Sample records for geologic map databases

  1. Digital database of the geologic map of the island of Hawai'i [Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Wolfe, Edward W.; Morris, Jean

    2006-01-01

    This online publication (DS 144) provides the digital database for the printed map by Edward W. Wolfe and Jean Morris (I-2524-A; 1996). This digital database contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2524-A (available only in paper form; see http://pubs.er.usgs.gov/pubs/i/i2524A). The database contains the distribution and relationships of volcanic and surficial-sedimentary deposits on the island of Hawai‘i. This dataset represents the geologic history for the five volcanoes that comprise the Island of Hawai'i. The volcanoes are Kohala, Mauna Kea, Hualalai, Mauna Loa and Kīlauea.This database of the geologic map contributes to understanding the geologic history of the Island of Hawai‘i and provides the basis for understanding long-term volcanic processes in an intra-plate ocean island volcanic system. In addition the database also serves as a basis for producing volcanic hazards assessment for the island of Hawai‘i. Furthermore it serves as a base layer to be used for interdisciplinary research.This online publication consists of a digital database of the geologic map, an explanatory pamphlet, description of map units, correlation of map units diagram, and images for plotting. Geologic mapping was compiled at a scale of 1:100,000 for the entire mapping area. The geologic mapping was compiled as a digital geologic database in ArcInfo GIS format.

  2. Preliminary geologic map of the Piru 7.5' quadrangle, southern California: a digital database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, Russell H.

    1995-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1995). More specific information about the units may be available in the original sources.

  3. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    USGS Publications Warehouse

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  4. Preliminary Integrated Geologic Map Databases for the United States: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island and Vermont

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi

    2006-01-01

    The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.

  5. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California

    USGS Publications Warehouse

    Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.

    2007-01-01

    Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.

  6. Quaternary Geology and Liquefaction Susceptibility, San Francisco, California 1:100,000 Quadrangle: A Digital Database

    USGS Publications Warehouse

    Knudsen, Keith L.; Noller, Jay S.; Sowers, Janet M.; Lettis, William R.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There are no paper maps included in the Open-File report. The report does include, however, PostScript plot files containing the images of the geologic map sheets with explanations, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously unpublished data, and new mapping by the authors, represents the general distribution of surficial deposits in the San Francisco bay region. Together with the accompanying text file (sf_geo.txt or sf_geo.pdf), it provides current information on Quaternary geology and liquefaction susceptibility of the San Francisco, California, 1:100,000 quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller. The content and character of the database, as well as three methods of obtaining the database, are described below.

  7. Database of the Geologic Map of North America - Adapted from the Map by J.C. Reed, Jr. and others (2005)

    USGS Publications Warehouse

    Garrity, Christopher P.; Soller, David R.

    2009-01-01

    The Geological Society of America's (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute). Regarding the use of this product, as noted by the map's compilers: 'The Geologic Map of North America is an essential educational tool for teaching the geology of North America to university students and for the continuing education of professional geologists in North America and elsewhere. In addition, simplified maps derived from the Geologic Map of North America are useful for enlightening younger students and the general public about the geology of the continent.' With publication of this database, the preparation of any type of simplified map is made significantly easier. More important perhaps, the database provides a more accessible means to explore the map information and to compare and analyze it in conjunction with other types of information (for example, land use, soils, biology) to better understand the complex interrelations among factors that affect Earth resources, hazards, ecosystems, and climate.

  8. Preliminary geologic map of the Oat Mountain 7.5' quadrangle, Southern California: a digital database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, Russell H.

    1995-01-01

    This database, identified as "Preliminary Geologic Map of the Oat Mountain 7.5' Quadrangle, southern California: A Digital Database," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1993). More specific information about the units may be available in the original sources.

  9. Geology of Point Reyes National Seashore and vicinity, California: a digital database

    USGS Publications Warehouse

    Clark, Jospeh C.; Brabb, Earl E.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, a PostScript plot file containing an image of the geologic map sheet with explanation, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously published and unpublished data and new mapping by the authors, represents the general distribution of surficial deposits and rock units in Point Reyes and surrounding areas. Together with the accompanying text file (pr-geo.txt or pr-geo.ps), it provides current information on the stratigraphy and structural geology of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:48,000 or smaller.

  10. Geologic map and map database of parts of Marin, San Francisco, Alameda, Contra Costa, and Sonoma counties, California

    USGS Publications Warehouse

    Blake, M.C.; Jones, D.L.; Graymer, R.W.; digital database by Soule, Adam

    2000-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  11. Database for the geologic map of the Mount Baker 30- by 60-minute quadrangle, Washington (I-2660)

    USGS Publications Warehouse

    Tabor, R.W.; Haugerud, R.A.; Hildreth, Wes; Brown, E.H.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Mount Baker 30- by 60-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the geology at 1:100,000. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  12. Database for the geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington (I-1661)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared by R. W. Tabor from the published Geologic map of the Chelan 30-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  13. Database for the geologic map of the Snoqualmie Pass 30-minute by 60-minute quadrangle, Washington (I-2538)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Snoqualmie Pass 30' X 60' Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  14. Geologic Map of the Wenatchee 1:100,000 Quadrangle, Central Washington: A Digital Database

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    2005-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Wenatchee 1:100,000 Quadrangle, Central Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  15. Spatial digital database of the geologic map of Catalina Core Complex and San Pedro Trough, Pima, Pinal, Gila, Graham, and Cochise counties, Arizona

    USGS Publications Warehouse

    Dickinson, William R.; digital database by Hirschberg, Douglas M.; Pitts, G. Stephen; Bolm, Karen S.

    2002-01-01

    The geologic map of Catalina Core Complex and San Pedro Trough by Dickinson (1992) was digitized for input into a geographic information system (GIS) by the U.S. Geological Survey staff and contractors in 2000-2001. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database data can be queried in many ways to produce a variety of geologic maps and derivative products. Digital base map data (topography, roads, towns, rivers, lakes, and so forth) are not included; they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files that are provided herein are representations of the database. The map area is located in southern Arizona. This report lists the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Lorre Moyer (USGS) is greatly appreciated.

  16. Spatial Digital Database for the Geologic Map of Oregon

    USGS Publications Warehouse

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  17. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    USGS Publications Warehouse

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  18. Intrusive Rock Database for the Digital Geologic Map of Utah

    USGS Publications Warehouse

    Nutt, C.J.; Ludington, Steve

    2003-01-01

    Digital geologic maps offer the promise of rapid and powerful answers to geologic questions using Geographic Information System software (GIS). Using modern GIS and database methods, a specialized derivative map can be easily prepared. An important limitation can be shortcomings in the information provided in the database associated with the digital map, a database which is often based on the legend of the original map. The purpose of this report is to show how the compilation of additional information can, when prepared as a database that can be used with the digital map, be used to create some types of derivative maps that are not possible with the original digital map and database. This Open-file Report consists of computer files with information about intrusive rocks in Utah that can be linked to the Digital Geologic Map of Utah (Hintze et al., 2000), an explanation of how to link the databases and map, and a list of references for the databases. The digital map, which represents the 1:500,000-scale Geologic Map of Utah (Hintze, 1980), can be obtained from the Utah Geological Survey (Map 179DM). Each polygon in the map has a unique identification number. We selected the polygons identified on the geologic map as intrusive rock, and constructed a database (UT_PLUT.xls) that classifies the polygons into plutonic map units (see tables). These plutonic map units are the key information that is used to relate the compiled information to the polygons on the map. The map includes a few polygons that were coded as intrusive on the state map but are largely volcanic rock; in these cases we note the volcanic rock names (rhyolite and latite) as used in the original sources Some polygons identified on the digital state map as intrusive rock were misidentified; these polygons are noted in a separate table of the database, along with some information about their true character. Fields may be empty because of lack of information from references used or difficulty in finding information. The information in the database is from a variety of sources, including geologic maps at scales ranging from 1:500,000 to 1:24,000, and thesis monographs. The references are shown twice: alphabetically and by region. The digital geologic map of Utah (Hintze and others, 2000) classifies intrusive rocks into only 3 categories, distinguished by age. They are: Ti, Tertiary intrusive rock; Ji, Upper to Middle Jurassic granite to quartz monzonite; and pCi, Early Proterozoic to Late Archean intrusive rock. Use of the tables provided in this report will permit selection and classification of those rocks by lithology and age. This database is a pilot study by the Survey and Analysis Project of the U.S. Geological Survey to characterize igneous rocks and link them to a digital map. The database, and others like it, will evolve as the project continues and other states are completed. We release this version now as an example, as a reference, and for those interested in Utah plutonic rocks.

  19. Spatial digital database for the tectonic map of Southeast Arizona

    USGS Publications Warehouse

    map by Drewes, Harald; digital database by Fields, Robert A.; Hirschberg, Douglas M.; Bolm, Karen S.

    2002-01-01

    A spatial database was created for Drewes' (1980) tectonic map of southeast Arizona: this database supercedes Drewes and others (2001, ver. 1.0). Staff and a contractor at the U.S. Geological Survey in Tucson, Arizona completed an interim digital geologic map database for the east part of the map in 2001, made revisions to the previously released digital data for the west part of the map (Drewes and others, 2001, ver. 1.0), merged data files for the east and west parts, and added additional data not previously captured. Digital base map data files (such as topography, roads, towns, rivers and lakes) are not included: they may be obtained from a variety of commercial and government sources. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database can be queried in many ways to produce a variety of geologic maps and derivative products. Because Drewes' (1980) map sheets include additional text and graphics that were not included in this report, scanned images of his maps (i1109_e.jpg, i1109_w.jpg) are included as a courtesy to the reader. This database should not be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files (i1109_e.pdf and i1109_w.pdf) that are provided herein are representations of the database (see Appendix A). The map area is located in southeastern Arizona (fig. 1). This report describes the map units (from Drewes, 1980), the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Helen Kayser (Information Systems Support, Inc.) is greatly appreciated.

  20. Geologic Map of the Tucson and Nogales Quadrangles, Arizona (Scale 1:250,000): A Digital Database

    USGS Publications Warehouse

    Peterson, J.A.; Berquist, J.R.; Reynolds, S.J.; Page-Nedell, S. S.; Digital database by Oland, Gustav P.; Hirschberg, Douglas M.

    2001-01-01

    The geologic map of the Tucson-Nogales 1:250,000 scale quadrangle (Peterson and others, 1990) was digitized by U.S. Geological Survey staff and University of Arizona contractors at the Southwest Field Office, Tucson, Arizona, in 2000 for input into a geographic information system (GIS). The database was created for use as a basemap in a decision support system designed by the National Industrial Minerals and Surface Processes project. The resulting digital geologic map database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included; they may be obtained from a variety of commercial and government sources. Additionally, point features, such as strike and dip, were not captured from the original paper map and are not included in the database. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files that are provided in the digital package are representations of the digital database. They are not designed to be cartographic products.

  1. Database for the geologic map of the Sauk River 30-minute by 60-minute quadrangle, Washington (I-2592)

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Sauk River 30- by 60 Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled most Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  2. Geologic map and map database of the Palo Alto 30' x 60' quadrangle, California

    USGS Publications Warehouse

    Brabb, E.E.; Jones, D.L.; Graymer, R.W.

    2000-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  3. Geologic map and map database of western Sonoma, northernmost Marin, and southernmost Mendocino counties, California

    USGS Publications Warehouse

    Blake, M.C.; Graymer, R.W.; Stamski, R.E.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (wsomf.ps, wsomf.pdf, wsomf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  4. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  5. Preliminary surficial geologic map of the Newberry Springs 30' x 60' quadrangle, California

    USGS Publications Warehouse

    Phelps, G.A.; Bedford, D.R.; Lidke, D.J.; Miller, D.M.; Schmidt, K.M.

    2012-01-01

    The Newberry Springs 30' x 60' quadrangle is located in the central Mojave Desert of southern California. It is split approximately into northern and southern halves by I-40, with the city of Barstow at its western edge and the town of Ludlow near its eastern edge. The map area spans lat 34°30 to 35° N. to long -116 °to -117° W. and covers over 1,000 km2. We integrate the results of surficial geologic mapping conducted during 2002-2005 with compilations of previous surficial mapping and bedrock geologic mapping. Quaternary units are subdivided in detail on the map to distinguish variations in age, process of formation, pedogenesis, lithology, and spatial interdependency, whereas pre-Quaternary bedrock units are grouped into generalized assemblages that emphasize their attributes as hillslope-forming materials and sources of parent material for the Quaternary units. The spatial information in this publication is presented in two forms: a spatial database and a geologic map. The geologic map is a view (the display of an extracted subset of the database at a given time) of the spatial database; it highlights key aspects of the database and necessarily does not show all of the data contained therein. The database contains detailed information about Quaternary geologic unit composition, authorship, and notes regarding geologic units, faults, contacts, and local vegetation. The amount of information contained in the database is too large to show on a single map, so a restricted subset of the information was chosen to summarize the overall nature of the geology. Refer to the database for additional information. Accompanying the spatial data are the map documentation and spatial metadata. The map documentation (this document) describes the geologic setting and history of the Newberry Springs map sheet, summarizes the age and physical character of each map unit, and describes principal faults and folds. The Federal Geographic Data Committee (FGDC) compliant metadata provides detailed information about the digital files and file structure of the spatial data.

  6. Geologic map of the eastern part of the Challis National Forest and vicinity, Idaho

    USGS Publications Warehouse

    Wilson, A.B.; Skipp, B.A.

    1994-01-01

    The paper version of the Geologic Map of the eastern part of the Challis National Forest and vicinity, Idaho was compiled by Anna Wilson and Betty Skipp in 1994. The geology was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  7. Spatial digital database for the geologic map of the east part of the Pullman 1° x 2° quadrangle, Idaho

    USGS Publications Warehouse

    Rember, William C.; Bennett, Earl H.

    2001-01-01

    he paper geologic map of the east part of the Pullman 1·x 2· degree quadrangle, Idaho (Rember and Bennett, 1979) was scanned and initially attributed by Optronics Specialty Co., Inc. (Northridge, CA) and remitted to the U.S. Geological Survey for further attribution and publication of the geospatial digital files. The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. Digital base map data files (topography, roads, towns, rivers and lakes, and others.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files (pull250k.gra/.hp /.eps) that are provided in the digital package are representations of the digital database.

  8. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  9. USGS national surveys and analysis projects: Preliminary compilation of integrated geological datasets for the United States

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve

    2007-01-01

    The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.

  10. Geologic map of the Grand Canyon 30' x 60' quadrangle, Coconino and Mohave Counties, northwestern Arizona

    USGS Publications Warehouse

    Billingsley, G.H.

    2000-01-01

    This digital map database, compiled from previously published and unpublished data as well as new mapping by the author, represents the general distribution of bedrock and surficial deposits in the map area. Together with the accompanying pamphlet, it provides current information on the geologic structure and stratigraphy of the Grand Canyon area. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  11. Geologic map and map database of northeastern San Francisco Bay region, California, [including] most of Solano County and parts of Napa, Marin, Contra Costa, San Joaquin, Sacramento, Yolo, and Sonoma Counties

    USGS Publications Warehouse

    Graymer, Russell Walter; Jones, David Lawrence; Brabb, Earl E.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (nesfmf.ps, nesfmf.pdf, nesfmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  12. Database for volcanic processes and geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    This digital release contains information used to produce the geologic map published as Plate 1 in U.S. Geological Survey Professional Paper 1762 (Waitt and Begét, 2009). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, accompanying measured sections, and main report text from Professional Paper 1762. It should be noted that Augustine Volcano erupted in 2006, after the completion of the geologic mapping shown in Professional Paper 1762 and presented in this database. Information on the 2006 eruption can be found in U.S. Geological Survey Professional Paper 1769. For the most up to date information on the status of Alaska volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  13. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  14. Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana

    USGS Publications Warehouse

    digital compilation by Munts, Steven R.

    2000-01-01

    Between 1961 and 1969, Alan Griggs and others conducted fieldwork to prepare a geologic map of the Spokane 1:250,000 map (Griggs, 1973). Their field observations were posted on paper copies of 15-minute quadrangle maps. In 1999, the USGS contracted with the Idaho Geological Survey to prepare a digital version of the Coeur d’Alene 1:100,000 quadrangle. To facilitate this work, the USGS obtained the field maps prepared by Griggs and others from the USGS Field Records Library in Denver, Colorado. The Idaho Geological Survey (IGS) digitized these maps and used them in their mapping program. The mapping focused on field checks to resolve problems in poorly known areas and in areas of disagreement between adjoining maps. The IGS is currently in the process of preparing a final digital spatial database for the Coeur d’Alene 1:100,000 quadrangle. However, there was immediate need for a digital version of the geologic map of the Coeur d’Alene 1:100,000 quadrangle and the data from the field sheets along with several other sources were assembled to produce this interim product. This interim product is the digital geologic map of the Coeur d’Alene 1:100,000 quadrangle, Idaho and Montana. It was compiled from the preliminary digital files prepared by the Idaho Geological, and supplemented by data from Griggs (1973) and from digital databases by Bookstrom and others (1999) and Derkey and others (1996). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The digital geologic map graphics (of00-135_map.pdf) that are provided are representations of the digital database. The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  15. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  16. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  17. Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2006-01-01

    The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  18. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  19. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    USGS Publications Warehouse

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  20. Geologic and structure map of the Choteau 1 degree by 2 degrees Quadrangle, western Montana

    USGS Publications Warehouse

    Mudge, Melville R.; Earhart, Robert L.; Whipple, James W.; Harrison, Jack E.

    1982-01-01

    The geologic and structure map of Choteau 1 x 2 degree quadrangle (Mudge and others, 1982) was originally converted to a digital format by Jeff Silkwood (U.S. Forest Service and completed by the U.S. Geological Survey staff and contractor at the Spokane Field Office (WA) in 2000 for input into a geographic information system (GIS). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variey of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:250,000 (e.g. 1:100,000 or 1:24,000. The digital geologic map graphics and plot files (chot250k.gra/.hp/.eps and chot-map.pdf) that are provided in the digital package are representations of the digital database. They are not designed to be cartographic products.

  1. Preliminary Geologic Map of the Buxton 7.5' Quadrangle, Washington County, Oregon

    USGS Publications Warehouse

    Dinterman, Philip A.; Duvall, Alison R.

    2009-01-01

    This map, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Buxton 7.5-minute quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller. This plot file and accompanying database depict the distribution of geologic materials and structures at a regional (1:24,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  2. Geologic map of Yosemite National Park and vicinity, California

    USGS Publications Warehouse

    Huber, N.K.; Bateman, P.C.; Wahrhaftig, Clyde

    1989-01-01

    This digital map database represents the general distribution of bedrock and surficial deposits of the Yosemite National Park vicinity. It was produced directly from the file used to create the print version in 1989. The Yosemite National Park region is comprised of portions of 15 7.5 minute quadrangles. The original publication of the map in 1989 included the map, described map units and provided correlations, as well as a geologic summary and references, all on the same sheet. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:125,000 or smaller.

  3. Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California

    USGS Publications Warehouse

    Graymer, R.W.

    2000-01-01

    Introduction This report contains a new geologic map at 1:50,000 scale, derived from a set of geologic map databases containing information at a resolution associated with 1:24,000 scale, and a new description of geologic map units and structural relationships in the mapped area. The map database represents the integration of previously published reports and new geologic mapping and field checking by the author (see Sources of Data index map on the map sheet or the Arc-Info coverage pi-so and the textfile pi-so.txt). The descriptive text (below) contains new ideas about the Hayward fault and other faults in the East Bay fault system, as well as new ideas about the geologic units and their relations. These new data are released in digital form in conjunction with the Federal Emergency Management Agency Project Impact in Oakland. The goal of Project Impact is to use geologic information in land-use and emergency services planning to reduce the losses occurring during earthquakes, landslides, and other hazardous geologic events. The USGS, California Division of Mines and Geology, FEMA, California Office of Emergency Services, and City of Oakland participated in the cooperative project. The geologic data in this report were provided in pre-release form to other Project Impact scientists, and served as one of the basic data layers for the analysis of hazard related to earthquake shaking, liquifaction, earthquake induced landsliding, and rainfall induced landsliding. The publication of these data provides an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others outside Project Impact who are interested in geologic data to have the new data long before a traditional paper map could be published. Because the database contains information about both the bedrock and surficial deposits, it has practical applications in the study of groundwater and engineering of hillside materials, as well as the study of geologic hazards and the academic research on the geologic history and development of the region.

  4. Geologic and geophysical maps of the El Casco 7.5′ quadrangle, Riverside County, southern California, with accompanying geologic-map database

    USGS Publications Warehouse

    Matti, J.C.; Morton, D.M.; Langenheim, V.E.

    2015-01-01

    Geologic information contained in the El Casco database is general-purpose data applicable to land-related investigations in the earth and biological sciences. The term “general-purpose” means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.

  5. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  6. Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Merschat, Arthur J.

    2015-09-29

    The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by Gregory J. Walsh and Arthur J. Merschat from 2008 to 2010. The report consists of a map and GIS database, both of which are available for download at http://dx.doi.org/ 10.3133/sim3345. The database includes contacts of bedrock geologic units, faults, outcrop locations, structural information, and photographs.

  7. Geologic map of the Reyes Peak quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, Scott A.

    2004-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-trending Coast Ranges and EW-trending western Transverse Ranges. The 1:24,000-scale geologic map of the Reyes Peak quadrangle, located in the eastern part of the Cuyama map area, is the final of six contiguous 7 ?' quadrangle geologic maps compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous maps of the region (Carman, 1964; Dibblee, 1972; Vedder and others, 1973). SCAMP digital geologic maps of the five other contiguous quadrangles have recently been published (Minor, 1999; Kellogg, 1999, 2003; Stone and Cossette, 2000; Kellogg and Miggins, 2002). This digital compilation presents a new geologic map database for the Reyes Peak 7?' quadrangle, which is located in southern California about 75 km northwest of Los Angeles. The map database is at 1:24,000-scale resolution.

  8. Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2010-01-01

    The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.

  9. A digital geologic map database for the state of Oklahoma

    USGS Publications Warehouse

    Heran, William D.; Green, Gregory N.; Stoeser, Douglas B.

    2003-01-01

    This dataset is a composite of part or all of the 12 1:250,000 scale quadrangles that make up Oklahoma. The result looks like a geologic map of the State of Oklahoma. But it is only an Oklahoma shaped map clipped from the 1:250,000 geologic maps. This is not a new geologic map. No new mapping took place. The geologic information from each quadrangle is available within the composite dataset.

  10. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (4b above) or plotting the postscript files (2 or 3 above).

  11. Bedrock geologic map of the Grafton quadrangle, Worcester County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Aleinikoff, John N.; Dorais, Michael J.

    2011-01-01

    The bedrock geology of the 7.5-minute Grafton, Massachusetts, quadrangle consists of deformed Neoproterozoic to early Paleozoic crystalline metamorphic and intrusive igneous rocks. Neoproterozoic intrusive, metasedimentary, and metavolcanic rocks crop out in the Avalon zone, and Cambrian to Silurian intrusive, metasedimentary, and metavolcanic rocks crop out in the Nashoba zone. Rocks of the Avalon and Nashoba zones, or terranes, are separated by the Bloody Bluff fault. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by G.J. Walsh, geochronology by J.N. Aleinikoff, geochemistry by M.J. Dorais, and consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available in paper format or as downloadable files (see frame at right). The GIS database is available for download. The database includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs.

  12. Map showing geologic terranes of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Worl, R.G.; Johnson, K.M.

    1995-01-01

    The paper version of Map Showing Geologic Terranes of the Hailey 1x2 Quadrangle and the western part of the Idaho Falls 1x2 Quadrangle, south-central Idaho was compiled by Ron Worl and Kate Johnson in 1995. The plate was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a geographic information system database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  13. Preliminary geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington

    USGS Publications Warehouse

    Wells, Ray E.; Sawlan, Michael G.

