subject/thematic. The crucial component of this system is proper architecture of the geographic object database. In the paper very detailed description of this database is presented. The interrelation between the databases allows to the Bible readers to connect the Bible text with the geography of the terrain on which the Bible events occurred and additionally to have access to the other geographical and historical information related to the geographic objects.

  16. Land cover change detection using a GIS-guided, feature-based classification of Landsat thematic mapper data. [Geographic Information System

    NASA Technical Reports Server (NTRS)

    Enslin, William R.; Ton, Jezching; Jain, Anil

    1987-01-01

    Landsat TM data were combined with land cover and planimetric data layers contained in the State of Michigan's geographic information system (GIS) to identify changes in forestlands, specifically new oil/gas wells. A GIS-guided feature-based classification method was developed. The regions extracted by the best image band/operator combination were studied using a set of rules based on the characteristics of the GIS oil/gas pads.

  17. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  18. Regional Differences in Tropical Lightning Distributions.

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.; Goodman, Steven J.; Heckman, Stan

    2000-12-01

    Observations from the National Aeronautics and Space Administration Optical Transient Detector (OTD) and Tropical Rainfall Measuring Mission (TRMM)-based Lightning Imaging Sensor (LIS) are analyzed for variability between land and ocean, various geographic regions, and different (objectively defined) convective `regimes.' The bulk of the order-of-magnitude differences between land and ocean regional flash rates are accounted for by differences in storm spacing (density) and/or frequency of occurrence, rather than differences in storm instantaneous flash rates, which only vary by a factor of 2 on average. Regional variability in cell density and cell flash rates closely tracks differences in 85-GHz microwave brightness temperatures. Monotonic relationships are found with the gross moist stability of the tropical atmosphere, a large-scale `adjusted state' parameter. This result strongly suggests that it will be possible, using TRMM observations, to objectively test numerical or theoretical predictions of how mesoscale convective organization interacts with the larger-scale environment. Further parameters are suggested for a complete objective definition of tropical convective regimes.

  19. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  20. A mobile agent-based moving objects indexing algorithm in location based service

    NASA Astrophysics Data System (ADS)

    Fang, Zhixiang; Li, Qingquan; Xu, Hong

    2006-10-01

    This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.

  1. Identification of uncommon objects in containers

    DOEpatents

    Bremer, Peer-Timo; Kim, Hyojin; Thiagarajan, Jayaraman J.

    2017-09-12

    A system for identifying in an image an object that is commonly found in a collection of images and for identifying a portion of an image that represents an object based on a consensus analysis of segmentations of the image. The system collects images of containers that contain objects for generating a collection of common objects within the containers. To process the images, the system generates a segmentation of each image. The image analysis system may also generate multiple segmentations for each image by introducing variations in the selection of voxels to be merged into a segment. The system then generates clusters of the segments based on similarity among the segments. Each cluster represents a common object found in the containers. Once the clustering is complete, the system may be used to identify common objects in images of new containers based on similarity between segments of images and the clusters.

  2. Characteristics of Urbanization in Five Watersheds of Anchorage, Alaska: Geographic Information System Data

    USGS Publications Warehouse

    Moran, Edward H.

    2002-01-01

    The report contains environmental and urban geographic information system data for 14 sites in 5 watersheds in Anchorage, Alaska. These sites were examined during summer in 1999 and 2000 to determine effects of urbanization on water quality. The data sets are Environmental Systems Research Institute, Inc., shapefiles, coverages, and images. Also included are an elevation grid and a triangulated irregular network. Although the data are intended for users with advanced geographic information system capabilities, simple images of the data also are available. ArcView? 3.2 project, an ArcGIS? project, and 16 ArcExplorer2? projects are linked to the PDF file based report. Some of these coverages are large files over 10 MB. The largest coverage, impervious cover, is 208 MB.

  3. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  4. Automated Construction of Coverage Catalogues of Aster Satellite Image for Urban Areas of the World

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Iwao, K.; Shibasaki, R.

    2012-07-01

    We developed an algorithm to determine a combination of satellite images according to observation extent and image quality. The algorithm was for testing necessity for completing coverage of the search extent. The tests excluded unnecessary images with low quality and preserve necessary images with good quality. The search conditions of the satellite images could be extended, indicating the catalogue could be constructed with specified periods required for time series analysis. We applied the method to a database of metadata of ASTER satellite images archived in GEO Grid of National Institute of Advanced Industrial Science and Technology (AIST), Japan. As indexes of populated places with geographical coordinates, we used a database of 3372 populated place of more than 0.1 million populations retrieved from GRUMP Settlement Points, a global gazetteer of cities, which has geographical names of populated places associated with geographical coordinates and population data. From the coordinates of populated places, 3372 extents were generated with radiuses of 30 km, a half of swath of ASTER satellite images. By merging extents overlapping each other, they were assembled into 2214 extents. As a result, we acquired combinations of good quality for 1244 extents, those of low quality for 96 extents, incomplete combinations for 611 extents. Further improvements would be expected by introducing pixel-based cloud assessment and pixel value correction over seasonal variations.

  5. Oil Spill Map for Indian Sea Region based on Bhuvan- Geographic Information System using Satellite Images

    NASA Astrophysics Data System (ADS)

    Vijaya kumar, L. J.; Kishore, J. K.; Kesava Rao, P.; Annadurai, M.; Dutt, C. B. S.; Hanumantha Rao, K.; Sasamal, S. K.; Arulraj, M.; Prasad, A. V. V.; Kumari, E. V. S. Sita; Satyanarayana, S. N.; Shenoy, H. P.

    2014-11-01

    Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analysis and decision making. Geographic information systems (GIS) like BHUVAN can significantly contribute to oil spill management based on Synthetic Aperture Radar (SAR) images. India has long coast line from Gujarat to Bengal and hundreds of ports. The increase in shipping also increases the risk of oil spills in our maritime zone. The availability of RISAT-1 SAR images enhances the scope to monitor oil spills and develop GIS on Bhuvan which can be accessed by all the users, such as ships, coast guard, environmentalists etc., The GIS enables realization of oil spill maps based on integration of the geographical, remote sensing, oil & gas production/infrastructure data and slick signatures detected by SAR. SAR and GIS technologies can significantly improve the realization of oil spill footprint distribution maps. Preliminary assessment shows that the Bhuvan promises to be an ideal solution to understand spatial, temporal occurrence of oil spills in the marine atlas of India. The oil spill maps on Bhuvan based GIS facility will help the ONGC and Coast Guard organization.

  6. The Atlantic Canada-New England Region and Environment. A Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    In this Learning Activity Packet (LAP) students examine the geographic and ecological bases of the Eastern international region. The overall objective of activities is to help students comprehend the man-earth relationship concept. By studying this familiar relevant region students gain geographic knowledge and skills applicable to other areas.…

  7. Transport link scanner: simulating geographic transport network expansion through individual investments

    NASA Astrophysics Data System (ADS)

    Jacobs-Crisioni, C.; Koopmans, C. C.

    2016-07-01

    This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness is defined as a function of variables in which revenue and broader societal benefits may play a role and can be based on empirically underpinned parameters that may differ according to private or public interests. The choice set is selected from an exhaustive set of links and presumably contains those investment options that best meet private operator's objectives by balancing the revenues of additional fare against construction costs. The investment options consist of geographically plausible routes with potential detours. These routes are generated using a fine-meshed regularly latticed network and shortest path finding methods. Additionally, two indicators of the geographic accuracy of the simulated networks are introduced. A historical case study is presented to demonstrate the model's first results. These results show that the modelled networks reproduce relevant results of the historically built network with reasonable accuracy.

  8. Verification of road databases using multiple road models

    NASA Astrophysics Data System (ADS)

    Ziems, Marcel; Rottensteiner, Franz; Heipke, Christian

    2017-08-01

    In this paper a new approach for automatic road database verification based on remote sensing images is presented. In contrast to existing methods, the applicability of the new approach is not restricted to specific road types, context areas or geographic regions. This is achieved by combining several state-of-the-art road detection and road verification approaches that work well under different circumstances. Each one serves as an independent module representing a unique road model and a specific processing strategy. All modules provide independent solutions for the verification problem of each road object stored in the database in form of two probability distributions, the first one for the state of a database object (correct or incorrect), and a second one for the state of the underlying road model (applicable or not applicable). In accordance with the Dempster-Shafer Theory, both distributions are mapped to a new state space comprising the classes correct, incorrect and unknown. Statistical reasoning is applied to obtain the optimal state of a road object. A comparison with state-of-the-art road detection approaches using benchmark datasets shows that in general the proposed approach provides results with larger completeness. Additional experiments reveal that based on the proposed method a highly reliable semi-automatic approach for road data base verification can be designed.

  9. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  10. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  11. A sampling procedure to guide the collection of narrow-band, high-resolution spatially and spectrally representative reflectance data. [satellite imagery of earth resources

    NASA Technical Reports Server (NTRS)

    Brand, R. R.; Barker, J. L.

    1983-01-01

    A multistage sampling procedure using image processing, geographical information systems, and analytical photogrammetry is presented which can be used to guide the collection of representative, high-resolution spectra and discrete reflectance targets for future satellite sensors. The procedure is general and can be adapted to characterize areas as small as minor watersheds and as large as multistate regions. Beginning with a user-determined study area, successive reductions in size and spectral variation are performed using image analysis techniques on data from the Multispectral Scanner, orbital and simulated Thematic Mapper, low altitude photography synchronized with the simulator, and associated digital data. An integrated image-based geographical information system supports processing requirements.

  12. Open-Source Python Tools for Deploying Interactive GIS Dashboards for a Billion Datapoints on a Laptop

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Bednar, J. A.; Rudiger, P.; Stevens, J. L. R.; Ball, C. E.; Christensen, S. D.; Pothina, D.

    2017-12-01

    The rich variety of software libraries available in the Python scientific ecosystem provides a flexible and powerful alternative to traditional integrated GIS (geographic information system) programs. Each such library focuses on doing a certain set of general-purpose tasks well, and Python makes it relatively simple to glue the libraries together to solve a wide range of complex, open-ended problems in Earth science. However, choosing an appropriate set of libraries can be challenging, and it is difficult to predict how much "glue code" will be needed for any particular combination of libraries and tasks. Here we present a set of libraries that have been designed to work well together to build interactive analyses and visualizations of large geographic datasets, in standard web browsers. The resulting workflows run on ordinary laptops even for billions of data points, and easily scale up to larger compute clusters when available. The declarative top-level interface used in these libraries means that even complex, fully interactive applications can be built and deployed as web services using only a few dozen lines of code, making it simple to create and share custom interactive applications even for datasets too large for most traditional GIS systems. The libraries we will cover include GeoViews (HoloViews extended for geographic applications) for declaring visualizable/plottable objects, Bokeh for building visual web applications from GeoViews objects, Datashader for rendering arbitrarily large datasets faithfully as fixed-size images, Param for specifying user-modifiable parameters that model your domain, Xarray for computing with n-dimensional array data, Dask for flexibly dispatching computational tasks across processors, and Numba for compiling array-based Python code down to fast machine code. We will show how to use the resulting workflow with static datasets and with simulators such as GSSHA or AdH, allowing you to deploy flexible, high-performance web-based dashboards for your GIS data or simulations without needing major investments in code development or maintenance.

  13. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  14. Object recognition based on Google's reverse image search and image similarity

    NASA Astrophysics Data System (ADS)

    Horváth, András.

    2015-12-01

    Image classification is one of the most challenging tasks in computer vision and a general multiclass classifier could solve many different tasks in image processing. Classification is usually done by shallow learning for predefined objects, which is a difficult task and very different from human vision, which is based on continuous learning of object classes and one requires years to learn a large taxonomy of objects which are not disjunct nor independent. In this paper I present a system based on Google image similarity algorithm and Google image database, which can classify a large set of different objects in a human like manner, identifying related classes and taxonomies.

  15. Object-based classification of semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Halabisky, Meghan; Moskal, L. Monika; Hall, Sonia A.

    2011-01-01

    Wetlands are valuable ecosystems that benefit society. However, throughout history wetlands have been converted to other land uses. For this reason, timely wetland maps are necessary for developing strategies to protect wetland habitat. The goal of this research was to develop a time-efficient, automated, low-cost method to map wetlands in a semi-arid landscape that could be scaled up for use at a county or state level, and could lay the groundwork for expanding to forested areas. Therefore, it was critical that the research project contain two components: accurate automated feature extraction and the use of low-cost imagery. For that reason, we tested the effectiveness of geographic object-based image analysis (GEOBIA) to delineate and classify wetlands using freely available true color aerial photographs provided through the National Agriculture Inventory Program. The GEOBIA method produced an overall accuracy of 89% (khat = 0.81), despite the absence of infrared spectral data. GEOBIA provides the automation that can save significant resources when scaled up while still providing sufficient spatial resolution and accuracy to be useful to state and local resource managers and policymakers.

  16. Geographic variation in cancer-related imaging: Veterans Affairs health care system versus Medicare.

    PubMed

    McWilliams, J Michael; Dalton, Jesse B; Landrum, Mary Beth; Frakt, Austin B; Pizer, Steven D; Keating, Nancy L

    2014-12-02

    Geographic variations in use of medical services have been interpreted as indirect evidence of wasteful care. Less overuse of services, however, may not be reliably associated with less geographic variation. To compare average use and geographic variation in use of cancer-related imaging between fee-for-service Medicare and the Department of Veterans Affairs (VA) health care system. Observational analysis of cancer-related imaging from 2003 to 2005 using Medicare and VA utilization data linked to cancer registry data. Multilevel models, adjusted for sociodemographic and tumor characteristics, were used to estimate mean differences in annual imaging use between cohorts of Medicare and VA patients within geographic areas and variation in use across areas for each cohort. 40 hospital referral regions. Older men with lung, colorectal, or prostate cancer, including 34,475 traditional Medicare beneficiaries (Medicare cohort) and 6835 VA patients (VA cohort). Per-patient count of imaging studies for which lung, colorectal, or prostate cancer was the primary diagnosis (each study weighted by a standardized price), and a direct measure of overuse-advanced imaging for prostate cancer at low risk for metastasis. Adjusted annual use of cancer-related imaging was lower in the VA cohort than in the Medicare cohort (price-weighted count, $197 vs. $379 per patient; P < 0.001), as was annual use of advanced imaging for prostate cancer at low risk for metastasis ($41 vs. $117 per patient; P < 0.001). Geographic variation in cancer-related imaging use was similar in magnitude in the VA and Medicare cohorts. Observational study design. Use of cancer-related imaging was lower in the VA health care system than in fee-for-service Medicare, but lower use was not associated with less geographic variation. Geographic variation in service use may not be a reliable indicator of the extent of overuse. Doris Duke Charitable Foundation and Department of Veterans Affairs Office of Policy and Planning.

  17. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests

    NASA Astrophysics Data System (ADS)

    Vogels, M. F. A.; de Jong, S. M.; Sterk, G.; Addink, E. A.

    2017-02-01

    Land-use and land-cover (LULC) conversions have an important impact on land degradation, erosion and water availability. Information on historical land cover (change) is crucial for studying and modelling land- and ecosystem degradation. During the past decades major LULC conversions occurred in Africa, Southeast Asia and South America as a consequence of a growing population and economy. Most distinct is the conversion of natural vegetation into cropland. Historical LULC information can be derived from satellite imagery, but these only date back until approximately 1972. Before the emergence of satellite imagery, landscapes were monitored by black-and-white (B&W) aerial photography. This photography is often visually interpreted, which is a very time-consuming approach. This study presents an innovative, semi-automated method to map cropland acreage from B&W photography. Cropland acreage was mapped on two study sites in Ethiopia and in The Netherlands. For this purpose we used Geographic Object-Based Image Analysis (GEOBIA) and a Random Forest classification on a set of variables comprising texture, shape, slope, neighbour and spectral information. Overall mapping accuracies attained are 90% and 96% for the two study areas respectively. This mapping method increases the timeline at which historical cropland expansion can be mapped purely from brightness information in B&W photography up to the 1930s, which is beneficial for regions where historical land-use statistics are mostly absent.

  18. A fuelwood plantation site selection procedure using geographic information system technology: A case study in support of the NASA Global Habitability Program

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.; Colwell, J. E.; Sellman, A. N.

    1985-01-01

    A study undertaken in support of NASA's Global Habitability Program is described. A demonstration of geographic information system (GIS) technology for site evaluation and selection is given. The objective was to locate potential fuelwood plantations within a 50 km radius of Nairobi, Kenya. A model was developed to evaluate site potential based on capability and suitability criteria and implemented using the Environmental Research Institute of Michigan's geographic information system.

  19. CognitionMaster: an object-based image analysis framework

    PubMed Central

    2013-01-01

    Background Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. Results In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept. Conclusions We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. PMID:23445542

  20. Balancing Science Objectives and Operational Constraints: A Mission Planner's Challenge

    NASA Technical Reports Server (NTRS)

    Weldy, Michelle

    1996-01-01

    The Air Force minute sensor technology integration (MSTI-3) satellite's primary mission is to characterize Earth's atmospheric background clutter. MSTI-3 will use three cameras for data collection, a mid-wave infrared imager, a short wave infrared imager, and a visible imaging spectrometer. Mission science objectives call for the collection of over 2 million images within the one year mission life. In addition, operational constraints limit camera usage to four operations of twenty minutes per day, with no more than 10,000 data and calibrating images collected per day. To balance the operational constraints and science objectives, the mission planning team has designed a planning process to e event schedules and sensor operation timelines. Each set of constraints, including spacecraft performance capabilities, the camera filters, the geographical regions, and the spacecraft-Sun-Earth geometries of interest, and remote tracking station deconflictions has been accounted for in this methodology. To aid in this process, the mission planning team is building a series of tools from commercial off-the-shelf software. These include the mission manifest which builds a daily schedule of events, and the MSTI Scene Simulator which helps build geometrically correct scans. These tools provide an efficient, responsive, and highly flexible architecture that maximizes data collection while minimizing mission planning time.

  1. Object-based land cover classification based on fusion of multifrequency SAR data and THAICHOTE optical imagery

    NASA Astrophysics Data System (ADS)

    Sukawattanavijit, Chanika; Srestasathiern, Panu

    2017-10-01

    Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.

  2. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  3. Modeling Of Object- And Scene-Prototypes With Hierarchically Structured Classes

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Jensch, P.; Ameling, W.

    1989-03-01

    The success of knowledge-based image analysis methodology and implementation tools depends largely on an appropriately and efficiently built model wherein the domain-specific context information about and the inherent structure of the observed image scene have been encoded. For identifying an object in an application environment a computer vision system needs to know firstly the description of the object to be found in an image or in an image sequence, secondly the corresponding relationships between object descriptions within the image sequence. This paper presents models of image objects scenes by means of hierarchically structured classes. Using the topovisual formalism of graph and higraph, we are currently studying principally the relational aspect and data abstraction of the modeling in order to visualize the structural nature resident in image objects and scenes, and to formalize. their descriptions. The goal is to expose the structure of image scene and the correspondence of image objects in the low level image interpretation. process. The object-based system design approach has been applied to build the model base. We utilize the object-oriented programming language C + + for designing, testing and implementing the abstracted entity classes and the operation structures which have been modeled topovisually. The reference images used for modeling prototypes of objects and scenes are from industrial environments as'well as medical applications.

  4. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  5. Images of the World: Mental Maps of U.S. Military Officers

    DTIC Science & Technology

    1992-05-01

    only displayed the geographic characteristics of the countries, (the direction, distance, and size; all relative to the U.S.) but the maps also indicate...individual’s mental map is based upon learned facts and exposure to impressionable images. Facts and images of the world constitute the foundation from... characteristics of the world are mostly static, images people have of places are dynamic and fluid. Graphically, this is the main difference between

  6. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection

    NASA Astrophysics Data System (ADS)

    Erener, A.

    2013-04-01

    Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.

  7. Chosen results of field tests of synthetic aperture radar system installed on board UAV

    NASA Astrophysics Data System (ADS)

    Kaniewski, Piotr; Komorniczak, Wojciech; Lesnik, Czeslaw; Cyrek, Jacek; Serafin, Piotr; Labowski, Michal; Wajszczyk, Bronislaw

    2017-04-01

    The paper presents a synthetic information on a UAV-based radar terrain imaging system, its purpose, structure and working principle as well as terrain images obtained from flight experiments. A SAR technology demonstrator has been built as a result of a research project conducted by the Military University of Technology and WB Electronics S.A. under the name WATSAR. The developed system allows to obtain high resolution radar images, both in on-line and off-line modes, independently of the light conditions over the observed area. The software developed for the system allows to determine geographic coordinates of the imaged objects with high accuracy. Four LFM-CW radar sensors were built during the project: two for S band and two for Ku band, working with different signal bandwidths. Acquired signals were processed with the TDC algorithm, which allowed for a number of analyses in order to evaluate the performance of the system. The impact of the navigational corrections on a SAR image quality was assessed as well. The research methodology of the in-flight experiments of the system is presented in the paper. The projects results show that the developed system may be implemented as an aid to tactical C4ISR systems.

  8. Study on Big Database Construction and its Application of Sample Data Collected in CHINA'S First National Geographic Conditions Census Based on Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Zhou, X.; Jia, Y.; Yang, G.; Bai, J.

    2018-04-01

    In the project of China's First National Geographic Conditions Census, millions of sample data have been collected all over the country for interpreting land cover based on remote sensing images, the quantity of data files reaches more than 12,000,000 and has grown in the following project of National Geographic Conditions Monitoring. By now, using database such as Oracle for storing the big data is the most effective method. However, applicable method is more significant for sample data's management and application. This paper studies a database construction method which is based on relational database with distributed file system. The vector data and file data are saved in different physical location. The key issues and solution method are discussed. Based on this, it studies the application method of sample data and analyzes some kinds of using cases, which could lay the foundation for sample data's application. Particularly, sample data locating in Shaanxi province are selected for verifying the method. At the same time, it takes 10 first-level classes which defined in the land cover classification system for example, and analyzes the spatial distribution and density characteristics of all kinds of sample data. The results verify that the method of database construction which is based on relational database with distributed file system is very useful and applicative for sample data's searching, analyzing and promoted application. Furthermore, sample data collected in the project of China's First National Geographic Conditions Census could be useful in the earth observation and land cover's quality assessment.

  9. Archive of ground penetrating radar data collected during USGS field activity 13BIM01—Dauphin Island, Alabama, April 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Smith, Christopher G.; Reynolds, Billy J.

    2016-03-18

    From April 13 to 20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) conducted geophysical and sediment sampling surveys on Dauphin Island, Alabama, as part of Field Activity 13BIM01. The objectives of the study were to quantify inorganic and organic accretion rates in back-barrier and mainland marsh and estuarine environments. Various field and laboratory methods were used to achieve these objectives, including subsurface imaging using Ground Penetrating Radar (GPR), sediment sampling, lithologic and microfossil analyses, and geochronology techniques to produce barrier island stratigraphic cross sections to help interpret the recent (last 2000 years) geologic evolution of the island.This data series report is an archive of GPR and associated Global Positioning System (GPS) data collected in April 2013 from Dauphin Island and adjacent barrier-island environments. In addition to GPR data, marsh core and vibracore data were also collected collected but are not reported (or included) in the current report. Data products, including elevation-corrected subsurface profile images of the processed GPR data, unprocessed digital GPR trace data, post-processed GPS data, Geographic Information System (GIS) files and accompanying Federal Geographic Data Committee (FGDC) metadata, can be downloaded from the Data Downloads page.

  10. A neuromorphic approach to satellite image understanding

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Perakakis, Manolis

    2014-05-01

    Remote sensing satellite imagery provides high altitude, top viewing aspects of large geographic regions and as such the depicted features are not always easily recognizable. Nevertheless, geoscientists familiar to remote sensing data, gradually gain experience and enhance their satellite image interpretation skills. The aim of this study is to devise a novel computational neuro-centered classification approach for feature extraction and image understanding. Object recognition through image processing practices is related to a series of known image/feature based attributes including size, shape, association, texture, etc. The objective of the study is to weight these attribute values towards the enhancement of feature recognition. The key cognitive experimentation concern is to define the point when a user recognizes a feature as it varies in terms of the above mentioned attributes and relate it with their corresponding values. Towards this end, we have set up an experimentation methodology that utilizes cognitive data from brain signals (EEG) and eye gaze data (eye tracking) of subjects watching satellite images of varying attributes; this allows the collection of rich real-time data that will be used for designing the image classifier. Since the data are already labeled by users (using an input device) a first step is to compare the performance of various machine-learning algorithms on the collected data. On the long-run, the aim of this work would be to investigate the automatic classification of unlabeled images (unsupervised learning) based purely on image attributes. The outcome of this innovative process is twofold: First, in an abundance of remote sensing image datasets we may define the essential image specifications in order to collect the appropriate data for each application and improve processing and resource efficiency. E.g. for a fault extraction application in a given scale a medium resolution 4-band image, may be more effective than costly, multispectral, very high resolution imagery. Second, we attempt to relate the experienced against the non-experienced user understanding in order to indirectly assess the possible limits of purely computational systems. In other words, obtain the conceptual limits of computation vs human cognition concerning feature recognition from satellite imagery. Preliminary results of this pilot study show relations between collected data and differentiation of the image attributes which indicates that our methodology can lead to important results.

  11. Geographic Information Systems and Martian Data: Compatibility and Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  12. Development and implementation of a low cost micro computer system for LANDSAT analysis and geographic data base applications

    NASA Technical Reports Server (NTRS)

    Faust, N.; Jordon, L.

    1981-01-01

    Since the implementation of the GRID and IMGRID computer programs for multivariate spatial analysis in the early 1970's, geographic data analysis subsequently moved from large computers to minicomputers and now to microcomputers with radical reduction in the costs associated with planning analyses. Programs designed to process LANDSAT data to be used as one element in a geographic data base were used once NIMGRID (new IMGRID), a raster oriented geographic information system, was implemented on the microcomputer. Programs for training field selection, supervised and unsupervised classification, and image enhancement were added. Enhancements to the color graphics capabilities of the microsystem allow display of three channels of LANDSAT data in color infrared format. The basic microcomputer hardware needed to perform NIMGRID and most LANDSAT analyses is listed as well as the software available for LANDSAT processing.