    2014-01-01

    This digital map database and the PDF derived from the database were created from the analog geologic map: Wells, R.E. (1981), “Geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington.” The geodatabase replicates the geologic mapping of the 1981 report with minor exceptions along water boundaries and also along the north and south map boundaries. Slight adjustments to contacts along water boundaries were made to correct differences between the topographic base map used in the 1981 compilation (analog USGS 15-minute series quadrangle maps at 1:62,500 scale) and the base map used for this digital compilation (scanned USGS 7.5-minute series quadrangle maps at 1:24,000 scale). These minor adjustments, however, did not materially alter the geologic map. No new field mapping was performed to create this digital map database, and no attempt was made to fit geologic contacts to the new 1:24,000 topographic base, except as noted above. We corrected typographical errors, formatting errors, and attribution errors (for example, the name change of Goble Volcanics to Grays River Volcanics following current State of Washington usage; Walsh and others, 1987). We also updated selected references, substituted published papers for abstracts, and cited published radiometric ages for the volcanic and plutonic rocks. The reader is referred to Magill and others (1982), Wells and Coe (1985), Walsh and others (1987), Moothart (1993), Payne (1998), Kleibacker (2001), McCutcheon (2003), Wells and others (2009), Chan and others (2012), and Wells and others (in press) for subsequent interpretations of the Willapa Hills geology.

  14. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  15. Regional Geologic Map of San Andreas and Related Faults in Carrizo Plain, Temblor, Caliente and La Panza Ranges and Vicinity, California; A Digital Database

    USGS Publications Warehouse

    Dibblee, T. W.; Digital database compiled by Graham, S. E.; Mahony, T.M.; Blissenbach, J.L.; Mariant, J.J.; Wentworth, C.M.

    1999-01-01

    This Open-File Report is a digital geologic map database. The report serves to introduce and describe the digital data. There is no paper map included in the Open-File Report. The report includes PostScript and PDF plot files that can be used to plot images of the geologic map sheet and explanation sheet. This digital map database is prepared from a previously published map by Dibblee (1973). The geologic map database delineates map units that are identified by general age, lithology, and clast size following the stratigraphic nomenclature of the U.S. Geological Survey. For descriptions of the units, their stratigraphic relations, and sources of geologic mapping, consult the explanation sheet (of99-14_4b.ps or of99-14_4d.pdf), or the original published paper map (Dibblee, 1973). The scale of the source map limits the spatial resolution (scale) of the database to 1:125,000 or smaller. For those interested in the geology of Carrizo Plain and vicinity who do not use an ARC/INFO compatible Geographic Information System (GIS), but would like to obtain a paper map and explanation, PDF and PostScript plot files containing map images of the data in the digital database, as well as PostScript and PDF plot files of the explanation sheet and explanatory text, have been included in the database package (please see the section 'Digital Plot Files', page 5). The PostScript plot files require a gzip utility to access them. For those without computer capability, we can provide users with the PostScript or PDF files on tape that can be taken to a vendor for plotting. Paper plots can also be ordered directly from the USGS (please see the section 'Obtaining Plots from USGS Open-File Services', page 5). The content and character of the database, methods of obtaining it, and processes of extracting the map database from the tar (tape archive) file are described herein. The map database itself, consisting of six ARC/INFO coverages, can be obtained over the Internet or by magnetic tape copy as described below. The database was compiled using ARC/INFO, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). The ARC/INFO coverages are stored in uncompressed ARC export format (ARC/INFO version 7.x). All data files have been compressed, and may be uncompressed with gzip, which is available free of charge over the Internet via links from the USGS Public Domain Software page (http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/public.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView.

  16. Publications of the Western Geologic Mapping Team 1997-1998

    USGS Publications Warehouse

    Stone, Paul; Powell, C.L.

    1999-01-01

    The Western Geologic Mapping Team (WGMT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth-science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WGMT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WGMT released in calendar years 1997 and 1998. Most of the publications listed were authored or coauthored by WGMT staff. However, the list also includes some publications authored by formal non-USGS cooperators with the WGMT, as well as some authored by USGS staff outside the WGMT in cooperation with WGMT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Most of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information. For these, the bibliographic citation refers specifically to an explanatory pamphlet containing information about the content and accessibility of the database, not to the actual map or related information comprising the database itself.

  17. Geologic map and digital database of the Porcupine Wash 7.5 minute Quadrangle, Riverside County, southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  18. Geologic and geophysical maps of the eastern three-fourths of the Cambria 30' x 60' quadrangle, central California Coast Ranges

    USGS Publications Warehouse

    Graymer, R.W.; Langenheim, V.E.; Roberts, M.A.; McDougall, Kristin

    2014-01-01

    The Cambria 30´ x 60´ quadrangle comprises southwestern Monterey County and northwestern San Luis Obispo County. The land area includes rugged mountains of the Santa Lucia Range extending from the northwest to the southeast part of the map; the southern part of the Big Sur coast in the northwest; broad marine terraces along the southwest coast; and broadvalleys, rolling hills, and modest mountains in the northeast. This report contains geologic, gravity anomaly, and aeromagnetic anomaly maps of the eastern three-fourths of the 1:100,000-scale Cambria quadrangle and the associated geologic and geophysical databases (ArcMap databases), as well as complete descriptions of the geologic map units and the structural relations in the mapped area. A cross section is based on both the geologic map and potential-field geophysical data. The maps are presented as an interactive, multilayer PDF, rather than more traditional pre-formatted map-sheet PDFs. Various geologic, geophysical, paleontological, and base map elements are placed on separate layers, which allows the user to combine elements interactively to create map views beyond the traditional map sheets. Four traditional map sheets (geologic map, gravity map, aeromagnetic map, paleontological locality map) are easily compiled by choosing the associated data layers or by choosing the desired map under Bookmarks.

  19. Geologic and aeromagnetic maps of the Fossil Ridge area and vicinity, Gunnison County, Colorado

    USGS Publications Warehouse

    DeWitt, Ed; Zech, R.S.; Chase, C.G.; Zartman, R.E.; Kucks, R.P.; Bartelson, Bruce; Rosenlund, G.C.; Earley, Drummond

    2002-01-01

    This data set includes a GIS geologic map database of an Early Proterozoic metavolcanic and metasedimentary terrane extensively intruded by Early and Middle Proterozoic granitic plutons. Laramide to Tertiary deformation and intrusion of felsic plutons have created numerous small mineral deposits that are described in the tables and are shown on the figures in the accompanying text pamphlet. Also included in the pamphlet are numerous chemical analyses of igneous and meta-igneous bodies of all ages in tables and in summary geochemical diagrams. The text pamphlet also contains a detailed description of map units and discussions of the aeromagnetic survey, igneous and metmorphic rocks, and mineral deposits. The printed map sheet and browse graphic pdf file include the aeromagnetic map of the study area, as well as figures and photographs. Purpose: This GIS geologic map database is provided to facilitate the presentation and analysis of earth-science data for this region of Colorado. This digital map database may be displayed at any scale or projection. However, the geologic data in this coverage are not intended for use at a scale other than 1:30,000. Supplemental useful data accompanying the database are extensive geochemical and mineral deposits data, as well as an aeromagnetic map.

  20. Semantic mediation in the national geologic map database (US)

    USGS Publications Warehouse

    Percy, D.; Richard, S.; Soller, D.

    2008-01-01

    Controlled language is the primary challenge in merging heterogeneous databases of geologic information. Each agency or organization produces databases with different schema, and different terminology for describing the objects within. In order to make some progress toward merging these databases using current technology, we have developed software and a workflow that allows for the "manual semantic mediation" of these geologic map databases. Enthusiastic support from many state agencies (stakeholders and data stewards) has shown that the community supports this approach. Future implementations will move toward a more Artificial Intelligence-based approach, using expert-systems or knowledge-bases to process data based on the training sets we have developed manually.

  1. Preliminary Geologic Map of the Topanga 7.5' Quadrangle, Southern California: A Digital Database

    USGS Publications Warehouse

    Yerkes, R.F.; Campbell, R.H.

    1995-01-01

    INTRODUCTION This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1994). More specific information about the units may be available in the original sources. The content and character of the database and methods of obtaining it are described herein. The geologic map database itself, consisting of three ARC coverages and one base layer, can be obtained over the Internet or by magnetic tape copy as described below. The processes of extracting the geologic map database from the tar file, and importing the ARC export coverages (procedure described herein), will result in the creation of an ARC workspace (directory) called 'topnga.' The database was compiled using ARC/INFO version 7.0.3, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). It is stored in uncompressed ARC export format (ARC/INFO version 7.x) in a compressed UNIX tar (tape archive) file. The tar file was compressed with gzip, and may be uncompressed with gzip, which is available free of charge via the Internet from the gzip Home Page (http://w3.teaser.fr/~jlgailly/gzip). A tar utility is required to extract the database from the tar file. This utility is included in most UNIX systems, and can be obtained free of charge via the Internet from Internet Literacy's Common Internet File Formats Webpage http://www.matisse.net/files/formats.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView (version 1.0 for Windows 3.1 to 3.11 is available for free from ESRI's web site: http://www.esri.com). 1. Different base layer - The original digital database included separates clipped out of the Los Angeles 1:100,000 sheet. This release includes a vectorized scan of a scale-stable negative of the Topanga 7.5 minute quadrangle. 2. Map projection - The files in the original release were in polyconic projection. The projection used in this release is state plane, which allows for the tiling of adjacent quadrangles. 3. File compression - The files in the original release were compressed with UNIX compression. The files in this release are compressed with gzip.

  2. Geologic map of Gunnison Gorge National Conservation Area, Delta and Montrose Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl; Hansen, Wallace R.; Tucker, Karen S.; VanSistine, D. Paco

    2004-01-01

    This publication consists of a geologic map database and printed map sheet. The map sheet has a geologic map as the center piece, and accompanying text describes (1) the various geological units, (2) the uplift history of the region and how it relates to canyon downcutting, (3) the ecology of the gorge, and (4) human history. The map is intended to be used by the general public as well as scientists and goes hand-in-hand with a separate geological guide to Gunnison Gorge.

  3. Geologic map of the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Graybeal, Frederick T.; Moyer, Lorre A.; Vikre, Peter; Dunlap, Pamela; Wallis, John C.

    2015-01-01

    Several spatial databases provide data for the geologic map of the Patagonia Mountains in Arizona. The data can be viewed and queried in ArcGIS 10, a geographic information system; a geologic map is also available in PDF format. All products are available online only.

  4. Staff - April M. Woolery | Alaska Division of Geological & Geophysical

    Science.gov Websites

    SurveysA> Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey

  5. Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1 degree x 2 degrees quadrangle and part of the southern part of the Challis 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Link, P.K.; Mahoney, J.B.; Bruner, D.J.; Batatian, L.D.; Wilson, Eric; Williams, F.J.C.

    1995-01-01

    The paper version of the Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1x2 Quadrangle and part of the southern part of the Challis 1x2 Quadrangle, south-central Idaho was compiled by Paul Link and others in 1995. The plate was compiled on a 1:100,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  6. Digital version of "Open-File Report 92-179: Geologic map of the Cow Cove Quadrangle, San Bernardino County, California"

    USGS Publications Warehouse

    Wilshire, Howard G.; Bedford, David R.; Coleman, Teresa

    2002-01-01

    3. Plottable map representations of the database at 1:24,000 scale in PostScript and Adobe PDF formats. The plottable files consist of a color geologic map derived from the spatial database, composited with a topographic base map in the form of the USGS Digital Raster Graphic for the map area. Color symbology from each of these datasets is maintained, which can cause plot file sizes to be large.

  7. Database for the Geologic Map of Upper Eocene to Holocene Volcanic and Related Rocks of the Cascade Range, Oregon

    USGS Publications Warehouse

    Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.

    2008-01-01

    Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.

  8. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  9. Geologic map of the Sauvie Island quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim; Cannon, Charles M.

    2016-03-02

    This map contributes to a U.S. Geological Survey program to improve the geologic database for the Portland region of the Pacific Northwest urban corridor. The map and ancillary data will support assessments of seismic risk, ground-failure hazards, and resource availability.

  10. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    NASA Astrophysics Data System (ADS)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  11. Preliminary surficial geologic map of a Calico Mountains piedmont and part of Coyote Lake, Mojave desert, San Bernardino County, California

    USGS Publications Warehouse

    Dudash, Stephanie L.

    2006-01-01

    This 1:24,000 scale detailed surficial geologic map and digital database of a Calico Mountains piedmont and part of Coyote Lake in south-central California depicts surficial deposits and generalized bedrock units. The mapping is part of a USGS project to investigate the spatial distribution of deposits linked to changes in climate, to provide framework geology for land use management (http://deserts.wr.usgs.gov), to understand the Quaternary tectonic history of the Mojave Desert, and to provide additional information on the history of Lake Manix, of which Coyote Lake is a sub-basin. Mapping is displayed on parts of four USGS 7.5 minute series topographic maps. The map area lies in the central Mojave Desert of California, northeast of Barstow, Calif. and south of Fort Irwin, Calif. and covers 258 sq.km. (99.5 sq.mi.). Geologic deposits in the area consist of Paleozoic metamorphic rocks, Mesozoic plutonic rocks, Miocene volcanic rocks, Pliocene-Pleistocene basin fill, and Quaternary surficial deposits. McCulloh (1960, 1965) conducted bedrock mapping and a generalized version of his maps are compiled into this map. McCulloh's maps contain many bedrock structures within the Calico Mountains that are not shown on the present map. This study resulted in several new findings, including the discovery of previously unrecognized faults, one of which is the Tin Can Alley fault. The north-striking Tin Can Alley fault is part of the Paradise fault zone (Miller and others, 2005), a potentially important feature for studying neo-tectonic strain in the Mojave Desert. Additionally, many Anodonta shells were collected in Coyote Lake lacustrine sediments for radiocarbon dating. Preliminary results support some of Meek's (1999) conclusions on the timing of Mojave River inflow into the Coyote Basin. The database includes information on geologic deposits, samples, and geochronology. The database is distributed in three parts: spatial map-based data, documentation, and printable map graphics of the database. Spatial data are distributed as an ArcInfo personal geodatabase, or as tabular data in the form of Microsoft Access Database (MDB) or dBase Format (DBF) file formats. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, and Federal Geographic Data Committee (FGDC) metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Acrobat Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  12. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    USGS Publications Warehouse

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  13. Semantics-informed cartography: the case of Piemonte Geological Map

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.

  14. Using digital databases to create geologic maps for the 21st century : a GIS model for geologic, environmental, cultural and transportation data from southern Rhode Island

    DOT National Transportation Integrated Search

    2002-05-01

    Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...

  15. Preliminary integrated geologic map databases for the United States : Central states : Montana, Wyoming, Colorado, New Mexico, Kansas, Oklahoma, Texas, Missouri, Arkansas, and Louisiana

    USGS Publications Warehouse

    Stoeser, Douglas B.; Green, Gregory N.; Morath, Laurie C.; Heran, William D.; Wilson, Anna B.; Moore, David W.; Van Gosen, Bradley S.

    2005-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national digital geologic maps attributed with age and lithology information. Such maps can be conveniently used to generate derivative maps for purposes including mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This Open-File Report is a preliminary version of part of a series of integrated state geologic map databases that cover the entire United States. The only national-scale digital geologic maps that portray most or all of the United States for the conterminous U.S. are the digital version of the King and Beikman (1974a, b) map at a scale of 1:2,500,000, as digitized by Schruben and others (1994) and the digital version of the Geologic Map of North America (Reed and others, 2005a, b) compiled at a scale of 1:5,000,000 which is currently being prepared by the U.S. Geological Survey. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. In a few cases, new digital compilations were prepared (e.g. OH, SC, SD) or existing paper maps were digitized (e.g. KY, TX). For Alaska and Hawaii, new regional maps are being compiled and ultimately new state maps will be produced. The digital geologic maps are presented in standardized formats as ARC/INFO (.e00) export files and as ArcView shape (.shp) files. Accompanying these spatial databases are a set of five supplemental data tables that relate the map units to detailed lithologic and age information. The maps for the CONUS have been fitted to a common set of state boundaries based on the 1:100,000 topographic map series of the United States Geological Survey (USGS). When the individual state maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps. No attempt has been made to reconcile differences in mapped geology across state lines. This is the first version of this product and it will be subsequently updated to include four additional states (North Dakota, South Dakota, Nebraska, and Iowa)

  16. Digital Mapping Techniques '07 - Workshop Proceedings

    USGS Publications Warehouse

    Soller, David R.

    2008-01-01

    The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  17. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  18. Publications - AR 2015 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic publication sales page for more information. Quadrangle(s): Alaska General Bibliographic Reference DGGS Staff

  19. Publications - GMC 280 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic please see our publication sales page for more information. Bibliographic Reference Piggott, Neil, and

  20. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage containing line ornamentation, and (5) a scanned topographic base at a scale of 1:24,000. The coverages include attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  1. Geologic Map of the State of Hawai`i

    USGS Publications Warehouse

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of 1983 and the Universal Transverse Mercator system projection to zone 4. 'This digital statewide map allows engineers, consultants, and scientists from many different fields to take advantage of the geologic database,' said John Sinton, a geology professor at the University of Hawai`i, whose new mapping of the Wai`anae Range (West O`ahu) appears on the map. Indeed, when a testing version was first made available, most requests came from biologists, archaeologists, and soil scientists interested in applying the map's GIS database to their ongoing investigations. Another area newly depicted on the map, in addition to the Wai`anae Range, is Haleakala volcano, East Maui. So too for the active lava flows of Kilauea volcano, Island of Hawai`i, where the landscape has continued to evolve in the ten years since publication of the Big Island's revised geologic map. For the other islands, much of the map is compiled from mapping published in the 1930-1960s. This reliance stems partly from shortage of funding to undertake entirely new mapping but is warranted by the exemplary mapping of those early experts. The boundaries of all map units are digitized to show correctly on modern topographic maps.

  2. Publications - AR 2008 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic ; Geophysical Surveys Ordering Info: Download below or please see our publication sales page for more

  3. Publications - AR 2007 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic ; Geophysical Surveys Ordering Info: Download below or please see our publication sales page for more

  4. Publications - AR 2001 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic ; Geophysical Surveys Ordering Info: Download below or please see our publication sales page for more

  5. Publications - GMC 379 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic Info: Download below or please see our publication sales page for more information. Quadrangle(s

  6. Publications - AR 2002 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic ; Geophysical Surveys Ordering Info: Download below or please see our publication sales page for more

  7. Publications - GMC 322 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic Ordering Info: Download below or please see our publication sales page for more information. Quadrangle(s

  8. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  9. Geology of the Palo Alto 30 x 60 minute quadrangle, California: A digital database

    USGS Publications Warehouse

    Brabb, Earl E.; Graymer, R.W.; Jones, David Lawrence

    1998-01-01

    This map database represents the integration of previously published and unpublished maps by several workers (see Sources of Data index map on Sheet 2 and the corresponding table below) and new geologic mapping and field checking by the authors with the previously published geologic map of San Mateo County (Brabb and Pampeyan, 1983) and Santa Cruz County (Brabb, 1989, Brabb and others, 1997), and various sources in a small part of Santa Clara County. These new data are released in digital form to provide an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others interested in geologic data to have the new data long before a traditional paper map is published. The new data include a new depiction of Quaternary units in the San Francisco Bay plain emphasizing depositional environment, important new observations between the San Andreas and Pilarcitos faults, and a new interpretation of structural and stratigraphic relationships of rock packages (Assemblages).

  10. Geologic Communications | Alaska Division of Geological & Geophysical

    Science.gov Websites

    improves a database for the Division's digital and map-based geological, geophysical, and geochemical data interfaces DGGS metadata and digital data distribution - Geospatial datasets published by DGGS are designed to be compatible with a broad variety of digital mapping software, to present DGGS's geospatial data

  11. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    USGS Publications Warehouse

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored maps provide a regional summary of the new mapping at a scale of 1:200,000, a scale that is sufficient to show the general distribution and relationships of the map units but not to distinguish the more detailed elements that are present in the database. The report is the product of cooperative work by the National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program of the U.S. Geological Survey, William Lettis and & Associates, Inc. (WLA), and the California Geological Survey. An earlier version was submitted to the U.S. Geological Survey by WLA as a final report for a NEHRP grant (Witter and others, 2005). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grant 99-HQ-GR-0095) and by the California Geological Survey.

  12. Preliminary integrated geologic map databases for the United States: Digital data for the geology of southeast Alaska

    USGS Publications Warehouse

    Gehrels, George E.; Berg, Henry C.

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  13. Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008

    USGS Publications Warehouse

    Soller, David R.

    2009-01-01

    The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  14. Conflation and integration of archived geologic maps and associated uncertainties

    USGS Publications Warehouse

    Shoberg, Thomas G.

    2016-01-01

    Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.

  15. Digital Geological Map for Marie Byrd Land, West Antarctica: A resource for investigation of geotectonic frameworks and future glaciological change

    NASA Astrophysics Data System (ADS)

    Siddoway, C. S.; White, T.; Elkind, S.; Cox, S. C.; Lyttle, B. S.; Morin, P. J.

    2016-12-01

    Bedrock exposures are relatively sparse in Marie Byrd Land (MBL), where rock is concealed by the West Antarctic ice sheet, but they provide direct insight into the geological evolution and glacial history of West Antarctica. MBL is tectonically active, as evidenced by Late Pleistocene to Holocene volcanism and 2012 seismicity (3 events, M4.4 to M5.5) at sites beside Ross Sea. There are geological influences upon the ice sheet, namely, subglacial volcanism and associated geothermal flux, fault zone alteration/mineralization, and bedrock roughess. The former may influence the position and velocity of outlet glaciers and the latter may anchor or accelerate sectors of the ice sheet. To make MBL's geological framework accessible to investigators with diverse research priorities, we are preparing the first digital geological map of MBL by compiling ground-based geological data, incorporating firsthand observations, published geological maps and literature. The map covers an on-continent coastal area of 900 000 km2 between 090°E to 160°E, from 72°S to 80°S, at 1:250 000 scale or better. Exposed rock is delimited by 1976 polygons, occupying 410 km2. Supraglacial features and glacial till, seasonal water and blue ice, are also mapped, as a baseline for past and future glaciological change. Rendered in the ArcMap GIS software by Esri©, the database employs international GeoSciML data protocols for feature classification and description of rock and moraine polygons from the Antarctic Digital Database (www.add.scar.org), with shape and location adjusted to align with features in Landsat Image Mosaic of Antarctica imagery (lima.usgs.gov), where necessary. The GIS database is attribute-rich and queriable; including links to bibliographic source files for primary literature and published maps. It will soon be available as GoogleEarth kmz files and an ArcGIS online map service. An initial application is to the interpretation of sub-ice geology for a subglacial geotectonic map of this active region. This is undertaken as part of ROSETTA-Ice, an integrated systems science investigation of the Ross Ice Shelf that commenced in 2015. The next phases of MBL database development will assess icesheet-ocean interactions near grounding line, environmental domain analysis and ecological research.

  16. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  17. Digital geologic map of the Spokane 1:100,000 quadrangle, Washington and Idaho: a digital database for the 1990 N.L. Joseph map

    USGS Publications Warehouse

    Johnson, Bruce R.; Derkey, Pamela D.

    1998-01-01

    Geologic data from the geologic map of the Spokane 1:100,000-scale quadrangle compiled by Joseph (1990) were entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The map area is located in eastern Washington and extends across the state border into western Idaho (Fig. 1). This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  18. GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.

    NASA Astrophysics Data System (ADS)

    Asavin, A. M.

    2001-12-01

    There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.

  19. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  20. Digital Mapping Techniques '10-Workshop Proceedings, Sacramento, California, May 16-19, 2010

    USGS Publications Warehouse

    Soller, David R.; Soller, David R.

    2012-01-01

    The Digital Mapping Techniques '10 (DMT'10) workshop was attended by 110 technical experts from 40 agencies, universities, and private companies, including representatives from 19 State geological surveys (see Appendix A). This workshop, hosted by the California Geological Survey, May 16-19, 2010, in Sacramento, California, was similar in nature to the previous 13 meetings (see Appendix B). The meeting was coordinated by the U.S. Geological Survey's (USGS) National Geologic Map Database project. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was again successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products ("publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  1. Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California

    NASA Astrophysics Data System (ADS)

    Elder, D.; de La Fuente, J. A.; Reichert, M.

    2010-12-01

    This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased erosion hazards, (3) limestone, chert, sedimentary rocks - paleontological resources (Potential Fossil Yield Classification maps), (4) calcareous rocks (cave resources, water chemistry), and (5) lava flows - lava tubes (more caves). Map unit groupings (e.g., belts, terranes, tectonic & geomorphic provinces) can also be derived from the geodatabase. Digital geologic mapping was used in ground water modeling to predict effects of tunneling through the San Bernardino Mountains. Bedrock mapping is used in models that characterize watershed sediment regimes and quantify anthropogenic influences. When combined with digital geomorphology mapping, this geodatabase helps to assess landslide hazards.

  2. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  3. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.

  4. Spatial Digital Database for the Geology of the San Pedro River Basin in Cochise, Gila, Graham, Pima, and Pinal Counties, Arizona

    USGS Publications Warehouse

    Bolm, Karen S.

    2002-01-01

    The map area is located in southeastern Arizona. This report describes the map units, the methods used to convert the geologic map data into a digital format, and the ArcInfo GIS file structures and relationships; and it explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. See figures 2 and 3 for page-size versions of the map compilation.

  5. Digital geologic map database of the Nevada Test Site area, Nevada

    USGS Publications Warehouse

    Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.

    1997-01-01

    Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.

  6. Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Aleinikoff, John N.; Merschat, Arthur J.

    2012-01-01

    The geology of the Great Smoky Mountains National Park region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation by the U.S. Geological Survey with the National Park Service (NPS). This work resulted in a 1:100,000-scale geologic map derived from mapping that was conducted at scales of 1:24,000 and 1:62,500. The geologic data are intended to support cooperative investigations with the NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory. In response to a request by the NPS, we mapped previously unstudied areas, revised the geology where problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  7. Geologic Map of the Mount Trumbull 30' X 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Wellmeyer, Jessica L.

    2003-01-01

    The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates and projected into the base map projection (Polyconic) using a central meridian of -113.500. The tic file was used to transform the grid into Universal Transverse Mercator projection. The linework was vectorized using gridline. Scanned lines were edited interactively in ArcEdit. Polygons were attributed in ArcEdit and all artifacts and scanning errors visible at 1:100,000 were removed. Point data were digitized onscreen. Due to the discovery of digital and geologic errors on the original files, the ARC/INFO coverages were converted to a personal geodatabase and corrected in ArcMap. The feature classes which define the geologic units, lines and polygons, are topologically related and maintained in the geodatabase by a set of validation rules. The internal database structure and feature attributes were then modified to match other geologic map databases being created for the Grand Canyon region. Faults were edited with the downthrown block, if known, on the 'right side' of the line. The 'right' and 'left' sides of a line are determined from 'starting' at the line's 'from node' and moving to the line's end or 'to node'.

  8. Preliminary geologic map of the Big Bear City 7.5' Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Cossette, Digital preparation by Pamela M.

    2004-01-01

    This data set maps and describes the geology of the Big Bear City 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a rock-unit coverage and attribute tables (polygon and arc) containing geologic contacts, units and rock-unit labels as annotation which are also included in a separate annotation coverage, bbc_anno (2) a point coverage containing structural point data and (3) a coverage containing fold axes. In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and an explanation for point and line symbols; (2) PDF files of the Readme (including the metadata file as an appendix), and a screen graphic of the plot produced by the PostScript plot file. The geologic map describes a geologically complex area on the north side of the San Bernardino Mountains. Bedrock units in the Big Bear City quadrangle are dominated by (1) large Cretaceous granitic bodies ranging in composition from monzogranite to gabbro, (2) metamorphosed sedimentary rocks ranging in age from late Paleozoic to late Proterozoic, and (3) Middle Proterozoic gneiss. These rocks are complexly deformed by normal, reverse, and thrust faults, and in places are tightly folded. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map data was compiled on base-stable cronoflex copies of the Big Bear City 7.5' topographic map, transferred to a scribe-guide and subsequently digitized. Lines, points, and polygons were edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  9. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  10. New digital magnetic anomaly database for North America

    USGS Publications Warehouse

    Finn, C.A.; Pilkington, M.; Cuevas, A.; Hernandez, I.; Urrutia, J.

    2001-01-01

    The Geological Survey of Canada (GSC), U.S. Geological Survey (USGS), and Consejo de Recursos Minerales of Mexico (CRM) are compiling an upgraded digital magnetic anomaly database and map for North America. This trinational project is expected to be completed by late 2002.

  11. Bedrock geologic map of the Hartland and North Hartland quadrangles, Windsor County, Vermont, and Sullivan and Grafton Counties, New Hampshire

    USGS Publications Warehouse

    Walsh, Gregory J.

    2016-08-16

    This report consists of sheets 1 and 2 as well as an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs. Sheet 2 of this report shows three cross sections, a tectonic map, and two brittle features maps that show measured outcrop-scale strike and dip results with summary stereonets and rose diagrams.

  12. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance bedrock geologic map for the northern Alaska peninsula area, southwest Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  13. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  14. Preliminary integrated geologic map databases for the United States: Digital data for the generalized bedrock geologic map, Yukon Flats region, east-central Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  15. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the lower Yukon River region, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  16. Digital mapping techniques '00, workshop proceedings - May 17-20, 2000, Lexington, Kentucky

    USGS Publications Warehouse

    Soller, David R.

    2000-01-01

    Introduction: The Digital Mapping Techniques '00 (DMT'00) workshop was attended by 99 technical experts from 42 agencies, universities, and private companies, including representatives from 28 state geological surveys (see Appendix A). This workshop was similar in nature to the first three meetings, held in June, 1997, in Lawrence, Kansas (Soller, 1997), in May, 1998, in Champaign, Illinois (Soller, 1998a), and in May, 1999, in Madison, Wisconsin (Soller, 1999). This year's meeting was hosted by the Kentucky Geological Survey, from May 17 to 20, 2000, on the University of Kentucky campus in Lexington. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. When, based on discussions at the workshop, an attendee adopts or modifies a newly learned technique, the workshop clearly has met that objective. Evidence of learning and cooperation among participating agencies continued to be a highlight of the DMT workshops (see example in Soller, 1998b, and various papers in this volume). The meeting's general goal was to help move the state geological surveys and the USGS toward development of more cost-effective, flexible, and useful systems for digital mapping and geographic information systems (GIS) analysis. Through oral and poster presentations and special discussion sessions, emphasis was given to: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) continued development of the National Geologic Map Database; 3) progress toward building a standard geologic map data model; 4) field data-collection systems; and 5) map citation and authorship guidelines. Four representatives of the GIS hardware and software vendor community were invited to participate. The four annual DMT workshops were coordinated by the AASG/USGS Data Capture Working Group, which was formed in August, 1996, to support the Association of American State Geologists and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ncgmp.usgs.gov/ngmdbproject/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed to help the Database, and the State and Federal geological surveys, provide more high-quality digital maps to the public.

  17. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  18. A test of the circumvention-of-limits hypothesis in scientific problem solving: the case of geological bedrock mapping.

    PubMed

    Hambrick, David Z; Libarkin, Julie C; Petcovic, Heather L; Baker, Kathleen M; Elkins, Joe; Callahan, Caitlin N; Turner, Sheldon P; Rench, Tara A; Ladue, Nicole D

    2012-08-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco Root Mountains of Montana. A Visuospatial Ability × Geological Knowledge interaction was found, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. This finding suggests that high levels of domain knowledge may sometimes enable circumvention of performance limitations associated with cognitive abilities. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  19. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).

  20. Bedrock geologic map of the Uxbridge quadrangle, Worcester County, Massachusetts, and Providence County, Rhode Island

    USGS Publications Warehouse

    Walsh, Gregory J.

    2014-01-01

    The bedrock geology of the 7.5-minute Uxbridge quadrangle consists of Neoproterozoic metamorphic and igneous rocks of the Avalon zone. In this area, rocks of the Avalon zone lie within the core of the Milford antiform, south and east of the terrane-bounding Bloody Bluff fault zone. Permian pegmatite dikes and quartz veins occur throughout the quadrangle. The oldest metasedimentary rocks include the Blackstone Group, which represents a Neoproterozoic peri-Gondwanan marginal shelf sequence. The metasedimentary rocks are intruded by Neoproterozoic arc-related plutonic rocks of the Rhode Island batholith. This report presents mapping by G.J. Walsh. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available only as downloadable files (see frame at right). The GIS database is available for download in ESRI™ shapefile and Google Earth™ formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, geochemical data, and photographs.

  1. Digital Mapping Techniques '05--Workshop Proceedings, Baton Rouge, Louisiana, April 24-27, 2005

    USGS Publications Warehouse

    Soller, David R.

    2005-01-01

    Intorduction: The Digital Mapping Techniques '05 (DMT'05) workshop was attended by more than 100 technical experts from 47 agencies, universities, and private companies, including representatives from 25 state geological surveys (see Appendix A). This workshop was similar in nature to the previous eight meetings, held in Lawrence, Kansas (Soller, 1997), in Champaign, Illinois (Soller, 1998), in Madison, Wisconsin (Soller, 1999), in Lexington, Kentucky (Soller, 2000), in Tuscaloosa, Alabama (Soller, 2001), in Salt Lake City, Utah (Soller, 2002), in Millersville, Pennsylvania (Soller, 2003), and in Portland, Oregon (Soller, 2004). This year's meeting was hosted by the Louisiana Geological Survey, from April 24-27, 2005, on the Louisiana State University campus in Baton Rouge, Louisiana. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and to renew friendships and collegial work begun at past DMT workshops. Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, which was formed in August 1996, to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database?and for the State and Federal geological surveys?to provide more high-quality digital maps to the public. At the 2005 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; 6) continued development of the National Geologic Map Database; and 7) progress toward building and implementing a standard geologic map data model and standard science language for the U.S. and for North America.

  2. Digital mapping techniques '06 - Workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2007-01-01

    The Digital Mapping Techniques `06 (DMT`06) workshop was attended by more than 110 technical experts from 51 agencies, universities, and private companies, including representatives from 27 state geological surveys (see Appendix A of these Proceedings). This workshop was similar in nature to the previous nine meetings, which were held in Lawrence, Kansas (Soller, 1997), Champaign, Illinois (Soller, 1998), Madison, Wisconsin (Soller, 1999), Lexington, Kentucky (Soller, 2000), Tuscaloosa, Alabama (Soller, 2001), Salt Lake City, Utah (Soller, 2002), Millersville, Pennsylvania (Soller, 2003), Portland, Oregon (Soller, 2004), and Baton Rouge, Louisiana (Soller, 2005). This year?s meeting was hosted by the Ohio Geological Survey, from June 11-14, 2006, on the Ohio State University campus in Columbus, Ohio. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops.Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, the latter of which was formed in August 1996 to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database - and for the State and Federal geological surveys - to provide more high-quality digital maps to the public.At the 2006 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, "publishing" includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.

  3. The U.S. Geological Survey mapping and cartographic database activities, 2006-2010

    USGS Publications Warehouse

    Craun, Kari J.; Donnelly, John P.; Allord, Gregory J.

    2011-01-01

    The U.S. Geological Survey (USGS) began systematic topographic mapping of the United States in the 1880s, beginning with scales of 1:250,000 and 1:125,000 in support of geological mapping. Responding to the need for higher resolution and more detail, the 1:62,500-scale, 15-minute, topographic map series was begun in the beginning of the 20th century. Finally, in the 1950s the USGS adopted the 1:24,000-scale, 7.5-minute topographic map series to portray even more detail, completing the coverage of the conterminous 48 states of the United States with this series in 1992. In 2001, the USGS developed the vision and concept of The National Map, a topographic database for the 21st century and the source for a new generation of topographic maps (http://nationalmap.gov/). In 2008, the initial production of those maps began with a 1:24,000-scale digital product. In a separate, but related project, the USGS began scanning the existing inventory of historical topographic maps at all scales to accompany the new topographic maps. The USGS also had developed a digital database of The National Atlas of the United States. The digital version of Atlas is now Web-available and supports a mapping engine for small scale maps of the United States and North America. These three efforts define topographic mapping activities of the USGS during the last few years and are discussed below.

  4. Earth-Base: testing the temporal congruency of paleontological collections and geologic maps of North America

    NASA Astrophysics Data System (ADS)

    Heim, N. A.; Kishor, P.; McClennen, M.; Peters, S. E.

    2012-12-01

    Free and open source software and data facilitate novel research by allowing geoscientists to quickly and easily bring together disparate data that have been independently collected for many different purposes. The Earth-Base project brings together several datasets using a common space-time framework that is managed and analyzed using open source software. Earth-Base currently draws on stratigraphic, paleontologic, tectonic, geodynamic, seismic, botanical, hydrologic and cartographic data. Furthermore, Earth-Base is powered by RESTful data services operating on top of PostgreSQL and MySQL databases and the R programming environment, making much of the functionality accessible to third-parties even though the detailed data schemas are unknown to them. We demonstrate the scientific potential of Earth-Base and other FOSS by comparing the stated age of fossil collections to the age of the bedrock upon which they are geolocated. This analysis makes use of web services for the Paleobiology Database (PaleoDB), Macrostrat, the 2005 Geologic Map of North America (Garrity et al. 2009) and geologic maps of the conterminous United States. This analysis is a way to quickly assess the accuracy of temporal and spatial congruence of the paleontologic and geologic map datasets. We find that 56.1% of the 52,593 PaleoDB collections have temporally consistent ages with the bedrock upon which they are located based on the Geologic Map of North America. Surprisingly, fossil collections within the conterminous United States are more consistently located on bedrock with congruent geological ages, even though the USA maps are spatially and temporally more precise. Approximately 57% of the 37,344 PaleoDB collections in the USA are located on similarly aged geologic map units. Increased accuracy is attributed to the lumping of Pliocene and Quaternary geologic map units along the Atlantic and Gulf coastal plains in the Geologic Map of North America. The abundant Pliocene fossil collections are thus located on geologic map units that have an erroneous age designation of Quaternary. We also demonstrate the power of the R programming environment for performing analyses and making publication-quality maps for visualizing results.

  5. Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Derkey, Pamela D.

    1999-01-01

    The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  6. Geologic map of the west-central Buffalo National River region, northern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This report provides a geologic map database of the map area that improves understanding of the regional geologic framework and its influence on the regional groundwater flow system. Furthermore, additional edits were made to the Ponca and Jasper quadrangles in the following ways: new control points on important contacts were obtained using modern GPS; recent higher resolution elevation data allowed further control on placement of contacts; some new contacts were added, in particular the contact separating the upper and lower Everton Formation.

  7. Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic hazards to buildings, roads, bridges, and other installations and structures (AS 41.08.020). Headlines New release! Active faults and seismic hazards in Alaska - MP 160 New release! The Alaska Volcano Observatory

  8. Geologic map of the southern White Ledge Peak and Matilija quadrangles, Santa Barbara and Ventura Counties, California

    USGS Publications Warehouse

    Minor, Scott A.; Brandt, Theodore R.

    2015-01-01

    A principal aim of the new mapping and associated fault-kinematic measurements is to document and constrain the nature of transpressional strain transfer between various regional, potentially seismogenic faults. In the accompanying pamphlet, surficial and bedrock map units are described in detail as well as a summary of the structural and fault-kinematic framework of the map area. New biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations are embedded in the digital map database. This compilation provides a uniform geologic digital geodatabase and map plot files that can be used for visualization, analysis, and interpretation of the area’s geology, geologic hazards, and natural resources.

  9. Geologic map and digital database of the Cougar Buttes 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Powell, R.E.; Matti, J.C.; Cossette, P.M.

    2000-01-01

    The Southern California Areal Mapping Project (SCAMP) of Geologic Division has undertaken regional geologic mapping investigations in the Lucerne Valley area co-sponsored by the Mojave Water Agency and the San Bernardino National Forest. These investigations span the Lucerne Valley basin from the San Bernardino Mountains front northward to the basin axis on the Mojave Desert floor, and from the Rabbit Lake basin east to the Old Woman Springs area. Quadrangles mapped include the Cougar Buttes 7.5' quadrangle, the Lucerne Valley 7.5' quadrangle (Matti and others, in preparation b), the Fawnskin 7.5' quadrangle (Miller and others, 1998), and the Big Bear City 7.5' quadrangle (Matti and others, in preparation a). The Cougar Buttes quadrangle has been mapped previously at scales of 1:62,500 (Dibblee, 1964) and 1:24,000 (Shreve, 1958, 1968; Sadler, 1982a). In line with the goals of the National Cooperative Geologic Mapping Program (NCGMP), our mapping of the Cougar Buttes quadrangle has been directed toward generating a multipurpose digital geologic map database. Guided by the mapping of previous investigators, we have focused on improving our understanding and representation of late Pliocene and Quaternary deposits. In cooperation with the Water Resources Division of the U.S. Geological Survey, we have used our mapping in the Cougar Buttes and Lucerne Valley quadrangles together with well log data to construct cross-sections of the Lucerne Valley basin (R.E. Powell, unpublished data, 1996-1998) and to develop a hydrogeologic framework for the basin. Currently, our mapping in these two quadrangles also is being used as a base for studying soils on various Quaternary landscape surfaces on the San Bernardino piedmont (Eppes and others, 1998). In the Cougar Buttes quadrangle, we have endeavored to represent the surficial geology in a way that provides a base suitable for ecosystem assessment, an effort that has entailed differentiating surficial veneers on piedmont and pediment surfaces and distinguishing the various substrates found beneath these veneers.

  10. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  11. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  12. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example, materials that are characterized by expansive clay minerals; landslide deposits or landslide-prone deposits), natural resources (for example, sources of aggregate, peat, and clay; potential shallow sources of groundwater), and areas of environmental concern (for example, areas that are potentially suitable for specific ecosystem habitats; areas of potential soil and groundwater contamination). All of these aspects of the database relate directly to land use, management, and policy. The map, text, and accompanying illustrations provide a database of regional scope related to geologic history, climatic changes, the stratigraphic and chronologic frameworks of surface and subsurface deposits and materials of Quaternary age, and other problems and concerns.

  13. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  14. FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)

    USGS Publications Warehouse

    ,

    2006-01-01

    PLEASE NOTE: This now-approved 'FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)' officially supercedes its earlier (2000) Public Review Draft version (see 'Earlier Versions of the Standard' below). In August 2006, the Digital Cartographic Standard for Geologic Map Symbolization was officially endorsed by the Federal Geographic Data Committee (FGDC) as the national standard for the digital cartographic representation of geologic map features (FGDC Document Number FGDC-STD-013-2006). Presented herein is the PostScript Implementation of the standard, which will enable users to directly apply the symbols in the standard to geologic maps and illustrations prepared in desktop illustration and (or) publishing software. The FGDC Digital Cartographic Standard for Geologic Map Symbolization contains descriptions, examples, cartographic specifications, and notes on usage for a wide variety of symbols that may be used on typical, general-purpose geologic maps and related products such as cross sections. The standard also can be used for different kinds of special-purpose or derivative map products and databases that may be focused on a specific geoscience topic (for example, slope stability) or class of features (for example, a fault map). The standard is scale-independent, meaning that the symbols are appropriate for use with geologic mapping compiled or published at any scale. It will be useful to anyone who either produces or uses geologic map information, whether in analog or digital form. Please be aware that this standard is not intended to be used inflexibly or in a manner that will limit one's ability to communicate the observations and interpretations gained from geologic mapping. In certain situations, a symbol or its usage might need to be modified in order to better represent a particular feature on a geologic map or cross section. This standard allows the use of any symbol that doesn't conflict with others in the standard, provided that it is clearly explained on the map and in the database. In addition, modifying the size, color, and (or) lineweight of an existing symbol to suit the needs of a particular map or output device also is permitted, provided that the modified symbol's appearance is not too similar to another symbol on the map. Be aware, however, that reducing lineweights below .125 mm (.005 inch) may cause symbols to plot incorrectly if output at higher resolutions (1800 dpi or higher). For guidelines on symbol usage, as well as on color design and map labeling, please refer to the standard's introductory text. Also found there are informational sections covering concepts of geologic mapping and some definitions of geologic map features, as well as sections on the newly defined concepts and terminology for the scientific confidence and locational accuracy of geologic map features. More information on both the past development and the future maintenance of the FGDC Digital Cartographic Standard for Geologic Map Symbolization can be found at the FGDC Geologic Data Subcommittee website (http://ngmdb.usgs.gov/fgdc_gds/). Earlier Versions of the Standard

  15. Geologic map and digital database of the Romoland 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Morton, Gregory

    2003-01-01

    Portable Document Format (.pdf) files of: This Readme; includes in Appendix I, data contained in rom_met.txt The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). This Readme file describes the digital data, such as types and general contents of files making up the database, and includes information on how to extract and plot the map and accompanying graphic file. Metadata information can be accessed at http://geo-nsdi.er.usgs.gov/metadata/open-file/03-102 and is included in Appendix I of this Readme.

  16. A digital version of the 1970 U.S. Geological Survey topographic map of the San Francisco Bay region, three sheets, 1:125,000

    USGS Publications Warehouse

    Aitken, Douglas S.

    1997-01-01

    This Open-File report is a digital topographic map database. It contains a digital version of the 1970 U.S. Geological Survey topographic map of the San Francisco Bay Region (3 sheets), at a scale of 1:125,000. These ARC/INFO coverages are in vector format. The vectorization process has distorted characters representing letters and numbers, as well as some road and other symbols, making them difficult to read in some instances. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The content and character of the database and methods of obtaining it are described herein.

  17. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  18. Geologic Map of the Yukon-Koyukuk Basin, Alaska

    USGS Publications Warehouse

    Patton, William W.; Wilson, Frederic H.; Labay, Keith A.; Shew, Nora B.

    2009-01-01

    This map and accompanying digital files represent part of a systematic effort to release geologic data for the United States in a uniform manner. All the geologic data in this series will be published as parts of the U.S. Geological Survey Data Series. The geologic data in this series have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The data are presented for use at a nominal scale of 1:500,000, although individual datasets may contain data suitable for use at larger scales. The metadata associated with each release will provide more detailed information on sources and appropriate scales for use. Associated attribute databases accompany the spatial database of the geology and are uniformly structured for ease in developing regional- and national-scale maps. The 1:500,000-scale geologic map of the Yukon-Koyukuk Basin, Alaska, covers more than 200,000 square kilometers of western Alaska or nearly 15 percent of the total land area of the state. It stretches from the Brooks Range on the north to the Kuskokwim River and lower reaches of the Yukon River on the south and from Kotzebue Sound, Seward Peninsula, and Norton Sound on the west to the Yukon-Tanana Uplands and Tanana-Kuskokwim Lowlands on the east. It includes not only the northern and central part of the basin, but also the lands that border the basin. The area is characterized by isolated clusters of hills and low mountain ranges separated by broad alluviated interior and coastal lowlands. Most of the lowlands, except those bordering Kotzebue Sound and Norton Sound, support a heavy vegetation cover. Exposures of bedrock are generally limited to rubble-strewn ridgetops and to cutbanks along the rivers. The map of the Yukon-Koyukuk Basin was prepared largely from geologic field data collected between 1953 and 1988 by the U.S. Geological Survey and published as 1:250,000-scale geologic quadrangle maps. Additional data for parts of the Wiseman, Ruby, Medfra, and Ophir quadrangles came from 1:63,360-scale quadrangle maps published by the Alaska Division of Geological and Geophysical Surveys. The map also incorporates some unpublished field data for the Ruby quadrangle collected by R.M. Chapman between 1944 and 1977 and for parts of the Tanana, Bettles, Norton Bay, and Candle quadrangles collected by W.W. Patton, Jr. and others between 1954 and 1985. Sources of geologic map data for each of the eighteen 1:250,000-scale quadrangles used in compiling this 1:500,000-scale map of the Yukon-Koyukuk Basin as well as sources of general geologic information pertaining to the entire map area are provided in the 'Sources of Information' section.

  19. Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle

    2005-01-01

    The geology of the Great Smoky Mountain National Park (GSMNP) region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation with the National Park Service (NPS). This work has been compiled as a 1:100,000-scale map derived from mapping done at 1:24,000 and 1:62,500 scale. The geologic data are intended to support cooperative investigations with NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory (http://www.discoverlifeinamerica.org/). At the request of NPS, we mapped areas previously not visited, revised the geology where stratigraphic and structural problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  20. Geologic map of the Chewelah 30' x 60' Quadrangle, Washington and Idaho

    USGS Publications Warehouse

    Miller, F.K.