  13. 76 FR 28121 - Culturally Significant Objects Imported for Exhibition Determinations: “National Geographic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... DEPARTMENT OF STATE [PUBLIC NOTICE: 7456] Culturally Significant Objects Imported for Exhibition Determinations: ``National Geographic Treasures of the Earth'' SUMMARY: Notice is hereby given of the following... objects to be included in the exhibition ``National Geographic Treasures of the Earth'' imported from...

  14. Image Location Estimation by Salient Region Matching.

    PubMed

    Qian, Xueming; Zhao, Yisi; Han, Junwei

    2015-11-01

    Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.

  15. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  16. Evaluation of Geographic Indices Describing Health Care Utilization

    PubMed Central

    Park, Jong Heon

    2017-01-01

    Objectives The accurate measurement of geographic patterns of health care utilization is a prerequisite for the study of geographic variations in health care utilization. While several measures have been developed to measure how accurately geographic units reflect the health care utilization patterns of residents, they have been only applied to hospitalization and need further evaluation. This study aimed to evaluate geographic indices describing health care utilization. Methods We measured the utilization rate and four health care utilization indices (localization index, outflow index, inflow index, and net patient flow) for eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee replacement surgery, caesarean sections, hysterectomy, computed tomography scans, and magnetic resonance imaging scans) according to three levels of geographic units in Korea. Data were obtained from the National Health Insurance database in Korea. We evaluated the associations among the health care utilization indices and the utilization rates. Results In higher-level geographic units, the localization index tended to be high, while the inflow index and outflow index were lower. The indices showed different patterns depending on the procedure. A strong negative correlation between the localization index and the outflow index was observed for all procedures. Net patient flow showed a moderate positive correlation with the localization index and the inflow index. Conclusions Health care utilization indices can be used as a proxy to describe the utilization pattern of a procedure in a geographic unit. PMID:28173689

  17. Spectral-analysis-based extraction of land disturbances arising from oil and gas development in diverse landscapes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Jiao, Xianfen

    2017-01-01

    Accurate and frequent monitoring of land surface changes arising from oil and gas exploration and extraction is a key requirement for the responsible and sustainable development of these resources. Petroleum deposits typically extend over large geographic regions but much of the infrastructure required for oil and gas recovery takes the form of numerous small-scale features (e.g., well sites, access roads, etc.) scattered over the landscape. Increasing exploitation of oil and gas deposits will increase the presence of these disturbances in heavily populated regions. An object-based approach is proposed to utilize RapidEye satellite imagery to delineate well sites and related access roads in diverse complex landscapes, where land surface changes also arise from other human activities, such as forest logging and agriculture. A simplified object-based change vector approach, adaptable to operational use, is introduced to identify the disturbances on land based on red-green spectral response and spatial attributes of candidate object size and proximity to roads. Testing of the techniques has been undertaken with RapidEye multitemporal imagery in two test sites located at Alberta, Canada: one was a predominant natural forest landscape and the other landscape dominated by intensive agricultural activities. Accuracies of 84% and 73%, respectively, have been achieved for the identification of well site and access road infrastructure of the two sites based on fully automated processing. Limited manual relabeling of selected image segments can improve these accuracies to 95%.

  18. Fuzzy Logic for Incidence Geometry

    PubMed Central

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  19. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  20. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  1. Cartographic analyses of geographic information available on Google Earth Images

    NASA Astrophysics Data System (ADS)

    Oliveira, J. C.; Ramos, J. R.; Epiphanio, J. C.

    2011-12-01

    The propose was to evaluate planimetric accuracy of satellite images available on database of Google Earth. These images are referents to the vicinities of the Federal Univertisity of Viçosa, Minas Gerais - Brazil. The methodology developed evaluated the geographical information of three groups of images which were in accordance to the level of detail presented in the screen images (zoom). These groups of images were labeled to Zoom 1000 (a single image for the entire study area), Zoom 100 (formed by a mosaic of 73 images) and Zoom 100 with geometric correction (this mosaic is like before, however, it was applied a geometric correction through control points). In each group of image was measured the Cartographic Accuracy based on statistical analyses and brazilian's law parameters about planimetric mapping. For this evaluation were identified 22 points in each group of image, where the coordinates of each point were compared to the coordinates of the field obtained by GPS (Global Positioning System). The Table 1 show results related to accuracy (based on a threshold equal to 0.5 mm * mapping scale) and tendency (abscissa and ordinate) between the coordinates of the image and the coordinates of field. Table 1 The geometric correction applied to the Group Zoom 100 reduced the trends identified earlier, and the statistical tests pointed a usefulness of the data for a mapping at a scale of 1/5000 with error minor than 0.5 mm * scale. The analyses proved the quality of cartographic data provided by Google, as well as the possibility of reduce the divergences of positioning present on the data. It can be concluded that it is possible to obtain geographic information database available on Google Earth, however, the level of detail (zoom) used at the time of viewing and capturing information on the screen influences the quality cartographic of the mapping. Although cartographic and thematic potential present in the database, it is important to note that both the software as data distributed by Google Earth has policies for use and distribution.
    Table 1 - PLANIMETRIC ANALYSIS

  2. Improvement of the F-Perceptory Approach Through Management of Fuzzy Complex Geographic Objects

    NASA Astrophysics Data System (ADS)

    Khalfi, B.; de Runz, C.; Faiz, S.; Akdag, H.

    2015-08-01

    In the real world, data is imperfect and in various ways such as imprecision, vagueness, uncertainty, ambiguity and inconsistency. For geographic data, the fuzzy aspect is mainly manifested in time, space and the function of objects and is due to a lack of precision. Therefore, the researchers in the domain emphasize the importance of modeling data structures in GIS but also their lack of adaptation to fuzzy data. The F-Perceptory approachh manages the modeling of imperfect geographic information with UML. This management is essential to maintain faithfulness to reality and to better guide the user in his decision-making. However, this approach does not manage fuzzy complex geographic objects. The latter presents a multiple object with similar or different geographic shapes. So, in this paper, we propose to improve the F-Perceptory approach by proposing to handle fuzzy complex geographic objects modeling. In a second step, we propose its transformation to the UML modeling.

  3. Multiobject relative fuzzy connectedness and its implications in image segmentation

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Saha, Punam K.

    2001-07-01

    The notion of fuzzy connectedness captures the idea of hanging-togetherness of image elements in an object by assigning a strength of connectedness to every possible path between every possible pair of image elements. This concept leads to powerful image segmentation algorithms based on dynamic programming whose effectiveness has been demonstrated on 1000s of images in a variety of applications. In a previous framework, we introduced the notion of relative fuzzy connectedness for separating a foreground object from a background object. In this framework, an image element c is considered to belong to that among these two objects with respect to whose reference image element c has the higher strength of connectedness. In fuzzy connectedness, a local fuzzy reflation called affinity is used on the image domain. This relation was required for theoretical reasons to be of fixed form in the previous framework. In the present paper, we generalize relative connectedness to multiple objects, allowing all objects (of importance) to compete among themselves to grab membership of image elements based on their relative strength of connectedness to reference elements. We also allow affinity to be tailored to the individual objects. We present a theoretical and algorithmic framework and demonstrate that the objects defined are independent of the reference elements chosen as long as they are not in the fuzzy boundary between objects. Examples from medical imaging are presented to illustrate visually the effectiveness of multiple object relative fuzzy connectedness. A quantitative evaluation based on 160 mathematical phantom images demonstrates objectively the effectiveness of relative fuzzy connectedness with object- tailored affinity relation.

  4. Defense Small Business Innovation Research Program (SBIR). Volume 4. Defense Agency Projects, Abstracts of Phase 1 Awards from FY 1989 SBIR Solicitation

    DTIC Science & Technology

    1990-04-01

    EXPLOSIVE ACTIVITY . FINDINGS AND MEASUREMENTS FROM EACH IMAGE WILL BE COMBINED IN A GEOGRAPHIC INFORMATION DATA BASE . VARIOUS IMAGE AND MAP PROJECTS WILL BE...PROPOSAL OF LAND MINES DETECTION BY A NUCLEAR ACTIVATION METHOD IS BASED ON A NEW EXTREMELY INTENSE, COMPACT PULSED SOURCE OF 14.1 MeV NEUTRONS (WITH A...CONVENTIONAL KNOWLEDGE- BASED SYSTEMS TOPIC# 38 OFFICE: PM/SBIR IDENT#: 33862 CASE- BASED REASONING (CBR) REPRESENTS A POWERFUL NEW PARADIGM FOR BUILDING EXPERT

  5. Synergetic Paradigm of Geographical Science

    ERIC Educational Resources Information Center

    Gorbanyov, Vladimir A.

    2016-01-01

    It is shown that in the last decades, geography has expanded so much, that it has lost its object of study. It was not clear, what the geographical science does, and, as a consequence, households have an extremely low level of geographical cultures and geographical education. Each geography is extremely isolated, has its own object of study.…

  6. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  7. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  8. Interactive tele-radiological segmentation systems for treatment and diagnosis.

    PubMed

    Zimeras, S; Gortzis, L G

    2012-01-01

    Telehealth is the exchange of health information and the provision of health care services through electronic information and communications technology, where participants are separated by geographic, time, social and cultural barriers. The shift of telemedicine from desktop platforms to wireless and mobile technologies is likely to have a significant impact on healthcare in the future. It is therefore crucial to develop a general information exchange e-medical system to enables its users to perform online and offline medical consultations through diagnosis. During the medical diagnosis, image analysis techniques combined with doctor's opinions could be useful for final medical decisions. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. In medical images, segmentation has traditionally been done by human experts. Even with the aid of image processing software (computer-assisted segmentation tools), manual segmentation of 2D and 3D CT images is tedious, time-consuming, and thus impractical, especially in cases where a large number of objects must be specified. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. The main purpose of this work is to analyze segmentation techniques for the definition of anatomical structures under telemedical systems.

  9. Scale-based fuzzy connectivity: a novel image segmentation methodology and its validation

    NASA Astrophysics Data System (ADS)

    Saha, Punam K.; Udupa, Jayaram K.

    1999-05-01

    This paper extends a previously reported theory and algorithms for fuzzy connected object definition. It introduces `object scale' for determining the neighborhood size for defining affinity, the degree of local hanging togetherness between image elements. Object scale allows us to use a varying neighborhood size in different parts of the image. This paper argues that scale-based fuzzy connectivity is natural in object definition and demonstrates that this leads to a more effective object segmentation than without using scale in fuzzy concentrations. Affinity is described as consisting of a homogeneity-based and an object-feature- based component. Families of non scale-based and scale-based affinity relations are constructed. An effective method for giving a rough estimate of scale at different locations in the image is presented. The original theoretical and algorithmic framework remains more-or-less the same but considerably improved segmentations result. A quantitative statistical comparison between the non scale-based and the scale-based methods was made based on phantom images generated from patient MR brain studies by first segmenting the objects, and then by adding noise and blurring, and background component. Both the statistical and the subjective tests clearly indicate the superiority of scale- based method in capturing details and in robustness to noise.

  10. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au; Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales; Cox, Jennifer

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle changemore » between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more than 1.5 cm or reduced by more than 1 cm from the planned size. Using prostate bed tilt could be an effective measurement for assessing potential geographic miss on orthogonal images if volumetric imaging is unavailable.« less

  11. MISR Where on Earth…? Mystery Image Quiz #29

    Atmospheric Science Data Center

    2017-09-07

    ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ...

  12. Particle Pollution Estimation Based on Image Analysis

    PubMed Central

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction. PMID:26828757

  13. Particle Pollution Estimation Based on Image Analysis.

    PubMed

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

  14. Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Jones, Brandon M.

    2005-01-01

    Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.

  15. A digital photogrammetric method for measuring horizontal surficial movements on the slumgullion earthflow, Hinsdale county, Colorado

    USGS Publications Warehouse

    Powers, P.S.; Chiarle, M.; Savage, W.Z.

    1996-01-01

    The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.

  16. A High-Altitude Search for Vulcanoids: Progress Report

    NASA Astrophysics Data System (ADS)

    Durda, D. D.; Stern, S. A.; Terrell, D. C.; Weidenschilling, S. J.

    2002-09-01

    We are conducting a unique, high-altitude observing campaign to search for vulcanoids, a population of small, asteroid-like bodies hypothesized to reside in the dynamically stable region interior to Mercury's orbit (i.e., orbits with aphelia <0.21 AU). This airborne search campaign utilizes our versatile and highly capable SWUIS-A (Southwest Universal Imaging System - Airborne) instrument flown with the flight astronomer (SAS and DDD) to an altitude of 49,000 MSL aboard NASA F/A-18B aircraft in order to obtain darker twilight conditions for near-Sun observing than are possible from the ground. The first observing run was successfully completed at NASA's Dryden Flight Research Center during the March/April 2002 vernal equinox observing opportunity. On each of the three evening flights we recorded image data covering 250 square degrees of sky centered on the ecliptic from solar elongations of 6-18 deg. Initial reduction of portions of the Mar/Apr 2002 data set demonstrates that we are reliably detecting objects to magnitude V = 9.5 at 15 degrees solar elongation. This is at least a magnitude fainter than the best previous ground-based searches and comparable to the faintest stars visible in our space-based SOHO LASCO C3 coronagraph vulcanoids search. The SWUIS-A instrument itself is capable of imaging objects as faint as magnitude V = 13, corresponding to vulcanoids less than 10 km across, with a sufficiently dark sky background; we are working to mitigate sky background brightness to reach these deeper magnitude limits for a second F/A-18B observing run during the September 2002 autumnal equinox observing opportunity. We thank NASA research pilots Rick Searfoss, Dana Purifoy, and Craig Bomben. This research is supported by the NASA Planetary Astronomy program, NASA's Dryden Flight Research Center, and the National Geographic Society.

  17. Historical Delineation of Landscape Units Using Physical Geographic Characteristics and Land Use/Cover Change

    NASA Astrophysics Data System (ADS)

    Campos-Campos, Oswaldo; Cruz-Cárdenas, Gustavo; Aquino, Roque Juan Carrasco; Moncayo-Estrada, Rodrigo; Machuca, Martha Alicia Velázquez; Meléndez, Luis Arturo Ávila

    2018-03-01

    Landscape units are conceived as a part of the territory that share similar physical and geographic characteristics. Their delineation can contribute to identify the physical and social dynamics that emerge in the spatial environment and to propose strategies of planning and management of the territory. The main objective was to make a historical delineation of landscape units in the Duero river basin that demonstrate the dynamics of changes in the territory, the description of the actors involved, and the affectations in the natural and social environment. We analyzed the vegetation change and urban growth from 1983 to 2014, incorporating climatic, edaphic, and topographic variables. A Principal Component Analysis was performed with the information and results were used in Maximum Likelihood procedure to define different clusters based on environmental characteristics. We defined five categories from the Landsat images. Results showed landscape units with homogeneous environmental characteristics and some differences in the units' delineation were mainly influenced by political and socioeconomic factors. Temporally there was an increased tendency of landscape units, three in 1983, nine in 1990, 1995, 2000 and 2011, and eight in 2014. This increase resulted from territory fragmentation because of berries and avocado cultivars expansion over wooded area.

  18. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  19. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  20. A method of constructing geo-object ontology in disaster system for prevention and decrease

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong; Wang, Zhenfeng

    2009-10-01

    A kind of formal system, which can express clearly a certain entity or information, is needed to express geographical concept. Besides, some rules explaining the interrelationship and action between different components are also required. Therefore, the conception of geo-object ontology is introduced. It is a shared formalization and display specification of conceptual knowledge system in the field of concrete application of spatial information science. It can constitute hierarchy structure, which derives from the concept classification system in the geographical area. Its concepts can be described by the property. Property sets can form a vector space with multi-dimensional characteristics. Geographic space is composed of different types of geographic entities. And its concept is formed by a series of geographic entities with the same properties and actions. Moreover, each of the geographic entities can be mapped to an object, and each object has its spatial property, time information and topology, semantic relationships associated with other objects. The biggest difference between ecumenical information ontology and geo-ontology is that the latter has the spatial characteristics. During the construction process of geo-object ontology, some important components, such as geographic type, spatial relation, spatial entity type and coordinates, time, should be included to make further research. Here, taking disaster as an example, by using Protégé and OWL, combined methods used by constructing the geo-object ontology in the form of being manual made by domanial experts and semi-automatic are investigated oriented to disaster to serve ultimately geographic information retrieval service driven by ontology.

  1. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  2. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  3. Three-dimensional visualization of geographical terrain data using temporal parallax difference induction

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2009-02-01

    Vision III Imaging, Inc. (the Company) has developed Parallax Image Display (PIDTM) software tools to critically align and display aerial images with parallax differences. Terrain features are rendered obvious to the viewer when critically aligned images are presented alternately at 4.3 Hz. The recent inclusion of digital elevation models in geographic data browsers now allows true three-dimensional parallax to be acquired from virtual globe programs like Google Earth. The authors have successfully developed PID methods and code that allow three-dimensional geographical terrain data to be visualized using temporal parallax differences.

  4. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  5. Supervised classification of continental shelf sediment off western Donegal, Ireland

    NASA Astrophysics Data System (ADS)

    Monteys, X.; Craven, K.; McCarron, S. G.

    2017-12-01

    Managing human impacts on marine ecosystems requires natural regions to be identified and mapped over a range of hierarchically nested scales. In recent years (2000-present) the Irish National Seabed Survey (INSS) and Integrated Mapping for the Sustainable Development of Ireland's Marine Resources programme (INFOMAR) (Geological Survey Ireland and Marine Institute collaborations) has provided unprecedented quantities of high quality data on Ireland's offshore territories. The increasing availability of large, detailed digital representations of these environments requires the application of objective and quantitative analyses. This study presents results of a new approach for sea floor sediment mapping based on an integrated analysis of INFOMAR multibeam bathymetric data (including the derivatives of slope and relative position), backscatter data (including derivatives of angular response analysis) and sediment groundtruthing over the continental shelf, west of Donegal. It applies a Geographic-Object-Based Image Analysis software package to provide a supervised classification of the surface sediment. This approach can provide a statistically robust, high resolution classification of the seafloor. Initial results display a differentiation of sediment classes and a reduction in artefacts from previously applied methodologies. These results indicate a methodology that could be used during physical habitat mapping and classification of marine environments.

  6. Meta-image navigation augmenters for GPS denied mountain navigation of small UAS

    NASA Astrophysics Data System (ADS)

    Wang, Teng; ćelik, Koray; Somani, Arun K.

    2014-06-01

    We present a novel approach to use mountain drainage patterns for GPS-Denied navigation of small unmanned aerial systems (UAS) such as the ScanEagle, utilizing a down-looking fixed focus monocular imager. Our proposal allows extension of missions to GPS-denied mountain areas, with no assumption of human-made geographic objects. We leverage the analogy between mountain drainage patterns, human arteriograms, and human fingerprints, to match local drainage patterns to Graphics Processing Unit (GPU) rendered parallax occlusion maps of geo-registered radar returns (GRRR). Details of our actual GPU algorithm is beyond the subject of this paper, and is planned as a future paper. The matching occurs in real-time, while GRRR data is loaded on-board the aircraft pre-mission, so as not to require a scanning aperture radar during the mission. For recognition purposes, we represent a given mountain area with a set of spatially distributed mountain minutiae, i.e., details found in the drainage patterns, so that conventional minutiae-based fingerprint matching approaches can be used to match real-time camera image against template images in the training set. We use medical arteriography processing techniques to extract the patterns. The minutiae-based representation of mountains is achieved by first exposing mountain ridges and valleys with a series of filters and then extracting mountain minutiae from these ridges/valleys. Our results are experimentally validated on actual terrain data and show the effectiveness of minutiae-based mountain representation method. Furthermore, we study how to select landmarks for UAS navigation based on the proposed mountain representation and give a set of examples to show its feasibility. This research was in part funded by Rockwell Collins Inc.

  7. Image BOSS: a biomedical object storage system

    NASA Astrophysics Data System (ADS)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  8. Geographic Information Technologies as an outreach activity in geo-scientific education

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Isaacson, Sivan; Blumberg, Dan G.

    2016-04-01

    In recent years, a decline in the rates of examinees in the academic track that were entitled to an enhanced matriculation certificate in scientific-technological education was reported in Israel. To confront this problem the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev fosters interdisciplinary exploration through educational programs that make use of the facility and its equipment and enable the empowerment of the community by understanding and appreciating science and technology. This is achieved by using Geographic Information Technologies (GIT) such as remote sensing and Geographical Information Systems (GIS) for geo-physical sciences in activities that combine theoretical background with hands-on activities. Monitoring Earth from space by satellites, digital atlases and virtual-based positioning applications are examples for fusion of spatial information (geographic) and technology that the activity is based on. GIT opens a new chapter and a recent history of Cartography starting from the collection of spatial data to its presentation and analysis. GIS have replaced the use of classical atlas books and offer a variety of Web-based applications that provide maps and display up-to-date imagery. The purpose of this workshop is to expose teachers and students to GITs which are applicable in every classroom. The activity imparts free geographic information systems that exist in cyberspace and accessible to single users as the Israeli national GIS and Google earth, which are based on a spatial data and long term local and global satellite imagery coverage. In this paper, our "Think global-Map Local" activity is presented. The activity uses GIS and change detection technologies as means to encourage students to explore environmental issues both around the globe and close to their surroundings. The students detect changes by comparing multi temporal images of a chosen site and learn how to map the alterations and produce change detection maps with simple and user friendly tools. The activity is offered both for students and supervised projects for teachers and youth.

  9. Distribution of Potential Hydrothermally Altered Rocks in Central Colorado Derived From Landsat Thematic Mapper Data: A Geographic Information System Data Set

    USGS Publications Warehouse

    Knepper, Daniel H.

    2010-01-01

    As part of the Central Colorado Mineral Resource Assessment Project, the digital image data for four Landsat Thematic Mapper scenes covering central Colorado between Wyoming and New Mexico were acquired and band ratios were calculated after masking pixels dominated by vegetation, snow, and terrain shadows. Ratio values were visually enhanced by contrast stretching, revealing only those areas with strong responses (high ratio values). A color-ratio composite mosaic was prepared for the four scenes so that the distribution of potentially hydrothermally altered rocks could be visually evaluated. To provide a more useful input to a Geographic Information System-based mineral resource assessment, the information contained in the color-ratio composite raster image mosaic was converted to vector-based polygons after thresholding to isolate the strongest ratio responses and spatial filtering to reduce vector complexity and isolate the largest occurrences of potentially hydrothermally altered rocks.

  10. A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller

    DTIC Science & Technology

    2017-03-01

    A Low- Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...Atlanta, GA 30332 USA Contact Author Email: jonghwan.ko@gatech.edu Abstract: This paper presents a low- power wireless image sensor node for...present a low- power wireless image sensor node with a noise-robust moving object detection and region-of-interest based rate controller [Fig. 1]. The

  11. Using object-based image analysis to guide the selection of field sample locations

    USDA-ARS?s Scientific Manuscript database

    One of the most challenging tasks for resource management and research is designing field sampling schemes to achieve unbiased estimates of ecosystem parameters as efficiently as possible. This study focused on the potential of fine-scale image objects from object-based image analysis (OBIA) to be u...

  12. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  13. a New Object-Based Framework to Detect Shodows in High-Resolution Satellite Imagery Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.

    2015-12-01

    In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively.

  14. Estimating Wood Volume for Pinus Brutia Trees in Forest Stands from QUICKBIRD-2 Imagery

    NASA Astrophysics Data System (ADS)

    Patias, Petros; Stournara, Panagiota

    2016-06-01

    Knowledge of forest parameters, such as wood volume, is required for a sustainable forest management. Collecting such information in the field is laborious and even not feasible in inaccessible areas. In this study, tree wood volume is estimated utilizing remote sensing techniques, which can facilitate the extraction of relevant information. The study area is the University Forest of Taxiarchis, which is located in central Chalkidiki, Northern Greece and covers an area of 58km2. The tree species under study is the conifer evergreen species P. brutia (Calabrian pine). Three plot surfaces of 10m radius were used. VHR Quickbird-2 images are used in combination with an allometric relationship connecting the Tree Crown with the Diameter at breast height (Dbh), and a volume table developed for Greece. The overall methodology is based on individual tree crown delineation, based on (a) the marker-controlled watershed segmentation approach and (b) the GEographic Object-Based Image Analysis approach. The aim of the first approach is to extract separate segments each of them including a single tree and eventual lower vegetation, shadows, etc. The aim of the second approach is to detect and remove the "noisy" background. In the application of the first approach, the Blue, Green, Red, Infrared and PCA-1 bands are tested separately. In the application of the second approach, NDVI and image brightness thresholds are utilized. The achieved results are evaluated against field plot data. Their observed difference are between -5% to +10%.

  15. An efficient direct method for image registration of flat objects

    NASA Astrophysics Data System (ADS)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  16. Object detection from images obtained through underwater turbulence medium

    NASA Astrophysics Data System (ADS)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Imaging through underwater experiences severe distortions due to random fluctuations of temperature and salinity in water, which produces underwater turbulence through diffraction limited blur. Lights reflecting from objects perturb and attenuate contrast, making the recognition of objects of interest difficult. Thus, the information available for detecting underwater objects of interest becomes a challenging task as they have inherent confusion among the background, foreground and other image properties. In this paper, a saliency-based approach is proposed to detect the objects acquired through an underwater turbulent medium. This approach has drawn attention among a wide range of computer vision applications, such as image retrieval, artificial intelligence, neuro-imaging and object detection. The image is first processed through a deblurring filter. Next, a saliency technique is used on the image for object detection. In this step, a saliency map that highlights the target regions is generated and then a graph-based model is proposed to extract these target regions for object detection.

  17. Battlefield Object Control via Internet Architecture

    DTIC Science & Technology

    2002-01-01

    superiority is the best way to reach the goal of competition superiority. Using information technology (IT) in data processing, including computer hardware... technologies : Global Positioning System (GPS), Geographic Information System (GIS), Battlefield Information Transmission System (BITS), and Intelligent...operational environment. Keywords: C4ISR Systems, Information Superiority, Battlefield Objects, Computer - Aided Prototyping System (CAPS), IP-based

  18. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  19. Preparation of the Digital Elevation Model for Orthophoto CR Production

    NASA Astrophysics Data System (ADS)

    Švec, Z.; Pavelka, K.