    2001-01-01

    This data set maps and describes the geology of the Chewelah 30' X 60' quadrangle, Washington and Idaho. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a point coverage containing site-specific geologic structural data, (3) two coverages derived from 1:100,000 Digital Line Graphs (DLG); one of which represents topographic data, and the other, cultural data, (4) two line coverages that contain cross-section lines and unit-label leaders, respectively, and (5) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, and two cross sections, and on a separate sheet, a Correlation of Map Units (CMU) diagram, an abbreviated Description of Map Units (DMU), modal diagrams for granitic rocks, an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of the Readme text-file and expanded Description of Map Units (DMU), and (3) this metadata file. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was compiled from geologic maps of eight 1:48,000 15' quadrangle blocks, each of which was made by mosaicing and reducing the four constituent 7.5' quadrangles. These 15' quadrangle blocks were mapped chiefly at 1:24,000 scale, but the detail of the mapping was governed by the intention that it was to be compiled at 1:48,000 scale. The compilation at 1:100,000 scale entailed necessary simplification in some areas and combining of some geologic units. Overall, however, despite a greater than two times reduction in scale, most geologic detail found on the 1:48,000 maps is retained on the 1:100,000 map. Geologic contacts across boundaries of the eight constituent quadrangles required minor adjustments, but none significant at the final 1:100,000 scale. The geologic map was compiled on a base-stable cronoflex copy of the Chewelah 30' X 60' topographic base and then scribed. The scribe guide was used to make a 0.007 mil-thick blackline clear-film, which was scanned at 1200 DPI by Optronics Specialty Company, Northridge, California. This image was converted to vector and polygon GIS layers and minimally attributed by Optronics Specialty Company. Minor hand-digitized additions were made at the USGS. Lines, points, and polygons were subsequently edited at the USGS by using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:100,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  1. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland. This database and accompanying plot files depict the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  2. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  3. Mapping variation in radon potential both between and within geological units.

    PubMed

    Miles, J C H; Appleton, J D

    2005-09-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m(-3)) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430,000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock--superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface.

  4. Geologic map of the Devore 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jonathan C.

    2001-01-01

    This Open-File Report contains a digital geologic map database of the Devore 7.5' quadrangle, San Bernardino County, California, that includes: 1. ARC/INFO (Environmental Systems Research Institute) version 7.2.1 coverages of the various components of the geologic map 2. A PostScript (.ps) file to plot the geologic map on a topographic base, containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map 3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing metadata details found in devre_met.txt b. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Adobe Acrobat page-size settings control map scale.) The Correlation of Map Units and Description of Map Units are in the editorial format of USGS Miscellaneous Investigations Series maps (I-maps) but have not been edited to comply with I-map standards. Within the geologic-map data package, map units are identified by such standard geologic-map criteria as formation name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Devore 7.5’ topographic quadrangle in conjunction with the geologic map.

  5. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  6. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  7. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  8. Generalized geologic map of bedrock lithologies and surficial deposits in the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle

    2005-01-01

    The geology of the Great Smoky Mountain National Park (GSMNP) region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation with the National Park Service (NPS). This work has been compiled as a 1:100,000-scale map derived from mapping done at 1:24,000 and 1:62,500 scale. The geologic data are intended to support cooperative investigations with NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory (http://www.discoverlifeinamerica.org/). At the request of NPS, we mapped areas previously not visited, revised the geology where stratigraphic and structural problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  9. Landslide databases review in the Geological Surveys of Europe

    NASA Astrophysics Data System (ADS)

    Herrera, Gerardo

    2017-04-01

    Landslides are one of the most widespread geohazards in Europe, producing significant social and economic damages. Rapid population growth in urban areas throughout many countries in Europe and extreme climatic scenarios can considerably increase landslide risk in the near future. However, many European countries do not include landslide risk into their legislation. Countries lack official methodological assessment guidelines and knowledge about landslide impacts. Although regional and national landslide databases exist in most countries, they are often not integrated because they are owed by different institutions. Hence, a European Landslides Directive, that provides a common legal framework for dealing with landslides, is necessary. With this long-term goal in mind, we present a review of the landslide databases from the Geological Surveys of Europe focusing on their interoperability. The same landslide classification was used for the 849,543 landslide records from the Geological Surveys, from which 36% are slides, 10 % falls, 20% flows, 11% complex slides and 24% remain either unclassified or correspond to another typology. A landslide density map was produced from the available records of the Geological Surveys of 17 countries showing the variable distribution of landslides. There are 0.2 million km2 of landslide prone areas. The comparison of this map with the European landslide susceptibility map ELSUS v1 was successful for 73% of the predictions, and permitted identification of 25% of susceptible areas where landslide records are not available from the Geological Surveys. Taking these results into account the completeness of these landslide databases was evaluated, revealing different landslide hazard management approaches between surveys and countries.

  10. Geologic map of the Kechumstuk fault zone in the Mount Veta area, Fortymile mining district, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.

    2014-01-01

    This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.

  11. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of the database will be shown in the online map service (e.g. processed results of displacement measurements), while more detailed data will not (e.g. raw data of displacement measurements). Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site, a municipality, a county or the entire country. Selected data will also be downloadable free of charge. The present database on unstable rock slopes in Norway will further evolve in the coming years as the systematic mapping conducted by the Geological Survey of Norway progresses and as available techniques and tools evolve.

  12. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung

    2009-04-01

    For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.

  13. Preliminary geologic map of the Perris 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Alvarez, Rachel M.

    2003-01-01

    Open-File Report 03-270 contains a digital geologic map database of the Perris 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. A Readme file b. The same graphic as described in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.

  14. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.

  15. Surficial and bedrock geologic map database of the Kelso 7.5 Minute quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Bedford, David R.

    2003-01-01

    This geologic map database describes geologic materials for the Kelso 7.5 Minute Quadrangle, San Bernardino County, California. The area lies in eastern Mojave Desert of California, within the Mojave National Preserve (a unit of the National Parks system). Geologic deposits in the area consist of Proterozoic metamorphic rocks, Cambrian-Neoproterozoic sedimentary rocks, Mesozoic plutonic and hypabyssal rocks, Tertiary basin fill, and Quaternary surficial deposits. Bedrock deposits are described by composition, texture, and stratigraphic relationships. Quaternary surficial deposits are classified into soil-geomorphic surfaces based on soil characteristics, inset relationships, and geomorphic expression. The surficial geology presented in this report is especially useful to understand, and extrapolate, physical properties that influence surface conditions, and surface- and soil-water dynamics. Physical characteristics such as pavement development, soil horizonation, and hydraulic characteristics have shown to be some of the primary drivers of ecologic dynamics, including recovery of those ecosystems to anthropogenic disturbance, in the eastern Mojave Desert and other arid and semi-arid environments.

  16. Maps showing geology, oil and gas fields and geological provinces of Africa

    USGS Publications Warehouse

    Persits, Feliks M.; Ahlbrandt, T.S.; Tuttle, Michele L.W.; Charpentier, R.R.; Brownfield, M.E.; Takahashi, Kenneth

    1997-01-01

    The CD-ROM was compiled according to the methodology developed by the U.S. Geological Survey's World Energy Project . The goal of the project was to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. A worldwide series of geologic maps, published on CD-ROMs, was released by the U.S. Geological Survey's World Energy Project during 1997 - 2000. Specific details of the data sources and map compilation are given in the metadata files on this CD-ROM. These maps were compiled using Environmental Systems Research Institute Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map are shown (with permission) from ESRI's ArcWorld 1:3M digital coverage: they have no political significance and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain proprietary property of ESRI. (Copyright 1992 and 1996, Environmental Systems Research Institute Inc. All rights reserved.)

  17. An Interactive Map Viewer for the Urban Geology of Ottawa (Canada): an Example of Web Publishing

    NASA Astrophysics Data System (ADS)

    Giroux, D.; Bélanger, R.

    2003-04-01

    Developed by the Terrain Sciences Division (TSD) of the Geological Survey of Canada (GSC), an interactive map viewer, called GEOSERV (www.geoserv.org), is now available on the Internet. The purpose of this viewer is to provide engineers, planners, decision makers, and the general public with the geoscience information required for sound regional planning in densely populated areas, such as Canada's national capital, Ottawa (Ontario). Urban geology studies rely on diverse branches of earth sciences such as hydrology, engineering geology, geochemistry, stratigraphy, and geomorphology in order to build a three-dimensional model of the character of the land and to explain the geological processes involved in the dynamic equilibrium of the local environment. Over the past few years, TSD has compiled geoscientific information derived from various sources such as borehole logs, geological maps, hydrological reports and digital elevation models, compiled it in digital format and stored it in georeferenced databases in the form of point, linear, and polygonal data. This information constitutes the geoscience knowledge base which is then processed by Geographic Information Systems (GIS) to integrate the various sources of information and produce derived graphics, maps and models describing the geological infrastructure and response of the geological environment to human activities. Urban Geology of Canada's National Capital Area is a pilot project aiming at developing approaches, methodologies and standards that can be applied to other major urban centres of the country, while providing the geoscience knowledge required for sound regional planning and environmental protection of the National Capital Area. Based on an application developed by ESRI (Environmental System Research Institute), namely ArcIMS, the TSD has customized this web application to give free access to geoscience information of the Ottawa/Outaouais (Ontario/Québec) area including geological history, subsurface database, stratigraphy, bedrock, surficial and hydrogeology maps, and a few others. At present, each layer of geospatial information in TSD's interactive map viewer is connected to simple independent flat files (i.e. shapefiles), but it is also possible to connect GEOSERV to other types of (relational) databases (e.g. Microsoft SQL Server, Oracle). Frequent updating of shapefiles could be a cumbersome task, when new records are added, since we have to completely rebuild the updated shapefiles. However, new attributes can be added to existing shapefiles easily. At present, the updating process can not be done on-the-fly; we must stop and restart the updated MapService if one of its shapefiles is changed. The public can access seventeen MapServices that provide interactive tools that users can use to query, zoom, pan, select, and so on, or print the map displayed on their monitor. The map viewer is light-weight as it uses HTML and Javascript, so end users do not have to download and install any plug-ins. A free CD and a companion web site were also developed to give access to complementary information, like high resolution raster maps and reports. Some of the datasets are available free of charge, on-line.

  18. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into the interactive U.S. Geological Survey Mineral Resource Data web portal, available at http://mrdata.usgs.gov/.

  19. Geologic and topographic maps of the Kabul South 30' x 60' quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with three highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in Geospatial PDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://afghanistan.cr.usgs.gov/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.

  20. Geologic and Topographic Maps of the Kabul North 30' x 60' Quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with two highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in GeoPDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://gisdata.usgs.net/Website/Afghan/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.

  1. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  2. Digital geologic map data for the Ozark National Scenic Riverways and adjacent areas along the Current River and Jacks Fork, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Harrison, Richard W.; Weems, Robert E.

    2016-09-23

    The geology of the Ozark National Scenic Riverways (ONSR) in southern Missouri has been mapped at 1:24,000 scale. This endeavor was achieved through the combined efforts of U.S. Geological Survey and Missouri Geological Survey individual quadrangle mapping and additional fieldwork by the authors of this report. Geologic data covering the area of the ONSR and a 1-mile (1.6-kilometer) buffer zone surrounding the park, as well as geologic data from a few key adjoining areas, have been compiled into a single, seamless geographic information system database. The intent is to provide base geologic information for natural science research and land management in the park and surrounding areas. The data are served online at ScienceBase (https://www.sciencebase.gov/catalog/), where they are provided in Environmental Systems Research Institute (ESRI) file geodatabase format, and are accompanied by metadata files. These data can be accessed at: http://dx.doi.org/10.5066/F7CJ8BKB. Additional detailed geologic information about the ONSR and surrounding areas is available in the separate 1:24,000-scale quadrangle maps and in a 1:100,000-scale map and report on the regional geology.

  3. Digital geologic map of the Butler Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Matti, Jonathan C.; Brown, Howard J.; digital preparation by Cossette, P. M.

    2000-01-01

    Open-File Report 00-145, is a digital geologic map database of the Butler Peak 7.5' quadrangle that includes (1) ARC/INFO (Environmental Systems Research Institute) version 7.2.1 Patch 1 coverages, and associated tables, (2) a Portable Document Format (.pdf) file of the Description of Map Units, Correlation of Map Units chart, and an explanation of symbols used on the map, btlrpk_dcmu.pdf, (3) a Portable Document Format file of this Readme, btlrpk_rme.pdf (the Readme is also included as an ascii file in the data package), and (4) a PostScript plot file of the map, Correlation of Map Units, and Description of Map Units on a single sheet, btlrpk.ps. No paper map is included in the Open-File report, but the PostScript plot file (number 4 above) can be used to produce one. The PostScript plot file generates a map, peripheral text, and diagrams in the editorial format of USGS Geologic Investigation Series (I-series) maps.

  4. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.

    2011-01-01

    The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.

  5. Geologic map of Oldonyo Lengai (Oldoinyo Lengai) Volcano and surroundings, Arusha Region, United Republic of Tanzania

    USGS Publications Warehouse

    Sherrod, David R.; Magigita, Masota M.; Kwelwa, Shimba

    2013-01-01

    The geology of Oldonyo Lengai volcano and the southernmost Lake Natron basin, Tanzania, is presented on this geologic map at scale 1:50,000. The map sheet can be downloaded in pdf format for online viewing or ready to print (48 inches by 36 inches). A 65-page explanatory pamphlet describes the geologic history of the area. Its goal is to place the new findings into the framework of previous investigations while highlighting gaps in knowledge. In this way questions are raised and challenges proposed to future workers. The southernmost Lake Natron basin is located along the East African rift zone in northern Tanzania. Exposed strata provide a history of volcanism, sedimentation, and faulting that spans 2 million years. It is here where Oldonyo Lengai, Tanzania’s most active volcano of the past several thousand years, built its edifice. Six new radiometric ages, by the 40Ar/39Ar method, and 48 new geochemical analyses from Oldonyo Lengai and surrounding volcanic features deepen our understanding of the area. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) may download an electronic database, suitable for most GIS software applications. The GIS database is in a Transverse Mercator projection, zone 36, New (1960) Arc datum. The database includes layers for hypsography (topography), hydrography, and infrastructure such as roads and trails.

  6. Map and database of Quaternary faults in Venezuela and its offshore regions

    USGS Publications Warehouse

    Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.

  7. Managing Geological Profiles in Databases for 3D Visualisation

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.

    2016-10-01

    Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.

  8. Map and data for Quaternary faults and folds in New Mexico

    USGS Publications Warehouse

    Machette, M.N.; Personius, S.F.; Kelson, K.I.; Haller, K.M.; Dart, R.L.

    1998-01-01

    The "World Map of Major Active Faults" Task Group is compiling a series of digital maps for the United States and other countries in the Western Hemisphere that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds; the companion database includes published information on these seismogenic features. The Western Hemisphere effort is sponsored by International Lithosphere Program (ILP) Task Group H-2, whereas the effort to compile a new map and database for the United States is funded by the Earthquake Reduction Program (ERP) through the U.S. Geological Survey. The maps and accompanying databases represent a key contribution to the new Global Seismic Hazards Assessment Program (ILP Task Group II-O) for the International Decade for Natural Disaster Reduction. This compilation, which describes evidence for surface faulting and folding in New Mexico, is the third of many similar State and regional compilations that are planned for the U.S. The compilation for West Texas is available as U.S. Geological Survey Open-File Report 96-002 (Collins and others, 1996 #993) and the compilation for Montana will be released as a Montana Bureau of Mines product (Haller and others, in press #1750).

  9. Colorado Late Cenozoic Fault and Fold Database and Internet Map Server: User-friendly technology for complex information

    USGS Publications Warehouse

    Morgan, K.S.; Pattyn, G.J.; Morgan, M.L.

    2005-01-01

    Internet mapping applications for geologic data allow simultaneous data delivery and collection, enabling quick data modification while efficiently supplying the end user with information. Utilizing Web-based technologies, the Colorado Geological Survey's Colorado Late Cenozoic Fault and Fold Database was transformed from a monothematic, nonspatial Microsoft Access database into a complex information set incorporating multiple data sources. The resulting user-friendly format supports easy analysis and browsing. The core of the application is the Microsoft Access database, which contains information compiled from available literature about faults and folds that are known or suspected to have moved during the late Cenozoic. The database contains nonspatial fields such as structure type, age, and rate of movement. Geographic locations of the fault and fold traces were compiled from previous studies at 1:250,000 scale to form a spatial database containing information such as length and strike. Integration of the two databases allowed both spatial and nonspatial information to be presented on the Internet as a single dataset (http://geosurvey.state.co.us/pubs/ceno/). The user-friendly interface enables users to view and query the data in an integrated manner, thus providing multiple ways to locate desired information. Retaining the digital data format also allows continuous data updating and quick delivery of newly acquired information. This dataset is a valuable resource to anyone interested in earthquake hazards and the activity of faults and folds in Colorado. Additional geologic hazard layers and imagery may aid in decision support and hazard evaluation. The up-to-date and customizable maps are invaluable tools for researchers or the public.

  10. The Topography of Names and Places.

    ERIC Educational Resources Information Center

    Morehead, Joe

    1999-01-01

    Discusses geographic naming with Geographic Information Systems (GIS) technology. Highlights include the Geographic Names Information System (GNIS) online database; United States Geological Survey (USGS) national mapping information; the USGS-Microsoft connection; and panoramic maps and the small LizardTech company. (AEF)

  11. Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane

    2003-01-01

    Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  12. Geologic characterization of shelf areas using usSEABED for GIS mapping, modeling processes and assessing marine sand and gravel resources

    USGS Publications Warehouse

    Williams, S.J.; Bliss, J.D.; Arsenault, M.A.; Jenkins, C.J.; Goff, J.A.

    2007-01-01

    Geologic maps depicting offshore sedimentary features serve many scientific and applied purposes. Such maps have been lacking, but recent computer technology and software offer promise in the capture and display of diverse marine data. Continental margins contain landforms which provide a variety of important functions and contain important sedimentary records. Some shelf areas also contain deposits regarded as potential aggregate resources. Because proper management of coastal and offshore areas is increasingly important, knowledge of the framework geology and marine processes is critical. Especially valuable are comprehensive and integrated digital databases based on high-quality information from original sources. Products of interest are GIS maps containing thematic information, such as sediment character and texture. These products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The U.S. Geological Survey is leading a national program to gather a variety of extant marine geologic data into the usSEABED database system. This provides centralized, integrated marine geologic data collected over the past 50 years. To date, over 340,000 sediment data points from the U.S. reside in usSEABED, which combines an array of physical data and analytical and descriptive information about the sea floor and are available to the marine community through three USGS data reports for the Atlantic, Gulf of Mexico, and Pacific published in 2006, and the project web sites: (http://woodshole.er.usg s.gov/project-pages/aggregates/ and http://walrus.wr.usgs.gov/usseabed/)

  13. Macrostrat: A Platform for Geological Data Integration and Deep-Time Earth Crust Research

    NASA Astrophysics Data System (ADS)

    Peters, Shanan E.; Husson, Jon M.; Czaplewski, John

    2018-04-01

    Characterizing the lithology, age, and physical-chemical properties of rocks and sediments in the Earth's upper crust is necessary to fully assess energy, water, and mineral resources and to address many fundamental questions. Although a large number of geological maps, regional geological syntheses, and sample-based measurements have been produced, there is no openly available database that integrates rock record-derived data, while also facilitating large-scale, quantitative characterization of the volume, age, and material properties of the upper crust. Here we describe Macrostrat, a relational geospatial database and supporting cyberinfrastructure that is designed to enable quantitative spatial and geochronological analyses of the entire assemblage of surface and subsurface sedimentary, igneous, and metamorphic rocks. Macrostrat contains general, comprehensive summaries of the age and properties of 33,903 lithologically and chronologically defined geological units distributed across 1,474 regions in North and South America, the Caribbean, New Zealand, and the deep sea. Sample-derived data, including fossil occurrences in the Paleobiology Database, more than 180,000 geochemical and outcrop-derived measurements, and more than 2.3 million bedrock geologic map units from over 200 map sources, are linked to specific Macrostrat units and/or lithologies. Macrostrat has generated numerous quantitative results and its infrastructure is used as a data platform in several independently developed mobile applications. It is necessary to expand geographic coverage and to refine age models and material properties to arrive at a more precise characterization of the upper crust globally and test fundamental hypotheses about the long-term evolution of Earth systems.

  14. Digital Geologic Map of the Wallace 1:100,000 Quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Burmester, Russell F.; McFaddan, Mark D.; Derkey, Pamela D.; Oblad, Jon R.

    1999-01-01

    The geology of the Wallace 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 primarily from published materials including 1983 data from Foster, Harrison's unpublished mapping done from 1975 to 1985, Hietenan's 1963, 1967, 1968, and 1984 mapping, Hobbs and others 1965 mapping, and Vance's 1981 mapping, supplemented by eight weeks of field mapping by Reed S. Lewis, Russell F. Burmester, and Mark D. McFaddan in 1997 and 1998. This geologic map information was inked onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. The primary sources of map data are shown in figure 2 and additional sources are shown in figure 3. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Mapping and compilation was completed by the Idaho Geological Survey under contract with the U.S. Geological Survey (USGS) office in Spokane, Washington. The authors would like to acknowledge the help of the following field assistants: Josh Goodman, Yvonne Issak, Jeremy Johnson and Kevin Myer. Don Winston provided help with our ongoing study of Belt stratigraphy, and Tom Frost assisted with logistical problems and sample collection. Manuscript reviews by Steve Box, Tom Frost, and Brian White are greatly appreciated. We wish to thank Karen S. Bolm of the USGS for reviewing the digital files.

  15. The U.S. Geological Survey’s nonindigenous aquatic species database: over thirty years of tracking introduced aquatic species in the United States (and counting)

    USGS Publications Warehouse

    Fuller, Pamela L.; Neilson, Matthew E.

    2015-01-01

    The U.S. Geological Survey’s Nonindigenous Aquatic Species (NAS) Database has tracked introductions of freshwater aquatic organisms in the United States for the past four decades. A website provides access to occurrence reports, distribution maps, and fact sheets for more than 1,000 species. The site also includes an on-line reporting system and an alert system for new occurrences. We provide an historical overview of the database, a description of its current capabilities and functionality, and a basic characterization of the data contained within the database.

  16. Geologic map and map database of the Spreckels 7.5-minute Quadrangle, Monterey County, California

    USGS Publications Warehouse

    Clark, Joseph C.; Brabb, Earl E.; Rosenberg, Lewis I.; Goss, Heather V.; Watkins, Sarah E.

    2001-01-01

    Introduction The Spreckels quadrangle lies at the north end of the Sierra de Salinas and extends from the Salinas Valley on the northeast across Los Laurelles Ridge south to Carmel Valley, an intermontane valley that separates the Santa Lucia Range from the Sierra de Salinas (fig. 1). The Toro Regional Park occupies the east-central part of the quadrangle, whereas the former Fort Ord Military Reservation covers the northwestern part of the area and is the probable locus of future development. Subdivisions largely occupy the older floodplain of Toro Creek and the adjacent foothills, with less dense development along the narrower canyons of Corral de Tierra and San Benancio Gulch to the south. The foothills southwest of the Salinas River are the site of active residential development. Geologically, the study area has a crystalline basement of Upper Cretaceous granitic rocks of the Salinian block and older metasedimentary rocks of the schist of the Sierra de Salinas of probable Cretaceous age. Resting nonconformably upon these basement rocks is a sedimentary section that ranges in age from middle Miocene to Holocene and has a composite thickness of as much as 1,200 m. One of the purposes of the present study was to investigate the apparent lateral variation of the middle to upper Miocene sections from the typical porcelaneous and diatomaceous Monterey Formation of the Monterey and Seaside quadrangles to the west (Clark and others, 1997) to a thick marine sandstone section in the eastern part of the Spreckels quadrangle. Liquefaction, which seriously affected the Spreckels area in the 1906 San Francisco earthquake (Lawson, 1908), and landsliding are the two major geological hazards of the area. The landslides consist mainly of older large slides in the southern and younger debris flows in the northern part of the quadrangle. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (skmf.txt, skmf.pdf, or skmf.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.

  17. Modernization and multiscale databases at the U.S. geological survey

    USGS Publications Warehouse

    Morrison, J.L.

    1992-01-01

    The U.S. Geological Survey (USGS) has begun a digital cartographic modernization program. Keys to that program are the creation of a multiscale database, a feature-based file structure that is derived from a spatial data model, and a series of "templates" or rules that specify the relationships between instances of entities in reality and features in the database. The database will initially hold data collected from the USGS standard map products at scales of 1:24,000, 1:100,000, and 1:2,000,000. The spatial data model is called the digital line graph-enhanced model, and the comprehensive rule set consists of collection rules, product generation rules, and conflict resolution rules. This modernization program will affect the USGS mapmaking process because both digital and graphic products will be created from the database. In addition, non-USGS map users will have more flexibility in uses of the databases. These remarks are those of the session discussant made in response to the six papers and the keynote address given in the session. ?? 1992.