    2016-06-01

    The Orthophoto CR is produced in co-operation with the Land Survey Office and the Military Geographical and Hydrometeorological Office. The product serves to ensure a defence of the state, integrated crisis management, civilian tasks in support of the state administration and the local self-government of the Czech Republic as well. It covers the whole area of the Republic and for ensuring its up-to-datedness is reproduced in the biennial period. As the project is countrywide, it keeps the project within the same parameters in urban and rural areas as well. Due to economic reasons it cańt be produced as a true ortophoto because it requires large side and forward overlaps of the aerial photographs and a preparation of the digital surface model instead of the digital terrain model. Use of DTM without some objects of DSM for orthogonalization purposes cause undesirable image deformations in the Orthophoto. There are a few data sets available for forming a suitable elevation model. The principal source should represent DTMs made from data acquired by the airborne laser scanning of the entire area of the Czech Republic that was carried out in the years 2009-2013, the DMR4G in the grid form and the DMR5G in TIN form respectively. It can be replenished by some vector objects (bridges, dams, etc.) taken from the geographic base data of the Czech Republic or obtained by new stereo plotting. It has to be taken into account that the option of applying DSM made from image correlation is also available. The article focuses on the possibilities of DTM supplement for ortogonalization. It looks back to the recent transition from grid to hybrid elevation models, problems that occurred, its solution and getting some practical remarks. Afterwards it assesses the current state and deals with the options for updating the model. Some accuracy analysis are included.

  20. Summary of KOMPSAT-5 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities including pointing, relative and absolute calibration as well as geolocation accuracy determination. The absolute calibration will be accomplished by determining absolute radiometric accuracy using already deployed trihedral corner reflectors on calibration and validation sites located southeast from Ulaanbaatar, Mongolia. To establish a measure for the assess the final image products, geolocation accuracies of image products with different imaging modes will be determined by using deployed point targets and available Digital Terrain Model (DTM), and on different image processing levels. In summary, this paper will present calibration and validation activities performed during the LEOP and IOT of KOMPSAT-5. The methodology and procedure of calibration and validation will be explained as well as its results. Based on the results, the applications of SAR image products on geophysical processes will be also discussed.

  1. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  2. Measuring the gradualist approach to internationalization: Empirical evidence from the wine sector

    PubMed Central

    2018-01-01

    The objective of this paper is to fill a gap in the literature on internationalization, in relation to the absence of objective and measurable performance indicators for the process of how firms sequentially enter external markets. To that end, this research develops a quantitative tool for use as a performance indicator of gradualness for firms entering external markets at a sectoral level. The performance indicator is based on firms’ export volumes, number of years operating in the export market, geographic areas targeted for export and when exports began to each area. The indicator is tested empirically in the wine sector. The main contribution of this study is the creation of a reliable international priority index, which can serve more widely as a valuable tool because of its potential use in other industry sectors and geographic areas, and which would allow the analysis of how geographically differentiated internationalization strategies develop. PMID:29727461

  3. Measuring the gradualist approach to internationalization: Empirical evidence from the wine sector.

    PubMed

    Clavel San Emeterio, Mónica; Fernández-Ortiz, Rubén; Arteaga-Ortiz, Jesús; Dorta-González, Pablo

    2018-01-01

    The objective of this paper is to fill a gap in the literature on internationalization, in relation to the absence of objective and measurable performance indicators for the process of how firms sequentially enter external markets. To that end, this research develops a quantitative tool for use as a performance indicator of gradualness for firms entering external markets at a sectoral level. The performance indicator is based on firms' export volumes, number of years operating in the export market, geographic areas targeted for export and when exports began to each area. The indicator is tested empirically in the wine sector. The main contribution of this study is the creation of a reliable international priority index, which can serve more widely as a valuable tool because of its potential use in other industry sectors and geographic areas, and which would allow the analysis of how geographically differentiated internationalization strategies develop.

  4. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  5. Category identification of changed land-use polygons in an integrated image processing/geographic information system

    NASA Technical Reports Server (NTRS)

    Westmoreland, Sally; Stow, Douglas A.

    1992-01-01

    A framework is proposed for analyzing ancillary data and developing procedures for incorporating ancillary data to aid interactive identification of land-use categories in land-use updates. The procedures were developed for use within an integrated image processsing/geographic information systems (GIS) that permits simultaneous display of digital image data with the vector land-use data to be updated. With such systems and procedures, automated techniques are integrated with visual-based manual interpretation to exploit the capabilities of both. The procedural framework developed was applied as part of a case study to update a portion of the land-use layer in a regional scale GIS. About 75 percent of the area in the study site that experienced a change in land use was correctly labeled into 19 categories using the combination of automated and visual interpretation procedures developed in the study.

  6. Size-Constrained Region Merging: A New Tool to Derive Basic Landcover Units from Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Castilla, G.

    2004-09-01

    Landcover maps typically represent the territory as a mosaic of contiguous units "polygons- that are assumed to correspond to geographic entities" like e.g. lakes, forests or villages-. They may also be viewed as representing a particular level of a landscape hierarchy where each polygon is a holon - an object made of subobjects and part of a superobject. The focal level portrayed in the map is distinguished from other levels by the average size of objects compounding it. Moreover, the focal level is bounded by the minimum size that objects of this level are supposed to have. Based on this framework, we have developed a segmentation method that defines a partition on a multiband image such that i) the mean size of segments is close to the one specified; ii) each segment exceeds the required minimum size; and iii) the internal homogeneity of segments is maximal given the size constraints. This paper briefly describes the method, focusing on its region merging stage. The most distinctive feature of the latter is that while the merging sequence is ordered by increasing dissimilarity as in conventional methods, there is no need to define a threshold on the dissimilarity measure between adjacent segments.

  7. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    NASA Astrophysics Data System (ADS)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  8. GEOGRAPHIC ATROPHY: Semantic Considerations and Literature Review.

    PubMed

    Schmitz-Valckenberg, Steffen; Sadda, Srinivas; Staurenghi, Giovanni; Chew, Emily Y; Fleckenstein, Monika; Holz, Frank G

    2016-12-01

    There is a lack of agreement regarding the types of lesions and clinical conditions that should be included in the term "geographic atrophy." Varied and conflicting views prevail throughout the literature and are currently used by retinal experts and other health care professionals. We reviewed the nominal definition of the term "geographic atrophy" and conducted a search of the ophthalmologic literature focusing on preceding terminologies and the first citations of the term "geographic atrophy" secondary to age-related macular degeneration. According to the nominal definition, the term "geography" stands for a detailed description of the surface features of a specific region, indicating its relative position. However, it does not necessarily imply that the borders of the region must be sharply demarcated or related to any anatomical structures. The term "geographical areas of atrophy" was initially cited in the 1960s in the ophthalmologic literature in the context of uveitic eye disease and shortly thereafter also for the description of variants of "senile macular degeneration." However, no direct explanation could be found in the literature as to why the terms "geographical" and "geographic" were chosen. Presumably the terms were used as the atrophic regions resembled the map of a continent or well-defined country borders on thematic geographical maps. With the evolution of the terminology, the commonly used adjunct "of the retinal pigment epithelium" was frequently omitted and solely the term "geographic atrophy" prevailed for the nonexudative late-stage of age-related macular degeneration itself. Along with the quantification of atrophic areas, based on different imaging modalities and the use of both manual and semiautomated approaches, various and inconsistent definitions for the minimal lesion diameter or size of atrophic lesions have also emerged. Reconsideration of the application of the term "geographic atrophy" in the context of age-related macular degeneration seems to be prudent given ongoing advances in multimodal retinal imaging technology with identification of various phenotypic characteristics, and the observation of atrophy development in eyes under antiangiogenic therapy.

  9. Proceedings of the National Conference on Energy Resource Management. Volume 1: Techniques, Procedures and Data Bases

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Topics dealing with the integration of remotely sensed data with geographic information system for application in energy resources management are discussed. Associated remote sensing and image analysis techniques are also addressed.

  10. Fuzzy connectedness and object definition

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Samarasekera, Supun

    1995-04-01

    Approaches to object information extraction from images should attempt to use the fact that images are fuzzy. In past image segmentation research, the notion of `hanging togetherness' of image elements specified by their fuzzy connectedness has been lacking. We present a theory of fuzzy objects for n-dimensional digital spaces based on a notion of fuzzy connectedness of image elements. Although our definitions lead to problems of enormous combinatorial complexity, the theoretical results allow us to reduce this dramatically. We demonstrate the utility of the theory and algorithms in image segmentation based on several practical examples.

  11. A billion stars, a few million galaxies

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Thurmes, Peter M.

    1994-05-01

    The creation of an all-sky computerized astronomical catalog is discussed. The data source for the catalog was the first National Geographic Society-Palomar Observatory Sky Survey (POSS 1). Most of the plates produced in POSS 1 with the Oschin 48-inch Schmidt telescope were recently scanned by a team of astronomers using an automated plate scanner (APS) which is a high-speed laser scanner designed specifically to digitized information on astronomical photographs. To access the cataloged information easily, a specialized database program called StarBase was written. The expected size of the complete database (the catalog of objects plus the pixel data for the detected images) is 400 gigabytes. Scanning of 644 pairs of blue and red plates, covering the entire sky except for the crowded region within 20 deg of the galactic plane, has been completed. been completed.

  12. Nearest neighbor, bilinear interpolation and bicubic interpolation geographic correction effects on LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Geographical correction effects on LANDSAT image data are identified, using the nearest neighbor, bilinear interpolation and bicubic interpolation techniques. Potential impacts of registration on image compression and classification are explored.

  13. Object-based connectedness facilitates matching.

    PubMed

    Koning, Arno; van Lier, Rob

    2003-10-01

    In two matching tasks, participants had to match two images of object pairs. Image-based (IB) connectedness refers to connectedness between the objects in an image. Object-based (OB) connectedness refers to connectedness between the interpreted objects. In Experiment 1, a monocular depth cue (shadow) was used to distinguish different relation types between object pairs. Three relation types were created: IB/OB-connected objects, IB/OB-disconnected objects, and IB-connected/OB-disconnected objects. It was found that IB/OB-connected objects were matched faster than IB/OB-disconnected objects. Objects that were IB-connected/OB-disconnected were matched equally to IB/OB-disconnected objects. In Experiment 2, stereoscopic presentation was used. With relation types comparable to those in Experiment 1, it was again found that OB connectedness determined speed of matching, rather than IB connectedness. We conclude that matching of projections of three-dimensional objects depends more on OB connectedness than on IB connectedness.

  14. An image based information system - Architecture for correlating satellite and topological data bases

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Zobrist, A. L.

    1978-01-01

    The paper describes the development of an image based information system and its use to process a Landsat thematic map showing land use or land cover in conjunction with a census tract polygon file to produce a tabulation of land use acreages per census tract. The system permits the efficient cross-tabulation of two or more geo-coded data sets, thereby setting the stage for the practical implementation of models of diffusion processes or cellular transformation. Characteristics of geographic information systems are considered, and functional requirements, such as data management, geocoding, image data management, and data analysis are discussed. The system is described, and the potentialities of its use are examined.

  15. Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Abdessetar, M.; Zhong, Y.

    2017-09-01

    Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).

  16. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    NASA Astrophysics Data System (ADS)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  17. Mystery #28

    Atmospheric Science Data Center

    2017-06-14

    ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ... ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging ...

  18. Mapping landscape corridors

    Treesearch

    Peter Vogt; Kurt H. Riitters; Marcin Iwanowski; Christine Estreguil; Jacek Kozak; Pierre Soille

    2007-01-01

    Corridors are important geographic features for biological conservation and biodiversity assessment. The identification and mapping of corridors is usually based on visual interpretations of movement patterns (functional corridors) or habitat maps (structural corridors). We present a method for automated corridor mapping with morphological image processing, and...

  19. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    PubMed

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel, Fattal, Ren, and Berman based on the criteria of no-reference quality assessment (NRQA), blind/referenceless image spatial quality evaluator (BRISQUE), blind anistropic quality index (AQI), and e.

  20. Wide field OCT based microangiography in living human eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Chen, Chieh-Li; Chu, Zhongdi; Zhang, Anqi; An, Lin; Durbin, Mary; Sharma, Utkarsh; Rosenfeld, Philip J.; Wang, Ruikang K.

    2016-03-01

    To investigate the application of optical microangiography (OMAG) in living human eye. Patients with different macular diseases were recruited, including diabetic retinopathy (DR), geographic atrophy (GA), retinitis pigmentosa (RP), and venous occlusion, et al. Wide field OCT angiography images can be generated by montage scanning protocol based on the tracking system. OMAG algorithm based on complex differentiation was used to extract the blood flow and removed the bulk motion by 2D cross-correlation method. The 3D angiography was segmented into 3 layers in the retina and 2 layers in the choroid. The en-face maximum projection was used to obtain 2-dimensional angiograms of different layers coded with different colors. Flow and structure images were combined for cross-sectional view. En face OMAG images of different macular diseases showed a great agreement with FA. Meanwhile, OMAG gave more distinct vascular network visions that were less affected by hemorrhage and leakage. The MAs were observed in both superficial and middle retinal layers based on OMAG angiograms in different layers of DR patients. The contour line of FAZ was extracted as well, which can be quantitative the retinal diseases. For GA patient, the damage of RPE layer enhanced the penetration of light and enabled the acquisition of choriocapillaries and choroidal vessels. The wide field OMAG angiogram enabled the capability of capturing the entire geographic atrophy. OMAG provides depth-resolved information and detailed vascular images of DR and GA patients, providing a better visualization of vascular network compared to FA.

  1. The effect of input data transformations on object-based image analysis

    PubMed Central

    LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.

    2011-01-01

    The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829

  2. The Effect of Geographic Units of Analysis on Measuring Geographic Variation in Medical Services Utilization.

    PubMed

    Kim, Agnus M; Park, Jong Heon; Kang, Sungchan; Hwang, Kyosang; Lee, Taesik; Kim, Yoon

    2016-07-01

    We aimed to evaluate the effect of geographic units of analysis on measuring geographic variation in medical services utilization. For this purpose, we compared geographic variations in the rates of eight major procedures in administrative units (districts) and new areal units organized based on the actual health care use of the population in Korea. To compare geographic variation in geographic units of analysis, we calculated the age-sex standardized rates of eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee-replacement surgery, caesarean section, hysterectomy, computed tomography scan, and magnetic resonance imaging scan) from the National Health Insurance database in Korea for the 2013 period. Using the coefficient of variation, the extremal quotient, and the systematic component of variation, we measured geographic variation for these eight procedures in districts and new areal units. Compared with districts, new areal units showed a reduction in geographic variation. Extremal quotients and inter-decile ratios for the eight procedures were lower in new areal units. While the coefficient of variation was lower for most procedures in new areal units, the pattern of change of the systematic component of variation between districts and new areal units differed among procedures. Geographic variation in medical service utilization could vary according to the geographic unit of analysis. To determine how geographic characteristics such as population size and number of geographic units affect geographic variation, further studies are needed.

  3. Application of Remote Sensing in Building Damages Assessment after Moderate and Strong Earthquake

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, J.; Dou, A.

    2003-04-01

    - Earthquake is a main natural disaster in modern society. However, we still cannot predict the time and place of its occurrence accurately. Then it is of much importance to survey the damages information when an earthquake occurs, which can help us to mitigate losses and implement fast damage evaluation. In this paper, we use remote sensing techniques for our purposes. Remotely sensed satellite images often view a large scale of land at a time. There are several kinds of satellite images, which of different spatial and spectral resolutions. Landsat-4/5 TM sensor can view ground at 30m resolution, while Landsat-7 ETM Plus has a resolution of 15m in panchromatic waveband. SPOT satellite can provide images with higher resolutions. Those images obtained pre- and post-earthquake can help us greatly in identifying damages of moderate and large-size buildings. In this paper, we bring forward a method to implement quick damages assessment by analyzing both pre- and post-earthquake satellite images. First, those images are geographically registered together with low RMS (Root Mean Square) error. Then, we clip out residential areas by overlaying images with existing vector layers through Geographic Information System (GIS) software. We present a new change detection algorithm to quantitatively identify damages degree. An empirical or semi-empirical model is then established by analyzing the real damage degree and changes of pixel values of the same ground objects. Experimental result shows that there is a good linear relationship between changes of pixel values and ground damages, which proves the potentials of remote sensing in post-quake fast damage assessment. Keywords: Damages Assessment, Earthquake Hazard, Remote Sensing

  4. A VGI data integration framework based on linked data model

    NASA Astrophysics Data System (ADS)

    Wan, Lin; Ren, Rongrong

    2015-12-01

    This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.

  5. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    NASA Astrophysics Data System (ADS)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  6. Objective quality assessment for multiexposure multifocus image fusion.

    PubMed

    Hassen, Rania; Wang, Zhou; Salama, Magdy M A

    2015-09-01

    There has been a growing interest in image fusion technologies, but how to objectively evaluate the quality of fused images has not been fully understood. Here, we propose a method for objective quality assessment of multiexposure multifocus image fusion based on the evaluation of three key factors of fused image quality: 1) contrast preservation; 2) sharpness; and 3) structure preservation. Subjective experiments are conducted to create an image fusion database, based on which, performance evaluation shows that the proposed fusion quality index correlates well with subjective scores, and gives a significant improvement over the existing fusion quality measures.

  7. GPS and GIS-Based Data Collection and Image Mapping in the Antarctic Peninsula

    USGS Publications Warehouse

    Sanchez, Richard D.

    1999-01-01

    High-resolution satellite images combined with the rapidly evolving global positioning system (GPS) and geographic information system (GIS) technology may offer a quick and effective way to gather information in Antarctica. GPS- and GIS-based data collection systems are used in this project to determine their applicability for gathering ground truthing data in the Antarctic Peninsula. These baseline data will be used in a later study to examine changes in penguin habitats resulting in part from regional climate warming. The research application in this study yields important information on the usefulness and limits of data capture and high-resolution images for mapping in the Antarctic Peninsula.

  8. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery

    2016-10-01

    This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  9. Managing Data in a GIS Environment

    NASA Technical Reports Server (NTRS)

    Beltran, Maria; Yiasemis, Haris

    1997-01-01

    A Geographic Information System (GIS) is a computer-based system that enables capture, modeling, manipulation, retrieval, analysis and presentation of geographically referenced data. A GIS operates in a dynamic environment of spatial and temporal information. This information is held in a database like any other information system, but performance is more of an issue for a geographic database than a traditional database due to the nature of the data. What distinguishes a GIS from other information systems is the spatial and temporal dimensions of the data and the volume of data (several gigabytes). Most traditional information systems are usually based around tables and textual reports, whereas GIS requires the use of cartographic forms and other visualization techniques. Much of the data can be represented using computer graphics, but a GIS is not a graphics database. A graphical system is concerned with the manipulation and presentation of graphical objects whereas a GIS handles geographic objects that have not only spatial dimensions but non-visual, i e., attribute and components. Furthermore, the nature of the data on which a GIS operates makes the traditional relational database approach inadequate for retrieving data and answering queries that reference spatial data. The purpose of this paper is to describe the efficiency issues behind storage and retrieval of data within a GIS database. Section 2 gives a general background on GIS, and describes the issues involved in custom vs. commercial and hybrid vs. integrated geographic information systems. Section 3 describes the efficiency issues concerning the management of data within a GIS environment. The paper ends with a summary of the main concerns of this paper.

  10. Vision based obstacle detection and grouping for helicopter guidance

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano

    1993-01-01

    Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.

  11. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2015-03-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial

  12. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  13. Ontology for cell-based geographic information

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  14. Comparison of short-wavelength blue-light autofluorescence and conventional blue-light autofluorescence in geographic atrophy.

    PubMed

    Borrelli, Enrico; Nittala, Muneeswar Gupta; Abdelfattah, Nizar Saleh; Lei, Jianqin; Hariri, Amir H; Shi, Yue; Fan, Wenying; Cozzi, Mariano; Sarao, Valentina; Lanzetta, Paolo; Staurenghi, Giovanni; Sadda, SriniVas R

    2018-06-05

    To systematically compare the intermodality and inter-reader agreement for two blue-light confocal fundus autofluorescence (FAF) systems. Thirty eyes (21 patients) with a diagnosis of geographic atrophy (GA) were enrolled. Eyes were imaged using two confocal blue-light FAF devices: (1) Spectralis device with a 488 nm excitation wavelength (488-FAF); (2) EIDON device with 450 nm excitation wavelength and the capability for 'colour' FAF imaging including both the individual red and green components of the emission spectrum. Furthermore, a third imaging modality (450-RF image) isolating and highlighting the red emission fluorescence component (REFC) was obtained and graded. Each image was graded by two readers to assess inter-reader variability and a single image for each modality was used to assess the intermodality variability. The 95% coefficient of repeatability (1.35 mm 2 for the 488-FAF-based grading, 8.13 mm 2 for the 450-FAF-based grading and 1.08 mm 2 for the 450-RF-based grading), the coefficient of variation (1.11 for 488-FAF, 2.05 for 450-FAF, 0.92 for 450-RF) and the intraclass correlation coefficient (0.994 for 488-FAF, 0.711 for 450-FAF, 0.997 for 450-RF) indicated that 450-FAF-based and 450-RF-based grading have the lowest and highest inter-reader agreements, respectively. The GA area was larger for 488-FAF images (median (IQR) 2.1 mm 2  (0.8-6.4 mm 2 )) than for 450-FAF images (median (IQR) 1.0 mm 2  (0.3-4.3 mm 2 ); p<0.0001). There was no significant difference in lesion area measurement between 488-FAF-based and 450-RF-based grading (median (IQR) 2.6 mm 2  (0.8-6.8 mm 2 ); p=1.0). The isolation of the REFC from the 450-FAF images allowed for a reproducible quantification of GA. This assessment had good comparability with that obtained with 488-FAF images. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. The PDS-based Data Processing, Archiving and Management Procedures in Chang'e Mission

    NASA Astrophysics Data System (ADS)

    Zhang, Z. B.; Li, C.; Zhang, H.; Zhang, P.; Chen, W.

    2017-12-01

    PDS is adopted as standard format of scientific data and foundation of all data-related procedures in Chang'e mission. Unlike the geographically distributed nature of the planetary data system, all procedures of data processing, archiving, management and distribution are proceeded in the headquarter of Ground Research and Application System of Chang'e mission in a centralized manner. The RAW data acquired by the ground stations is transmitted to and processed by data preprocessing subsystem (DPS) for the production of PDS-compliant Level 0 Level 2 data products using established algorithms, with each product file being well described using an attached label, then all products with the same orbit number are put together into a scheduled task for archiving along with a XML archive list file recoding all product files' properties such as file name, file size etc. After receiving the archive request from DPS, data management subsystem (DMS) is provoked to parse the XML list file to validate all the claimed files and their compliance to PDS using a prebuilt data dictionary, then to exact metadata of each data product file from its PDS label and the fields of its normalized filename. Various requirements of data management, retrieving, distribution and application can be well met using the flexible combination of the rich metadata empowered by the PDS. In the forthcoming CE-5 mission, all the design of data structure and procedures will be updated from PDS version 3 used in previous CE-1, CE-2 and CE-3 missions to the new version 4, the main changes would be: 1) a dedicated detached XML label will be used to describe the corresponding scientific data acquired by the 4 instruments carried, the XML parsing framework used in archive list validation will be reused for the label after some necessary adjustments; 2) all the image data acquired by the panorama camera, landing camera and lunar mineralogical spectrometer should use an Array_2D_Image/Array_3D_Image object to store image data, and use a Table_Character object to store image frame header; the tabulated data acquired by the lunar regolith penetrating radar should use a Table_Binary object to store measurements.

  16. Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Ozelkan, Emre; Chen, Gang; Ustundag, Burak Berk

    2016-02-01

    Drought is a rapidly rising environmental issue that can cause hardly repaired or unrepaired damages to the nature and socio-economy. This is especially true for a region that features arid/semi-arid climate, including the Turkey's most important agricultural district - Southeast Anatolia. In this area, we examined the uncertainties of applying Landsat 8 Operational Land Imager (OLI) NDVI data to estimate meteorological drought - Standardized Precipitation Index (SPI) - measured from 31 in-situ agro-meteorological monitoring stations during spring and summer of 2013 and 2014. Our analysis was designed to address two important, yet under-examined questions: (i) how does the co-existence of rainfed and irrigated agriculture affect remote sensing drought monitoring in an arid/semi-arid region? (ii) What is the role of spatial scale in drought monitoring using a GEOBIA (geographic object-based image analysis) framework? Results show that spatial scale exerted a higher impact on drought monitoring especially in the drier year 2013, during which small scales were found to outperform large scales in general. In addition, consideration of irrigated and rainfed areas separately ensured a better performance in drought analysis. Compared to the positive correlations between SPI and NDVI over the rainfed areas, negative correlations were determined over the irrigated agricultural areas. Finally, the time lag effect was evident in the study, i.e., strong correlations between spring SPI and summer NDVI in both 2013 and 2014. This reflects the fact that spring watering is crucial for the growth and yield of the major crops (i.e., winter wheat, barley and lentil) cultivated in the region.

  17. Web based 3-D medical image visualization on the PC.

    PubMed

    Kim, N; Lee, D H; Kim, J H; Kim, Y; Cho, H J

    1998-01-01

    With the recent advance of Web and its associated technologies, information sharing on distribute computing environments has gained a great amount of attention from many researchers in many application areas, such as medicine, engineering, and business. One basic requirement of distributed medical consultation systems is that geographically dispersed, disparate participants are allowed to exchange information readily with each other. Such software also needs to be supported on a broad range of computer platforms to increase the softwares accessibility. In this paper, the development of world-wide-web based medical consultation system for radiology imaging is addressed to provide platform independence and greater accessibility. The system supports sharing of 3-dimensional objects. We use VRML (Virtual Reality Modeling Language), which is the defacto standard in 3-D modeling on the Web. 3-D objects are reconstructed from CT or MRI volume data using a VRML format, which can be viewed and manipulated easily in Web-browsers with a VRML plug-in. A Marching cubes method is used in the transformation of scanned volume data sets to polygonal surfaces of VRML. A decimation algorithm is adopted to reduce the number of meshes in the resulting VRML file. 3-D volume data are often very large in size, hence loading the data on PC level computers requires a significant reduction of the size of the data, while minimizing the loss of the original shape information. This is also important to decrease network delays. A prototype system has been implemented (http://cybernet5.snu.ac.kr/-cyber/mrivrml .html), and several sessions of experiments are carried out.