  18. Digital Data for the reconnaissance geologic map for the Kuskokwim Bay Region of Southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.; Shew, Nora B.; Labay, Keith A.

    2008-01-01

    INTRODUCTION The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  19. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  20. Geologic map of the eastern half of the Vail 30' x 60' quadrangle, Eagle, Summit, and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Premo, Wayne R.; Bryant, Bruce

    2011-01-01

    The map is intended as a database for a variety of land-use and scientific purposes, including (1) assessment of geologically stable building sites, (2) planning for road and highway construction, (3) assessment of groundwater resources, (4) assessment of mineral resources, (5) determining geologic-hazard potential (flooding, landslide, rockfall, and seismic risk), (6) evaluating the structure of the northern Rio Grande rift in the Blue River valley, (7) improvement in understanding of the sedimentary section, which spans the period from the Cambrian to the Holocene, and (8) new insights into the geologic history of the Proterozoic basement rocks, including a number of new radiometric dates.

  1. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    NASA Astrophysics Data System (ADS)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.

  2. Preliminary maps of Quaternary deposits and liquefaction susceptibility, nine-county San Francisco Bay region, California: a digital database

    USGS Publications Warehouse

    Knudsen, Keith L.; Sowers, Janet M.; Witter, Robert C.; Wentworth, Carl M.; Helley, Edward J.; Nicholson, Robert S.; Wright, Heather M.; Brown, Katherine H.

    2000-01-01

    This report presents a preliminary map and database of Quaternary deposits and liquefaction susceptibility for the nine-county San Francisco Bay region, together with a digital compendium of ground effects associated with past earthquakes in the region. The report consists of (1) a spatial database of fivedata layers (Quaternary deposits, quadrangle index, and three ground effects layers) and two text layers (a labels and leaders layer for Quaternary deposits and for ground effects), (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map, liquefaction interpretation, and the ground effects compendium, and (4) the databse description pamphlet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a modern and regionally consistent treatment of Quaternary surficial deposits that builds on the pioneering mapping of Helley and Lajoie (Helley and others, 1979) and such intervening work as Atwater (1982), Helley and others (1994), and Helley and Graymer (1997a and b). Like these earlier studies, the current mapping uses geomorphic expression, pedogenic soils, and inferred depositional environments to define and distinguish the map units. In contrast to the twelve map units of Helley and Lajoie, however, this new map uses a complex stratigraphy of some forty units, which permits a more realistic portrayal of the Quaternary depositional system. The two colored maps provide a regional summary of the new mapping at a scale of 1:275,000, a scale that is sufficient to show the general distribution and relationships of the map units but cannot distinguish the more detailed elements that are present in the database. The report is the product of years of cooperative work by the USGS National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program, William Lettis and & Associates, Inc. (WLA) and, more recently, by the California Division of Mines and Geology as well. An earlier version was submitted to the Geological Survey by WLA as a final report for a NEHRP grant (Knudsen and others, 2000). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grants #14-08-0001-G2129, 1434-94-G-2499, 1434-HQ-97-GR-03121, and 99-HQ-GR-0095) and with other limited support from the County of Napa, and recently also by the California Division of Mines and Geology. The current map consists of this new mapping and revisions of previous USGS mapping.

  3. Preliminary Geologic Map of the North-Central Part of the Alamosa 30' x 60' Quadrangle, Alamosa, Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Machette, Michael N.; Thompson, Ren A.; Brandt, Theodore R.

    2008-01-01

    This geologic map presents new polygon (geologic map unit contacts) and line (terrace and lacustrine spit/barrier bar) vector data for a map comprised of four 7.5' quadrangles in the north-central part of the Alamosa, Colorado, 30' x 60' quadrangle. The quadrangles include Baldy, Blanca, Blanca SE, and Lasauses. The map database, compiled at 1:50,000 scale from new 1:24,000-scale mapping, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The mapped area is located primarily in Costilla County, but contains portions of Alamosa and Conejos Counties, and includes the town of Blanca in its northeastern part. The map area is mainly underlain by surficial geologic materials (fluvial and lacustrine deposits, and eolian sand), but Tertiary volcanic and volcaniclastic rocks crop out in the San Luis Hills, which are in the central and southern parts of the mapped area. The surficial geology of this area has never been mapped at any scale greater than 1:250,000 (broad reconnaissance), so this new map provides important data for ground-water assessments, engineering geology, and the Quaternary geologic history of the San Luis Basin. Newly discovered shoreline deposits are of particular interest (sands and gravels) that are associated with the high-water stand of Lake Alamosa, a Pliocene to middle Pleistocene lake that occupied the San Luis basin prior to its overflow and cutting of a river gorge through the San Luis Hills. After the lake drained, the Rio Grande system included Colorado drainages for the first time since the Miocene (>5.3 Ma). In addition, Servilleta Basalt, which forms the Basaltic Hills on the east margin of the map area, is dated at 3.79+or-0.17 Ma, consistent with its general age range of 3.67-4.84 Ma. This map provides new geologic information for better understanding ground-water flow paths in and adjacent to the Rio Grande system. The map abuts U.S. Geological Survey Open File Report 2005-1392 (a map of the northwestern part of the Alamosa 30' x 60' quadrangle map) to the west and U.S. Geological Survey Scientific Investigations Map 2965 (Fort Garland 7.5' quadrangle) to the east.

  4. Ensemble of ground subsidence hazard maps using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  5. Digital Data for the reconnaissance geologic map for Prince William Sound and the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.

    2007-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  6. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Viola, Giulio; Bingen, Bernard

    2016-04-01

    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight geologists. For the Orkanger project, some 2100 field observation points were collected by three geologists. Several advantages of the applied digital approach became clear during these projects: (1) The systematic collection of geological field data in a common format allows easy access and exchange of data among different geologists, (2) Easier access to background information such as geophysics and DEMS in the field, (3) Faster workflow from field data collection to final map product. Obvious disadvantages include: (1) Heavy(ish) and expensive hardware, (2) Battery life and other technical issues in the field, (3) Need for a central field observation point storage inhouse (large amounts of data!), and (4) Acceptance of- and training in a common workflow from all involved geologists.

  7. Where can cone penetrometer technology be applied? Development of a map of Europe regarding the soil penetrability.

    PubMed

    Fleischer, Matthias; van Ree, Derk; Leven, Carsten

    2014-01-01

    Over the past decades, significant efforts have been invested in the development of push-in technology for site characterization and monitoring for geotechnical and environmental purposes and have especially been undertaken in the Netherlands and Germany. These technologies provide the opportunity for faster, cheaper, and collection of more reliable subsurface data. However, to maximize the technology both from a development and implementation point of view, it is necessary to have an overview of the areas suitable for the application of this type of technology. Such an overview is missing and cannot simply be read from existing maps and material. This paper describes the development of a map showing the feasibility or applicability of Direct Push/Cone Penetrometer Technology (DPT/CPT) in Europe which depends on the subsurface and its extremely varying properties throughout Europe. Subsurface penetrability is dependent on a range of factors that have not been mapped directly or can easily be inferred from existing databases, especially the maximum depth reachable would be of interest. Among others, it mainly depends on the geology, the soil mechanical properties, the type of equipment used as well as soil-forming processes. This study starts by looking at different geological databases available at the European scale. Next, a scheme has been developed linking geological properties mapped to geotechnical properties to determine basic penetrability categories. From this, a map of soil penetrability is developed and presented. Validating the output by performing field tests was beyond the scope of this study, but for the country of the Netherlands, this map has been compared against a database containing actual cone penetrometer depth data to look for possible contradictory results that would negate the approach. The map for the largest part of Europe clearly shows that there is a much wider potential for the application of Direct Push Technology than is currently seen. The study also shows that there is a lack of large-scale databases that contain depth-resolved data as well as soil mechanical and physical properties that can be used for engineering purposes in relation to the subsurface.

  8. Digital data for the geology of the Southern Brooks Range, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Harris, Anita G.; Moore, Thomas E.; Bleick, Heather A.; Siwiec, Benjamin; Labay, Keith A.; Wilson, Frederic H.; Shew, Nora B.

    2008-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  9. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    USGS Publications Warehouse

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  10. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context of a sample and complement more closed spaced studies. New results will be added to the database continuously with the aim of covering all major geologic units of France within the next year.

  11. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  12. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  13. Publications of the Western Earth Surface Processes Team 2000

    USGS Publications Warehouse

    Powell, Charles L.; Stone, Paul

    2001-01-01

    The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.

  14. Structure and data consistency of a GIS database for geological risk analysis in S. Miguel Island (Azores)

    NASA Astrophysics Data System (ADS)

    Queiroz, G.; Goulart, C.; Gaspar, J. L.; Gomes, A.; Resendes, J. P.; Marques, R.; Gonçalves, P.; Silveira, D.; Valadão, P.

    2003-04-01

    The Geographic Information Systems (GIS) are becoming a major tool in the domain of geological hazard assessment and risk mitigation. When available, hazard and vulnerability data can easily be represented in a GIS and a great diversity of risk maps can be produced following the implementation of specific predicting models. A major difficulty for those that deal with GIS is to obtain high quality, well geo-referenced and validated data. This situation is particularly evident in the scope of risk analysis due to the diversity of data that need to be considered. In order to develop a coherent database for the geological risk analysis of the Azores archipelago it was decided to use the digital maps edited in 2001 by the Instituto Geográfico do Exército de Portugal (scale 1:25000), comprising altimetry, urban areas, roads and streams network. For the particular case of S. Miguel Island the information contained in these layers was revised and rectifications were made whenever needed. Moreover basic additional layers were added to the system, including counties and parishes administrative limits, agriculture and forested areas. For detailed studies all the edifices (e.g. houses, public buildings, monuments) are being individualized and characterized taking in account several parameters that can become crucial to assess their direct vulnerability to geological hazards (e.g. type of construction, number of floors, roof stability). Geological data obtained (1) through the interpretation of historical documents, (2) during recent fieldwork campaigns (e.g. mapping of volcanic centres and associated deposits, faults, dikes, soil degassing anomalies, landslides) and (3) by the existent monitoring networks (e.g. seismic, geodetic, fluid geochemistry) are also being digitised. The acquisition, storage and maintenance of all this information following the same criteria of quality are critical to guarantee the accuracy and consistency of the GIS database through time. In this work we notice the GIS-based methodologies aimed to assure the development of a GIS database directed to the geological risk analysis in S. Miguel Island. In a long-term programme the same strategy is being extended to the other Azorean islands.

  15. The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  16. The digital geologic map of Colorado in ARC/INFO format, Part B. Common files

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  17. Digital Mapping Techniques '11–12 workshop proceedings

    USGS Publications Warehouse

    Soller, David R.

    2014-01-01

    At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  18. Lithological mapping of Kanjamalai hill using hyperspectral remote sensing tools in Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Arulbalaji, Palanisamy; Balasubramanian, Gurugnanam

    2017-07-01

    This study uses advanced spaceborne thermal emission and reflection radiometer (ASTER) hyperspectral remote sensing techniques to discriminate rock types composing Kanjamalai hill located in the Salem district of Tamil Nadu, India. Kanjamalai hill is of particular interest because it contains economically viable iron ore deposits. ASTER hyperspectral data were subjected to principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF) to improve identification of lithologies remotely and to compare these digital data results with published geologic maps. Hyperspectral remote sensing analysis indicates that PCA (R∶G∶B=2∶1∶3), MNF (R∶G∶B=3∶2∶1), and ICA (R∶G∶B=1∶3∶2) provide the best band combination for effective discrimination of lithological rock types composing Kanjamalai hill. The remote sensing-derived lithological map compares favorably with a published geological map from Geological Survey of India and has been verified with ground truth field investigations. Therefore, ASTER data-based lithological mapping provides fast, cost-effective, and accurate geologic data useful for lithological discrimination and identification of ore deposits.

  19. A geologic and mineral exploration spatial database for the Stillwater Complex, Montana

    USGS Publications Warehouse

    Zientek, Michael L.; Parks, Heather L.

    2014-01-01

    This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.

  20. Digital geologic map and database of the Chesapeake and Ohio Canal National Historical Park and Potomac River corridor, District of Columbia, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, C. Scott; Brezinski, David K.; Orndorff, Randall C.; Chirico, Peter G.; Lagueux, Kerry M.

    2001-01-01

    The Chesapeake and Ohio (CO) Canal National Historical Park is unique in that it is the only land within the National Park system that crosses 5 physiographic provinces along a major river. From Georgetown, District of Columbia (D.C.) to Cumberland, Maryland (Md.), the CO Canal provides an opportunity to examine the geologic history of the central Appalachian region and how the canal contributed to the development of this area. The geologic map data covers the 184.5-mile long park in a 2-mile wide corridor centered on the Potomac River

  1. Database for geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington

    USGS Publications Warehouse

    Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.

    2017-10-31

    This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) (https://pubs.er.usgs.gov/publication/i1950). The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.

  2. Geological and technological assessment of artificial reef sites, Louisiana outer continental shelf

    USGS Publications Warehouse

    Pope, D.L.; Moslow, T.F.; Wagner, J.B.

    1993-01-01

    This paper describes the general procedures used to select sites for obsolete oil and gas platforms as artificial reefs on the Louisiana outer continental shelf (OCS). The methods employed incorporate six basic steps designed to resolve multiple-use conflicts that might otherwise arise with daily industry and commercial fishery operations, and to identify and assess both geological and technological constraints that could affect placement of the structures. These steps include: (1) exclusion mapping; (2) establishment of artificial reef planning areas; (3) database compilation; (4) assessment and interpretation of database; (5) mapping of geological and man-made features within each proposed reef site; and (6) site selection. Nautical charts, bathymetric maps, and offshore oil and gas maps were used for exclusion mapping, and to select nine regional planning areas. Pipeline maps were acquired from federal agencies and private industry to determine their general locations within each planning area, and to establish exclusion fairways along each pipeline route. Approximately 1600 line kilometers of high-resolution geophysical data collected by federal agencies and private industry was acquired for the nine planning areas. These data were interpreted to determine the nature and extent of near-surface geologic features that could affect placement of the structures. Seismic reflection patterns were also characterized to evaluate near-bottom sedimentation processes in the vicinity of each reef site. Geotechnical borings were used to determine the lithological and physical properties of the sediment, and for correlation with the geophysical data. Since 1987, five sites containing 10 obsolete production platforms have been selected on the Louisiana OCS using these procedures. Industry participants have realized a total savings of approximately US $1 500 000 in salvaging costs by converting these structures into artificial reefs. ?? 1993.

  3. Spatial Databases for CalVO Volcanoes: Current Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.

    2013-12-01

    The U.S. Geological Survey (USGS) California Volcano Observatory (CalVO) aims to advance scientific understanding of volcanic processes and to lessen harmful impacts of volcanic activity in California and Nevada. Within CalVO's area of responsibility, ten volcanoes or volcanic centers have been identified by a national volcanic threat assessment in support of developing the U.S. National Volcano Early Warning System (NVEWS) as posing moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. To better understand the extent of potential hazards at these and other volcanoes and volcanic centers, the USGS Volcano Science Center (VSC) is continually compiling spatial databases of volcano information, including: geologic mapping, hazards assessment maps, locations of geochemical and geochronological samples, and the distribution of volcanic vents. This digital mapping effort has been ongoing for over 15 years and early databases are being converted to match recent datasets compiled with new data models designed for use in: 1) generating hazard zones, 2) evaluating risk to population and infrastructure, 3) numerical hazard modeling, and 4) display and query on the CalVO as well as other VSC and USGS websites. In these capacities, spatial databases of CalVO volcanoes and their derivative map products provide an integrated and readily accessible framework of VSC hazards science to colleagues, emergency managers, and the general public.

  4. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  5. A spatial database of bedding attitudes to accompany Geologic Map of Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  6. National Assessment of Oil and Gas Project: Areas of Historical Oil and Gas Exploration and Production in the United States

    USGS Publications Warehouse

    Biewick, Laura

    2008-01-01

    This report contains maps and associated spatial data showing historical oil and gas exploration and production in the United States. Because of the proprietary nature of many oil and gas well databases, the United States was divided into cells one-quarter square mile and the production status of all wells in a given cell was aggregated. Base-map reference data are included, using the U.S. Geological Survey (USGS) National Map, the USGS and American Geological Institute (AGI) Global GIS, and a World Shaded Relief map service from the ESRI Geography Network. A hardcopy map was created to synthesize recorded exploration data from 1859, when the first oil well was drilled in the U.S., to 2005. In addition to the hardcopy map product, the data have been refined and made more accessible through the use of Geographic Information System (GIS) tools. The cell data are included in a GIS database constructed for spatial analysis via the USGS Internet Map Service or by importing the data into GIS software such as ArcGIS. The USGS internet map service provides a number of useful and sophisticated geoprocessing and cartographic functions via an internet browser. Also included is a video clip of U.S. oil and gas exploration and production through time.

  7. Geologic Map of the Frederick 30' x 60' Quadrangle, Maryland, Virginia, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.; Drake, Avery Ala; Burton, William C.; Orndorff, Randall C.; Froelich, Albert J.; Reddy, James E.; Denenny, Danielle; Daniels, David L.

    2007-01-01

    The Frederick 30? ? 60? quadrangle lies within the Potomac River watershed of the Chesapeake Bay drainage basin. The map area covers parts of Montgomery, Howard, Carroll, Frederick, and Washington Counties in Maryland; Loudoun, Clarke, and Fairfax Counties in Virginia; and Jefferson and Berkeley Counties in West Virginia. Many geologic features (such as faults and folds) are named for geographic features that may or may not be shown on the 1:100,000-scale base map. The geology of the Frederick 30? ? 60? quadrangle, Maryland, Virginia, and West Virginia, was first mapped on the 32 1:24,000-scale 7.5-minute quadrangle base maps between 1989 and 1994. The geologic data were compiled manually at 1:100,000 scale in 1997 and were digitized between 1998 and 1999. The geologic map and database may be used to support activities such as land-use planning, soil mapping, groundwater availability and quality studies, identifying aggregate resources, and conducting engineering and environmental studies. The map area covers distinct geologic provinces and sections of the central Appalachian region that are defined by unique bedrock and resulting landforms. From west to east, the provinces include the Great Valley section of the Valley and Ridge province, the Blue Ridge province, and the Piedmont province; in the extreme southeastern corner, a small part of the Coastal Plain province is present. The Piedmont province is divided into several sections; from west to east, hey are the Frederick Valley synclinorium, the Culpeper and Gettysburg basins, the Sugarloaf Mountain anticlinorium, the Westminster terrane, and the Potomac terrane. The geology of the Frederick quadrangle is discussed by geologic province and sections; the geologic units within each province are discussed from oldest to youngest. Where applicable, the discussion includes information on tectonic origins. For more information concerning the report, please contact the author.

  8. Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.

    2013-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.

  9. Preliminary Geologic Map of the Cook Inlet Region, Alaska-Including Parts of the Talkeetna, Talkeetna Mountains, Tyonek, Anchorage, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.

    2009-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  10. Publications of the Western Earth Surfaces Processes Team 2005

    USGS Publications Warehouse

    Powell, Charles; Stone, Paul

    2007-01-01

    Introduction The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2005 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2005 as well as additional 2002, 2003, and 2004 publications that were not included in the previous lists (USGS Open-File Reports 03-363, 2004- 1267, 2005-1362). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web at http://www.usgs.gov/pubprod/, or by calling 1-888-ASK-USGS. The U.S. Geological Survey's web server for geologic information in the western United States is located at http://geology.wr.usgs.gov/. More information is available about the WESPT is available on-line at http://geology.wr.usgs.gov/wgmt.

  11. Long term volcanic hazard analysis in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit having enough quality information to map volcanic hazards and to run more reliable models of volcanic hazards, but in addition it aims to become a sharing system, improving communication between researchers, reducing redundant work and to be the reference for geological research in the Canary Islands.

  12. Publications - DDS 3 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Division of Geological & Geophysical Surveys Digital Data Series 3, http://doi.org/10.14509/qff. http Combellick, R.A., 2012, Quaternary faults and folds in Alaska: A digital database, 31 p., 1 sheet, 1 map of Alaska (Plafker and others, 1994), 1 p. Digital Geospatial Data Digital Geospatial Data QFF

  13. Database and online map service on unstable rock slopes in Norway - From data perpetuation to public information

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bobo; Bunkholt, Halvor; Nicolaisen, Magnus; Jarna, Alexandra; Iversen, Sverre; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2015-11-01

    The unstable rock slope database is developed and maintained by the Geological Survey of Norway as part of the systematic mapping of unstable rock slopes in Norway. This mapping aims to detect catastrophic rock slope failures before they occur. More than 250 unstable slopes with post-glacial deformation are detected up to now. The main aims of the unstable rock slope database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, as well as hazard and risk classification. Feature classes and tables linked to the main feature class include different scenarios of an unstable rock slope, field observation points, sampling points for dating, displacement measurement stations, lineaments, unstable areas, run-out areas, areas affected by secondary effects, along with tables for hazard and risk classification and URL links to further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through an online map service. Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site. Areas of possible rock avalanche run-out and their secondary effects displayed in the online map service, along with hazard and risk assessments, will become important tools for land-use planning. The present database will further evolve in the coming years as the systematic mapping progresses and as available techniques and tools evolve.

  14. Publications of Western Earth Surface Processes Team 2001

    USGS Publications Warehouse

    Powell, II; Graymer, R.W.

    2002-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.

  15. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.

    2007-01-01

    Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.

  16. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.

  17. Southern California Earthquake Center Geologic Vertical Motion Database

    NASA Astrophysics Data System (ADS)

    Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.

    2008-07-01

    The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.

  18. Karst mapping in the United States: Past, present and future

    USGS Publications Warehouse

    Weary, David J.; Doctor, Daniel H.

    2015-01-01

    The earliest known comprehensive karst map of the entire USA was published by Stringfield and LeGrand (1969), based on compilations of William E. Davies of the U.S. Geological Survey (USGS). Various versions of essentially the same map have been published since. The USGS recently published new digital maps and databases depicting the extent of known karst, potential karst, and pseudokarst areas of the United States of America including Puerto Rico and the U.S. Virgin Islands (Weary and Doctor, 2014). These maps are based primarily on the extent of potentially karstic soluble rock types, and rocks with physical properties conducive to the formation of pseudokarst features. These data were compiled and refined from multiple sources at various spatial resolutions, mostly as digital data supplied by state geological surveys. The database includes polygons delineating areas with potential for karst and that are tagged with attributes intended to facilitate classification of karst regions. Approximately 18% of the surface of the fifty United States is underlain by significantly soluble bedrock. In the eastern United States the extent of outcrop of soluble rocks provides a good first-approximation of the distribution of karst and potential karst areas. In the arid western states, the extent of soluble rock outcrop tends to overestimate the extent of regions that might be considered as karst under current climatic conditions, but the new dataset encompasses those regions nonetheless. This database will be revised as needed, and the present map will be updated as new information is incorporated.

  19. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  20. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  1. World distribution of uranium deposits

    USGS Publications Warehouse

    Fairclough, M. C.; Irvine, J. A.; Katona, L. F.; Simmon, W. L.; Bruneton, P.; Mihalasky, Mark J.; Cuney, M.; Aranha, M.; Pylypenko, O.; Poliakovska, K.

    2018-01-01

    Deposit data derived from IAEA UDEPO (http://infcis.iaea.org/UDEPO/About.cshtml) database with assistance from P. Bruneton (France) and M. Mihalasky (U.S.A.). The map is an updated companion to "World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEA Tech-Doc-1629". Geology was derived from L.B. Chorlton, Generalized Geology of the World, Geological Survey of Canada, Open File 5529 , 2007. Map production by M.C. Fairclough (IAEA), J.A. Irvine (Austrailia), L.F. Katona (Australia) and W.L. Slimmon (Canada). World Distribution of Uranium Deposits, International Atomic Energy Agency, Vienna, Austria. Cartographic Assistance was supplied by the Geological Survey of South Australia, the Saskatchewan Geological Survey and United States Geological Survey to the IAEA. Coastlines, drainage, and country boundaries were obtained from ArcMap, 1:25 000 000 scale, and are copyrighted data containing the intellectual property of Environmental Systems Research Institute (ESRI). The use of particular designations of countries or territories does not imply any judgment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. Any revisions or additional geological information known to the user would be welcomed by the International Atomic Energy Agency and the Geological Survey of Canada.