  18. Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.

    1988-01-01

    Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.

  19. Hyperspectral imaging simulation of object under sea-sky background

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui

    2016-10-01

    Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.

  20. Close Range Uav Accurate Recording and Modeling of St-Pierre Neo-Romanesque Church in Strasbourg (france)

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Grussenmeyer, P.; Freville, T.

    2017-02-01

    Close-range photogrammetry is an image-based technique which has often been used for the 3D documentation of heritage objects. Recently, advances in the field of image processing and UAVs (Unmanned Aerial Vehicles) have resulted in a renewed interest in this technique. However, commercially ready-to-use UAVs are often equipped with smaller sensors in order to minimize payload and the quality of the documentation is still an issue. In this research, two commercial UAVs (the Sensefly Albris and DJI Phantom 3 Professional) were setup to record the 19th century St-Pierre-le-Jeune church in Strasbourg, France. Several software solutions (commercial and open source) were used to compare both UAVs' images in terms of calibration, accuracy of external orientation, as well as dense matching. Results show some instability in regards to the calibration of Phantom 3, while the Albris had issues regarding its aerotriangulation results. Despite these shortcomings, both UAVs succeeded in producing dense point clouds of up to a few centimeters in accuracy, which is largely sufficient for the purposes of a city 3D GIS (Geographical Information System). The acquisition of close range images using UAVs also provides greater LoD flexibility in processing. These advantages over other methods such as the TLS (Terrestrial Laser Scanning) or terrestrial close range photogrammetry can be exploited in order for these techniques to complement each other.

  1. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  2. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  3. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  4. Towards the automated identification of Chrysomya blow flies from wing images.

    PubMed

    Macleod, N; Hall, M J R; Wardhana, A H

    2018-04-15

    The Old World screwworm fly (OWSF), Chrysomya bezziana (Diptera: Calliphoridae), is an important agent of traumatic myiasis and, as such, a major human and animal health problem. In the implementation of OWSF control operations, it is important to determine the geographical origins of such disease-causing species in order to establish whether they derive from endemic or invading populations. Gross morphological and molecular studies have demonstrated the existence of two distinct lineages of this species, one African and the other Asian. Wing morphometry is known to be of substantial assistance in identifying the geographical origin of individuals because it provides diagnostic markers that complement molecular diagnostics. However, placement of the landmarks used in traditional geometric morphometric analysis can be time-consuming and subject to error caused by operator subjectivity. Here we report results of an image-based approach to geometric morphometric analysis for delivering wing-based identifications. Our results indicate that this approach can produce identifications that are practically indistinguishable from more traditional landmark-based results. In addition, we demonstrate that the direct analysis of digital wing images can be used to discriminate between three Chrysomya species of veterinary and forensic importance and between C. bezziana genders. © 2018 The Trustees of the Natural History Museum, London. Medical and Veterinary Entomology © 2018 Royal Entomological Society.

  5. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on east campus, and a CT scan machine in UIC Hospital. CT data was pulled directly from the scan machine to the Tele-Immersion server in our Laboratory, and then the data was synchronously distributed by our Onyx2 Rack server to all the VR setups. Instead of permitting medical volume visualization at one VR device, by combining teleconferencing, tele-presence, and virtual reality, the Tele-Immersive environment will enable geographically distributed clinicians to intuitively interact with the same medical volumetric models, point, gesture, converse, and see each other. This environment will bring together clinicians at different geographic locations to participate in Tele-Immersive consultation and collaboration.

  6. Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset

    NASA Astrophysics Data System (ADS)

    Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.

    2018-04-01

    Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.

  7. Analysis of Environmental Vulnerability in The Landslide Areas (Case Study: Semarang Regency)

    NASA Astrophysics Data System (ADS)

    Hani'ah; Firdaus, H. S.; Nugraha, A. L.

    2017-12-01

    The Land conversion can increase the risk of landslide disaster in Semarang Regency caused by human activity. Remote sensing and geographic information system to be used in this study to mapping the landslide areas because satellite image data can represent the object on the earth surface in wide area coverage. Satellite image Landsat 8 is used to mapping land cover that processed by supervised classification method. The parameters to mapping landslide areas are based on land cover, rainfall, slope, geological factors and soil types. Semarang Regency have the minimum value of landslide is 1.6 and the maximum value is 4.3, which is dominated by landslide prone areas about 791.27 km2. The calculation of the environmental vulnerability index in the study area is based on Perka BNPB No. 2/2012. Accumulation score of environmental vulnerability index is moderate value, that means environment condition must be considered, such as vegetation as ground cover and many others aspects. The range of NDVI value shows that density level in conservation areas (0.030 - 0.844) and conservation forest (0.045 - 0.849), which rarely until high density level. The results of this study furthermore can be assessed to reduce disaster risks from landslide as an effort of disaster preventive.

  8. A Large Scale (N=400) Investigation of Gray Matter Differences in Schizophrenia Using Optimized Voxel-based Morphometry

    PubMed Central

    Meda, Shashwath A.; Giuliani, Nicole R.; Calhoun, Vince D.; Jagannathan, Kanchana; Schretlen, David J.; Pulver, Anne; Cascella, Nicola; Keshavan, Matcheri; Kates, Wendy; Buchanan, Robert; Sharma, Tonmoy; Pearlson, Godfrey D.

    2008-01-01

    Background Many studies have employed voxel-based morphometry (VBM) of MRI images as an automated method of investigating cortical gray matter differences in schizophrenia. However, results from these studies vary widely, likely due to different methodological or statistical approaches. Objective To use VBM to investigate gray matter differences in schizophrenia in a sample significantly larger than any published to date, and to increase statistical power sufficiently to reveal differences missed in smaller analyses. Methods Magnetic resonance whole brain images were acquired from four geographic sites, all using the same model 1.5T scanner and software version, and combined to form a sample of 200 patients with both first episode and chronic schizophrenia and 200 healthy controls, matched for age, gender and scanner location. Gray matter concentration was assessed and compared using optimized VBM. Results Compared to the healthy controls, schizophrenia patients showed significantly less gray matter concentration in multiple cortical and subcortical regions, some previously unreported. Overall, we found lower concentrations of gray matter in regions identified in prior studies, most of which reported only subsets of the affected areas. Conclusions Gray matter differences in schizophrenia are most comprehensively elucidated using a large, diverse and representative sample. PMID:18378428

  9. Multi-User Domain Object Oriented (MOO) as a High School Procedure for Foreign Language Acquisition.

    ERIC Educational Resources Information Center

    Backer, James A.

    Foreign language students experience added difficulty when they are isolated from native speakers and from the culture of the target language. It has been posited that MOO (Multi-User Domain Object Oriented) may help overcome the geographical isolation of these students. MOOs are Internet-based virtual worlds in which people from all over the real…

  10. PlenoPatch: Patch-Based Plenoptic Image Manipulation.

    PubMed

    Zhang, Fang-Lue; Wang, Jue; Shechtman, Eli; Zhou, Zi-Ye; Shi, Jia-Xin; Hu, Shi-Min

    2017-05-01

    Patch-based image synthesis methods have been successfully applied for various editing tasks on still images, videos and stereo pairs. In this work we extend patch-based synthesis to plenoptic images captured by consumer-level lenselet-based devices for interactive, efficient light field editing. In our method the light field is represented as a set of images captured from different viewpoints. We decompose the central view into different depth layers, and present it to the user for specifying the editing goals. Given an editing task, our method performs patch-based image synthesis on all affected layers of the central view, and then propagates the edits to all other views. Interaction is done through a conventional 2D image editing user interface that is familiar to novice users. Our method correctly handles object boundary occlusion with semi-transparency, thus can generate more realistic results than previous methods. We demonstrate compelling results on a wide range of applications such as hole-filling, object reshuffling and resizing, changing object depth, light field upscaling and parallax magnification.

  11. Using satellite data in map design and production

    USGS Publications Warehouse

    Hutchinson, John A.

    2002-01-01

    Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.

  12. Computer-Assisted Promotion of Recreational Opportunities in Natural Resource Areas: A Demonstration and Case Example

    Treesearch

    Emilyn Sheffield; Leslie Furr; Charles Nelson

    1992-01-01

    Filevision IV is a multilayer imaging and data-base management system that combines drawing, filing and extensive report-writing capabilities (Filevision IV, 1988). Filevision IV users access data by attaching graphics to text-oriented data-base records. Tourist attractions, support services, and geo-graphic features can be located on a base map of an area or region....

  13. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  14. Location Estimation of Urban Images Based on Geographical Neighborhoods

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lo, Sio-Long

    2018-04-01

    Estimating the location of an image is a challenging computer vision problem, and the recent decade has witnessed increasing research efforts towards the solution of this problem. In this paper, we propose a new approach to the location estimation of images taken in urban environments. Experiments are conducted to quantitatively compare the estimation accuracy of our approach, against three representative approaches in the existing literature, using a recently published dataset of over 150 thousand Google Street View images and 259 user uploaded images as queries. According to the experimental results, our approach outperforms three baseline approaches and shows its robustness across different distance thresholds.

  15. Imaging, object detection, and change detection with a polarized multistatic GPR array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, N. Reginald; Paglieroni, David W.

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and thenmore » combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.« less

  16. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  17. Student Development of Educational Software: Spin-Offs from Classroom Use of DIAS.

    ERIC Educational Resources Information Center

    Harrington, John A., Jr.; And Others

    1988-01-01

    Describes several college courses which encourage students to develop computer software programs in the areas of remote sensing and geographic information systems. A microcomputer-based tutorial package, the Digital Image Analysis System (DAIS), teaches the principles of digital processing. (LS)

  18. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    PubMed

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  19. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    PubMed Central

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan, Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack–Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories. PMID:20175463

  20. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT.

    PubMed

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan

    2010-01-01

    Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  1. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  2. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  3. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  4. The study of integration about measurable image and 4D production

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Hu, Pingbo; Niu, Weiyun

    2008-12-01

    In this paper, we create the geospatial data of three-dimensional (3D) modeling by the combination of digital photogrammetry and digital close-range photogrammetry. For large-scale geographical background, we make the establishment of DEM and DOM combination of three-dimensional landscape model based on the digital photogrammetry which uses aerial image data to make "4D" (DOM: Digital Orthophoto Map, DEM: Digital Elevation Model, DLG: Digital Line Graphic and DRG: Digital Raster Graphic) production. For the range of building and other artificial features which the users are interested in, we realize that the real features of the three-dimensional reconstruction adopting the method of the digital close-range photogrammetry can come true on the basis of following steps : non-metric cameras for data collection, the camera calibration, feature extraction, image matching, and other steps. At last, we combine three-dimensional background and local measurements real images of these large geographic data and realize the integration of measurable real image and the 4D production.The article discussed the way of the whole flow and technology, achieved the three-dimensional reconstruction and the integration of the large-scale threedimensional landscape and the metric building.

  5. A knowledge-based machine vision system for space station automation

    NASA Technical Reports Server (NTRS)

    Chipman, Laure J.; Ranganath, H. S.

    1989-01-01

    A simple knowledge-based approach to the recognition of objects in man-made scenes is being developed. Specifically, the system under development is a proposed enhancement to a robot arm for use in the space station laboratory module. The system will take a request from a user to find a specific object, and locate that object by using its camera input and information from a knowledge base describing the scene layout and attributes of the object types included in the scene. In order to use realistic test images in developing the system, researchers are using photographs of actual NASA simulator panels, which provide similar types of scenes to those expected in the space station environment. Figure 1 shows one of these photographs. In traditional approaches to image analysis, the image is transformed step by step into a symbolic representation of the scene. Often the first steps of the transformation are done without any reference to knowledge of the scene or objects. Segmentation of an image into regions generally produces a counterintuitive result in which regions do not correspond to objects in the image. After segmentation, a merging procedure attempts to group regions into meaningful units that will more nearly correspond to objects. Here, researchers avoid segmenting the image as a whole, and instead use a knowledge-directed approach to locate objects in the scene. The knowledge-based approach to scene analysis is described and the categories of knowledge used in the system are discussed.

  6. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    PubMed Central

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-01-01

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781

  7. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.

    PubMed

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-02-09

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  8. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    NASA Astrophysics Data System (ADS)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  9. a Region-Based Multi-Scale Approach for Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.

    2016-06-01

    Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  10. Pilot Program for the Development of Classification and Accuracy Assessment Methods and Improved Accessibility for Landsat and Related GIS Data and Technology Transfer of These Methods to State and Local Governments

    NASA Technical Reports Server (NTRS)

    Limp, W. Fredrick

    1996-01-01

    This project has a single, comprehensive objective that is manifested in many tangible products and impacts throughout the state and the mid-south region. The primary objective or mission of this project is to expose the broadest possible cross-section of public sector decision makers responsible for developing and maintaining policy at the state, local and national levels, private sector professionals and students to the power, flexibility and utility of sensor based imagery and the mapping and interpretive products that are derived from these digital geodata. In accomplishing this mission this project has worked to provide hands-on exposure and training to primary and secondary teachers; developed and distributed instructional materials to students across the state; created an on-line archive of satellite images and related geographic data; implemented a service that enables users throughout the region and around the world to develop customized mapping products suitable for visualization and/or decision support from the comfort of their classroom or office via an internet connection to our facility; extended the use of sensor based imagery in natural resource management and commercial applications through a range of pilot research initiatives, demonstrations, presentations and professional papers.

  11. Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification

    PubMed Central

    Wu, Lin

    2017-01-01

    With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534

  12. Automated feature extraction and classification from image sources

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.

  13. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  14. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    NASA Astrophysics Data System (ADS)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made in each of the 3D image measurement software. Further, we deepen the study on the influence of the distribution of GCP on the precision.

  15. Systematic plan of building Web geographic information system based on ActiveX control

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Li, Deren; Zhu, Xinyan; Chen, Nengcheng

    2003-03-01

    A systematic plan of building Web Geographic Information System (WebGIS) using ActiveX technology is proposed in this paper. In the proposed plan, ActiveX control technology is adopted in building client-side application, and two different schemas are introduced to implement communication between controls in users¡ browser and middle application server. One is based on Distribute Component Object Model (DCOM), the other is based on socket. In the former schema, middle service application is developed as a DCOM object that communicates with ActiveX control through Object Remote Procedure Call (ORPC) and accesses data in GIS Data Server through Open Database Connectivity (ODBC). In the latter, middle service application is developed using Java language. It communicates with ActiveX control through socket based on TCP/IP and accesses data in GIS Data Server through Java Database Connectivity (JDBC). The first one is usually developed using C/C++, and it is difficult to develop and deploy. The second one is relatively easy to develop, but its performance of data transfer relies on Web bandwidth. A sample application is developed using the latter schema. It is proved that the performance of the sample application is better than that of some other WebGIS applications in some degree.

  16. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Wang, Xin, E-mail: wangx@tongji.edu.cn, E-mail: mubz@tongji.edu.cn; Zhan, Qi

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system basedmore » on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.« less

  17. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  18. Perceptual asymmetries in greyscales: object-based versus space-based influences.

    PubMed

    Thomas, Nicole A; Elias, Lorin J

    2012-05-01

    Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.

  19. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    PubMed Central

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-01-01

    Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903

  20. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images.

    PubMed

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-08-27

    Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  1. Replication of a Continuing Education Workshop in the Evidence-Based Practice Process

    ERIC Educational Resources Information Center

    Gromoske, Andrea N.; Berger, Lisa K.

    2017-01-01

    Objective: To replicate the results of Parrish and Rubin's continuing education workshop in the evidence-based practice (EBP) process utilizing different workshop facilitators with participants in a different geographic location. Methods: We used a replicated, one-group pretest-posttest design with 3-month follow-up to evaluate the effectiveness…

  2. 26 CFR 1.501(c)(9)-2 - Membership in a voluntary employees' beneficiary association; employees; voluntary association of...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... be restricted by geographic proximity, or by objective conditions or limitations reasonably related to employment, such as a limitation to a reasonable classification of workers, a limitation based on a reasonable minimum period of service, a limitation based on maximum compensation, or a requirement...

  3. 26 CFR 1.501(c)(9)-2 - Membership in a voluntary employees' beneficiary association; employees; voluntary association of...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... be restricted by geographic proximity, or by objective conditions or limitations reasonably related to employment, such as a limitation to a reasonable classification of workers, a limitation based on a reasonable minimum period of service, a limitation based on maximum compensation, or a requirement...

  4. 26 CFR 1.501(c)(9)-2 - Membership in a voluntary employees' beneficiary association; employees; voluntary association of...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... be restricted by geographic proximity, or by objective conditions or limitations reasonably related to employment, such as a limitation to a reasonable classification of workers, a limitation based on a reasonable minimum period of service, a limitation based on maximum compensation, or a requirement...

  5. Door and window image-based measurement using a mobile device

    NASA Astrophysics Data System (ADS)

    Ma, Guangyao; Janakaraj, Manishankar; Agam, Gady

    2015-03-01

    We present a system for door and window image-based measurement using an Android mobile device. In this system a user takes an image of a door or window that needs to be measured and using interaction measures specific dimensions of the object. The existing object is removed from the image and a 3D model of a replacement is rendered onto the image. The visualization provides a 3D model with which the user can interact. When tested on a mobile Android platform with an 8MP camera we obtain an average measurement error of roughly 0.5%. This error rate is stable across a range of view angles, distances from the object, and image resolutions. The main advantages of our mobile device application for image measurement include measuring objects for which physical access is not readily available, documenting in a precise manner the locations in the scene where the measurements were taken, and visualizing a new object with custom selections inside the original view.

  6. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  7. Depth-aware image seam carving.

    PubMed

    Shen, Jianbing; Wang, Dapeng; Li, Xuelong

    2013-10-01

    Image seam carving algorithm should preserve important and salient objects as much as possible when changing the image size, while not removing the secondary objects in the scene. However, it is still difficult to determine the important and salient objects that avoid the distortion of these objects after resizing the input image. In this paper, we develop a novel depth-aware single image seam carving approach by taking advantage of the modern depth cameras such as the Kinect sensor, which captures the RGB color image and its corresponding depth map simultaneously. By considering both the depth information and the just noticeable difference (JND) model, we develop an efficient JND-based significant computation approach using the multiscale graph cut based energy optimization. Our method achieves the better seam carving performance by cutting the near objects less seams while removing distant objects more seams. To the best of our knowledge, our algorithm is the first work to use the true depth map captured by Kinect depth camera for single image seam carving. The experimental results demonstrate that the proposed approach produces better seam carving results than previous content-aware seam carving methods.

  8. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  9. A spatiotemporal data model for incorporating time in geographic information systems (GEN-STGIS)

    NASA Astrophysics Data System (ADS)

    Narciso, Flor Eugenia

    Temporal Geographic Information Systems (TGIS) is a new technology, which is being developed to work with Geographic Information Systems (GIS) that deal with geographic phenomena that change over time. The capabilities of TGIS depend on the underlying data model. However, a literature review of current spatiotemporal GIS data models has shown that they are not adequate for managing time when representing temporal data. In addition, the majority of these data models have been designed to support the requirements of specific-purpose applications. In an effort to resolve this problem, the related literature has been explored. A comparative investigation of the current spatiotemporal GIS data models has been made to identify their characteristics, advantages and disadvantages, similarities and differences, and to determine why they do not work adequately. A new object-oriented General-purpose Spatiotemporal GIS (GEN-STGIS) data model is proposed here. This model provides better representation, storage and management of data related to geographic phenomena that change over time and overcomes some of the problems detected in the reviewed data models. The proposed data model has four key benefits. First, it provides the capabilities of a standard vector-based GIS embedded in the 2-D Euclidean space. Second, it includes the two temporal dimensions, valid time and transaction time, supported by temporal databases. Third, it inherits, from the object oriented approach, the flexibility, modularity and ability to handle the complexities introduced by spatial and temporal dimensions. Fourth, it improves the geographic query capabilities of current TGIS with the introduction of the concept of bounding box while providing temporal and spatiotemporal query capabilities. The data model is then evaluated in order to assess its strengths and weaknesses as a spatiotemporal GIS data model, and to determine how well the model satisfies the requirements imposed by TGIS applications. The practicality of the data model is demonstrated by the creation of a TGIS example and the partial implementation of the model using the POET Java software for developing the object-oriented database. the object-oriented database.

  10. Model-based object classification using unification grammars and abstract representations

    NASA Astrophysics Data System (ADS)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  11. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  12. Evaluation of three different methods of distance learning for postgraduate diagnostic imaging education: A pilot study.

    PubMed

    Poirier, Jean-Nicolas; Cooley, Jeffrey R; Wessely, Michelle; Guebert, Gary M; Petrocco-Napuli, Kristina

    2014-10-01

    Objective : The purpose of this study was to evaluate the perceived effectiveness and learning potential of 3 Web-based educational methods in a postgraduate radiology setting. Methods : Three chiropractic radiology faculty from diverse geographic locations led mini-courses using asynchronous discussion boards, synchronous Web conferencing, and asynchronous voice-over case presentations formatted for Web viewing. At the conclusion of each course, participants filled out a 14-question survey (using a 5-point Likert scale) designed to evaluate the effectiveness of each method in achieving specified course objectives and goals and their satisfaction when considering the learning potential of each method. The mean, standard deviation, and percentage agreements were tabulated. Results : Twenty, 15, and 10 participants completed the discussion board, Web conferencing, and case presentation surveys, respectively. All educational methods demonstrated a high level of agreement regarding the course objective (total mean rating >4.1). The case presentations had the highest overall rating for achieving the course goals; however, all but one method still had total mean ratings >4.0 and overall agreement levels of 70%-100%. The strongest potential for interactive learning was found with Web conferencing and discussion boards, while case presentations rated very low in this regard. Conclusions : The perceived effectiveness in achieving the course objective and goals was high for each method. Residency-based distance education may be a beneficial adjunct to current methods of training, allowing for international collaboration. When considering all aspects tested, there does not appear to be a clear advantage to any one method. Utilizing various methods may be most appropriate.

  13. Integrity Determination for Image Rendering Vision Navigation

    DTIC Science & Technology

    2016-03-01

    identifying an object within a scene, tracking a SIFT feature between frames or matching images and/or features for stereo vision applications. This... object level, either in 2-D or 3-D, versus individual features. There is a breadth of information, largely from the machine vision community...matching or image rendering image correspondence approach is based upon using either 2-D or 3-D object models or templates to perform object detection or

  14. Evaluation of image quality in terahertz pulsed imaging using test objects.

    PubMed

    Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M

    2002-11-07

    As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.

  15. Intervention for the collaborative use of Geographic Information Systems by private forest landowners: a meaning-centered perspective

    Treesearch

    Kirk D. Sinclair; Barbara A. Knuth

    2001-01-01

    Private forest landowners support the stewardship objectives that can be achieved through ecosystems-based management. However, ecosystems-based management is a data intensive approach that focuses upon the broad forest landscape. Intervention by forestry agents or agencies could help neighboring landowners to collaborate with an ecosystems-based approach in pursuit of...

  16. Appearance-based face recognition and light-fields.

    PubMed

    Gross, Ralph; Matthews, Iain; Baker, Simon

    2004-04-01

    Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.

  17. Categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace

    NASA Astrophysics Data System (ADS)

    Resmini, Ronald G.

    2003-09-01

    Hyperspectral information (HSI) data are commonly categorized by a description of the dominant physical geographic background captured in the image cube. In other words, HSI categorization is commonly based on a cursory, visual assessment of whether the data are of desert, forest, urban, littoral, jungle, alpine, etc., terrains. Additionally, often the design of HSI collection experiments is based on the acquisition of data of the various backgrounds or of objects of interest within the various terrain types. These data are for assessing and quantifying algorithm performance as well as for algorithm development activities. Here, results of an investigation into the validity of the backgrounds-driven mode of characterizing the diversity of hyperspectral data are presented. HSI data are described quantitatively, in the space where most algorithms operate: n-dimensional (n-D) hyperspace, where n is the number of bands in an HSI data cube. Nineteen metrics designed to probe hyperspace are applied to 14 HYDICE HSI data cubes that represent nine different backgrounds. Each of the 14 sets (one for each HYDICE cube) of 19 metric values was analyzed for clustering. With the present set of data and metrics, there is no clear, unambiguous break-out of metrics based on the nine different geographic backgrounds. The break-outs clump seemingly unrelated data types together; e.g., littoral and urban/residential. Most metrics are normally distributed and indicate no clustering; one metric is one outlier away from normal (i.e., two clusters); and five are comprised of two distributions (i.e., two clusters). Overall, there are three different break-outs that do not correspond to conventional background categories. Implications of these preliminary results are discussed as are recommendations for future work.

  18. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  19. Recognizing 3 D Objects from 2D Images Using Structural Knowledge Base of Genetic Views

    DTIC Science & Technology

    1988-08-31

    technical report. [BIE85] I. Biederman , "Human image understanding: Recent research and a theory", Computer Vision, Graphics, and Image Processing, vol...model bases", Technical Report 87-85, COINS Dept, University of Massachusetts, Amherst, MA 01003, August 1987 . [BUR87b) Burns, J. B. and L. J. Kitchen...34Recognition in 2D images of 3D objects from large model bases using prediction hierarchies", Proc. IJCAI-10, 1987 . [BUR891 J. B. Burns, forthcoming

  20. Speckle-learning-based object recognition through scattering media.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  1. a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects

    NASA Astrophysics Data System (ADS)

    Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.

    2015-12-01

    The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.

  2. Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.

    PubMed

    Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang

    2018-09-01

    Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.

  3. Main Street: Teaching Elementary School Students Standards-Based Urban Geography.

    ERIC Educational Resources Information Center

    Hurt, Douglas A.

    1997-01-01

    Describes a lesson plan that uses Main Street images of three towns to encourage students to recognize and compare human and physical characteristics of places. The lesson teaches the geographic concepts of site (absolute location) and situation (relative location) as well as introducing students to urban geography. (MJP)

  4. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  5. Design and Establishment of Quality Model of Fundamental Geographic Information Database

    NASA Astrophysics Data System (ADS)

    Ma, W.; Zhang, J.; Zhao, Y.; Zhang, P.; Dang, Y.; Zhao, T.