  2. Publications of the Western Earth Surface Processes Team 2002

    USGS Publications Warehouse

    Powell, Charles; Graymer, R.W.

    2003-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http://geology.wr.usgs.gov. More information is available about the WESPT is available on-line at the team website.

  3. Chapter 4: The GIS Project for the Geologic Assessment of Undiscovered Oil and Gas in the Upper Cretaceous Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Cretaceous Navarro and Taylor Groups in the Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2003 assessment of undiscovered, technically recoverable oil and natural gas resources in the Western Gulf Province. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the general public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States - including physical locations of geologic and geographic data - and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site.

  4. Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia

    USGS Publications Warehouse

    Grosse, Guido; Robinson, Joel E.; Bryant, Robin; Taylor, Maxwell D.; Harper, William; DeMasi, Amy; Kyker-Snowman, Emily; Veremeeva, Alexandra; Schirrmeister, Lutz; Harden, Jennifer

    2013-01-01

    This digital database is the product of collaboration between the U.S. Geological Survey, the Geophysical Institute at the University of Alaska, Fairbanks; the Los Altos Hills Foothill College GeoSpatial Technology Certificate Program; the Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; and the Institute of Physical Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences. The primary goal for creating this digital database is to enhance current estimates of soil organic carbon stored in deep permafrost, in particular the late Pleistocene syngenetic ice-rich permafrost deposits of the Yedoma Suite. Previous studies estimated that Yedoma deposits cover about 1 million square kilometers of a large region in central and eastern Siberia, but these estimates generally are based on maps with scales smaller than 1:10,000,000. Taking into account this large area, it was estimated that Yedoma may store as much as 500 petagrams of soil organic carbon, a large part of which is vulnerable to thaw and mobilization from thermokarst and erosion. To refine assessments of the spatial distribution of Yedoma deposits, we digitized 11 Russian Quaternary geologic maps. Our study focused on extracting geologic units interpreted by us as late Pleistocene ice-rich syngenetic Yedoma deposits based on lithology, ground ice conditions, stratigraphy, and geomorphological and spatial association. These Yedoma units then were merged into a single data layer across map tiles. The spatial database provides a useful update of the spatial distribution of this deposit for an approximately 2.32 million square kilometers land area in Siberia that will (1) serve as a core database for future refinements of Yedoma distribution in additional regions, and (2) provide a starting point to revise the size of deep but thaw-vulnerable permafrost carbon pools in the Arctic based on surface geology and the distribution of cryolithofacies types at high spatial resolution. However, we recognize that the extent of Yedoma deposits presented in this database is not complete for a global assessment, because Yedoma deposits also occur in the Taymyr lowlands and Chukotka, and in parts of Alaska and northwestern Canada.

  5. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26). The medium-resolution Viking images used for mapping and base preparation also formed the basis of the 1:2,000,000 scale subquadrangle series. Earlier geologic maps of all or parts of the region include: (1) maps of the Phoenicis Lacus, Coprates, Thaumasia, and Argyre quadrangles at 1:5,000,000 scale based mainly on Mariner 9 images (respectively, Masursky and others, 1978; McCauley, 1978; McGill, 1978; and Hodges, 1980), (2) the global map of Mars at 1:25,000,000 (Scott and Carr, 1978) compiled largely from the 1:5,000,000 scale geologic maps, (3) maps showing lava flows in the Tharsis region at 1:2,000,000 scale compiled from Viking and Mariner 9 images (Scott, 1981; Scott and Tanaka, 1981a, b; Scott and others, 1981), (4) the map of the western equatorial region of Mars at 1:15,000,000 scale based on Viking images (Scott and Tanaka, 1986), and (5) the map of the Valles Marineris region at 1:2,000,000 scale compiled from Viking images (Witbeck and others, 1991). The previous maps have described the overall geology and geomorphology of the region but have not unraveled the detailed stratigraphy and complex evolution of this unique and geologically diverse martian province. The main purpose of this comprehensive mapping project is to reconstruct the stratigraphic, structural, and erosional histories of the Thaumasia region. The region is the last major province of the Tharsis region to undergo detailed structural mapping using Viking images; its history is essential to documenting the overall tectonic history of Tharsis. Other provinces of Tharsis that have been structurally mapped include Syria Planum (Tanaka and Davis, 1988), Tempe Terra and Ulysses Patera (Scott and Dohm, 1990b), and Alba Patera (Tanaka, 1990). Another primary mapping objective is to determine the region's volcanic history and assess the relations among fault systems and volcanoes (Wise and others, 1979; Scott and Tanaka, 1980; Whitford-Stark, 1982; Scott and Dohm, 1990a). A secondary mapping objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  6. The bedrock electrical conductivity map of the UK

    NASA Astrophysics Data System (ADS)

    Beamish, David

    2013-09-01

    Airborne electromagnetic (AEM) surveys, when regionally extensive, may sample a wide-range of geological formations. The majority of AEM surveys can provide estimates of apparent (half-space) conductivity and such derived data provide a mapping capability. Depth discrimination of the geophysical mapping information is controlled by the bandwidth of each particular system. The objective of this study is to assess the geological information contained in accumulated frequency-domain AEM survey data from the UK where existing geological mapping can be considered well-established. The methodology adopted involves a simple GIS-based, spatial join of AEM and geological databases. A lithology-based classification of bedrock is used to provide an inherent association with the petrophysical rock parameters controlling bulk conductivity. At a scale of 1:625k, the UK digital bedrock geological lexicon comprises just 86 lithological classifications compared with 244 standard lithostratigraphic assignments. The lowest common AEM survey frequency of 3 kHz is found to provide an 87% coverage (by area) of the UK formations. The conductivities of the unsampled classes have been assigned on the basis of inherent lithological associations between formations. The statistical analysis conducted uses over 8 M conductivity estimates and provides a new UK national scale digital map of near-surface bedrock conductivity. The new baseline map, formed from central moments of the statistical distributions, allows assessments/interpretations of data exhibiting departures from the norm. The digital conductivity map developed here is believed to be the first such UK geophysical map compilation for over 75 years. The methodology described can also be applied to many existing AEM data sets.

  7. Karst in the United States: a digital map compilation and database

    USGS Publications Warehouse

    Weary, David J.; Doctor, Daniel H.

    2014-01-01

    This report describes new digital maps delineating areas of the United States, including Puerto Rico and the U.S. Virgin Islands, having karst or the potential for development of karst and pseudokarst. These maps show areas underlain by soluble rocks and also by volcanic rocks, sedimentary deposits, and permafrost that have potential for karst or pseudokarst development. All 50 States contain rocks with potential for karst development, and about 18 percent of their area is underlain by soluble rocks having karst or the potential for development of karst features. The areas of soluble rocks shown are based primarily on selection from State geologic maps of rock units containing significant amounts of carbonate or evaporite minerals. Areas underlain by soluble rocks are further classified by general climate setting, degree of induration, and degree of exposure. Areas having potential for volcanic pseudokarst are those underlain chiefly by basaltic-flow rocks no older than Miocene in age. Areas with potential for pseudokarst features in sedimentary rocks are in relatively unconsolidated rocks from which pseudokarst features, such as piping caves, have been reported. Areas having potential for development of thermokarst features, mapped exclusively in Alaska, contain permafrost in relatively thick surficial deposits containing ground ice. This report includes a GIS database with links from the map unit polygons to online geologic unit descriptions.

  8. Geologic and Mineral Resource Map of Afghanistan

    USGS Publications Warehouse

    Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.

    2006-01-01

    Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in September 2005. Non-coincidence of these boundaries is due to differences in the respective data sources and to inexact registration of the geologic data to the DEM base. Province boundaries, province capital locations, and political names were also acquired from the AIMS Web site in September 2005. The AIMS data were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Version 2 differs from Version 1 in that (1) map units are colored according to the color scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org), (2) the minerals database has been updated, and (3) all data presented on the map are also available in GIS format.

  9. Estimation and mapping of uranium content of geological units in France.

    PubMed

    Ielsch, G; Cuney, M; Buscail, F; Rossi, F; Leon, A; Cushing, M E

    2017-01-01

    In France, natural radiation accounts for most of the population exposure to ionizing radiation. The Institute for Radiological Protection and Nuclear Safety (IRSN) carries out studies to evaluate the variability of natural radioactivity over the French territory. In this framework, the present study consisted in the evaluation of uranium concentrations in bedrocks. The objective was to provide estimate of uranium content of each geological unit defined in the geological map of France (1:1,000,000). The methodology was based on the interpretation of existing geochemical data (results of whole rock sample analysis) and the knowledge of petrology and lithology of the geological units, which allowed obtaining a first estimate of the uranium content of rocks. Then, this first estimate was improved thanks to some additional information. For example, some particular or regional sedimentary rocks which could present uranium contents higher than those generally observed for these lithologies, were identified. Moreover, databases on mining provided information on the location of uranium and coal/lignite mines and thus indicated the location of particular uranium-rich rocks. The geological units, defined from their boundaries extracted from the geological map of France (1:1,000,000), were finally classified into 5 categories based on their mean uranium content. The map obtained provided useful data for establishing the geogenic radon map of France, but also for mapping countrywide exposure to terrestrial radiation and for the evaluation of background levels of natural radioactivity used for impact assessment of anthropogenic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  11. Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2016-09-08

    The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy.  Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed.  Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped.  Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface.  Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series.  This map was compiled from data from many sources, at several different map scales.  That information was generalized and simplified, and then transferred to a base map at 1:250,000 scale to serve as the base for final reduction to 1:1,000,000, the nominal reading scale of maps in the Quaternary Geologic Atlas of the United States map series.  This map is the generalized and simplified 1:250,000 scale compilation.  Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series. The map summarizes new, and selected published and unpublished, geologic information for public use and for use by Federal, State, and local governmental agencies for land use planning, including assessment of natural resources, natural hazards, recreation potential, and land use management.  It also is a base from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  12. Digital coordinates and age of more than 13,000 foraminifers samples collected by Chevron Petroleum geologists in California

    USGS Publications Warehouse

    Malmblorg, William T.; West, William B.; Brabb, Earl E.; Parker, John M.

    2008-01-01

    The general location and age of more than 33,500 mostly foraminifer samples from Chevron surface localities in nearly 600 U.S. Geological Survey (USGS) 7.5' quadrangles from California were provided by Brabb and Parker (2003). Barren and non-diagnostic samples plus many that have no paleontologic information were omitted to provide a revised list for more than 27,000 of these samples by Brabb and Parker (2005). The locations for many of these samples were recorded by Chevron geoscientists on topographic maps (originals now in the USGS Library in Menlo Park, Calif.). The recent availability of digital databases for geologic and topographic maps has provided the opportunity to prepare a database of the locations of these Chevron samples so that the information can be combined with geology and topography for plotting or geospatial analysis. This report provides specific locations for more than 13,000 samples in central California that have enough paleontologic information to determine their age but omits thousands of samples that are too closely spaced to differentiate or those that have only a general location.

  13. Earthquakes and faults in southern California (1970-2010)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  14. The role of digital cartographic data in the geosciences

    USGS Publications Warehouse

    Guptill, S.C.

    1983-01-01

    The increasing demand of the Nation's natural resource developers for the manipulation, analysis, and display of large quantities of earth-science data has necessitated the use of computers and the building of geoscience information systems. These systems require, in digital form, the spatial data on map products. The basic cartographic data shown on quadrangle maps provide a foundation for the addition of geological and geophysical data. If geoscience information systems are to realize their full potential, large amounts of digital cartographic base data must be available. A major goal of the U.S. Geological Survey is to create, maintain, manage, and distribute a national cartographic and geographic digital database. This unified database will contain numerous categories (hydrography, hypsography, land use, etc.) that, through the use of standardized data-element definitions and formats, can be used easily and flexibly to prepare cartographic products and perform geoscience analysis. ?? 1983.

  15. Alaska Geochemical Database, Version 2.0 (AGDB2)--including “best value” data compilations for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2013-01-01

    The Alaska Geochemical Database Version 2.0 (AGDB2) contains new geochemical data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska Geochemical Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical geochemical data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all U.S. Geological Survey geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest U.S. Geological Survey geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB2 and will be added to the NGDB. The AGDB2 data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB2 data provided in the linked database may be updated or changed periodically.

  16. Metallogenic belt and mineral deposit maps of northeast Asia

    USGS Publications Warehouse

    Obolenskiy, Alexander A.; Rodionov, Sergey M.; Dejidmaa, Gunchin; Gerel, Ochir; Hwang, Duk-Hwan; Miller, Robert J.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Smelov, Alexander P.; Yan, Hongquan; Seminskiy, Zhan V.

    2013-01-01

    This report contains explanatory material and summary tables for lode mineral deposits and placer districts (Map A, sheet 1) and metallogenic belts of Northeast Asia (Maps B, C, and D on sheets 2, 3, and 4, respectively). The map region includes eastern Siberia, southeastern Russia, Mongolia, northeast China, and Japan. A large group of geologists—members of the joint international project, Major Mineral Deposits, Metallogenesis, and Tectonics of Northeast Asia—prepared the maps, tables, and introductory text. This is a cooperative project with the Russian Academy of Sciences, Mongolian Academy of Sciences, Mongolian National University, Ulaanbaatar, Mongolian Technical University, Mineral Resources Authority of Mongolia, Geological Research Institute, Jilin University, China Geological Survey, Korea Institute of Geoscience and Mineral Resources, Geological Survey of Japan, and U.S. Geological Survey. This report is one of a series of reports on the mineral resources, geodynamics, and metallogenesis of Northeast Asia. Companion studies include (1) a detailed geodynamics map of Northeast Asia (Parfenov and others, 2003); (2) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000); (3) a series of metallogenic belt maps (Obolenskiy and others, 2004); (4) location map of lode mineral deposits and placer districts of Northeast Asia (Ariunbileg and others, 2003b); (5) descriptions of metallogenic belts (Rodionov and others, 2004); (6) a database on significant metalliferous and selected nonmetalliferous lode deposits and selected placer districts (Ariunbileg and others, 2003a); and (7) a series of summary project publications (Ariunbileg and 74 others, 2003b).

  17. Map and digital database of sedimentary basins and indications of petroleum in the Central Alaska Province

    USGS Publications Warehouse

    Troutman, Sandra M.; Stanley, Richard G.

    2003-01-01

    This database and accompanying text depict historical and modern reported occurrences of petroleum both in wells and at the surface within the boundaries of the Central Alaska Province. These data were compiled from previously published and unpublished sources and were prepared for use in the 2002 U.S. Geological Survey petroleum assessment of Central Alaska, Yukon Flats region. Indications of petroleum are described as oil or gas shows in wells, oil or gas seeps, or outcrops of oil shale or oil-bearing rock and include confirmed and unconfirmed reports. The scale of the source map limits the spatial resolution (scale) of the database to 1:2,500,000 or smaller.

  18. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards for digitizing, visualization, data merging and synchronization in the processes of interpretative mapping project. Following the new technological innovations within GIS software and the individual requirements for mapping Ceres, a template was developed based on the symbology and framework. The template for (GIS-base) mapping presented here directly links the generically descriptive attributes of planetary objects to the predefined and standardized symbology in one data structure. Using this template the map results are more comparable and better controllable. Furthermore, merging and synchronization of the individual maps, map projects and sheets will be far more efficient. The template can be adapted to any other planetary body and or within future discovery missions (e.g., Lucy and Psyche which was selected to explore the early solar system by NASA) for generating reusable map results.

  19. USGS Mineral Resources Program; national maps and datasets for research and land planning

    USGS Publications Warehouse

    Nicholson, S.W.; Stoeser, D.B.; Ludington, S.D.; Wilson, Frederic H.

    2001-01-01

    The U.S. Geological Survey, the Nation’s leader in producing and maintaining earth science data, serves as an advisor to Congress, the Department of the Interior, and many other Federal and State agencies. Nationwide datasets that are easily available and of high quality are critical for addressing a wide range of land-planning, resource, and environmental issues. Four types of digital databases (geological, geophysical, geochemical, and mineral occurrence) are being compiled and upgraded by the Mineral Resources Program on regional and national scales to meet these needs. Where existing data are incomplete, new data are being collected to ensure national coverage. Maps and analyses produced from these databases provide basic information essential for mineral resource assessments and environmental studies, as well as fundamental information for regional and national land-use studies. Maps and analyses produced from the databases are instrumental to ongoing basic research, such as the identification of mineral deposit origins, determination of regional background values of chemical elements with known environmental impact, and study of the relationships between toxic elements or mining practices to human health. As datasets are completed or revised, the information is made available through a variety of media, including the Internet. Much of the available information is the result of cooperative activities with State and other Federal agencies. The upgraded Mineral Resources Program datasets make geologic, geophysical, geochemical, and mineral occurrence information at the state, regional, and national scales available to members of Congress, State and Federal government agencies, researchers in academia, and the general public. The status of the Mineral Resources Program datasets is outlined below.

  20. The Handling of Hazard Data on a National Scale: A Case Study from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Royse, Katherine R.

    2011-11-01

    This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.

  1. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled vocabularies and concepts derived from NASA SWEET ontology (3) (4) (5). At the state of the art the GeoPiemonte Map informative system is thus suitable for integration in trans-national Data Infrastructures and/or WebMap Services that require interoperability and harmonised semantic approaches. References (1)http://www.geosciml.org/geosciml/4.0/documentation/html/ - GeoSciML Data Model - (2)http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0.pdf - INSPIRE DS Technical Guidelines (3)http://resource.geosciml.org/vocabulary/cgi/201211/simplelithology.html (4)http://resource.geosciml.org/vocabulary/cgi/ - CGI GTWG controlled vocabularies repository (5) SWEET (Semantic Web for Earth and Environmental Terminology), http://www.sweet.jpl.nasa.govAppel Piana et al., 2017a. Geology of Piemonte Region (NW Italy, Alps-Apennines junction zone). Journal of Maps, in press. Piana et al., 2017b. The Geodatabase of the Piemonte Geological Map: conceptual design for knowledge encoding. ROL Soc. Geol. It., in press.

  2. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.

  3. The National Landslide Database of Great Britain: Acquisition, communication and the role of social media

    NASA Astrophysics Data System (ADS)

    Pennington, Catherine; Freeborough, Katy; Dashwood, Claire; Dijkstra, Tom; Lawrie, Kenneth

    2015-11-01

    The British Geological Survey (BGS) is the national geological agency for Great Britain that provides geoscientific information to government, other institutions and the public. The National Landslide Database has been developed by the BGS and is the focus for national geohazard research for landslides in Great Britain. The history and structure of the geospatial database and associated Geographical Information System (GIS) are explained, along with the future developments of the database and its applications. The database is the most extensive source of information on landslides in Great Britain with over 17,000 records of landslide events to date, each documented as fully as possible for inland, coastal and artificial slopes. Data are gathered through a range of procedures, including: incorporation of other databases; automated trawling of current and historical scientific literature and media reports; new field- and desk-based mapping technologies with digital data capture, and using citizen science through social media and other online resources. This information is invaluable for directing the investigation, prevention and mitigation of areas of unstable ground in accordance with Government planning policy guidelines. The national landslide susceptibility map (GeoSure) and a national landslide domains map currently under development, as well as regional mapping campaigns, rely heavily on the information contained within the landslide database. Assessing susceptibility to landsliding requires knowledge of the distribution of failures, an understanding of causative factors, their spatial distribution and likely impacts, whilst understanding the frequency and types of landsliding present is integral to modelling how rainfall will influence the stability of a region. Communication of landslide data through the Natural Hazard Partnership (NHP) and Hazard Impact Model contributes to national hazard mitigation and disaster risk reduction with respect to weather and climate. Daily reports of landslide potential are published by BGS through the NHP partnership and data collected for the National Landslide Database are used widely for the creation of these assessments. The National Landslide Database is freely available via an online GIS and is used by a variety of stakeholders for research purposes.

  4. Groundwater levels for selected wells in Upper Kittitas County, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  5. Preliminary location and age database for invertebrate fossils collected in the San Francisco Bay region, California

    USGS Publications Warehouse

    Parker, John M.; West, William B.; Malmborg, William T.; Brabb, Earl E.

    2003-01-01

    Most geologic maps published for central California in the past century have been made without the benefit of microfossils. The age of Cretaceous and Tertiary rocks in the structurally complex sedimentary formations of the Coast Ranges is critical in determining stratigraphic succession and in determining whether the juxtapositon of similar appearing formations means that a fault is present. Since the 1930’s, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of sedimentary rocks. This information has been confidential, but in the past 20 years the attitude of petroleum companies about this information has changed, and much material is now available. We report here on approximately 4,700 samples, largely foraminifers, from surface localities in the San Francisco Bay region of California. The information contained here can be used to update geologic maps, to analyze the depth and temperature of ocean water covering parts of California during the Mesozoic and Cenozoic eras, and for solving other geologic problems.

  6. Quaternary geologic map of the Glasgow 1° x 2° quadrangle, Montana

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2012-01-01

    The Glasgow quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S./Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Boundary Plateau, Peerless Plateau, and Larb Hills. The primary river is the Milk River. The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy. Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits. Residuum, a surficial material, also is mapped. Till of late Wisconsin age is represented by three map units. Till of Illinoian age is also represented locally but is widespread in the subsurface. This map was prepared to serve as a database for compilation of a Quaternary geologic map of the United States and Canada (scale 1:1,000,000). Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series.

  7. Characterization of Sedimentary Deposits Using usSEABED for Large-scale Mapping, Modeling and Research of U.S.Continental Margins

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.

    2006-12-01

    Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data and information (both analytical and descriptive) about the sea floor, including sediment textural, statistical, geochemical, geophysical, and compositional information, is available to the marine community through USGS Data Series publications. Three DS reports for the Atlantic (DS-118), Gulf of Mexico (DS-146) and Pacific(DS-182) were published in 2006 and reports for HI and AK are forthcoming. The use of usSEABED and derivative map products are part of ongoing USGS efforts to conduct regional assessments of potential marine sand and gravel resources, map benthic habitats, and support research in understanding seafloor character and mobility, transport processes and natural resources.

  8. Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon

    USGS Publications Warehouse

    Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.

    2001-01-01

    The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure of the Tyee basin. New geologic mapping of twenty-eight 7.5' quadrangles is summarized on the map (see figure 3, also shown on map sheet), and the digital database contains geologic information suitable for both 1:100K and 1:24K scale analysis. DOGAMI has published a compilation and synthesis of previous mapping (Niem and Niem, 1990), a basin-wide sequence stratigraphic model and correlations (Ryu and others, 1992), and a report on the oil and gas potential (Ryu and others, 1996). Readers interested in the oil and gas potential of the Roseburg quadrangle should use the map in combination with Ryu and others (1996) to address specific stratigraphic units and structural plays. Stratigraphic terminology for the Tyee basin adopts the type sections, formation names, and framework of Ryu and others (1992, 1996), which were developed concurrently with the mapping and are recognized throughout the basin. For detailed discussion of nomenclature, type sections, lithology, thickness and distribution, age, contact relationships, and depositional environment of stratigraphic units, the reader is referred to Ryu and others (1992). In this report we focus on the spatial, temporal, and structural relationships between units revealed by geologic mapping. Map unit ages (see figure 4 in pamphlet, also shown on map sheeet) are adjusted slightly from Ryu and others (1992, 1996) to fit new coccolith age determinations (D. Bukry, cited in pamphlet), paleomagnetic polarity data (Simpson, 1977 and new data cited in pamphlet), and the time scale of Berggren and others (1995).

  9. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  10. SITE TECHNOLOGY CAPSULE: GIS\\KEY ENVIRONMENTAL DATA MANAGEMENT SYSTEM

    EPA Science Inventory

    GIS/Key™ is a comprehensive environmental database management system that integrates site data and graphics, enabling the user to create geologic cross-sections; boring logs; potentiometric, isopleth, and structure maps; summary tables; and hydrographs. GIS/Key™ is menu-driven an...

  11. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  12. usSEABED: Pacific coast (California, Oregon, Washington) offshore surficial-sediment data release

    USGS Publications Warehouse

    Reid, Jane A.; Reid, Jamey M.; Jenkins, Chris J.; Zimmermann, Mark; Williams, S. Jeffress; Field, Michael E.

    2006-01-01

    Over the past 50 years there has been an explosion in scientific interest, research effort, and information gathered on the geologic sedimentary character of the continental margin of the United States. Data and information from thousands of publications have greatly increased our scientific understanding of the geologic origins of the margin surface but rarely have those data been combined and integrated. This publication is the first release of the Pacific coast data from the usSEABED database. The report contains a compilation of published and unpublished sediment texture and other geologic data about the sea floor from diverse sources. usSEABED is an innovative database system developed to unify assorted data, with the data processed by the dbSEABED system. Examples of maps displaying attributes such as grain size and sediment color are included. This database contains information that is a scientific foundation for the U.S. Geological Survey (USGS) Sea floor Mapping and Benthic Habitats project and the Marine Aggregate Resources and Processes assessment project, and will be useful to the marine science community for other studies of the Pacific coast continental margin. The publication is divided into 10 sections: Home, Introduction, Content, usSEABED (data), dbSEABED (processing), Data Catalog, References, Contacts, Acknowledgments, and Frequently Asked Questions. Use the navigation bar on the left to navigate to specific sections of this report. Underlined topics throughout the publication are links to more information. Links to specific and detailed information on processing and to those to pages outside this report will open in a new browser window.

  13. Spatial Databases of Geological, Geophysical, and Mineral Resource Data Relevant to Sandstone-Hosted Copper Deposits in Central Kazakhstan

    USGS Publications Warehouse

    Syusyura, Boris; Box, Stephen E.; Wallis, John C.

    2010-01-01

    Central Kazakhstan is host to one of the world's giant sandstone-hosted copper deposits, the Dzhezkazgan deposit, and several similar, smaller deposits. The United Stated Geological Survey (USGS) is assessing the potential for other, undiscovered deposits of this type in the surrounding region of central Kazakhstan. As part of this effort, Syusyura compiled and partially translated an array of mostly unpublished geologic, geophysical, and mineral resource data for this region in digital format from the archives of the former Union of Soviet Socialists Republics (of which Kazakhstan was one of the member republics until its dissolution in 1991), as well as from later archives of the Republic of Kazakhstan or of the Kazakhstan consulting firm Mining Economic Consulting (MEC). These digital data are primarily map-based displays of information that were transmitted either in ESRI ArcGIS, georeferenced format, or non-georeferenced map image files. Box and Wallis reviewed all the data, translated Cyrillic text where necessary, inspected the maps for consistency, georeferenced the unprojected map images, and reorganized the data into the filename and folder structure of this publication.

  14. The U.S. Geological Survey cartographic and geographic information science research activities 2006-2010

    USGS Publications Warehouse

    Usery, E. Lynn

    2011-01-01

    The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).

  15. Geological map and digital database of the San Rafael Mtn. 7.5-minute quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Vedder, John G.; Stanley, Richard G.; Graham, S.E.; Valin, Z.C.

    2001-01-01

    Geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder and others (1967) did not include all of the San Rafael Mtn. quadrangle, and the part that was mapped was done in reconnaissance fashion. To help resolve some of the structural and stratigraphic ambiguities of the earlier mapping and to complete the mapping of the quadrangle, additional field work was done during short intervals in 1980 and 1981 and from 1996 to 1998. Contacts within the belt of Franciscan rocks at the southwestern corner of the quadrangle were generalized from the detailed map by Wahl (1998). Because extensive areas were inaccessible owing to impenetrable chaparral, observations from several helicopter overflights (1965, 1980, 1981) and interpretations from aerial photographs were used as compilation aids. Consequently, some of the depicted contacts and faults are highly inferential, particularly within the Upper Cretaceous rocks throughout the middle part of the quadrangle.

  16. GIS-based identification of areas with mineral resource potential for six selected deposit groups, Bureau of Land Management Central Yukon Planning Area, Alaska

    USGS Publications Warehouse

    Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.

    2015-01-01

    This study has used a data-driven, geographic information system (GIS)-based method for evaluating the mineral resource potential across the large region of the CYPA. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic unit codes or HUCs) as the spatial unit of classification. The final map output indicates an estimated potential (high, medium, low) for a given mineral deposit group and indicates the certainty (high, medium, low) of that estimate for any given subwatershed (HUC). Accompanying tables describe the data layers used in each analysis, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to the estimated potential and certainty determinations. Core datasets used include the U.S. Geological Survey (USGS) Alaska Geochemical Database (AGDB2), the Alaska Division of Geologic and Geophysical Surveys Web-based geochemical database, data from an anticipated USGS geologic map of Alaska, and the USGS Alaska Resource Data File. Map plates accompanying this report illustrate the mineral prospectivity for the six deposit groups across the CYPA and estimates of mineral resource potential. There are numerous areas, some of them large, rated with high potential for one or more of the selected deposit groups within the CYPA.

  17. An interactive program for computer-aided map design, display, and query: EMAPKGS2

    USGS Publications Warehouse

    Pouch, G.W.

    1997-01-01

    EMAPKGS2 is a user-friendly, PC-based electronic mapping tool for use in hydrogeologic exploration and appraisal. EMAPKGS2 allows the analyst to construct maps interactively from data stored in a relational database, perform point-oriented spatial queries such as locating all wells within a specified radius, perform geographic overlays, and export the data to other programs for further analysis. EMAPKGS2 runs under Microsoft?? Windows??? 3.1 and compatible operating systems. EMAPKGS2 is a public domain program available from the Kansas Geological Survey. EMAPKGS2 is the centerpiece of WHEAT, the Windows-based Hydrogeologic Exploration and Appraisal Toolkit, a suite of user-friendly Microsoft?? Windows??? programs for natural resource exploration and management. The principal goals in development of WHEAT have been ease of use, hardware independence, low cost, and end-user extensibility. WHEAT'S native data format is a Microsoft?? Access?? database. WHEAT stores a feature's geographic coordinates as attributes so they can be accessed easily by the user. The WHEAT programs are designed to be used in conjunction with other Microsoft?? Windows??? software to allow the natural resource scientist to perform work easily and effectively. WHEAT and EMAPKGS have been used at several of Kansas' Groundwater Management Districts and the Kansas Geological Survey on groundwater management operations, groundwater modeling projects, and geologic exploration projects. ?? 1997 Elsevier Science Ltd.

  18. A 1.4-Billion Pixel Map of the Seafloor: BOEM's Mission to Visualize Dynamic Geology and Identify Natural Seep Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kramer, K.; Shedd, W. W.

    2017-12-01

    In May, 2017, the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) published a high-resolution seafloor map of the northern Gulf of Mexico region. The new map, derived from 3-D seismic surveys, provides the scientific community with enhanced resolution and reveals previously undiscovered and poorly resolved geologic features of the continental slope, salt minibasin province, abyssal plain, Mississippi Fan, and the Florida Shelf and Escarpment. It becomes an even more powerful scientific tool when paired with BOEM's public database of 35,000 seafloor features, identifying natural hydrocarbon seeps, hard grounds, mud volcanoes, sediment flows, pockmarks, slumps, and many others. BOEM has mapped the Gulf of Mexico seafloor since 1998 in a regulatory mission to identify natural oil and gas seeps and protect the coral and chemosynthetic communities growing at those sites. The nineteen-year mapping effort, still ongoing, resulted in the creation of the 1.4-billion pixel map and the seafloor features database. With these tools and continual collaboration with academia, professional scientific institutions, and the offshore energy industry, BOEM will continue to incorporate new data to update and expand these two resources on a regular basis. They can be downloaded for free from BOEM's website at https://www.boem.gov/Gulf-of-Mexico-Deepwater-Bathymetry/ and https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.

  19. Extending GIS Technology to Study Karst Features of Southeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tipping, R. G.; Alexander, E. C.; Alexander, S. C.

    2001-12-01

    This paper summarizes ongoing research on karst feature distribution of southeastern Minnesota. The main goals of this interdisciplinary research are: 1) to look for large-scale patterns in the rate and distribution of sinkhole development; 2) to conduct statistical tests of hypotheses about the formation of sinkholes; 3) to create management tools for land-use managers and planners; and 4) to deliver geomorphic and hydrogeologic criteria for making scientifically valid land-use policies and ethical decisions in karst areas of southeastern Minnesota. Existing county and sub-county karst feature datasets of southeastern Minnesota have been assembled into a large GIS-based database capable of analyzing the entire data set. The central database management system (DBMS) is a relational GIS-based system interacting with three modules: GIS, statistical and hydrogeologic modules. ArcInfo and ArcView were used to generate a series of 2D and 3D maps depicting karst feature distributions in southeastern Minnesota. IRIS ExplorerTM was used to produce satisfying 3D maps and animations using data exported from GIS-based database. Nearest-neighbor analysis has been used to test sinkhole distributions in different topographic and geologic settings. All current nearest-neighbor analyses testify that sinkholes in southeastern Minnesota are not evenly distributed in this area (i.e., they tend to be clustered). More detailed statistical methods such as cluster analysis, histograms, probability estimation, correlation and regression have been used to study the spatial distributions of some mapped karst features of southeastern Minnesota. A sinkhole probability map for Goodhue County has been constructed based on sinkhole distribution, bedrock geology, depth to bedrock, GIS buffer analysis and nearest-neighbor analysis. A series of karst features for Winona County including sinkholes, springs, seeps, stream sinks and outcrop has been mapped and entered into the Karst Feature Database of Southeastern Minnesota. The Karst Feature Database of Winona County is being expanded to include all the mapped karst features of southeastern Minnesota. Air photos from 1930s to 1990s of Spring Valley Cavern Area in Fillmore County were scanned and geo-referenced into our GIS system. This technology has been proved to be very useful to identify sinkholes and study the rate of sinkhole development.

  20. Surficial geology mapping of the Arctic Ocean: using subbottom profiling and multibeam echosounding data sets to constrain the subsea north of 64° as a layer for the IBCAO

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Baldwin, K.; Gebhardt, C.

    2016-12-01

    Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.

  1. Mars Public Mapping Project: Public Participation in Science Research; Providing Opportunities for Kids of All Ages

    NASA Astrophysics Data System (ADS)

    Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.

    2007-12-01

    The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.

  2. GIS\\KEY™ ENVIRONMENTAL DATA MANAGEMENT SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    GIS/Key™ is a comprehensive environmental database management system that integrates site data and graphics, enabling the user to create geologic cross-sections; boring logs; potentiometric, isopleth, and structure maps; summary tables; and hydrographs. GIS/Key™ is menu-driven an...

  3. A Standard-Driven Data Dictionary for Data Harmonization of Heterogeneous Datasets in Urban Geological Information Systems

    NASA Astrophysics Data System (ADS)

    Liu, G.; Wu, C.; Li, X.; Song, P.

    2013-12-01

    The 3D urban geological information system has been a major part of the national urban geological survey project of China Geological Survey in recent years. Large amount of multi-source and multi-subject data are to be stored in the urban geological databases. There are various models and vocabularies drafted and applied by industrial companies in urban geological data. The issues such as duplicate and ambiguous definition of terms and different coding structure increase the difficulty of information sharing and data integration. To solve this problem, we proposed a national standard-driven information classification and coding method to effectively store and integrate urban geological data, and we applied the data dictionary technology to achieve structural and standard data storage. The overall purpose of this work is to set up a common data platform to provide information sharing service. Research progresses are as follows: (1) A unified classification and coding method for multi-source data based on national standards. Underlying national standards include GB 9649-88 for geology and GB/T 13923-2006 for geography. Current industrial models are compared with national standards to build a mapping table. The attributes of various urban geological data entity models are reduced to several categories according to their application phases and domains. Then a logical data model is set up as a standard format to design data file structures for a relational database. (2) A multi-level data dictionary for data standardization constraint. Three levels of data dictionary are designed: model data dictionary is used to manage system database files and enhance maintenance of the whole database system; attribute dictionary organizes fields used in database tables; term and code dictionary is applied to provide a standard for urban information system by adopting appropriate classification and coding methods; comprehensive data dictionary manages system operation and security. (3) An extension to system data management function based on data dictionary. Data item constraint input function is making use of the standard term and code dictionary to get standard input result. Attribute dictionary organizes all the fields of an urban geological information database to ensure the consistency of term use for fields. Model dictionary is used to generate a database operation interface automatically with standard semantic content via term and code dictionary. The above method and technology have been applied to the construction of Fuzhou Urban Geological Information System, South-East China with satisfactory results.

  4. The National Map - Orthoimagery Layer

    USGS Publications Warehouse

    ,

    2007-01-01

    Many Federal, State, and local agencies use a common set of framework geographic information databases as a tool for economic and community development, land and natural resource management, and health and safety services. Emergency management and homeland security applications rely on this information. Private industry, nongovernmental organizations, and individual citizens use the same geographic data. Geographic information underpins an increasingly large part of the Nation's economy. The U.S. Geological Survey (USGS) is developing The National Map to be a seamless, continually maintained, and nationally consistent set of online, public domain, framework geographic information databases. The National Map will serve as a foundation for integrating, sharing, and using data easily and consistently. The data will be the source of revised paper topographic maps. The National Map includes digital orthorectified imagery; elevation data; vector data for hydrography, transportation, boundary, and structure features; geographic names; and land cover information.

  5. Map and database of Quaternary faults and folds in Colombia and its offshore regions

    USGS Publications Warehouse

    Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.

  6. Some thoughts on cartographic and geographic information systems for the 1980's

    USGS Publications Warehouse

    Starr, L.E.; Anderson, Kirk E.

    1981-01-01

    The U.S. Geological Survey is adopting computer techniques to meet the expanding need for cartographic base category data. Digital methods are becoming increasingly important in the mapmaking process, and the demand is growing for physical, social, and economic data. Recognizing these emerging needs, the National Mapping Division began, several years ago, an active program to develop advanced digital methods to support cartographic and geographic data processing. An integrated digital cartographic database would meet the anticipated needs. Such a database would contain data from various sources, and could provide a variety of standard and customized map and digital data file products. This cartographic database soon will be technologically feasible. The present trends in the economics of cartographic and geographic data handling and the growing needs for integrated physical, social, and economic data make such a database virtually mandatory.

  7. Web-based flood database for Colorado, water years 1867 through 2011

    USGS Publications Warehouse

    Kohn, Michael S.; Jarrett, Robert D.; Krammes, Gary S.; Mommandi, Amanullah

    2013-01-01

    In order to provide a centralized repository of flood information for the State of Colorado, the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, created a Web-based geodatabase for flood information from water years 1867 through 2011 and data for paleofloods occurring in the past 5,000 to 10,000 years. The geodatabase was created using the Environmental Systems Research Institute ArcGIS JavaScript Application Programing Interface 3.2. The database can be accessed at http://cwscpublic2.cr.usgs.gov/projects/coflood/COFloodMap.html. Data on 6,767 flood events at 1,597 individual sites throughout Colorado were compiled to generate the flood database. The data sources of flood information are indirect discharge measurements that were stored in U.S. Geological Survey offices (water years 1867–2011), flood data from indirect discharge measurements referenced in U.S. Geological Survey reports (water years 1884–2011), paleoflood studies from six peer-reviewed journal articles (data on events occurring in the past 5,000 to 10,000 years), and the U.S. Geological Survey National Water Information System peak-discharge database (water years 1883–2010). A number of tests were performed on the flood database to ensure the quality of the data. The Web interface was programmed using the Environmental Systems Research Institute ArcGIS JavaScript Application Programing Interface 3.2, which allows for display, query, georeference, and export of the data in the flood database. The data fields in the flood database used to search and filter the database include hydrologic unit code, U.S. Geological Survey station number, site name, county, drainage area, elevation, data source, date of flood, peak discharge, and field method used to determine discharge. Additional data fields can be viewed and exported, but the data fields described above are the only ones that can be used for queries.

  8. Development of new mapping standards for geological surveys in Greenland

    NASA Astrophysics Data System (ADS)

    Mätzler, Eva; langley, Kirsty; Hollis, Julie; Heide-Jørgensen, Helene

    2017-04-01

    The current official topographic and geological maps of Greenland are in scale of 1:250:000 and 1:500.000 respectively, allowing only very limited amount of detail. The maps are outdated, and periglacial landscapes have changed significantly since the acquisition date. Hence, new affordable mapping products of high quality are in demand that can be available within a restricted time frame. In order to fulfill those demands a new mapping standard based on satellite imagery was developed, where classifications are mainly carried out with algorithms suitable for automatization. A Digital Elevation Model (ArcticDEM) was applied allowing examination of topographic and geological structures and 3D visualizing. Information on topographic features and lithology was extracted based on analysis of spectral characteristics from different multispectral data sources (Landsat 8, ASTER, WorldView-3) partly combined with the DEM. A first product is completed, and validation was carried out by field surveys. Field and remotely sensed data were integrated into a GIS database, and derived data will be freely available providing a valuable tool for planning and carrying out mineral exploration and other field activities. This study offers a method for generating up-to-date, low-cost and high quality mapping products suitable for Arctic regions, where accessibility is restricted due to remoteness and lack of infrastructure.

  9. Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey's National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data...

  10. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  11. Preliminary Aeromagnetic Map of Joshua Tree National Park and Vicinity, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hill, P.L.

    2010-01-01

    This aeromagnetic map of Joshua Tree National Park and vicinity is intended to promote further understanding of the geology and structure in the region by serving as a basis for geophysical interpretations and by supporting geological mapping, water-resource investigations, and various topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, or even some sedimentary units, also can cause measurable magnetic anomalies. The database includes two ASCII files containing new aeromagnetic data and two ASCII files with point locations of the local maximum horizontal gradient derived from the aeromagnetic data. This metadata file describes the horizontal gradient locations derived from new and existing aeromagnetic data. This aeromagnetic map identifies magnetic features as a basis for geophysical interpretations; the gradients help define the edges of magnetic sources. This database updates geophysical information originally presented in smaller-scale formats and includes detailed aeromagnetic data collected by EON Geosciences, Inc.

  12. Documentation for the U.S. Geological Survey Public-Supply Database (PSDB): A database of permitted public-supply wells, surface-water intakes, and systems in the United States

    USGS Publications Warehouse

    Price, Curtis V.; Maupin, Molly A.

    2014-01-01

    The purpose of this report is to document the PSDB and explain the methods used to populate and update the data from the SDWIS, State datasets, and map and geospatial imagery. This report describes 3 data tables and 11 domain tables, including field contents, data sources, and relations between tables. Although the PSDB database is not available to the general public, this information should be useful for others who are developing other database systems to store and analyze public-supply system and facility data.

  13. Unconsolidated Aquifers in Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site-specific information.

  14. Availability of groundwater data for California, water year 2010

    USGS Publications Warehouse

    Ray, Mary; Orlando, Patricia v.P.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to groundwater data for Water Year 2010. It contains a map of California showing the number of wells (by county) with available water-level or water-quality data for Water Year 2010 (fig. 1) and instructions for obtaining this and other groundwater information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report "Water Resources Data for California, Volume 5. Ground-Water Data"; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  15. Developing a mapping tool for tablets

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan; Collins, Nathan; Krus, Mike

    2014-05-01

    Digital field mapping offers significant benefits when compared with traditional paper mapping techniques in that it provides closer integration with downstream geological modelling and analysis. It also provides the mapper with the ability to rapidly integrate new data with existing databases without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. In order to achieve these benefits, a number of PC-based digital mapping tools are available which have been developed for specific communities, eg the BGS•SIGMA project, Midland Valley's FieldMove®, and a range of solutions based on ArcGIS® software, which can be combined with either traditional or digital orientation and data collection tools. However, with the now widespread availability of inexpensive tablets and smart phones, a user led demand for a fully integrated tablet mapping tool has arisen. This poster describes the development of a tablet-based mapping environment specifically designed for geologists. The challenge was to deliver a system that would feel sufficiently close to the flexibility of paper-based geological mapping while being implemented on a consumer communication and entertainment device. The first release of a tablet-based geological mapping system from this project is illustrated and will be shown as implemented on an iPad during the poster session. Midland Valley is pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.

  16. Geospatial resources for the geologic community: The USGS National Map

    USGS Publications Warehouse

    Witt, Emitt C.

    2015-01-01

    Geospatial data are a key component of investigating, interpreting, and communicating the geological sciences. Locating geospatial data can be time-consuming, which detracts from time spent on a study because these data are not obviously placed in central locations or are served from many disparate databases. The National Map of the US Geological Survey is a publicly available resource for accessing the geospatial base map data needs of the geological community from a central location. The National Map data are available through a viewer and download platform providing access to eight primary data themes, plus the US Topo and scanned historical topographic maps. The eight themes are elevation, orthoimagery, hydrography, geographic names, boundaries, transportation, structures, and land cover, and they are being offered for download as predefined tiles in formats supported by leading geographic information system software. Data tiles are periodically refreshed to capture the most current content and are an efficient method for disseminating and receiving geospatial information. Elevation data, for example, are offered as a download from the National Map as 1° × 1° tiles for the 10- and 30- m products and as 15′ × 15′ tiles for the higher-resolution 3-m product. Vector data sets with smaller file sizes are offered at several tile sizes and formats. Partial tiles are not a download option—any prestaged data that intersect the requesting bounding box will be, in their entirety, part of the download order. While there are many options for accessing geospatial data via the Web, the National Map represents authoritative sources of data that are documented and can be referenced for citation and inclusion in scientific publications. Therefore, National Map products and services should be part of a geologist’s first stop for geospatial information and data.

  17. East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ma, W.

    2010-12-01

    North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can generate classification thematic maps using query results, according different parameters. 3.Data analysis on-line. Here we designed lots of geochemical online analysis tools, including geochemical diagrams, CIPW computing, and so on, which allows researchers to analyze query data without download query results. Operation of all these analysis tools is very easy; users just do it by click mouse one or two time. In summary, ECGD provide a geochemical platform for researchers, whom to know where various data are, to view various data in a synthetic and dynamic way, and analyze interested data online. REFERENCES [1] S. Gao, R.L. Rudnick, and W.L. Xu, “Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton,” Earth and Planetary Science Letters,270,41-53,2008. [2] K.A. Lehnert, U. Harms, and E. Ito, “Promises, Achievements, and Challenges of Networking Global Geoinformatics Resources - Experiences of GeosciNET and EarthChem,” Geophysical Research Abstracts, Vol.10, EGU2008-A-05242,2008.

  18. Large-Scale Digital Geologic Map Databases and Reports of the North Coal District in Afghanistan

    USGS Publications Warehouse

    Hare, Trent M.; Davis, Philip A.; Nigh, Devon; Skinner, James A.; SanFilipo, John R.; Bolm, Karen S.; Fortezzo, Corey M.; Galuszka, Donna; Stettner, William R.; Sultani, Shafiqullah; Nader, Billal

    2008-01-01

    This report describes the Afghanistan coal resource maps and associated databases that have been digitally captured and maps that have been thus far converted to GIS databases. Several maps by V/O Technoexport, USSR (VOTU) and Bundesanstalt fur Bodenforschung (BGR), Hannover, Germany, are captured here. Most of the historical coal exploration is concentrated in north-central Afghanistan, a region referred to as the 'North Coal District', and almost all of the coal-related maps found Afghanistan Geological Survey (AGS) archives to date cover various locations within that district as shown in the index map. Most of the maps included herein were originally scanned during U.S. Geological Survey (USGS) site visits to Kabul in November 2004 and February 2006. The scanning was performed using equipment purchased by U.S. Agency for International Development (USAID) and U.S. Trade and Development Agency (USTDA) and installed at the AGS by USGS. Many of these maps and associated reports exist as single unpublished copies in the AGS archives, so these efforts served not only to provide a basis for digital capturing, but also as a means for preserving these rare geologic maps and reports. The data included herein represent most of the coal-related reports and maps that are available in the AGS archives. This report excludes the limited cases when a significant portion of a report's text could not be located, but it does not exclude reports with missing plates. The vector files are released using the Environmental Systems Research Institute (ESRI) Personal Geodatabase, ESRI shapefile vector format, and the open Geography Markup Language (GML) format. Scanned images are available in JPEG and, when rectified, GeoTIFF format. The authors wish to acknowledge the contributions made by the staff of the AGS Records and Coal Departments whose valuable assistance made it possible to locate and catalogue the data provided herein. We especially acknowledge the efforts of particular members of the coal team: Engineer Saifuddin Aminy (Team Leader); Engineer Gul Pacha Azizi; Engineer Abdul Haq Barakati; Engineer Abdul Basir; Engineer Mohammad Daoud; Engineer Abdullah Ebadi; Engineer Abdul Ahad Omaid; Engineer Spozmy; and Engineer Shapary Tokhi. The ongoing efforts of Engineer Mir M. Atiq Kazimi (Team leader); Engineer M. Anwar Housinzada; and Engineer Shereen Agha of the AGS Records Department to organize and catalogue the AGS material were invaluable in locating and preserving these data. The efforts of the entire AGS staff to personally preserve these data during war time, in the absence of virtually any supporting infrastructure, was truly remarkable. The efforts by the British Geological Survey (BGS) to assist the AGS in archiving these data, and the personal assistance provided by BGS (notably Robert McIntosh), to the USGS teams were also appreciated. The logistical support provided by the U.S. Embassy in Kabul, particularly the Afghanistan Reconstruction Group, was critical to the success of the USGS teams while in Afghanistan. Finally, the efforts of the Minister of the Ministry of Mines and Industries (M. Ibrahim Adel) to support the USGS coal resource assessment in Afghanistan, in both his current and former role as President of the Mines Affairs Department was vital to this effort.