    2018-04-01

    In order to make the quality evaluation for the Fundamental Geographic Information Databases(FGIDB) more comprehensive, objective and accurate, this paper studies and establishes a quality model of FGIDB, which formed by the standardization of database construction and quality control, the conformity of data set quality and the functionality of database management system, and also designs the overall principles, contents and methods of the quality evaluation for FGIDB, providing the basis and reference for carry out quality control and quality evaluation for FGIDB. This paper designs the quality elements, evaluation items and properties of the Fundamental Geographic Information Database gradually based on the quality model framework. Connected organically, these quality elements and evaluation items constitute the quality model of the Fundamental Geographic Information Database. This model is the foundation for the quality demand stipulation and quality evaluation of the Fundamental Geographic Information Database, and is of great significance on the quality assurance in the design and development stage, the demand formulation in the testing evaluation stage, and the standard system construction for quality evaluation technology of the Fundamental Geographic Information Database.

  6. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  7. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.

    PubMed

    Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir

    2014-05-01

    The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

  8. Re-Sonification of Objects, Events, and Environments

    NASA Astrophysics Data System (ADS)

    Fink, Alex M.

    Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.

  9. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  10. Scatter measurement and correction method for cone-beam CT based on single grating scan

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  11. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  12. Selected papers in the applied computer sciences 1992

    USGS Publications Warehouse

    Wiltshire, Denise A.

    1992-01-01

    This compilation of short papers reports on technical advances in the applied computer sciences. The papers describe computer applications in support of earth science investigations and research. This is the third volume in the series "Selected Papers in the Applied Computer Sciences." Listed below are the topics addressed in the compilation:Integration of geographic information systems and expert systems for resource management,Visualization of topography using digital image processing,Development of a ground-water data base for the southeastern Uited States using a geographic information system,Integration and aggregation of stream-drainage data using a geographic information system,Procedures used in production of digital geologic coverage using compact disc read-only memory (CD-ROM) technology, andAutomated methods for producing a technical publication on estimated water use in the United States.

  13. Illustration Watermarking for Digital Images: An Investigation of Hierarchical Signal Inheritances for Nested Object-based Embedding

    DTIC Science & Technology

    2007-02-23

    approach for signal-level watermark inheritance. 15. SUBJECT TERMS EOARD, Steganography , Image Fusion, Data Mining, Image ...in watermarking algorithms , a program interface and protocol has been de - veloped, which allows control of the embedding and retrieval processes by the...watermarks in an image . Watermarking algorithm (DLL) Watermarking editor (Delphi) - User marks all objects: ci - class information oi - object instance

  14. Active confocal imaging for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2014-01-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710

  15. A focus of attention mechanism for gaze control within a framework for intelligent image analysis tools

    NASA Astrophysics Data System (ADS)

    Rodrigo, Ranga P.; Ranaweera, Kamal; Samarabandu, Jagath K.

    2004-05-01

    Focus of attention is often attributed to biological vision system where the entire field of view is first monitored and then the attention is focused to the object of interest. We propose using a similar approach for object recognition in a color image sequence. The intention is to locate an object based on a prior motive, concentrate on the detected object so that the imaging device can be guided toward it. We use the abilities of the intelligent image analysis framework developed in our laboratory to generate an algorithm dynamically to detect the particular type of object based on the user's object description. The proposed method uses color clustering along with segmentation. The segmented image with labeled regions is used to calculate the shape descriptor parameters. These and the color information are matched with the input description. Gaze is then controlled by issuing camera movement commands as appropriate. We present some preliminary results that demonstrate the success of this approach.

  16. Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree

    ERIC Educational Resources Information Center

    Chen, Wei-Bang

    2012-01-01

    The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…

  17. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  18. Attribute-based classification for zero-shot visual object categorization.

    PubMed

    Lampert, Christoph H; Nickisch, Hannes; Harmeling, Stefan

    2014-03-01

    We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.

  19. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  20. Imaging with a small number of photons

    PubMed Central

    Morris, Peter A.; Aspden, Reuben S.; Bell, Jessica E. C.; Boyd, Robert W.; Padgett, Miles J.

    2015-01-01

    Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. PMID:25557090

  1. Digital disaster evaluation and its application to 2015 Ms 8.1 Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    WANG, Xiaoqing; LV, Jinxia; DING, Xiang; DOU, Aixia

    2016-11-01

    The purpose of the article is to probe the technique resolution of disaster information extraction and evaluation from the digital RS images based on the internet environment and aided by the social and geographic information. The solution is composed with such methods that the fast post-disaster assessment system will assess automatically the disaster area and grade, the multi-phase satellite and airborne high resolution digital RS images will provide the basis to extract the disaster areas or spots, assisted by the fast position of potential serious damage risk targets according to the geographic, administrative, population, buildings and other information in the estimated disaster region, the 2D digital map system or 3D digital earth system will provide platforms to interpret cooperatively the damage information in the internet environment, and further to estimate the spatial distribution of damage index or intensity, casualties or economic losses, which are very useful for the decision-making of emergency rescue and disaster relief, resettlement and reconstruction. The spatial seismic damage distribution of 2015 Ms 8.1 Nepal earthquake, as an example of the above solution, is evaluated by using the high resolution digital RS images, auxiliary geographic information and ground survey. The results are compared with the statistical disaster information issued by the ground truth by field surveying, and show good consistency.

  2. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.

    2010-01-15

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, amore » chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.« less

  3. Integrated VR platform for 3D and image-based models: a step toward interactive image-based virtual environments

    NASA Astrophysics Data System (ADS)

    Yoon, Jayoung; Kim, Gerard J.

    2003-04-01

    Traditionally, three dimension models have been used for building virtual worlds, and a data structure called the "scene graph" is often employed to organize these 3D objects in the virtual space. On the other hand, image-based rendering has recently been suggested as a probable alternative VR platform for its photo-realism, however, due to limited interactivity, it has only been used for simple navigation systems. To combine the merits of these two approaches to object/scene representations, this paper proposes for a scene graph structure in which both 3D models and various image-based scenes/objects can be defined, traversed, and rendered together. In fact, as suggested by Shade et al., these different representations can be used as different LOD's for a given object. For instance, an object might be rendered using a 3D model at close range, a billboard at an intermediate range, and as part of an environment map at far range. The ultimate objective of this mixed platform is to breath more interactivity into the image based rendered VE's by employing 3D models as well. There are several technical challenges in devising such a platform: designing scene graph nodes for various types of image based techniques, establishing criteria for LOD/representation selection, handling their transitions, implementing appropriate interaction schemes, and correctly rendering the overall scene. Currently, we have extended the scene graph structure of the Sense8's WorldToolKit, to accommodate new node types for environment maps billboards, moving textures and sprites, "Tour-into-the-Picture" structure, and view interpolated objects. As for choosing the right LOD level, the usual viewing distance and image space criteria are used, however, the switching between the image and 3D model occurs at a distance from the user where the user starts to perceive the object's internal depth. Also, during interaction, regardless of the viewing distance, a 3D representation would be used, it if exists. Before rendering, objects are conservatively culled from the view frustum using the representation with the largest volume. Finally, we carried out experiments to verify the theoretical derivation of the switching rule and obtained positive results.

  4. Image Mining in Remote Sensing for Coastal Wetlands Mapping: from Pixel Based to Object Based Approach

    NASA Astrophysics Data System (ADS)

    Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.

    2016-11-01

    The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.

  5. Land cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin)

    NASA Astrophysics Data System (ADS)

    Badjana, Hèou Maléki; Helmschrot, Jörg; Selsam, Peter; Wala, Kpérkouma; Flügel, Wolfgang-Albert; Afouda, Abel; Akpagana, Koffi

    2015-10-01

    In this study, land cover changes between 1972 and 2013 were investigated in the Binah River watershed (North of Togo and Benin) using remote sensing and geographic information system technologies. Multitemporal satellite images—Landsat MSS (1972), TM (1987), and OLI-TIRS (2013)—were processed using object-based image analysis and post-classification comparison methods including landscape metrics and changes trajectories analysis. Land cover maps referring to five main land cover classes, namely, agricultural land, forest land, savannah, settlements, and water bodies, were produced for each acquisition date. The overall accuracies were 76.64% (1972), 83.52% (1987), and 88.84% (2013) with respective Kappa statistics of 0.69, 0.78, and 0.86. The assessment of the spatiotemporal pattern of land cover changes indicates that savannah, the main vegetation type, has undergone the most dominant change, decreasing from 67% of the basin area in 1972 to 56% in 1987 and 33% in 2013. At the same time, agricultural land has significantly increased from 15% in 1972 to 24% in 1987 and 43% in 2013, while some proportions of agricultural land were converted to savannah relating to fallow agriculture. In total, more than 55% of the landscape experienced changes between 1972 and 2013. These changes are primarily due to human activities and population growth. In addition, agricultural activities significantly contributed to the increase in the number of patches, degree of division, and splitting index of forest and savannah vegetations and the decrease in their effective mesh sizes. These results indicate further fragmentation of forest and savannah vegetations between 1972 and 2013. Further research is needed to quantitatively evaluate the influences of individual factors of human activities and to separate these from the impacts of climate change-driven disturbances.

  6. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  7. Simulations for Improved Imaging of Faint Objects at Maui Space Surveillance Site

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Roggemann, M.; Werth, M.; Lucas, J.; Thompson, D.

    A detailed wave-optics simulation is used in conjunction with advanced post-processing algorithms to explore the trade space between image post-processing and adaptive optics for improved imaging of low signal-to-noise ratio (SNR) targets. Target-based guidestars are required for imaging of most active Earth-orbiting satellites because of restrictions on using laser-backscatter-based guidestars in the direction of such objects. With such target-based guidestars and Maui conditions, it is found that significant reductions in adaptive optics actuator and subaperture density can result in improved imaging of fainter objects. Simulation indicates that elimination of adaptive optics produces sub-optimal results for all of the faint-object cases considered. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  8. A new approach for automatic matching of ground control points in urban areas from heterogeneous images

    NASA Astrophysics Data System (ADS)

    Cong, Chao; Liu, Dingsheng; Zhao, Lingjun

    2008-12-01

    This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.

  9. Laboratory E-Notebooks: A Learning Object-Based Repository

    ERIC Educational Resources Information Center

    Abari, Ilior; Pierre, Samuel; Saliah-Hassane, Hamadou

    2006-01-01

    During distributed virtual laboratory experiment sessions, a major problem is to be able to collect, store, manage and share heterogeneous data (intermediate results, analysis, annotations, etc) manipulated simultaneously by geographically distributed teammates composing a virtual team. The electronic notebook is a possible response to this…

  10. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  11. Sharpening method of satellite thermal image based on the geographical statistical model

    NASA Astrophysics Data System (ADS)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  12. Informal settlement classification using point-cloud and image-based features from UAV data

    NASA Astrophysics Data System (ADS)

    Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.

    2017-03-01

    Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Furthermore, it is of interest to analyse which fundamental attributes are suitable for describing these objects in different geographic locations. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. UAV datasets from informal settlements in two different countries are compared in order to identify salient features for specific objects in heterogeneous urban environments. Findings show that the integration of 2D and 3D features leads to an overall accuracy of 91.6% and 95.2% respectively for informal settlements in Kigali, Rwanda and Maldonado, Uruguay.

  13. Extraction of composite visual objects from audiovisual materials

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal

    1999-08-01

    An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.

  14. Streamlining machine learning in mobile devices for remote sensing

    NASA Astrophysics Data System (ADS)

    Coronel, Andrei D.; Estuar, Ma. Regina E.; Garcia, Kyle Kristopher P.; Dela Cruz, Bon Lemuel T.; Torrijos, Jose Emmanuel; Lim, Hadrian Paulo M.; Abu, Patricia Angela R.; Victorino, John Noel C.

    2017-09-01

    Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in mobile devices limit the computational capabilities, making model development on the phone restricted and challenging. This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction techniques were applied to all images. Initial findings show no significant differences among the different feature extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as having a better accuracy than SVM or Naive-Bayes.

  15. Monocular correspondence detection for symmetrical objects by template matching

    NASA Astrophysics Data System (ADS)

    Vilmar, G.; Besslich, Philipp W., Jr.

    1990-09-01

    We describe a possibility to reconstruct 3-D information from a single view of an 3-D bilateral symmetric object. The symmetry assumption allows us to obtain a " second view" from a different viewpoint by a simple reflection of the monocular image. Therefore we have to solve the correspondence problem in a special case where known feature-based or area-based binocular approaches fail. In principle our approach is based on a frequency domain template matching of the features on the epipolar lines. During a training period our system " learns" the assignment of correspondence models to image features. The object shape is interpolated when no template matches to the image features. This fact is an important advantage of this methodology because no " real world" image holds the symmetry assumption perfectly. To simplify the training process we used single views on human faces (e. g. passport photos) but our system is trainable on any other kind of objects.

  16. Simulation design of light field imaging based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Xiao, Xiangguo; Luan, Yadong; Zhou, Xiaobin

    2017-02-01

    Based on the principium of light field imaging, there designed a objective lens and a microlens array for gathering the light field feature, the homologous ZEMAX models was also be built. Then all the parameters were optimized using ZEMAX and the simulation image was given out. It pointed out that the position relationship between the objective lens and the microlens array had a great affect on imaging, which was the guidance when developing a prototype.

  17. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  18. A potential global soils data base

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Joyce, A. T.; Hogg, H. C.

    1984-01-01

    A general procedure is outlined for refining the existing world soil maps from the existing 1:1 million scale to 1:250,000 through the interpretation of Landsat MSS and TM images, and the use of a Geographic Information System to relate the soils maps to available information on climate, topography, geology, and vegetation.

  19. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  20. Automated Agricultural Field Extraction from Multi-temporal Web Enabled Landsat Data

    NASA Astrophysics Data System (ADS)

    Yan, L.; Roy, D. P.

    2012-12-01

    Agriculture has caused significant anthropogenic surface change. In many regions agricultural field sizes may be increasing to maximize yields and reduce costs resulting in decreased landscape spatial complexity and increased homogenization of land uses with potential for significant biogeochemical and ecological effects. To date, studies of the incidence, drivers and impacts of changing field sizes have not been undertaken over large areas because of computational constraints and because consistently processed appropriate resolution data have not been available or affordable. The Landsat series of satellites provides near-global coverage, long term, and appropriate spatial resolution (30m) satellite data to document changing field sizes. The recent free availability of all the Landsat data in the U.S. Landsat archive now provides the opportunity to study field size changes in a global and consistent way. Commercial software can be used to extract fields from Landsat data but are inappropriate for large area application because they require considerable human interaction. This paper presents research to develop and validate an automated computational Geographic Object Based Image Analysis methodology to extract agricultural fields and derive field sizes from Web Enabled Landsat Data (WELD) (http://weld.cr.usgs.gov/). WELD weekly products (30m reflectance and brightness temperature) are classified into Satellite Image Automatic Mapper™ (SIAM™) spectral categories and an edge intensity map and a map of the probability of each pixel being agricultural are derived from five years of 52 weeks of WELD and corresponding SIAM™ data. These data are fused to derive candidate agriculture field segments using a variational region-based geometric active contour model. Geometry-based algorithms are used to decompose connected segments belonging to multiple fields into coherent isolated field objects with a divide and conquer strategy to detect and merge partial circle segments. Results are presented for several 5000 x 5000 30m pixel WELD tiles encompassing rectangular and circular (pivot irrigation) fields in Texas and California and the results are validated qualitatively by comparison with high spatial resolution images obtained from the National Geospatial-Intelligence Agency (NGA) Commercial Archive. Implications and recommendations for algorithm refinement and application to decadal conterminous United States WELD data are discussed.

  1. Detecting objects in radiographs for homeland security

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  2. Medical microscopic image matching based on relativity

    NASA Astrophysics Data System (ADS)

    Xie, Fengying; Zhu, Liangen; Jiang, Zhiguo

    2003-12-01

    In this paper, an effective medical micro-optical image matching algorithm based on relativity is described. The algorithm includes the following steps: Firstly, selecting a sub-area that has obvious character in one of the two images as standard image; Secondly, finding the right matching position in the other image; Thirdly, applying coordinate transformation to merge the two images together. As a kind of application of image matching in medical micro-optical image, this method overcomes the shortcoming of microscope whose visual field is little and makes it possible to watch a big object or many objects in one view. Simultaneously it implements adaptive selection of standard image, and has a satisfied matching speed and result.

  3. Quantification of Impervious Surfaces Along the Wasatch Front, Utah: AN Object-Based Image Analysis Approach to Identifying AN Indicator for Wetland Stress

    NASA Astrophysics Data System (ADS)

    Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.

    2013-12-01

    The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.

  4. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

    PubMed Central

    Tsai, Yu Hsin; Stow, Douglas; Weeks, John

    2013-01-01

    The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810

  5. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.

    PubMed

    Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu

    2018-01-01

    Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Emerging Technologies for Software-Reliant Systems of Systems

    DTIC Science & Technology

    2010-09-01

    conditions, such as temperature, sound, vibration, light intensity , motion, or proximity to objects [Raghavendra 2006]. Cognitive Network A cognitive...systems evolutionary development emergent behavior geographic distribution Maier also defines four types of SoS based on their management...by multinational teams. Many organizations use offshoring as a way to reduce costs of software development. Large web- based systems often use

  7. Content-based image exploitation for situational awareness

    NASA Astrophysics Data System (ADS)

    Gains, David

    2008-04-01

    Image exploitation is of increasing importance to the enterprise of building situational awareness from multi-source data. It involves image acquisition, identification of objects of interest in imagery, storage, search and retrieval of imagery, and the distribution of imagery over possibly bandwidth limited networks. This paper describes an image exploitation application that uses image content alone to detect objects of interest, and that automatically establishes and preserves spatial and temporal relationships between images, cameras and objects. The application features an intuitive user interface that exposes all images and information generated by the system to an operator thus facilitating the formation of situational awareness.

  8. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  9. Digital Images on the DIME

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  10. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    PubMed

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  11. Remote Imaging by Nanosecond Terahertz Spectrometer with Standoff Detector

    NASA Astrophysics Data System (ADS)

    Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.

    2018-01-01

    Creation and application of the remote imaging spectrometer based on high power nanosecond terahertz source with standoff detector is reported. 2D transmission images of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection images of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).

  12. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  13. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    PubMed Central

    2010-01-01

    Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451

  14. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  15. Linked Forests: Semantic similarity of geographical concepts "forest"

    NASA Astrophysics Data System (ADS)

    Čerba, Otakar; Jedlička, Karel

    2016-01-01

    Linked Data represents the new trend in geoinformatics and geomatics. It produces a structure of objects (in a form of concepts or terms) interconnected by object relations expressing a type of semantic relationships of various concepts. The research published in this article studies, if objects connected by above mentioned relations are more similar than objects representing the same phenomenon, but standing alone. The phenomenon "forest" and relevant geographical concepts were chosen as the domain of the research. The concepts similarity (Tanimoto coefficient as a specification of Tversky index) was computed on the basis of explicit information provided by thesauri containing particular concepts. Overall in the seven thesauri (AGROVOC, EuroVoc, GEMET, LusTRE/EARTh, NAL, OECD and STW) there was tested if the "forest" concept interconnected by the relation skos:exactMatch are more similar than other, not interlinked concepts. The results of the research are important for the sharing and combining of geographical data, information and knowledge. The proposed methodology can be reused to a comparison of other geographical concepts.

  16. Visual information mining in remote sensing image archives

    NASA Astrophysics Data System (ADS)

    Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.

    2002-01-01

    The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.

  17. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    PubMed

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.

  18. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images.

    PubMed

    Dzyubak, Oleksandr P; Ritman, Erik L

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries.

  19. Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee

    2013-02-01

    3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.

  20. An object recognition method based on fuzzy theory and BP networks

    NASA Astrophysics Data System (ADS)

    Wu, Chuan; Zhu, Ming; Yang, Dong

    2006-01-01

    It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image is edged, the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.

  1. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  2. “Geographic atrophy”: semantic considerations and literature review

    PubMed Central

    Schmitz-Valckenberg, Steffen; Sadda, Srinivas; Staurenghi, Giovanni; Chew, Emily Y.; Fleckenstein, Monika; Holz, Frank G.

    2016-01-01

    Purpose There is a lack of agreement regarding the types of lesions and clinical conditions that should be included in the term “geographic atrophy”. Varied and conflicting views prevail throughout the literature and are currently used by retinal experts and other health care professionals. Methods We reviewed the nominal definition of the term “geographic atrophy” and conducted a search of the ophthalmological literature focusing on preceding terminologies as well as the first citations of the term “geographic atrophy” secondary to age-related macular degeneration (AMD). Results According to the nominal definition, the term “geography” stands for a detailed description of the surface features of a specific region, indicating its relative position. However, it does not necessarily imply that the borders of the region must be sharply demarcated or related to any anatomical structures. The term “geographical areas of atrophy” was initially cited in the 1960s in the ophthalmological literature in the context of uveitic eye disease and shortly thereafter also for the description of variants of “senile macular degeneration”. However, no direct explanation could be found in the literature as to why the terms “geographical” and “geographic” were chosen. Presumably the terms were used as the atrophic regions resembled the map of a continent or well-defined country borders on thematic geographical maps. With the evolution of the terminology, the commonly used adjunct “of the retinal pigment epithelium” was frequently omitted and solely the term “geographic atrophy” prevailed for the non-exudative late-stage of AMD itself. Along with the quantification of atrophic areas, based on different imaging modalities and the use of both manual and semi-automated approaches, various and inconsistent definitions for the minimal lesion diameter or size of atrophic lesions have also emerged. Conclusions Reconsideration of the application of the term “geographic atrophy” in the context of AMD appears to be prudent given ongoing advances in multi-modal retinal imaging technology with identification of various phenotypic characteristics, and the observation of atrophy development in eyes under anti-angiogenic therapy. PMID:27552292

  3. Location of geographical objects in crisis situations

    NASA Astrophysics Data System (ADS)

    Rybansky, M.; Kratochvil, V.

    2014-02-01

    This article summarizes the various expressions of object positioning using different coordinate data and different methods, such as use of maps, exploiting the properties of digital Global System for Mobile Communications (GSM) networks, Global Navigational Satellite Systems (GNSS), Inertial Navigation Systems (INS), Inertial Measurement Systems (IMS), hybrid methods and non-contact (remote sensing) methods; all with varying level of accuracy. Furthermore, the article describes some geographical identifiers and verbal means to describe location of geographical objects such as settlements, rivers, forest, roads, etc. All of the location methods have some advantages and disadvantages, especially in emergency situations, when usually the crisis management has a lack of time in a decision process.

  4. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.

    PubMed

    Wang, Jing; Li, Heng; Fu, Weizhen; Chen, Yao; Li, Liming; Lyu, Qing; Han, Tingting; Chai, Xinyu

    2016-01-01

    Retinal prostheses have the potential to restore partial vision. Object recognition in scenes of daily life is one of the essential tasks for implant wearers. Still limited by the low-resolution visual percepts provided by retinal prostheses, it is important to investigate and apply image processing methods to convey more useful visual information to the wearers. We proposed two image processing strategies based on Itti's visual saliency map, region of interest (ROI) extraction, and image segmentation. Itti's saliency model generated a saliency map from the original image, in which salient regions were grouped into ROI by the fuzzy c-means clustering. Then Grabcut generated a proto-object from the ROI labeled image which was recombined with background and enhanced in two ways--8-4 separated pixelization (8-4 SP) and background edge extraction (BEE). Results showed that both 8-4 SP and BEE had significantly higher recognition accuracy in comparison with direct pixelization (DP). Each saliency-based image processing strategy was subject to the performance of image segmentation. Under good and perfect segmentation conditions, BEE and 8-4 SP obtained noticeably higher recognition accuracy than DP, and under bad segmentation condition, only BEE boosted the performance. The application of saliency-based image processing strategies was verified to be beneficial to object recognition in daily scenes under simulated prosthetic vision. They are hoped to help the development of the image processing module for future retinal prostheses, and thus provide more benefit for the patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, X.; Xiao, W.

    2018-05-01

    The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.

  6. OLIVER: an online library of images for veterinary education and research.

    PubMed

    McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick

    2007-01-01

    As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.

  7. Semi-automated extraction of landslides in Taiwan based on SPOT imagery and DEMs

    NASA Astrophysics Data System (ADS)

    Eisank, Clemens; Hölbling, Daniel; Friedl, Barbara; Chen, Yi-Chin; Chang, Kang-Tsung

    2014-05-01

    The vast availability and improved quality of optical satellite data and digital elevation models (DEMs), as well as the need for complete and up-to-date landslide inventories at various spatial scales have fostered the development of semi-automated landslide recognition systems. Among the tested approaches for designing such systems, object-based image analysis (OBIA) stepped out to be a highly promising methodology. OBIA offers a flexible, spatially enabled framework for effective landslide mapping. Most object-based landslide mapping systems, however, have been tailored to specific, mainly small-scale study areas or even to single landslides only. Even though reported mapping accuracies tend to be higher than for pixel-based approaches, accuracy values are still relatively low and depend on the particular study. There is still room to improve the applicability and objectivity of object-based landslide mapping systems. The presented study aims at developing a knowledge-based landslide mapping system implemented in an OBIA environment, i.e. Trimble eCognition. In comparison to previous knowledge-based approaches, the classification of segmentation-derived multi-scale image objects relies on digital landslide signatures. These signatures hold the common operational knowledge on digital landslide mapping, as reported by 25 Taiwanese landslide experts during personal semi-structured interviews. Specifically, the signatures include information on commonly used data layers, spectral and spatial features, and feature thresholds. The signatures guide the selection and implementation of mapping rules that were finally encoded in Cognition Network Language (CNL). Multi-scale image segmentation is optimized by using the improved Estimation of Scale Parameter (ESP) tool. The approach described above is developed and tested for mapping landslides in a sub-region of the Baichi catchment in Northern Taiwan based on SPOT imagery and a high-resolution DEM. An object-based accuracy assessment is conducted by quantitatively comparing extracted landslide objects with landslide polygons that were visually interpreted by local experts. The applicability and transferability of the mapping system are evaluated by comparing initial accuracies with those achieved for the following two tests: first, usage of a SPOT image from the same year, but for a different area within the Baichi catchment; second, usage of SPOT images from multiple years for the same region. The integration of the common knowledge via digital landslide signatures is new in object-based landslide studies. In combination with strategies to optimize image segmentation this may lead to a more objective, transferable and stable knowledge-based system for the mapping of landslides from optical satellite data and DEMs.

  8. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies

    NASA Astrophysics Data System (ADS)

    Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad

    2018-06-01

    Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.

  9. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  10. United States Forest Disturbance Trends Observed Using Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.

  11. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    NASA Astrophysics Data System (ADS)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  12. Realtime automatic metal extraction of medical x-ray images for contrast improvement

    NASA Astrophysics Data System (ADS)

    Prangl, Martin; Hellwagner, Hermann; Spielvogel, Christian; Bischof, Horst; Szkaliczki, Tibor

    2006-03-01

    This paper focuses on an approach for real-time metal extraction of x-ray images taken from modern x-ray machines like C-arms. Such machines are used for vessel diagnostics, surgical interventions, as well as cardiology, neurology and orthopedic examinations. They are very fast in taking images from different angles. For this reason, manual adjustment of contrast is infeasible and automatic adjustment algorithms have been applied to try to select the optimal radiation dose for contrast adjustment. Problems occur when metallic objects, e.g., a prosthesis or a screw, are in the absorption area of interest. In this case, the automatic adjustment mostly fails because the dark, metallic objects lead the algorithm to overdose the x-ray tube. This outshining effect results in overexposed images and bad contrast. To overcome this limitation, metallic objects have to be detected and extracted from images that are taken as input for the adjustment algorithm. In this paper, we present a real-time solution for extracting metallic objects of x-ray images. We will explore the characteristic features of metallic objects in x-ray images and their distinction from bone fragments which form the basis to find a successful way for object segmentation and classification. Subsequently, we will present our edge based real-time approach for successful and fast automatic segmentation and classification of metallic objects. Finally, experimental results on the effectiveness and performance of our approach based on a vast amount of input image data sets will be presented.

  13. Eco-Environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Zhu, M.; Wang, Y.; Xu, C.; Yang, H.

    2018-04-01

    As the headstream of the Yellow River, the Yangtze River and the Lantsang River, located in the hinterland of Qinghai-Tibet Plateau, Qinghai province is hugely significant for ecosystem as well as for ecological security and sustainable development in China. With the accomplishment of the first national geographic condition census, the frequent monitoring has begun. The classification indicators of the census and monitoring data are highly correlated with Technical Criterion for Ecosystem Status Evaluation released by Ministry of Environmental Protection in 2015. Based on three years' geographic conditions data (2014-2016), Landsat-8 images and thematic data (water resource, pollution emissions, meteorological data, soil erosion, etc.), a multi-years and high-precision eco-environment status evaluation and spatiotemporal change analysis of Qinghai province has been researched on the basis of Technical Criterion for Ecosystem Status Evaluation in this paper. Unlike the evaluation implemented by environmental protection department, the evaluation unit in this paper is town rather than county. The evaluation result shows that the eco-environment status in Qinghai is generally in a fine condition, and has significant regional differences. The eco-environment status evaluation based on national geographic conditions census and monitoring data can improve both the time and space precision. The eco-environment status with high space precise and multi-indices is a key basis for environment protection decision-making.

  14. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  15. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  16. A knowledge-based object recognition system for applications in the space station

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  17. Object Detection in Natural Backgrounds Predicted by Discrimination Performance and Models

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.; Rohaly, A. M.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    In object detection, an observer looks for an object class member in a set of backgrounds. In discrimination, an observer tries to distinguish two images. Discrimination models predict the probability that an observer detects a difference between two images. We compare object detection and image discrimination with the same stimuli by: (1) making stimulus pairs of the same background with and without the target object and (2) either giving many consecutive trials with the same background (discrimination) or intermixing the stimuli (object detection). Six images of a vehicle in a natural setting were altered to remove the vehicle and mixed with the original image in various proportions. Detection observers rated the images for vehicle presence. Discrimination observers rated the images for any difference from the background image. Estimated detectabilities of the vehicles were found by maximizing the likelihood of a Thurstone category scaling model. The pattern of estimated detectabilities is similar for discrimination and object detection, and is accurately predicted by a Cortex Transform discrimination model. Predictions of a Contrast- Sensitivity- Function filter model and a Root-Mean-Square difference metric based on the digital image values are less accurate. The discrimination detectabilities averaged about twice those of object detection.

  18. Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Burke, Eric; Grubsky, Victor

    2017-02-01

    Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.

  19. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  20. Extracting Semantic Building Models from Aerial Stereo Images and Conversion to Citygml

    NASA Astrophysics Data System (ADS)

    Sengul, A.

    2012-07-01

    The collection of geographic data is of primary importance for the creation and maintenance of a GIS. Traditionally the acquisition of 3D information has been the task of photogrammetry using aerial stereo images. Digital photogrammetric systems employ sophisticated software to extract digital terrain models or to plot 3D objects. The demand for 3D city models leads to new applications and new standards. City Geography Mark-up Language (CityGML), a concept for modelling and exchange of 3D city and landscape models, defines the classes and relations for the most relevant topographic objects in cities and regional models with respect to their geometrical, topological, semantically and topological properties. It now is increasingly accepted, since it fulfils the prerequisites required e.g. for risk analysis, urban planning, and simulations. There is a need to include existing 3D information derived from photogrammetric processes in CityGML databases. In order to filling the gap, this paper reports on a framework transferring data plotted by Erdas LPS and Stereo Analyst for ArcGIS software to CityGML using Safe Software's Feature Manupulate Engine (FME)

  1. Global gray-level thresholding based on object size.

    PubMed

    Ranefall, Petter; Wählby, Carolina

    2016-04-01

    In this article, we propose a fast and robust global gray-level thresholding method based on object size, where the selection of threshold level is based on recall and maximum precision with regard to objects within a given size interval. The method relies on the component tree representation, which can be computed in quasi-linear time. Feature-based segmentation is especially suitable for biomedical microscopy applications where objects often vary in number, but have limited variation in size. We show that for real images of cell nuclei and synthetic data sets mimicking fluorescent spots the proposed method is more robust than all standard global thresholding methods available for microscopy applications in ImageJ and CellProfiler. The proposed method, provided as ImageJ and CellProfiler plugins, is simple to use and the only required input is an interval of the expected object sizes. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  2. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-06-13

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.

  3. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  4. Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics.

    PubMed

    Karabagias, Ioannis K; Louppis, Artemis P; Karabournioti, Sofia; Kontakos, Stavros; Papastephanou, Chara; Kontominas, Michael G

    2017-02-15

    The objective of the present study was: i) to characterize Mediterranean citrus honeys based on conventional physicochemical parameter values, volatile compounds, and mineral content ii) to investigate the potential of above parameters to differentiate citrus honeys according to geographical origin using chemometrics. Thus, 37 citrus honey samples were collected during harvesting periods 2013 and 2014 from Greece, Egypt, Morocco, and Spain. Conventional physicochemical and CIELAB colour parameters were determined using official methods of analysis and the Commission Internationale de l' Eclairage recommendations, respectively. Minerals were determined using ICP-OES and volatiles using SPME-GC/MS. Results showed that honey samples analyzed, met the standard quality criteria set by the EU and were successfully classified according to geographical origin. Correct classification rates were 97.3% using 8 physicochemical parameter values, 86.5% using 15 volatile compound data and 83.8% using 13 minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The geographical accessibility of hospitals to the aged: a geographic information systems analysis within Illinois.

    PubMed Central

    Love, D; Lindquist, P

    1995-01-01

    OBJECTIVE. This article uses geographic information systems and their related tools to empirically measure and display the geographic accessibility of the aged population to hospital facilities within Illinois. DATA SOURCES AND STUDY SETTING. Geographic accessibility of Illinois' aged population is measured from each of the state's 10,796 census block groups to the state's 214 hospital facilities. Block group demographic compositions and centroids are obtained from 1990 census files. Hospital coordinates are obtained by the authors. STUDY DESIGN. Of five alternative measures of accessibility considered, empirical estimates are obtained for two: choice set and minimum distance. Access to both general hospitals and the subset having specialized geriatric facilities is measured with special attention to differences in accessibility between the aged within metropolitan statistical areas (MSAs) and those outside MSAs. Cumulative accessibility distributions and their summary statistics provide a basis of comparison among subgroups. DATA COLLECTION AND EXTRACTION. Geographic information systems (GIS) and their related tools are used as a means of efficiently capturing, organizing, storing, and retrieving the required data. Hospitals and census block groups are geocoded to specific locations in the database, and aspatial attributes are assigned to the hospitals and block groups. The GIS database is queried to produce shaded isarithm and point distribution maps that show the location of hospitals relative to surrounding aged populations. CONCLUSION. The vast majority of Illinois' aged population is within close proximity to hospital facilities. Eighty percent (1,147,504 persons) of the aged in Illinois are within 4.8 miles (7.7 km) of a hospital and 11.6 miles (18.7 km) of two hospitals. However, geographic accessibility differences between the aged living in MSAs and those living outside MSAs to hospitals offering geriatric services are substantial; but there is no evidence that the aged's geographical accessibility to hospitals is less favorable than that of the general population. Detailed accessibility measures permitted by geographic information system technology call into question the continued use of crude empirical accessibility measures. Images Figure 2 PMID:7860317

  6. Objects Grouping for Segmentation of Roads Network in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    Maboudi, M.; Amini, J.; Hahn, M.

    2016-06-01

    Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors - as the main source of large scale mapping applications - was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of "Object-based Image Analysis (OBIA)" as an alternative to pixel-based image analysis methods. Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.

  7. Predictive risk mapping of West Nile virus (WNV) infection in Saskatchewan horses.

    PubMed

    Epp, Tasha Y; Waldner, Cheryl; Berke, Olaf

    2011-07-01

    The objective of this study was to develop a model using equine data from geographically limited surveillance locations to predict risk categories for West Nile virus (WNV) infection in horses in all geographic locations across the province of Saskatchewan. The province was divided geographically into low-, medium-, or high-risk categories for WNV, based on available serology information from 923 horses obtained through 4 studies of WNV infection in horse populations in Saskatchewan. Discriminant analysis was used to build models using the observed risk of WNV in horses and geographic division-specific environmental data as well as to predict the risk category for all areas, including those beyond the surveillance zones. High-risk areas were indicated by relatively lower rainfall, higher temperatures, and a lower percentage of area covered in trees, water, and wetland. These conditions were most often identified in the southwest corner of the province. Environmental conditions can be used to identify those areas that are at highest risk for WNV. Public health managers could use prediction maps, which are based on animal or human information and developed from annual early season meteorological information, to guide ongoing decisions about when and where to focus intervention strategies for WNV.

  8. Design and test of an object-oriented GIS to map plant species in the Southern Rockies

    NASA Technical Reports Server (NTRS)

    Morain, Stanley A.; Neville, Paul R. H.; Budge, Thomas K.; Morrison, Susan C.; Helfrich, Donald A.; Fruit, Sarah

    1993-01-01

    Elevational and latitudinal shifts occur in the flora of the Rocky Mountains due to long term climate change. In order to specify which species are successfully migrating with these changes, and which are not, an object-oriented, image-based geographic information system (GIS) is being created to animate evolving ecological regimes of temperature and precipitation. Research at the Earth Data Analysis Center (EDAC) is developing a landscape model that includes the spatial, spectral and temporal domains. It is designed to visualize migratory changes in the Rocky Mountain flora, and to specify future community compositions. The object-oriented database will eventually tag each of the nearly 6000 species with a unique hue, intensity, and saturation value, so their movements can be individually traced. An associated GIS includes environmental parameters that control the distribution of each species in the landscape, and satellite imagery is used to help visualize the terrain. Polygons for the GIS are delineated as landform facets that are static in ecological time. The model manages these facets as a triangular irregular net (TIN), and their analysis assesses the gradual progression of species as they migrate through the TIN. Using an appropriate climate change model, the goal will be to stop the modeling process to assess both the rate and direction of species' change and to specify the changing community composition of each landscape facet.

  9. Development of a Methodology for Predicting Forest Area for Large-Area Resource Monitoring

    Treesearch

    William H. Cooke

    2001-01-01

    The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a remote-sensing team to develop an image-processing methodology for mapping forest lands over large geographic areds. The team has presented a repeatable methodology, which is based on regression modeling of Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic...

  10. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  11. Profile fitting in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  12. Geographic information system for fusion and analysis of high-resolution remote sensing and ground truth data

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Dubois, Pascale; Leberl, Franz; Norikane, L.; Way, Jobea

    1991-01-01

    Viewgraphs on Geographic Information System for fusion and analysis of high-resolution remote sensing and ground truth data are presented. Topics covered include: scientific objectives; schedule; and Geographic Information System.

  13. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  14. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  15. SLAR image interpretation keys for geographic analysis

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.

    1972-01-01

    A means for side-looking airborne radar (SLAR) imagery to become a more widely used data source in geoscience and agriculture is suggested by providing interpretation keys as an easily implemented interpretation model. Interpretation problems faced by the researcher wishing to employ SLAR are specifically described, and the use of various types of image interpretation keys to overcome these problems is suggested. With examples drawn from agriculture and vegetation mapping, direct and associate dichotomous image interpretation keys are discussed and methods of constructing keys are outlined. Initial testing of the keys, key-based automated decision rules, and the role of the keys in an information system for agriculture are developed.

  16. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyuan; Du, Shihong; Wang, Qiao

    2017-10-01

    As the basic units of urban areas, functional zones are essential for city planning and management, but functional-zone maps are hardly available in most cities, as traditional urban investigations focus mainly on land-cover objects instead of functional zones. As a result, an automatic/semi-automatic method for mapping urban functional zones is highly required. Hierarchical semantic cognition (HSC) is presented in this study, and serves as a general cognition structure for recognizing urban functional zones. Unlike traditional classification methods, the HSC relies on geographic cognition and considers four semantic layers, i.e., visual features, object categories, spatial object patterns, and zone functions, as well as their hierarchical relations. Here, we used HSC to classify functional zones in Beijing with a very-high-resolution (VHR) satellite image and point-of-interest (POI) data. Experimental results indicate that this method can produce more accurate results than Support Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) with a larger overall accuracy of 90.8%. Additionally, the contributions of diverse semantic layers are quantified: the object-category layer is the most important and makes 54% contribution to functional-zone classification; while, other semantic layers are less important but their contributions cannot be ignored. Consequently, the presented HSC is effective in classifying urban functional zones, and can further support urban planning and management.

  17. Technique for identifying, tracing, or tracking objects in image data

    DOEpatents

    Anderson, Robert J [Albuquerque, NM; Rothganger, Fredrick [Albuquerque, NM

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  18. Exploiting range imagery: techniques and applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2009-07-01

    Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.

  19. Flexible feature-space-construction architecture and its VLSI implementation for multi-scale object detection

    NASA Astrophysics Data System (ADS)

    Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans

    2018-04-01

    Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.

  20. Whole-surface round object imaging method using line-scan hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    To achieve comprehensive online quality and safety inspection of fruits, whole-surface sample presentation and imaging regimes must be considered. Specifically, a round object sample presentation method is under development to achieve effective whole-surface sample evaluation based on the use of a s...

  1. Measurement of susceptibility artifacts with histogram-based reference value on magnetic resonance images according to standard ASTM F2119.

    PubMed

    Heinrich, Andreas; Teichgräber, Ulf K; Güttler, Felix V

    2015-12-01

    The standard ASTM F2119 describes a test method for measuring the size of a susceptibility artifact based on the example of a passive implant. A pixel in an image is considered to be a part of an image artifact if the intensity is changed by at least 30% in the presence of a test object, compared to a reference image in which the test object is absent (reference value). The aim of this paper is to simplify and accelerate the test method using a histogram-based reference value. Four test objects were scanned parallel and perpendicular to the main magnetic field, and the largest susceptibility artifacts were measured using two methods of reference value determination (reference image-based and histogram-based reference value). The results between both methods were compared using the Mann-Whitney U-test. The difference between both reference values was 42.35 ± 23.66. The difference of artifact size was 0.64 ± 0.69 mm. The artifact sizes of both methods did not show significant differences; the p-value of the Mann-Whitney U-test was between 0.710 and 0.521. A standard-conform method for a rapid, objective, and reproducible evaluation of susceptibility artifacts could be implemented. The result of the histogram-based method does not significantly differ from the ASTM-conform method.

  2. A scale-based connected coherence tree algorithm for image segmentation.

    PubMed

    Ding, Jundi; Ma, Runing; Chen, Songcan

    2008-02-01

    This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.

  3. Method and apparatus of a portable imaging-based measurement with self calibration

    DOEpatents

    Chang, Tzyy-Shuh [Ann Arbor, MI; Huang, Hsun-Hau [Ann Arbor, MI

    2012-07-31

    A portable imaging-based measurement device is developed to perform 2D projection based measurements on an object that is difficult or dangerous to access. This device is equipped with self calibration capability and built-in operating procedures to ensure proper imaging based measurement.

  4. Automatic thoracic body region localization

    NASA Astrophysics Data System (ADS)

    Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.

    2017-03-01

    Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects

  5. Evaluation in Geographic Education.

    ERIC Educational Resources Information Center

    Kurfman, Dana G., Ed.

    This second yearbook of the National Council for Geographic Education presents recent thinking about the formulation and assessment of the educational outcomes of geography. Dana G. Kurfman overviews "Evaluation Developments Useful in Geographic Education" relating evaluation to decision making, objectives, data gatherings, and data…

  6. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  7. Assessing the impact of graphical quality on automatic text recognition in digital maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang

    2016-08-01

    Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.

  8. Geography, Images and Technology. Innovations in Education and Publishing at the National Geographic Society.

    ERIC Educational Resources Information Center

    Peterson, George

    1986-01-01

    This paper discusses the role of the National Geographic Society (NGS) in providing educational materials on geography, from the National Geographic magazine to future innovative educational technologies. The changing nature of technology, communications, and the role of the creative mind are described in remarks quoted from the Society's…

  9. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  10. Reframing menstruation in India: metamorphosis of the menstrual taboo with the changing media coverage.

    PubMed

    Yagnik, Arpan Shailesh

    2014-01-01

    In this study I hypothesize metamorphosis of the menstrual taboo by examining the image and perception shifts of two social taboos-HIV/AIDS and homosexuality-from estranged taboos to embraced social issues. Trends identified in their media framing and respective image shifts were applied to menstruation in India. Based on my understanding of theory, topic, and geographical location, I construct a metamorphosis. I contribute the hypothesized final stage of metamorphosis, and explain how framing is likely instrumental in bringing about these changes.

  11. National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technology Research Network: Advancing Precision Medicine

    PubMed Central

    Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey

    2016-01-01

    To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014

  12. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  13. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  14. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  15. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  16. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    PubMed

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  17. Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion.

    PubMed

    Li, Gang; Liu, Tianming; Nie, Jingxin; Guo, Lei; Malicki, Jarema; Mara, Andrew; Holley, Scott A; Xia, Weiming; Wong, Stephen T C

    2007-10-01

    The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to detect blob objects, such as nuclei or cells in microscopic zebrafish images. This method is composed of three key steps. The first step is to produce a diffused gradient vector field by a physical elastic deformable model. In the second step, the flux image is computed on the diffused gradient vector field. The third step performs thresholding and nonmaximum suppression based on the flux image. We report the validation and experimental results of this method using zebrafish image datasets from three independent research labs. Both sensitivity and specificity of this method are over 90%. This method is able to differentiate closely juxtaposed or connected blob objects, with high sensitivity and specificity in different situations. It is characterized by a good, consistent performance in blob object detection.

  18. Method for stitching microbial images using a neural network

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.; Tolstova, I. V.

    2017-05-01

    Currently an analog microscope has a wide distribution in the following fields: medicine, animal husbandry, monitoring technological objects, oceanography, agriculture and others. Automatic method is preferred because it will greatly reduce the work involved. Stepper motors are used to move the microscope slide and allow to adjust the focus in semi-automatic or automatic mode view with transfer images of microbiological objects from the eyepiece of the microscope to the computer screen. Scene analysis allows to locate regions with pronounced abnormalities for focusing specialist attention. This paper considers the method for stitching microbial images, obtained of semi-automatic microscope. The method allows to keep the boundaries of objects located in the area of capturing optical systems. Objects searching are based on the analysis of the data located in the area of the camera view. We propose to use a neural network for the boundaries searching. The stitching image boundary is held of the analysis borders of the objects. To auto focus, we use the criterion of the minimum thickness of the line boundaries of object. Analysis produced the object located in the focal axis of the camera. We use method of recovery of objects borders and projective transform for the boundary of objects which are based on shifted relative to the focal axis. Several examples considered in this paper show the effectiveness of the proposed approach on several test images.

  19. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    NASA Astrophysics Data System (ADS)

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  20. An Integrative Object-Based Image Analysis Workflow for Uav Images

    NASA Astrophysics Data System (ADS)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  1. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  2. Toward objective image quality metrics: the AIC Eval Program of the JPEG

    NASA Astrophysics Data System (ADS)

    Richter, Thomas; Larabi, Chaker

    2008-08-01

    Objective quality assessment of lossy image compression codecs is an important part of the recent call of the JPEG for Advanced Image Coding. The target of the AIC ad-hoc group is twofold: First, to receive state-of-the-art still image codecs and to propose suitable technology for standardization; and second, to study objective image quality metrics to evaluate the performance of such codes. Even tthough the performance of an objective metric is defined by how well it predicts the outcome of a subjective assessment, one can also study the usefulness of a metric in a non-traditional way indirectly, namely by measuring the subjective quality improvement of a codec that has been optimized for a specific objective metric. This approach shall be demonstrated here on the recently proposed HDPhoto format14 introduced by Microsoft and a SSIM-tuned17 version of it by one of the authors. We compare these two implementations with JPEG1 in two variations and a visual and PSNR optimal JPEG200013 implementation. To this end, we use subjective and objective tests based on the multiscale SSIM and a new DCT based metric.

  3. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  4. Grid-based precision aim system and method for disrupting suspect objects

    DOEpatents

    Gladwell, Thomas Scott; Garretson, Justin; Hobart, Clinton G.; Monda, Mark J.

    2014-06-10

    A system and method for disrupting at least one component of a suspect object is provided. The system has a source for passing radiation through the suspect object, a grid board positionable adjacent the suspect object (the grid board having a plurality of grid areas, the radiation from the source passing through the grid board), a screen for receiving the radiation passing through the suspect object and generating at least one image, a weapon for deploying a discharge, and a targeting unit for displaying the image of the suspect object and aiming the weapon according to a disruption point on the displayed image and deploying the discharge into the suspect object to disable the suspect object.

  5. Utilization of a radiology-centric search engine.

    PubMed

    Sharpe, Richard E; Sharpe, Megan; Siegel, Eliot; Siddiqui, Khan

    2010-04-01

    Internet-based search engines have become a significant component of medical practice. Physicians increasingly rely on information available from search engines as a means to improve patient care, provide better education, and enhance research. Specialized search engines have emerged to more efficiently meet the needs of physicians. Details about the ways in which radiologists utilize search engines have not been documented. The authors categorized every 25th search query in a radiology-centric vertical search engine by radiologic subspecialty, imaging modality, geographic location of access, time of day, use of abbreviations, misspellings, and search language. Musculoskeletal and neurologic imagings were the most frequently searched subspecialties. The least frequently searched were breast imaging, pediatric imaging, and nuclear medicine. Magnetic resonance imaging and computed tomography were the most frequently searched modalities. A majority of searches were initiated in North America, but all continents were represented. Searches occurred 24 h/day in converted local times, with a majority occurring during the normal business day. Misspellings and abbreviations were common. Almost all searches were performed in English. Search engine utilization trends are likely to mirror trends in diagnostic imaging in the region from which searches originate. Internet searching appears to function as a real-time clinical decision-making tool, a research tool, and an educational resource. A more thorough understanding of search utilization patterns can be obtained by analyzing phrases as actually entered as well as the geographic location and time of origination. This knowledge may contribute to the development of more efficient and personalized search engines.

  6. General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory

    NASA Astrophysics Data System (ADS)

    van Haver, Sven; Janssen, Olaf T. A.; Braat, Joseph J. M.; Janssen, Augustus J. E. M.; Urbach, H. Paul; Pereira, Silvania F.

    2008-03-01

    In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of diffraction. An introduction to ENZ-theory and its application in general imaging is provided after which we describe the mask imaging scheme that can be derived from it. The remainder of the paper is devoted to illustrating the advantages of the new method over existing methods (Hopkins-based). To this extent several simulation results are included that illustrate advantages arising from: the accurate incorporation of isolated structures, the rigorous treatment of the object (mask topography) and the fully vectorial through-focus image formation of the ENZ-based algorithm.

  7. A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.

    PubMed

    Khelifi, Lazhar; Mignotte, Max

    2017-08-01

    Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.

  8. Remote Sensing Image Analysis Without Expert Knowledge - A Web-Based Classification Tool On Top of Taverna Workflow Management System

    NASA Astrophysics Data System (ADS)

    Selsam, Peter; Schwartze, Christian

    2016-10-01

    Providing software solutions via internet has been known for quite some time and is now an increasing trend marketed as "software as a service". A lot of business units accept the new methods and streamlined IT strategies by offering web-based infrastructures for external software usage - but geospatial applications featuring very specialized services or functionalities on demand are still rare. Originally applied in desktop environments, the ILMSimage tool for remote sensing image analysis and classification was modified in its communicating structures and enabled for running on a high-power server and benefiting from Tavema software. On top, a GIS-like and web-based user interface guides the user through the different steps in ILMSimage. ILMSimage combines object oriented image segmentation with pattern recognition features. Basic image elements form a construction set to model for large image objects with diverse and complex appearance. There is no need for the user to set up detailed object definitions. Training is done by delineating one or more typical examples (templates) of the desired object using a simple vector polygon. The template can be large and does not need to be homogeneous. The template is completely independent from the segmentation. The object definition is done completely by the software.

  9. Forest Resource Information System (FRIS)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technological and economical feasibility of using multispectral digital image data as acquired from the LANDSAT satellites in an ongoing operational forest information system was evaluated. Computer compatible multispectral scanner data secured from the LANDSAT satellites were demonstrated to be a significant contributor to ongoing information systems by providing the added dimensions of synoptic and repeat coverage of the Earth's surface. Major forest cover types of conifer, deciduous, mixed conifer-deciduous and non-forest, were classified well within the bounds of the statistical accuracy of the ground sample. Further, when overlayed with existing maps, the acreage of cover type retains a high level of positional integrity. Maps were digitized by a graphics design system, overlayed and registered onto LANDSAT imagery such that the map data with associated attributes were displayed on the image. Once classified, the analysis results were converted back to map form as a cover type of information. Existing tabular information as represented by inventory is registered geographically to the map base through a vendor provided data management system. The notion of a geographical reference base (map) providing the framework to which imagery and tabular data bases are registered and where each of the three functions of imagery, maps and inventory can be accessed singly or in combination is the very essence of the forest resource information system design.

  10. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  11. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  12. Using compressive measurement to obtain images at ultra low-light-level

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Wei, Ping

    2013-08-01

    In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.

  13. a Geographic Data Gathering System for Image Geolocalization Refining

    NASA Astrophysics Data System (ADS)

    Semaan, B.; Servières, M.; Moreau, G.; Chebaro, B.

    2017-09-01

    Image geolocalization has become an important research field during the last decade. This field is divided into two main sections. The first is image geolocalization that is used to find out which country, region or city the image belongs to. The second one is refining image localization for uses that require more accuracy such as augmented reality and three dimensional environment reconstruction using images. In this paper we present a processing chain that gathers geographic data from several sources in order to deliver a better geolocalization than the GPS one of an image and precise camera pose parameters. In order to do so, we use multiple types of data. Among this information some are visible in the image and are extracted using image processing, other types of data can be extracted from image file headers or online image sharing platforms related information. Extracted information elements will not be expressive enough if they remain disconnected. We show that grouping these information elements helps finding the best geolocalization of the image.

  14. Advantages to Geoscience and Disaster Response from QuakeSim Implementation of Interferometric Radar Maps in a GIS Database System

    NASA Astrophysics Data System (ADS)

    Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu

    2015-08-01

    High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.

  15. Neurosensoric disturbances after surgical removal of the mandibular third molar based on either panoramic imaging or cone beam CT scanning: A randomized controlled trial (RCT)

    PubMed Central

    Vaeth, Michael; Wenzel, Ann

    2016-01-01

    Objective: Pre-surgical CBCT has been suggested before removal of the mandibular third molar. Currently, the standard-of-care is two-dimensional (2D) panoramic imaging. The aim of this randomized controlled trial was to analyse possible differences in neurosensoric disturbances of the inferior alveolar nerve between patients undergoing either panoramic imaging or CBCT before surgical removal of the mandibular third molar. Furthermore, the aim was to perform a sensitivity analysis to assess the statistical significance of different assumptions related to sample size calculations. Methods: 230 patients were randomized to a scan group and a non-scan group. All patients were referred from practicing dentists in the Copenhagen area. Inclusion criteria were overlap of the root complex and the mandibular canal on a 2D radiographic image. Central allocation of the randomization code and double blind settings were established. The surgical removal was performed in a specialized surgical practice geographically and personally separated from the study practice. Registration of neurosensoric anomalies was performed with a Semmes–Weinstein test and a visual analogue scale questionnaire pre- and post-surgically. Results: In the scan group (n = 114), 21 episodes of neurosensoric disturbances were registered and in the non-scan group (n = 116), 13 episodes of neurosensoric disturbances were registered. There was no statistically significant difference between the two groups (p = 0.14). Performing a sensitivity analysis confirmed that CBCT was not superior to panoramic imaging in avoiding neurosensoric disturbances. Conclusions: The use of CBCT before removal of the mandibular third molar does not seem to reduce the number of neurosensoric disturbances. PMID:26648386

  16. Resolving power of diffraction imaging with an objective: a numerical study.

    PubMed

    Wang, Wenjin; Liu, Jing; Lu, Jun Qing; Ding, Junhua; Hu, Xin-Hua

    2017-05-01

    Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.

  17. Integrating passive seismicity with Web-Based GIS for a new perspective on volcano imaging and monitoring: the case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, Roberto; De Siena, Luca

    2017-04-01

    The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.

  18. 34 CFR 222.64 - What other requirements must a local educational agency meet in order to be eligible for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Additional Assistance for Heavily Impacted... applicant's current expenditures are affected by unusual geographical factors; and (ii) As a result, those... factors on which the applicant is basing its request for compensation under this section and objective...

  19. 34 CFR 222.64 - What other requirements must a local educational agency meet in order to be eligible for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Additional Assistance for Heavily Impacted... applicant's current expenditures are affected by unusual geographical factors; and (ii) As a result, those... factors on which the applicant is basing its request for compensation under this section and objective...

  20. CART V: recent advancements in computer-aided camouflage assessment

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Müller, Markus

    2011-05-01

    In order to facilitate systematic, computer aided improvements of camouflage and concealment assessment methods, the software system CART (Camouflage Assessment in Real-Time) was built up for the camouflage assessment of objects in multispectral image sequences (see contributions to SPIE 2007-2010 [1], [2], [3], [4]). It comprises a semi-automatic marking of target objects (ground truth generation) including their propagation over the image sequence and the evaluation via user-defined feature extractors as well as methods to assess the object's movement conspicuity. In this fifth part in an annual series at the SPIE conference in Orlando, this paper presents the enhancements over the recent year and addresses the camouflage assessment of static and moving objects in multispectral image data that can show noise or image artefacts. The presented methods fathom the correlations between image processing and camouflage assessment. A novel algorithm is presented based on template matching to assess the structural inconspicuity of an object objectively and quantitatively. The results can easily be combined with an MTI (moving target indication) based movement conspicuity assessment function in order to explore the influence of object movement to a camouflage effect in different environments. As the results show, the presented methods contribute to a significant benefit in the field of camouflage assessment.

  1. Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    NASA Technical Reports Server (NTRS)

    Davis, Bruce E.; Elliot, Gregory

    1989-01-01

    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

  2. Multi-stage robust scheme for citrus identification from high resolution airborne images

    NASA Astrophysics Data System (ADS)

    Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier

    2008-10-01

    Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.

  3. Prediction of sedimentation using integration of RS, RUSLE model and GIS in Cameron Highlands, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Ghani, A. H. A.; Lihan, T.; Rahim, S. A.; Musthapha, M. A.; Idris, W. M. R.; Rahman, Z. A.

    2013-11-01

    Soil erosion and sediment yield are strongly affected by land use change. Spatially distributed erosion models are of great interest to predict soil erosion loss and sediment yield. Hence, the objective of this study was to determine sediment yield using Revised Universal Soil Loss Equation (RUSLE) model in Geographical Information System (GIS) environment at Cameron Highlands, Pahang, Malaysia. Sediment yield at the study area was determined using RUSLE model in GIS environment The RUSLE factors were computed by utilizing information on rainfall erosivity (R) using interpolation of rainfall data, soil erodibility (K) using soil map and field measurement, vegetation cover (C) using satellite images, length and steepness (LS) using contour map and conservation practices using satellite images based on land use/land cover. Field observations were also done to verify the predicted sediment yield. The results indicated that the rate of sediment yield in the study area ranged from very low to extremely high. The higher SY value can be found at middle and lower catchments of Cameron Highland. Meanwhile, the lower SY value can be found at the north part of the study area. Sediment yield value turned out to be higher close to the river due to the topographic characteristic, vegetation type and density, climate and land use within the drainage basin.

  4. Imaging through turbulence using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-09-01

    Atmospheric turbulence can significantly affect imaging through paths near the ground. Atmospheric turbulence is generally treated as a time varying inhomogeneity of the refractive index of the air, which disrupts the propagation of optical signals from the object to the viewer. Under circumstances of deep or strong turbulence, the object is hard to recognize through direct imaging. Conventional imaging methods can't handle those problems efficiently. The required time for lucky imaging can be increased significantly and the image processing approaches require much more complex and iterative de-blurring algorithms. We propose an alternative approach using a plenoptic sensor to resample and analyze the image distortions. The plenoptic sensor uses a shared objective lens and a microlens array to form a mini Keplerian telescope array. Therefore, the image obtained by a conventional method will be separated into an array of images that contain multiple copies of the object's image and less correlated turbulence disturbances. Then a highdimensional lucky imaging algorithm can be performed based on the collected video on the plenoptic sensor. The corresponding algorithm will select the most stable pixels from various image cells and reconstruct the object's image as if there is only weak turbulence effect. Then, by comparing the reconstructed image with the recorded images in each MLA cell, the difference can be regarded as the turbulence effects. As a result, the retrieval of the object's image and extraction of turbulence effect can be performed simultaneously.

  5. [Object Separation from Medical X-Ray Images Based on ICA].

    PubMed

    Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun

    2015-03-01

    X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.

  6. A DICOM Based Collaborative Platform for Real-Time Medical Teleconsultation on Medical Images.

    PubMed

    Maglogiannis, Ilias; Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis

    2017-01-01

    The paper deals with the design of a Web-based platform for real-time medical teleconsultation on medical images. The proposed platform combines the principles of heterogeneous Workflow Management Systems (WfMSs), the peer-to-peer networking architecture and the SPA (Single-Page Application) concept, to facilitate medical collaboration among healthcare professionals geographically distributed. The presented work leverages state-of-the-art features of the web to support peer-to-peer communication using the WebRTC (Web Real Time Communication) protocol and client-side data processing for creating an integrated collaboration environment. The paper discusses the technical details of implementation and presents the operation of the platform in practice along with some initial results.

  7. Documenting Bronze Age Akrotiri on Thera Using Laser Scanning, Image-Based Modelling and Geophysical Prospection

    NASA Astrophysics Data System (ADS)

    Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.

    2017-02-01

    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.

  8. Generating description with multi-feature fusion and saliency maps of image

    NASA Astrophysics Data System (ADS)

    Liu, Lisha; Ding, Yuxuan; Tian, Chunna; Yuan, Bo

    2018-04-01

    Generating description for an image can be regard as visual understanding. It is across artificial intelligence, machine learning, natural language processing and many other areas. In this paper, we present a model that generates description for images based on RNN (recurrent neural network) with object attention and multi-feature of images. The deep recurrent neural networks have excellent performance in machine translation, so we use it to generate natural sentence description for images. The proposed method uses single CNN (convolution neural network) that is trained on ImageNet to extract image features. But we think it can not adequately contain the content in images, it may only focus on the object area of image. So we add scene information to image feature using CNN which is trained on Places205. Experiments show that model with multi-feature extracted by two CNNs perform better than which with a single feature. In addition, we make saliency weights on images to emphasize the salient objects in images. We evaluate our model on MSCOCO based on public metrics, and the results show that our model performs better than several state-of-the-art methods.

  9. Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa

    PubMed Central

    Tran, Annelise; Trevennec, Carlène; Lutwama, Julius; Sserugga, Joseph; Gély, Marie; Pittiglio, Claudia; Pinto, Julio; Chevalier, Véronique

    2016-01-01

    Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730–0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge. PMID:27631374

  10. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  11. Real-time model-based vision system for object acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd

    1987-01-01

    A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.

  12. Brain Regions Involved in the Retrieval of Spatial and Episodic Details Associated with a Familiar Environment: An fMRI Study

    ERIC Educational Resources Information Center

    Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R. Shayna; Winocur, Gordon; Moscovitch, Morris

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine…

  13. Cartographic services contract...for everything geographic

    USGS Publications Warehouse

    ,

    2003-01-01

    The U.S. Geological Survey's (USGS) Cartographic Services Contract (CSC) is used to award work for photogrammetric and mapping services under the umbrella of Architect-Engineer (A&E) contracting. The A&E contract is broad in scope and can accommodate any activity related to standard, nonstandard, graphic, and digital cartographic products. Services provided may include, but are not limited to, photogrammetric mapping and aerotriangulation; orthophotography; thematic mapping (for example, land characterization); analog and digital imagery applications; geographic information systems development; surveying and control acquisition, including ground-based and airborne Global Positioning System; analog and digital image manipulation, analysis, and interpretation; raster and vector map digitizing; data manipulations (for example, transformations, conversions, generalization, integration, and conflation); primary and ancillary data acquisition (for example, aerial photography, satellite imagery, multispectral, multitemporal, and hyperspectral data); image scanning and processing; metadata production, revision, and creation; and production or revision of standard USGS products defined by formal and informal specification and standards, such as those for digital line graphs, digital elevation models, digital orthophoto quadrangles, and digital raster graphics.

  14. Geographic information system (GIS)-based image analysis for assessing growth of Physarum polycephalum on a solid medium.

    PubMed

    Tran, Hanh T M; Stephenson, Steven L; Tullis, Jason A

    2015-01-01

    The conventional method used to assess growth of the plasmodium of the slime mold Physarum polycephalum in solid culture is to measure the extent of plasmodial expansion from the point of inoculation by using a ruler. However, plasmodial growth is usually rather irregular, so the values obtained are not especially accurate. Similar challenges exist in quantification of the growth of a fungal mycelium. In this paper, we describe a method that uses geographic information system software to obtain highly accurate estimates of plasmodial growth over time. This approach calculates plasmodial area from images obtained at particular intervals following inoculation. In addition, the correlation between plasmodial area and its dry cell weight value was determined. The correlation could be used for biomass estimation without the need of having to terminate the cultures in question. The method described herein is simple but effective and could also be used for growth measurements of other microorganisms such as fungi on solid media.

  15. Automatic anatomy recognition on CT images with pathology

    NASA Astrophysics Data System (ADS)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  16. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    PubMed

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Archive of sediment data from vibracores collected in 2010 offshore of the Mississippi barrier islands

    USGS Publications Warehouse

    Kelso, Kyle W.; Flocks, James G.

    2015-01-01

    Selection of the core site locations was based on geophysical surveys conducted around the islands from 2008 to 2010. The surveys, using acoustic systems to image and interpret the nearsurface stratigraphy, were conducted to investigate the geologic controls on island evolution. This data series serves as an archive of sediment data collected from August to September 2010, offshore of the Mississippi barrier islands. Data products, including descriptive core logs, core photographs, results of sediment grain-size analyses, sample location maps, and geographic information system (GIS) data files with accompanying formal Federal Geographic Data Committee (FDGC) metadata can be downloaded from the data products and downloads page.

  18. Phenological classification of the United States: A geographic framework for extending multi-sensor time-series data

    USGS Publications Warehouse

    Gu, Yingxin; Brown, Jesslyn F.; Miura, Tomoaki; van Leeuwen, Willem J.D.; Reed, Bradley C.

    2010-01-01

    This study introduces a new geographic framework, phenological classification, for the conterminous United States based on Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data and a digital elevation model. The resulting pheno-class map is comprised of 40 pheno-classes, each having unique phenological and topographic characteristics. Cross-comparison of the pheno-classes with the 2001 National Land Cover Database indicates that the new map contains additional phenological and climate information. The pheno-class framework may be a suitable basis for the development of an Advanced Very High Resolution Radiometer (AVHRR)-MODIS NDVI translation algorithm and for various biogeographic studies.

  19. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  20. Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

    NASA Astrophysics Data System (ADS)

    Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš

    2015-12-01

    Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.

  1. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses.

    PubMed

    Kumar, Manoj; Vijayakumar, A; Rosen, Joseph

    2017-09-14

    We present a lensless, interferenceless incoherent digital holography technique based on the principle of coded aperture correlation holography. The acquired digital hologram by this technique contains a three-dimensional image of some observed scene. Light diffracted by a point object (pinhole) is modulated using a random-like coded phase mask (CPM) and the intensity pattern is recorded and composed as a point spread hologram (PSH). A library of PSHs is created using the same CPM by moving the pinhole to all possible axial locations. Intensity diffracted through the same CPM from an object placed within the axial limits of the PSH library is recorded by a digital camera. The recorded intensity this time is composed as the object hologram. The image of the object at any axial plane is reconstructed by cross-correlating the object hologram with the corresponding component of the PSH library. The reconstruction noise attached to the image is suppressed by various methods. The reconstruction results of multiplane and thick objects by this technique are compared with regular lens-based imaging.

  2. Image enhancement based on in vivo hyperspectral gastroscopic images: a case study

    NASA Astrophysics Data System (ADS)

    Gu, Xiaozhou; Han, Zhimin; Yao, Liqing; Zhong, Yunshi; Shi, Qiang; Fu, Ye; Liu, Changsheng; Wang, Xiguang; Xie, Tianyu

    2016-10-01

    Hyperspectral imaging (HSI) has been recognized as a powerful tool for noninvasive disease detection in the gastrointestinal field. However, most of the studies on HSI in this field have involved ex vivo biopsies or resected tissues. We proposed an image enhancement method based on in vivo hyperspectral gastroscopic images. First, we developed a flexible gastroscopy system capable of obtaining in vivo hyperspectral images of different types of stomach disease mucosa. Then, depending on a specific object, an appropriate band selection algorithm based on dependence of information was employed to determine a subset of spectral bands that would yield useful spatial information. Finally, these bands were assigned to be the color components of an enhanced image of the object. A gastric ulcer case study demonstrated that our method yields higher color tone contrast, which enhanced the displays of the gastric ulcer regions, and that it will be valuable in clinical applications.

  3. Use of Image Based Modelling for Documentation of Intricately Shaped Objects

    NASA Astrophysics Data System (ADS)

    Marčiš, M.; Barták, P.; Valaška, D.; Fraštia, M.; Trhan, O.

    2016-06-01

    In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  4. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  5. Research on geo-ontology construction based on spatial affairs

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing and change about flood with different scales and ranges in the city, can be distilled intellectively and on its own initiative from the geo-ontology database. Besides, correlative statistical information can also be provided to the governmental departments at all levels to help them to carry out timely measures of fighting back disaster and rescue. Compared with the past manners, the efficiency of dealing with flood information has been improved to some extent than ever because plenty of information irrespective and interferential to flood in different websites can be sieved in advance based on the retrieve method oriented to Geo-ontology. In a word, it will take the pursuers long time to study geo-ontology due to actual limited resource. But then, geo-ontology will be sure to further perfect correspondingly especially in the field of Geographic Information System owing to its more and more factual applications.

  6. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  7. A Time of Flight Fast Neutron Imaging System Design Study

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  8. Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.

    PubMed

    Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash

    2015-11-01

    In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.

  9. Study on Mobile Object Positioning and Alarming System Based on the “Map World” in the Core Area of the Silk Road Economic Belt

    NASA Astrophysics Data System (ADS)

    Mu, Kai

    2017-02-01

    The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.

  10. Estimation of object motion parameters from noisy images.

    PubMed

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  11. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE PAGES

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  12. Linking pesticides and human health: a geographic information system (GIS) and Landsat remote sensing method to estimate agricultural pesticide exposure.

    PubMed

    VoPham, Trang; Wilson, John P; Ruddell, Darren; Rashed, Tarek; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Chang, Chung-Chou H; Weissfeld, Joel L

    2015-08-01

    Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pesticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural pesticide applications (drift). We present an improved geographic information system (GIS) and remote sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing images in California. The image classification method utilizes Normalized Difference Vegetation Index (NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach. Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops (especially temporary crops) classified using temporally concurrent Landsat images compared to the standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific pesticides according to where individuals are located.

  13. Assessment of soil-vegetation cover condition in river basins applying remote sensing data

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Petrosian, Janna; Shirkin, Leonid; Repkin, Roman

    2017-04-01

    Constant observation of vegetation and soil cover is one of the key issues of river basins ecologic monitoring. Lately remotely determining vegetation indices have been used for this purpose alongside with terrestrial data. It is necessary to consider that observation objects have been continuously changing and these changes are comprehensive and depend on temporal and dimensional parameters. Remote sensing data, embracing vast areas and reflecting various interrelations, allow excluding accidental and short-term changes though concentrating on the transformation of the observed river basin ecosystem environmental condition. The research objective is to assess spatial - temporal peculiarities and the dynamics of soil-vegetation condition of the Klyazma basin as whole and minor river basins within the area. Research objects are located in the centre of European Russia. Data used in our research include both statistic and published data, characterizing soil-vegetation cover of the area, space images («Landsat» ETM+ etc.) Research methods. 1. Dynamics analysis NDVI (Normalized difference vegetation index) 2. Remote data have been correlated to terrestrial measurement results of phytomass reserve, phytoproductivity, soil fertility characteristics, crop capacity (http://biodat.ru) 3. For the digital processing of space images software Erdas Imagine has been used, GIS analysis has been carried out applying Arc GIS. NDVI computation for each image pixel helped to map general condition of the Klyazma vegetation cover and to determine geographic ranges without vegetation or with depressed vegetation. For instance high vegetation index geographic range has been defined which corresponded to Vladimir Opolye characterized with the most fertile grey forest soil in the region. Comparative assessment of soil vegetation cover of minor river basins within the Klyazma basin, judging by the terrestrial data, revealed its better condition in the Koloksha basin which is also located in the area of grey forest soil. Besides here the maximum value of vegetation index for all phytocenosis was detected. In the research the most dynamically changing parts of the Klyazma basin have been determined according to NDVI dynamics analysis. Analyzing the reasons for such changes of NDVI the most significant ecologic processes in the region connected to the changes of vegetation cover condition have been revealed. Fields overgrowing and agricultural crops replacement are the most important of them.

  14. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  15. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  16. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  17. An adaptive block-based fusion method with LUE-SSIM for multi-focus images

    NASA Astrophysics Data System (ADS)

    Zheng, Jianing; Guo, Yongcai; Huang, Yukun

    2016-09-01

    Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.

  18. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  19. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  1. Fuzzy connected object definition in images with respect to co-objects

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Saha, Punam K.; Lotufo, Roberto A.

    1999-05-01

    Tangible solutions to practical image segmentation are vital to ensure progress in many applications of medical imaging. Toward this goal, we previously proposed a theory and algorithms for fuzzy connected object definition in n- dimensional images. Their effectiveness has been demonstrated in several applications including multiple sclerosis lesion detection/delineation, MR Angiography, and craniofacial imaging. The purpose of this work is to extend the earlier theory and algorithms to fuzzy connected object definition that considers all relevant objects in the image simultaneously. In the previous theory, delineation of the final object from the fuzzy connectivity scene required the selection of a threshold that specifies the weakest `hanging-togetherness' of image elements relative to each other in the object. Selection of such a threshold was not trivial and has been an active research area. In the proposed method of relative fuzzy connectivity, instead of defining an object on its own based on the strength of connectedness, all co-objects of importance that are present in the image are also considered and the objects are let to compete among themselves in having image elements as their members. In this competition, every pair of elements in the image will have a strength of connectedness in each object. The object in which this strength is highest will claim membership of the elements. This approach to fuzzy object definition using a relative strength of connectedness eliminates the need for a threshold of strength of connectedness that was part of the previous definition. It seems to be more natural since it relies on the fact that an object gets defined in an image by the presence of other objects that coexist in the image. All specified objects are defined simultaneously in this approach. The concept of iterative relative fuzzy connectivity has also been introduced. Robustness of relative fuzzy objects with respect to selection of reference image elements has been established. The effectiveness of the proposed method has been demonstrated using a patient's 3D contrast enhanced MR angiogram and a 2D phantom scene.

  2. Comparative analysis of numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.

    2017-07-01

    Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.

  3. Learning object-to-class kernels for scene classification.

    PubMed

    Zhang, Lei; Zhen, Xiantong; Shao, Ling

    2014-08-01

    High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for visual recognition. In this paper, based on the object bank representation, we propose the object-to-class (O2C) distances to model scene images. In particular, four variants of O2C distances are presented, and with the O2C distances, we can represent the images using the object bank by lower-dimensional but more discriminative spaces, called distance spaces, which are spanned by the O2C distances. Due to the explicit computation of O2C distances based on the object bank, the obtained representations can possess more semantic meanings. To combine the discriminant ability of the O2C distances to all scene classes, we further propose to kernalize the distance representation for the final classification. We have conducted extensive experiments on four benchmark data sets, UIUC-Sports, Scene-15, MIT Indoor, and Caltech-101, which demonstrate that the proposed approaches can significantly improve the original object bank approach and achieve the state-of-the-art performance.

  4. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  5. Adaptive polarization image fusion based on regional energy dynamic weighted average

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qiang; Pan, Quan; Zhang, Hong-Cai

    2005-11-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations, most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  6. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  7. Benefits of Red-Edge Spectral Band and Texture Features for the Object-based Classification using RapidEye sSatellite Image data

    NASA Astrophysics Data System (ADS)

    Kim, H. O.; Yeom, J. M.

    2014-12-01

    Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.

  8. Regional shape-based feature space for segmenting biomedical images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.

    1993-07-01

    In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.

  9. Video-based Mobile Mapping System Using Smartphones

    NASA Astrophysics Data System (ADS)

    Al-Hamad, A.; Moussa, A.; El-Sheimy, N.

    2014-11-01

    The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.

  10. A Python Geospatial Language Toolkit

    NASA Astrophysics Data System (ADS)

    Fillmore, D.; Pletzer, A.; Galloy, M.

    2012-12-01

    The volume and scope of geospatial data archives, such as collections of satellite remote sensing or climate model products, has been rapidly increasing and will continue to do so in the near future. The recently launched (October 2011) Suomi National Polar-orbiting Partnership satellite (NPP) for instance, is the first of a new generation of Earth observation platforms that will monitor the atmosphere, oceans, and ecosystems, and its suite of instruments will generate several terabytes each day in the form of multi-spectral images and derived datasets. Full exploitation of such data for scientific analysis and decision support applications has become a major computational challenge. Geophysical data exploration and knowledge discovery could benefit, in particular, from intelligent mechanisms for extracting and manipulating subsets of data relevant to the problem of interest. Potential developments include enhanced support for natural language queries and directives to geospatial datasets. The translation of natural language (that is, human spoken or written phrases) into complex but unambiguous objects and actions can be based on a context, or knowledge domain, that represents the underlying geospatial concepts. This poster describes a prototype Python module that maps English phrases onto basic geospatial objects and operations. This module, along with the associated computational geometry methods, enables the resolution of natural language directives that include geographic regions of arbitrary shape and complexity.

  11. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    NASA Astrophysics Data System (ADS)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  12. [An object-oriented remote sensing image segmentation approach based on edge detection].

    PubMed

    Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi

    2010-06-01

    Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.

  13. A foreground object features-based stereoscopic image visual comfort assessment model

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  14. [RS estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree].

    PubMed

    Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie

    2017-10-01

    By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.

  15. Geographic Information System Data Analysis

    NASA Technical Reports Server (NTRS)

    Billings, Chad; Casad, Christopher; Floriano, Luis G.; Hill, Tracie; Johnson, Rashida K.; Locklear, J. Mark; Penn, Stephen; Rhoulac, Tori; Shay, Adam H.; Taylor, Antone; hide

    1995-01-01

    Data was collected in order to further NASA Langley Research Center's Geographic Information System(GIS). Information on LaRC's communication, electrical, and facility configurations was collected. Existing data was corrected through verification, resulting in more accurate databases. In addition, Global Positioning System(GPS) points were used in order to accurately impose buildings on digitized images. Overall, this project will help the Imaging and CADD Technology Team (ICTT) prove GIS to be a valuable resource for LaRC.

  16. High-altitude searches for vulcanoids: Observations from F/A-18B aircraft

    NASA Astrophysics Data System (ADS)

    Durda, D. D.; Stern, S. A.

    2003-05-01

    We have conducted a high-altitude observing campaign to search for vulcanoids, a population of small, asteroid-like bodies hypothesized to reside in the dynamically stable region interior to Mercury's orbit (i.e., orbits with aphelia <0.21 AU). This airborne search campaign utilized our versatile and highly capable SWUIS-A (Southwest Universal Imaging System - Airborne) instrument flown with SwRI flight astronomers to an altitude of 49,000 ft MSL aboard NASA F/A-18B aircraft in order to obtain darker twilight conditions for near-Sun observing than are possible from the ground. The first observing run (3 nights) was successfully completed at NASA's Dryden Flight Research Center during the March/April 2002 vernal equinox observing opportunity; the second observing run (3 nights) was completed during the September 2002 autumnal equinox observing opportunity. On each of the three evening and three morning twilight flights we recorded image data covering 250 square degrees of sky centered on the ecliptic from solar elongations of 6-18 deg. Reduction of the Mar/Apr and Sep 2002 data sets demonstrates that we are reliably detecting objects to magnitude V = 9.5-11 at 15-20 degrees solar elongation. This is significantly fainter than the instrument would have performed from the ground and comparable to the faintest stars visible in our space-based SOHO LASCO C3 coronagraph vulcanoids search (Durda et al. 2000; Icarus 148, 312-315). The SWUIS-A instrument itself is capable of imaging objects as faint as magnitude V = 13, corresponding to vulcanoids less than 10 km across, with a sufficiently dark sky background. For reference, V = 10 corresponds to a 18-km diameter object 1 AU from Earth and 0.15 AU from the sun with a Mercury-like geometric albedo of 14%. No vulcanoid candidates have been detected in the 49,000-ft altitude airborne observations to date. We thank NASA research pilots Rick Searfoss, Frank Batteas, Craig Bomben, and Dana Purifoy. This research is supported by the NASA Planetary Astronomy program, NASA's Dryden Flight Research Center, and the National Geographic Society.

  17. Application of MOS-1 MESSR image to the investigation of wetlands in Poyang Lake

    NASA Astrophysics Data System (ADS)

    Chen, Shuisen; Li, Yan

    1998-08-01

    The lake beach and grass moor land is a kind of typical wetlands. The area varies greatly with season in Poyang Lake region. Moreover, the field investigation of wetlands is almost impossible as geographical features and difficulties in transportation. The notes address the potential role of remote sensing in the surveying of the lake beach and grass moor land. In particular, the notes reflect the characteristics relationships between MOS-1 MESSR image and the wetlands. The application results show that MOS-1 MESSR image is effective in surveying the wetland area variation and distribution (lake, river, grass moor, mud flat, sand beach, etc.). detecting lake base shape, and analyzing eco-environment surrounded.

  18. Reproducibility of image quality for moving objects using respiratory-gated computed tomography: a study using a phantom model

    PubMed Central

    Fukumitsu, Nobuyoshi; Ishida, Masaya; Terunuma, Toshiyuki; Mizumoto, Masashi; Hashimoto, Takayuki; Moritake, Takashi; Okumura, Toshiyuki; Sakae, Takeji; Tsuboi, Koji; Sakurai, Hideyuki

    2012-01-01

    To investigate the reproducibility of computed tomography (CT) imaging quality in respiratory-gated radiation treatment planning is essential in radiotherapy of movable tumors. Seven series of regular and six series of irregular respiratory motions were performed using a thorax dynamic phantom. For the regular respiratory motions, the respiratory cycle was changed from 2.5 to 4 s and the amplitude was changed from 4 to 10 mm. For the irregular respiratory motions, a cycle of 2.5 to 4 or an amplitude of 4 to 10 mm was added to the base data (i.e. 3.5-s cycle, 6-mm amplitude) every three cycles. Images of the object were acquired six times using respiratory-gated data acquisition. The volume of the object was calculated and the reproducibility of the volume was decided based on the variety. The registered image of the object was added and the reproducibility of the shape was decided based on the degree of overlap of objects. The variety in the volumes and shapes differed significantly as the respiratory cycle changed according to regular respiratory motions. In irregular respiratory motion, shape reproducibility was further inferior, and the percentage of overlap among the six images was 35.26% in the 2.5- and 3.5-s cycle mixed group. Amplitude changes did not produce significant differences in the variety of the volumes and shapes. Respiratory cycle changes reduced the reproducibility of the image quality in respiratory-gated CT. PMID:22966173

  19. A NDVI assisted remote sensing image adaptive scale segmentation method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  20. Determination of The Water Catchment Area in Semarang City Using a Combination of Object Based Image Analysis (OBIA) Classification, InSAR and Geographic Information System (GIS) Methods Based On a High-Resolution SPOT 6 Image and Radar Imagery

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Ardi Gunawan, Setyo; Maksum, Zia Ul

    2016-11-01

    Semarang is the biggest city in central Java-Indonesia which has a rapid and massive infrastructure development nowadays. In order to control water resources and flood, the local goverment has been built east and west flood canal in Kaligarang and West Semarang River. One of main problem in Semarang city is the lack of fresh water in dry season because ground water is not rechargeable well. Rechargeable groundwater ability depends on underground water recharge rate and catchment area condition. The objective of the study is to determine condition and classification of water catchment area in Semarang city. The catchment area conditions will be determine by five parameters as follows soil type, land use, slope, ground water potential and rainfall intensity. In this study, we use three methods approach to solve the problem which is segmentation classification to acquire land use classification from high resolution imagery using nearest neighborhood algorithm, Interferometric Synthetic Aperture Radar (SAR) to derive DTM from SAR Imagery and multi criteria weighting and spatial analysis using GIS method. There are three types optical image (ALOS PRISM, SPOT-6 and ALOS PALSAR) to calculate water catchment area condition in Semarang city. For final result, this research will divide the water catchment into six criteria as follows good, naturally normal, early critical, a little bit critical, critical and very critical condition. The result shows that water catchment area condition is in an early critical condition around 2607,523 Ha (33,17 %), naturally normal condition around 1507,674 Ha (19,18 %), a little bit critical condition around 1452,931 Ha (18,48 %), good with 1157,04 Ha (14,72 %), critical with 1058,639 Ha (13,47 %) and very critical with 75,0387 Ha (0,95 %). The distribution of water catchment area conditions in West and East Flood Canal have an irreguler pattern. In northern area of watershed consists of begin to critical, naturally normal and good condition. Meanwhile in southern area of watershed consists of a little bit critical, critical and very critical condition.

  1. Exploring the feasibility of traditional image querying tasks for industrial radiographs

    NASA Astrophysics Data System (ADS)

    Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.

    2015-08-01

    Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.

  2. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.

  3. Image Engine: an object-oriented multimedia database for storing, retrieving and sharing medical images and text.

    PubMed Central

    Lowe, H. J.

    1993-01-01

    This paper describes Image Engine, an object-oriented, microcomputer-based, multimedia database designed to facilitate the storage and retrieval of digitized biomedical still images, video, and text using inexpensive desktop computers. The current prototype runs on Apple Macintosh computers and allows network database access via peer to peer file sharing protocols. Image Engine supports both free text and controlled vocabulary indexing of multimedia objects. The latter is implemented using the TView thesaurus model developed by the author. The current prototype of Image Engine uses the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary (with UMLS Meta-1 extensions) as its indexing thesaurus. PMID:8130596

  4. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  5. Participatory GIS for Soil Conservation in Phewa Watershed of Nepal

    NASA Astrophysics Data System (ADS)

    Bhandari, K. P.

    2012-07-01

    Participatory Geographic Information Systems (PGIS) can integrate participatory methodologies with geo-spatial technologies for the representation of characteristic of particular place. Over the last decade, researchers use this method to integrate the local knowledge of community within a GIS and Society conceptual framework. Participatory GIS are tailored to answer specific geographic questions at the local level and their modes of implementation vary considerably across space, ranging from field-based, qualitative approaches to more complex web-based applications. These broad ranges of techniques, PGIS are becoming an effective methodology for incorporating community local knowledge into complex spatial decision-making processes. The objective of this study is to reduce the soil erosion by formulating the general rule for the soil conservation by participation of the stakeholders. The poster was prepared by satellite image, topographic map and Arc GIS software including the local knowledge. The data were collected from the focus group discussion and the individual questionnaire for incorporate the local knowledge and use it to find the risk map on the basis of economic, social and manageable physical factors for the sensitivity analysis. The soil erosion risk map is prepared by the physical factors Rainfall-runoff erosivity, Soil erodibility, Slope length, Slope steepness, Cover-management, Conservation practice using RUSLE model. After the comparison and discussion among stakeholders, researcher and export group, and the soil erosion risk map showed that socioeconomic, social and manageable physical factors management can reduce the soil erosion. The study showed that the preparation of the poster GIS map and implement this in the watershed area could reduce the soil erosion in the study area compared to the existing national policy.

  6. [Geographic atrophy imaging using fundus autofluorescence method].

    PubMed

    Dolar-Szczasny, Joanna; Święch-Zubilewicz, Anna; Mackiewicz, Jerzy

    2015-01-01

    Geographic atrophy is a manifestation of the advanced age-related macular degeneration and form of irreversible atrophy of retinal pigment epithelium and photoreceptor layer. Early detection of changes and the ability to evaluate disease progression accurately constitute a key problem in diagnosis and treatment planning. Fundus autofluorescence is a relatively new imaging method considered nowadays to be the best in diagnosis and observing the natural or treatment-altered course of disease. High resolution images showing the 3D distribution of retinal pigment epithelium autofluorescence as lipofuscin index can be obtained owing to the launch of the confocal scanning laser ophthalmoscope.

  7. Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010

    USGS Publications Warehouse

    Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,

    2015-07-23

    This study incorporates about 9,800 ground reference locations collected via helicopter surveys in coastal wetland areas. Decision-tree analyses were used to classify emergent marsh vegetation types by using ground reference data from helicopter vegetation surveys and independent variables such as multitemporal satellite-based multispectral imagery from 2009 to 2011, bare-earth digital elevation models based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables. Image objects were created from 2010 National Agriculture Imagery Program color-infrared aerial photography. The final classification is a 10-meter raster dataset that was produced by using a majority filter to classify image objects according to the marsh vegetation type covering the majority of each image object. The classification is dated 2010 because the year is both the midpoint of the classified multitemporal satellite-based imagery (2009–11) and the date of the high-resolution airborne imagery that was used to develop image objects. The seamless classification produced through this work can be used to help develop and refine conservation efforts for priority natural resources.

  8. Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics.

    PubMed

    Benedek, C; Descombes, X; Zerubia, J

    2012-01-01

    In this paper, we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: 1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low-level change information between the time layers and object-level building description to recognize and separate changed and unaltered buildings. 2) To answer the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature-based modules. 3) To simultaneously ensure the convergence, optimality, and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel nonuniform stochastic object birth process which generates relevant objects with higher probability based on low-level image features.

  9. Coregistration refinement of hyperspectral images and DSM: An object-based approach using spectral information

    NASA Astrophysics Data System (ADS)

    Avbelj, Janja; Iwaszczuk, Dorota; Müller, Rupert; Reinartz, Peter; Stilla, Uwe

    2015-02-01

    For image fusion in remote sensing applications the georeferencing accuracy using position, attitude, and camera calibration measurements can be insufficient. Thus, image processing techniques should be employed for precise coregistration of images. In this article a method for multimodal object-based image coregistration refinement between hyperspectral images (HSI) and digital surface models (DSM) is presented. The method is divided in three parts: object outline detection in HSI and DSM, matching, and determination of transformation parameters. The novelty of our proposed coregistration refinement method is the use of material properties and height information of urban objects from HSI and DSM, respectively. We refer to urban objects as objects which are typical in urban environments and focus on buildings by describing them with 2D outlines. Furthermore, the geometric accuracy of these detected building outlines is taken into account in the matching step and for the determination of transformation parameters. Hence, a stochastic model is introduced to compute optimal transformation parameters. The feasibility of the method is shown by testing it on two aerial HSI of different spatial and spectral resolution, and two DSM of different spatial resolution. The evaluation is carried out by comparing the accuracies of the transformations parameters to the reference parameters, determined by considering object outlines at much higher resolution, and also by computing the correctness and the quality rate of the extracted outlines before and after coregistration refinement. Results indicate that using outlines of objects instead of only line segments is advantageous for coregistration of HSI and DSM. The extraction of building outlines in comparison to the line cue extraction provides a larger amount of assigned lines between the images and is more robust to outliers, i.e. false matches.

  10. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  11. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  12. Coherent and incoherent imaging through scattering media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan

    2017-02-01

    The shower-curtain effect is a familiar phenomenon, routinely observed in our everyday life: an object placed behind a scattering layer appears blurred but if the object is attached to the scattering layer it can be clearly resolved. The optical system we developed takes advantage of the shower-curtain effect properties and generalizes them to achieve high-resolution imaging of objects placed at a nearly arbitrary distance behind the scattering medium. The imaging procedure is based on retrieving the object Fourier transform from the turbid medium (used as the shower-curtain) through a correlography technique based on speckle illumination. Illuminating the object with a speckle pattern rather than a coherent beam, we show that the correlography principles can be effectively applied in the near field. While the far-field condition is usually known as z<(2D^2)⁄λ (D, size of the object; λ wavelength); by tuning the spatial coherence of the illumination beam, as one can do with speckle illumination, the "far-field" condition can be written as z<(2DRc)⁄λ where Rc is the correlation radius of the speckle pattern. Using our method we present high-resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts, and demonstrate our imaging technique to be insensitive to rapid medium movements (<5 m/s) beyond any biologically relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations.

  13. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  14. Mystery #11

    Atmospheric Science Data Center

    2013-04-22

    article title:  MISR Mystery Image Quiz #11     View Larger Image Here's another chance to play geographical detective! These images ... MISR Team. Text acknowledgment: Clare Averill, David J. Diner, Graham Bothwell (Jet Propulsion Laboratory). Other formats ...

  15. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  16. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  17. A Note on the Temporary Misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

    NASA Technical Reports Server (NTRS)

    Storey, James; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John; Choate, Michael

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2sigma). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  18. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery

    USGS Publications Warehouse

    Storey, James C.; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John L.; Choate, Michael J.

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2σ). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  19. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Multi-object model-based multi-atlas segmentation for rodent brains using dense discrete correspondences

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Styner, Martin

    2016-03-01

    The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.

  1. A neighboring structure reconstructed matching algorithm based on LARK features

    NASA Astrophysics Data System (ADS)

    Xue, Taobei; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-11-01

    Aimed at the low contrast ratio and high noise of infrared images, and the randomness and ambient occlusion of its objects, this paper presents a neighboring structure reconstructed matching (NSRM) algorithm based on LARK features. The neighboring structure relationships of local window are considered based on a non-negative linear reconstruction method to build a neighboring structure relationship matrix. Then the LARK feature matrix and the NSRM matrix are processed separately to get two different similarity images. By fusing and analyzing the two similarity images, those infrared objects are detected and marked by the non-maximum suppression. The NSRM approach is extended to detect infrared objects with incompact structure. High performance is demonstrated on infrared body set, indicating a lower false detecting rate than conventional methods in complex natural scenes.

  2. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  3. Prediction of compression-induced image interpretability degradation

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Chen, Hua-Mei; Irvine, John M.; Wang, Zhonghai; Chen, Genshe; Nagy, James; Scott, Stephen

    2018-04-01

    Image compression is an important component in modern imaging systems as the volume of the raw data collected is increasing. To reduce the volume of data while collecting imagery useful for analysis, choosing the appropriate image compression method is desired. Lossless compression is able to preserve all the information, but it has limited reduction power. On the other hand, lossy compression, which may result in very high compression ratios, suffers from information loss. We model the compression-induced information loss in terms of the National Imagery Interpretability Rating Scale or NIIRS. NIIRS is a user-based quantification of image interpretability widely adopted by the Geographic Information System community. Specifically, we present the Compression Degradation Image Function Index (CoDIFI) framework that predicts the NIIRS degradation (i.e., a decrease of NIIRS level) for a given compression setting. The CoDIFI-NIIRS framework enables a user to broker the maximum compression setting while maintaining a specified NIIRS rating.

  4. Automatic Camera Calibration for Cultural Heritage Applications Using Unstructured Planar Objects

    NASA Astrophysics Data System (ADS)

    Adam, K.; Kalisperakis, I.; Grammatikopoulos, L.; Karras, G.; Petsa, E.

    2013-07-01

    As a rule, image-based documentation of cultural heritage relies today on ordinary digital cameras and commercial software. As such projects often involve researchers not familiar with photogrammetry, the question of camera calibration is important. Freely available open-source user-friendly software for automatic camera calibration, often based on simple 2D chess-board patterns, are an answer to the demand for simplicity and automation. However, such tools cannot respond to all requirements met in cultural heritage conservation regarding possible imaging distances and focal lengths. Here we investigate the practical possibility of camera calibration from unknown planar objects, i.e. any planar surface with adequate texture; we have focused on the example of urban walls covered with graffiti. Images are connected pair-wise with inter-image homographies, which are estimated automatically through a RANSAC-based approach after extracting and matching interest points with the SIFT operator. All valid points are identified on all images on which they appear. Provided that the image set includes a "fronto-parallel" view, inter-image homographies with this image are regarded as emulations of image-to-world homographies and allow computing initial estimates for the interior and exterior orientation elements. Following this initialization step, the estimates are introduced into a final self-calibrating bundle adjustment. Measures are taken to discard unsuitable images and verify object planarity. Results from practical experimentation indicate that this method may produce satisfactory results. The authors intend to incorporate the described approach into their freely available user-friendly software tool, which relies on chess-boards, to assist non-experts in their projects with image-based approaches.

  5. Orientation Modeling for Amateur Cameras by Matching Image Line Features and Building Vector Data

    NASA Astrophysics Data System (ADS)

    Hung, C. H.; Chang, W. C.; Chen, L. C.

    2016-06-01

    With the popularity of geospatial applications, database updating is getting important due to the environmental changes over time. Imagery provides a lower cost and efficient way to update the database. Three dimensional objects can be measured by space intersection using conjugate image points and orientation parameters of cameras. However, precise orientation parameters of light amateur cameras are not always available due to their costliness and heaviness of precision GPS and IMU. To automatize data updating, the correspondence of object vector data and image may be built to improve the accuracy of direct georeferencing. This study contains four major parts, (1) back-projection of object vector data, (2) extraction of image feature lines, (3) object-image feature line matching, and (4) line-based orientation modeling. In order to construct the correspondence of features between an image and a building model, the building vector features were back-projected onto the image using the initial camera orientation from GPS and IMU. Image line features were extracted from the imagery. Afterwards, the matching procedure was done by assessing the similarity between the extracted image features and the back-projected ones. Then, the fourth part utilized line features in orientation modeling. The line-based orientation modeling was performed by the integration of line parametric equations into collinearity condition equations. The experiment data included images with 0.06 m resolution acquired by Canon EOS Mark 5D II camera on a Microdrones MD4-1000 UAV. Experimental results indicate that 2.1 pixel accuracy may be reached, which is equivalent to 0.12 m in the object space.

  6. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    PubMed

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  7. Enhancement of brain tumor MR images based on intuitionistic fuzzy sets

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Deng, He; Cheng, Lifang

    2015-12-01

    Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.

  8. Geographic Education--Where Have We Failed?

    ERIC Educational Resources Information Center

    Gritzner, Charles F.

    1981-01-01

    Discusses geography's rather low status and relatively poor public image in the United States and some of the consequences. Among the world's educated industrial nations, the United States ranks among the least literate in a geographical sense. (RM)

  9. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  10. Mapping and monitoring Mt. Graham Red Squirrel habitat with GIS and thematic mapper imagery

    USGS Publications Warehouse

    Hatten, James R.; Koprowski, John L.; Sanderson, H. Reed; Koprowski, John L.

    2009-01-01

    To estimate the Mt. Graham red squirrel (MGRS) population, personnel visit a proportion of middens each year to determine their occupancy (Snow in this vol.). The method results in very tight confidence intervals (high precision), but the accuracy of the population estimate is dependent upon knowing where all the middens are located. I hypothesized that there might be areas outside the survey boundary that contained Mt. Graham red squirrel middens, but the ruggedness of the Pinaleno Mountains made mountain-wide surveys difficult. Therefore, I started exploring development of a spatially explicit (geographic information system [GIS]-based) habitat model in 1998 that could identify MGRS habitat remotely with satellite imagery and a GIS. A GIS-based model would also allow us to assess changes in MGRS habitat between two time periods because Landsat passes over the same location every 16 days, imaging the earth in 185 km swaths (Aronoff 1989). Specifically, the objectives of this analysis were to (1) develop a pattern recognition model for MGRS habitat, (2) map potential (predicted/modeled) MGRS habitat, (3) identify changes in potential MGRS habitat between 1993 and 2003, and (4) evaluate the current location of the MGRS survey boundary.

  11. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data.

    PubMed

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI≥1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. The more abundant a modality, the more equal the modality's distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force.

  12. Three-dimensional object recognition based on planar images

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.

    1993-01-01

    This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.

  13. Model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald

    1992-01-01

    This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.

  14. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    NASA Astrophysics Data System (ADS)

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  15. Fuzzy ontologies for semantic interpretation of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2015-10-01

    Object-based image classification consists in the assignment of object that share similar attributes to object categories. To perform such a task the remote sensing expert uses its personal knowledge, which is rarely formalized. Ontologies have been proposed as solution to represent domain knowledge agreed by domain experts in a formal and machine readable language. Classical ontology languages are not appropriate to deal with imprecision or vagueness in knowledge. Fortunately, Description Logics for the semantic web has been enhanced by various approaches to handle such knowledge. This paper presents the extension of the traditional ontology-based interpretation with fuzzy ontology of main land-cover classes in Landsat8-OLI scenes (vegetation, built-up areas, water bodies, shadow, clouds, forests) objects. A good classification of image objects was obtained and the results highlight the potential of the method to be replicated over time and space in the perspective of transferability of the procedure.

  16. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  17. Nasal aesthetics: a cross-cultural analysis.

    PubMed

    Broer, Peter N; Buonocore, Samuel; Morillas, Angie; Liu, Jong; Tanna, Neil; Walker, Marc; Ng, Reuben; Ng, Ruben; Persing, John A

    2012-12-01

    Plastic surgeons often approach nasal aesthetic evaluation with the aid of seemingly objective measurements. However, ideal measurements of an attractive nose, as suggested in the literature, might not apply on a cross-cultural basis. Given these controversies, this study aimed to investigate the cultural and ethnic impact on nasal shape preferences. Computerized images of a model's nose were generated in which the nasal width, root, tip, dorsum, and projection of the lips and chin could be altered. A survey containing these images was sent to over 13,000 plastic surgeons and lay people in 50 different countries, with a total response rate of 9.6 percent. Demographic information about the interviewees was obtained. Preferred dimensions of the nose were broken down according to geographic, ethnic, occupational, and sex variables. Interregional comparison revealed that plastic surgeons from Latin America and the Caribbean overall prefer smaller and narrower noses, with more projecting tips, lips, and chins. Similar trends hold true when analyzing results from the general public. Significant differences were found comparing preferences between plastic surgeons and the general public. Plastic surgeons preferred wider nasal roots and tips and, in combination, more projected nasal dorsi, tips, lips, and chins. No universal parameter can define ideal aesthetics of the nose across cultures and ethnic backgrounds. As demonstrated, geographic, ethnic, and cultural factors influence aesthetic perceptions of patients and surgeons.

  18. Using ArcObjects for automating fireshed assessments and analyzing wildfire risk

    Treesearch

    Alan A. Ager; Bernhard Bahro; Mark Finney

    2006-01-01

    Firesheds are geographic units used by the Forest Service to delineate areas with similar fire regimes, fire history, and wildland fire risk issues. Fireshed assessment is a collaborative process where specialists design fuel treatments to mitigate wildfire risk. Fireshed assessments are an iterative process where fuel treatments are proposed for specific stands based...

  19. Geographic disparities in Healthy Eating Index scores (HEI-2005 and 2010) by residential property values: Findings from Seattle Obesity Study (SOS)

    PubMed Central

    Drewnowski, Adam; Aggarwal, Anju; Cook, Andrea; Stewart, Orion; Vernez Moudon, Anne

    2016-01-01

    Background Higher socioeconomic status (SES) has been linked with higher-quality diets. New GIS methods allow for geographic mapping of diet quality at a very granular level. Objective To examine the geographic distribution of two measures of diet quality: Healthy Eating Index (HEI 2005 and HEI 2010) in relation to residential property values in Seattle-King County. Methods The Seattle Obesity Study (SOS) collected data from a population-based sample of King County adults in 2008–09. Socio-demographic data were obtained by 20-min telephone survey. Dietary data were obtained from food frequency questionnaires (FFQs). Home addresses were geocoded to the tax parcel and residential property values were obtained from the King County tax assessor. Multivariable regression analyses using 1,116 adults tested associations between SES variables and diet quality measured (HEI scores). Results Residential property values, education, and incomes were associated with higher HEI scores in bivariate analyses. Property values were not collinear with either education or income. In adjusted multivariable models, education and residential property were better associated with HEI, compared to than income. Mapping of HEI-2005 and HEI-2010 at the census block level illustrated the geographic distribution of diet quality across Seattle-King County. Conclusion The use of residential property values, an objective measure of SES, allowed for the first visual exploration of diet quality at high spatial resolution: the census block level. PMID:26657348

  20. Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.

    PubMed

    Niu, Zhenxing; Hua, Gang; Wang, Le; Gao, Xinbo

    Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.

Top