  19. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  20. Seabed photographs, sediment texture analyses, and sun-illuminated sea floor topography in the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, Page C.; Gallea, Leslie B.; Blackwood, Dann S.; Twomey, Erin R.

    2010-01-01

    The U.S. Geological Survey, in collaboration with National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 km (1,100 nmi) in size and was subdivided into 18 quadrangles. An extensive series of sea-floor maps of the region based on multibeam sonar surveys has been published as paper maps and online in digital format (PDF, EPS, PS). In addition, 2,628 seabed-sediment samples were collected and analyzed and are in the usSEABED: Atlantic Coast Offshore Surficial Sediment Data Release. This report presents for viewing and downloading the more than 10,600 still seabed photographs that were acquired during the project. The digital images are provided in thumbnail, medium (1536 x 1024 pixels), and high (3071 x 2048) resolution. The images can be viewed by quadrangle on the U.S. Geological Survey Woods Hole Coastal and Marine Science Center's photograph database. Photograph metadata are embedded in each image in Exchangeable Image File Format and also provided in spreadsheet format. Published digital topographic maps and descriptive text for seabed features are included here for downloading and serve as context for the photographs. An interactive topographic map for each quadrangle shows locations of photograph stations, and each location is linked to the photograph database. This map also shows stations where seabed sediment was collected for texture analysis; the results of grain-size analysis and associated metadata are presented in spreadsheet format.

  1. Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009

    USGS Publications Warehouse

    Soller, David R.

    2011-01-01

    As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.

  2. National Map Data Base On Landslide Prerequisites In Clay and Silt Areas - Development of Prototype

    NASA Astrophysics Data System (ADS)

    Viberg, Leif

    Swedish geotechnical institute, SGI, has in co-operation with Swedish geologic survey, Lantmateriet (land surveying) and Swedish Rescue Service developed a theme database on landslide prerequisites in clay and silt areas. The work is carried out on commission of the Swedish government. A report with suggestions for production of the database has been delivered to the government. The database is a prototype, which has been tested in an area in northern Sweden. Recommended presentation map scale is about 1:50 000. Distribution of the database via Internet is discussed. The aim of the database is to use it as a modern planning tool in combination with other databases, e g databases on flooding prognoses. The main use is supposed to be in early planning stages, e g for new building and infrastructure development and for risk analyses. The database can also be used in more acute cases, e g for risk analyses and rescue operations in connection with flooding over large areas. Users are supposed to be municipal and county planners and rescue services, infrastructure planners, consultants and assurance companies. The database is constructed by combination of two existing databases: Elevation data and soil map data. The investigation area is divided into three zones with different stability criteria: 1. Clay and silt in sloping ground or adjoining water. 2. Clay and silt in flat ground. 3. Rock and other soils than clay and silt. The geometrical and soil criteria for the zones are specified in an algoritm, that will do the job to sort out the different zones. The algoritm is thereby using data from the elevation and soil databases. The investigation area is divided into cells (raster format) with 5 x 5 m side length. Different algoritms had to be developed before reasonable calculation time was reached. The theme may be presented on screen or as a map plot. A prototype map has been produced for the test area. A description is accompanying the map. The database is suggested to be produced in landslide prone areas in Sweden and approximately 200-300 map sheets (25 x 25 km) are required.

  3. Digital Geological Mapping for Earth Science Students

    NASA Astrophysics Data System (ADS)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the course materials. Consequently, a set of staff training materials are being developed in parallel to those for the students. These focus on the operation of the software and an introduction to the structure of the exercises. The presentation will review the teaching exercises and student and staff responses to their introduction.

  4. A community effort to construct a gravity database for the United States and an associated Web portal

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Kucks, R.; Webring, M.; Briesacher, A.; Rujawitz, K.; Hittleman, A.M.; Roman, D.R.; Winester, D.; Aldouri, R.; Seeley, J.; Rasillo, J.; Torres, R.; Hinze, W. J.; Gates, A.; Kreinovich, V.; Salayandia, L.

    2006-01-01

    Potential field data (gravity and magnetic measurements) are both useful and costeffective tools for many geologic investigations. Significant amounts of these data are traditionally in the public domain. A new magnetic database for North America was released in 2002, and as a result, a cooperative effort between government agencies, industry, and universities to compile an upgraded digital gravity anomaly database, grid, and map for the conterminous United States was initiated and is the subject of this paper. This database is being crafted into a data system that is accessible through a Web portal. This data system features the database, software tools, and convenient access. The Web portal will enhance the quality and quantity of data contributed to the gravity database that will be a shared community resource. The system's totally digital nature ensures that it will be flexible so that it can grow and evolve as new data, processing procedures, and modeling and visualization tools become available. Another goal of this Web-based data system is facilitation of the efforts of researchers and students who wish to collect data from regions currently not represented adequately in the database. The primary goal of upgrading the United States gravity database and this data system is to provide more reliable data that support societal and scientific investigations of national importance. An additional motivation is the international intent to compile an enhanced North American gravity database, which is critical to understanding regional geologic features, the tectonic evolution of the continent, and other issues that cross national boundaries. ?? 2006 Geological Society of America. All rights reserved.

  5. Geonucleus, the freeware application for managing geological mapping data in GIS

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár

    2016-04-01

    Geological mapping is the most traditional way of collecting information from the deposits and rocks. The traditional technique of the documentation was refined by generations of geologists. These traditions were implemented into Geonucleus to create a tool for precise data-recording after fieldwork, but giving the freedom of pondering the details of the observation as well. In 2012 a general xml-based data structure was worked out for storing field observations for the Geological Institute of Hungary (Albert et al. 2012). This structure was implemented into the desktop version of Geonucleus, which creates a database of the recorded data on the client computer. The application saves the complete database in one file, which can be loaded into a GIS. The observations can be saved in simple text format as well, but primarily the kml (Keyhole Markup Languege) is supported. This way, the observations are visualized in comprehensible forms (e.g. on a 3D surface model with satellite photos in Google Earth). If the kml is directly visualized in Google Earth, an info-bubble will appear via clicking on a pinpoint. It displays all the metadata (e.g. index, coordinates, date, logger name, etc.), the descriptions and the photos of the observed site. If a more general GIS application is the aim (e.g. Global Mapper or QGIS), the file can be saved in a different format, but still in a kml-structure. The simple text format is recommended if the observations are to be imported in a user-defined relational database system (RDB). Report text-type is also available if a detailed description of one or more observed site is needed. Importing waypoint gpx-files can quicken the logging. The code was written in VisualBasic.Net. The app is freely accessible from the geonucleus.elte.hu site and it can be installed on any system, which has the .Net framework 4.0 or higher. The software is bilingual (English and Hungarian), and the app is designed for general geological mapping purposes (e.g. quick logging of field trips). The layout of the GUI has three components: 1) metadata area, 2) general description area with unlimited storing capacity, 3) switchable panels for observations, measurements, photos and notes. The latter includes panels for stratigraphy, structures, fossils, samples, photo uploads and general notes. Details like the sequence and contact type of layers, the parameters of structures and slickensides, name and condition of fossils and purpose of sampling are also available to log (but not compulsorily). It is also a tool for teaching geological mapping, since the available parameters - listed in the app - draws attention to the details, which are to be observed on the field. Reference: Albert G, Csillag G, Fodor L, Zentai L. 2012: Visualisation of Geological Observations on Web 2.0 Based Maps, in: Zentai, L. and Reyes-Nunez, J (eds.): Maps for the Future - Children, Education and Internet, Series: Lecture Notes in Geoinformation and Cartography, Tentative volume 5 - Springer, pp. 165-178.

  6. Geologic mapping of the Amirani-Gish Bar region of Io: Implications for the global geologic mapping of Io

    USGS Publications Warehouse

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Jaeger, W.L.; Schenk, P.M.

    2007-01-01

    We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation "Maui Eruptive Center" should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo-Voyager global mosaics. To convey the complexity of ionian surface geology, we find that a new global geologic map of Io should include a map sheet displaying the global abundances and types of surface features as well as a complementary GIS database as a means to catalog the record of surface changes observed since the Voyager flybys and during the Galileo mission. ?? 2006 Elsevier Inc. All rights reserved.

  7. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  8. Landslide deposit boundaries for the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey.Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  9. SIG Contribution in the Making of Geotechnical Maps in Urban Areas

    NASA Astrophysics Data System (ADS)

    Monteiro, António; Pais, Luís Andrade; Rodrigues, Carlos; Carvalho, Paulo

    2017-10-01

    The use of Geographic Information Systems (GIS) has spread to several science areas, from oceanography to geotechnics. Its application in the urban mapping was intensified in the last century, which allowed a great development, due to the use of geographic database, new analysis tools and, more recently, free open source software. Geotechnical cartography struggle with a permanent and large environment re-organization in urban area, due to new building construction, trenching and the drilling of sampling wells and holes. This creates an extra important and largest volume of data at any pre-existence geological map. The main problem results on the fact that the natural environment is covered with buildings and communications system. The purpose of this work is to create a viable geographic information base for geotechnical mapping through a free GIS computer program and open source, with non-traditional cartographic sources, giving preference to open platforms. QGIS was used as software and “Google Maps”, “Bing Maps” and “OpenStreetMap” were applied as cartographic sources using the “OpenLayers plugin” module. Finally, we also pretend to identify and delimit the degree of granite’s change and fracturing areas using a “Streetview” platform. This model has cartographic input which are a geological map study area, open cartographic web archives and the use of “Streetview” platform. The output has several layouts, such as topography intersection (roads, borders, etc.), with geological map and the bordering area of Guarda Urban Zone. The use of this platform types decrease the collect data time and, sometimes, a careful observation of pictures that were taken during excavations may reveal important details for geological mapping in the study area.

  10. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  11. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A

    USGS Publications Warehouse

    Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.

    2010-01-01

    The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.

  12. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.

  13. The Seismotectonic Map of Africa

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2015-04-01

    We present the Seismotectonic Map of Africa based on a geological, geophysical and geodetic database including the instrumental seismicity and re-appraisal of large historical events with harmonization and homogenization of earthquake parameters in catalogues. Although the seismotectonic framework and mapping of the African continent is a difficult task, several previous and ongoing projects provide a wealth of data and outstanding results. The database of large and moderate earthquakes in different geological domains includes the coseismic and Quaternary faulting that reveals the complex nature of the active tectonics in Africa. The map also benefits from previous works on local and regional seismotectonic maps that needed to be integrated with the lithospheric and upper mantle structures from tomographic anisotropy and gravity anomaly into a continental framework. The synthesis of earthquake and volcanic studies with the analysis of long-term (late Quaternary) and short-term (last decades and centuries) active deformation observed with geodetic and other approaches presented along with the seismotectonic map serves as a basis for hazard calculations and the reduction of seismic risks. The map may also be very useful in the assessment of seismic hazard and mitigation of earthquake risk for significant infrastructures and their implications in the socio-economic impact in Africa. In addition, the constant population increase and infrastructure growth in the continent that exacerbate the earthquake risk justify the necessity for a continuous updating of the seismotectonic map. The database and related map are prepared in the framework of the IGC Project-601 "Seismotectonics and Seismic Hazards in Africa" of UNESCO-IUGS, funded by the Swedish International Development Agency and UNESCO-Nairobi for a period of 4 years (2011 - 2014), extended to 2016. * Mustapha Meghraoui (Coordinator) EOST - IPG Strasbourg CNRS-UMR 7516 m.meghraoui@unistra.fr corresponding author. Paulina Amponsah (AECG, Accra), Abdelhakim Ayadi (CRAAG, Algiers), Atalay Ayele (Univ. Addis Ababa), Ateba Bekoa (Bueah Univ. Yaounde), Abdunnur Bensuleman (Tripoli Univ.), Damien Delvaux (MRAC-Tervuren); Mohamed El Gabry (NRIAG, Cairo), Rui-Manuel Fernandes (Beira Univ.) ; Vunganai Midzi & Magda Roos (CGS, Pretoria), Youssef Timoulali (Univ. Mohamed V, Rabat). Website: http://eost.u-strasbg.fr/igcp601/index.html

  14. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    USGS Publications Warehouse

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (<3.5 m.y.) are less common. Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater detail (1:24,000) was modified for inclusion here. Figure 2 (sheet 3) shows the mapping credit for previous work; figure 3 (sheet 3) shows locations discussed throughout the text. A CD-ROM entitled Database for the Geologic Map of Lassen Volcanic National Park and Vicinity, California accompanies the printed map (Muffler and others, 2010). The CD-ROM contains ESRI compatible geographic information system data files used to create the 1:50,000-scale geologic map, both geologic and topographic data and their associated metadata files, and printable versions of the geologic map and pamphlet as PDF formatted files. The 1:50,000-scale geologic map was compiled from 1:24,000-scale geologic maps of individual quadrangles that are also included in the CD-ROM. It also contains ancillary data that support the map including locations of rock samples selected for chemical analysis (Clynne and others, 2008) and radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the focusing of basaltic flux from the mantle and resultant enhanced interaction of mafic magma with the crust. Collectively, volcanic centers mark the axis of the southernmost Cascade Range. The map area includes the entire Lassen Volcanic Center, parts of three older volcanic centers (Maidu, Dittmar, and Latour), and the products of regional volcanism (fig. 4, sheet 3). Terminology used for subdivision of the Lassen Volcanic Center has been modified from Clynne (1984, 1990).

  15. Publications of the Western Earth Surface Processes Team, 1999

    USGS Publications Warehouse

    Stone, Paul; Powell, Charles L.

    2000-01-01

    The Western Earth Surfaces Processes Team (WESPT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth- science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 1999 as well as additional 1997 and 1998 publications that were not included in the previous list (USGS Open-file Report 99-302). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects.

  16. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.

  17. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  18. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the SimpleLithology CGI vocabulary and aligned as a subclass of the Substance class in NASA SWEET ontology), and 3) an ontology of the MappedFeatures (as defined in the Representation sub-taxonomy of the NASA SWEET ontology). The latter correspond to the concrete elements of the map, with their geometry (polygons, lines) and geographical coordinates. The ontology model has been developed by taking into account applications primarily concerning the needs of geological mapping; nevertheless, the model is general enough to be applied to other contexts. In particular, we show how the automatic reasoning capabilities of the ontology system can be employed in tasks of unit definition and input filling of the map database and for supporting geologists in thematic re-classification of the map instances (e.g. for coloring tasks). ---------------------------------------- [1] http://www.geosciml.org [2] http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf [3] http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html [4] https://www.seegrid.csiro.au/subversion/CGI_CDTGVocabulary/trunk/OwlWork/CGI_Lithology.owl [5] We are currently neglecting the encoding of the geologic events, left as a future work. [6] http://resource.geosciml.org/vocabulary/cgi/201211/ [7] Web site: https://sweet.jpl.nasa.gov, Di Giuseppe et al., 2013, SWEET ontology coverage for earth system sciences, http://www.ics.uci.edu/~ndigiuse/Nicholas_DiGiuseppe/Research_files/digiuseppe14.pdf; S. Barahmand et al. 2009, A Survey on SWEET Ontologies and their Applications, http://www-scf.usc.edu/~taheriya/reports/csci586-report.pdf

  19. How semantics can inform the geological mapping process and support intelligent queries

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss how the formal encoding of the geological knowledge opens new perspectives for the analysis and representation of the geological systems. In fact, once that the major concepts are defined, the resulting formal conceptual model of the geologic system can hold across different technical and scientific communities. Furthermore, this would allow for a semi-automatic or automatic classification of the cartographic database, where a significant number of properties (attributes) of the recorded instances could be inferred through computational reasoning. So, for example, the system can be queried for showing the instances that satisfy some property (e.g., "Retrieve all the lithostratigraphic units composed of clastic sedimentary rock") or for classifying some unit according to the properties holding for that unit (e.g., "What is the class of the geologic unit composed of siltstone material?").

  20. Site-conditions map for Portugal based on VS measurements: methodology and final model

    NASA Astrophysics Data System (ADS)

    Vilanova, Susana; Narciso, João; Carvalho, João; Lopes, Isabel; Quinta Ferreira, Mario; Moura, Rui; Borges, José; Nemser, Eliza; Pinto, carlos

    2017-04-01

    In this paper we present a statistically significant site-condition model for Portugal based on shear-wave velocity (VS) data and surface geology. We also evaluate the performance of commonly used Vs30 proxies based on exogenous data and analyze the implications of using those proxies for calculating site amplification in seismic hazard assessment. The dataset contains 161 Vs profiles acquired in Portugal in the context of research projects, technical reports, academic thesis and academic papers. The methodologies involved in characterizing the Vs structure at the sites in the database include seismic refraction, multichannel analysis of seismic waves and refraction microtremor. Invasive measurements were performed in selected locations in order to compare the Vs profiles obtained from both invasive and non-invasive techniques. In general there was good agreement in the subsurface structure of Vs30 obtained from the different methodologies. The database flat-file includes information on Vs30, surface geology at 1:50.000 and 1:500.000 scales, elevation and topographic slope and based on SRTM30 topographic dataset. The procedure used to develop the site-conditions map is based on a three-step process that includes defining a preliminary set of geological units based on the literature, performing statistical tests to assess whether or not the differences in the distributions of Vs30 are statistically significant, and merging of the geological units accordingly. The dataset was, to some extent, affected by clustering and/or preferential sampling and therefore a declustering algorithm was applied. The final model includes three geological units: 1) Igneous, metamorphic and old (Paleogene and Mesozoic) sedimentary rocks; 2) Neogene and Pleistocene formations, and 3) Holocene formations. The evaluation of proxies indicates that although geological analogues and topographic slope are in general unbiased, the latter shows significant bias for particular geological units and subsequently for some geographical regions.

  1. Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand

    NASA Astrophysics Data System (ADS)

    Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong

    2014-03-01

    Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt.

  2. Map and map database of susceptibility to slope failure by sliding and earthflow in the Oakland area, California

    USGS Publications Warehouse

    Pike, R.J.; Graymer, R.W.; Roberts, Sebastian; Kalman, N.B.; Sobieszczyk, Steven

    2001-01-01

    Map data that predict the varying likelihood of landsliding can help public agencies make informed decisions on land use and zoning. This map, prepared in a geographic information system from a statistical model, estimates the relative likelihood of local slopes to fail by two processes common to an area of diverse geology, terrain, and land use centered on metropolitan Oakland. The model combines the following spatial data: (1) 120 bedrock and surficial geologic-map units, (2) ground slope calculated from a 30-m digital elevation model, (3) an inventory of 6,714 old landslide deposits (not distinguished by age or type of movement and excluding debris flows), and (4) the locations of 1,192 post-1970 landslides that damaged the built environment. The resulting index of likelihood, or susceptibility, plotted as a 1:50,000-scale map, is computed as a continuous variable over a large area (872 km2) at a comparatively fine (30 m) resolution. This new model complements landslide inventories by estimating susceptibility between existing landslide deposits, and improves upon prior susceptibility maps by quantifying the degree of susceptibility within those deposits. Susceptibility is defined for each geologic-map unit as the spatial frequency (areal percentage) of terrain occupied by old landslide deposits, adjusted locally by steepness of the topography. Susceptibility of terrain between the old landslide deposits is read directly from a slope histogram for each geologic-map unit, as the percentage (0.00 to 0.90) of 30-m cells in each one-degree slope interval that coincides with the deposits. Susceptibility within landslide deposits (0.00 to 1.33) is this same percentage raised by a multiplier (1.33) derived from the comparative frequency of recent failures within and outside the old deposits. Positive results from two evaluations of the model encourage its extension to the 10-county San Francisco Bay region and elsewhere. A similar map could be prepared for any area where the three basic constituents, a geologic map, a landslide inventory, and a slope map, are available in digital form. Added predictive power of the new susceptibility model may reside in attributes that remain to be explored?among them seismic shaking, distance to nearest road, and terrain elevation, aspect, relief, and curvature.

  3. Geologic map of the Fredonia 30' x 60' quadrangle, Mohave and Coconino counties, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2008-01-01

    This geologic map is the result of a cooperative effort of the U.S. Geological Survey, the National Park Service, the U.S. Forest Service, and the Bureau of Land Management (BLM) and the Kaibab-Paiute Tribe to provide a regional geologic database for resource management officials of all government and agencies, city municipalities, private enterprises, and individuals of this part of the Arizona Strip. The Arizona Strip is part of northwestern Arizona north of the Colorado River and bounded by the States of Nevada and Utah. Field work on the Kaibab-Paiute Indian Reservation was conducted from 2002 to 2005 with permission from the Kaibab-Paiute Tribal Government of that administration and permission was granted to publish a geologic map of 4 quadrangles online (Billingsley and others, 2004). The Kaibab-Paiute Tribal government of 2006 to 2008 requested that all geologic information within the Kaibab-Paiute Indian Reservation not be published as part of the Fredonia 30' x 60' quadrangle (this publication). For further information, contact the Kaibab-Paiute Tribal government at HC 65 Box 2, Fredonia, Arizona, 86022, telephone # (928) 643-7245. Visitors to the Kaibab-Paiute Indian Reservation are required to obtain a permit and permission for access from the Tribal Offices at the junction of State Highway 389 and the paved road leading to Pipe Spring National Monument. The Fredonia 30' x 60' quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Mohave and Coconino Counties, northern Arizona and is bounded by longitude 112 deg to 113 deg W., and latitude 36 deg 30' to 37 deg N. The map area lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into seven physiographic parts: the Grand Canyon (Kanab Canyon and its tributaries), Kanab Plateau, Uinkaret Plateau, Kaibab Plateau, Paria Plateau, House Rock Valley, and Moccasin Mountains as defined by Billingsley and others, 1997, (fig. 1). Elevations range from 2,737 m (8,980 ft) just west of State Highway 67 on the Kaibab Plateau, southeast corner of the map area to about 927 m (3,040 ft) in Kanab Canyon, south-central edge of the map area.

  4. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  5. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this wide deformation zone. In our study, we have mapped this complicated region since 2008 by using the data and the steps, which are described briefly above. After our joint-analyses, we show that there is no continuous single and narrow fault, the Burdur-Fethiye Fault, as it was previously suggested by many researches. Instead, the whole region is deformed under the oblique-sinistral shearing with considerable amount of extension, which causes a counterclockwise rotation within the zone.

  6. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2010-01-01

    Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.

  7. A VS30 map for California with geologic and topographic constraints

    USGS Publications Warehouse

    Thompson, Eric; Wald, David J.; Worden, Charles

    2014-01-01

    For many earthquake engineering applications, site response is estimated through empirical correlations with the time‐averaged shear‐wave velocity to 30 m depth (VS30). These applications therefore depend on the availability of either site‐specific VS30 measurements or VS30 maps at local, regional, and global scales. Because VS30 measurements are sparse, a proxy frequently is needed to estimate VS30 at unsampled locations. We present a new VS30 map for California, which accounts for observational constraints from multiple sources and spatial scales, such as geology, topography, and site‐specific VS30measurements. We apply the geostatistical approach of regression kriging (RK) to combine these constraints for predicting VS30. For the VS30 trend, we start with geology‐based VS30 values and identify two distinct trends between topographic gradient and the residuals from the geology VS30 model. One trend applies to deep and fine Quaternary alluvium, whereas the second trend is slightly stronger and applies to Pleistocene sedimentary units. The RK framework ensures that the resulting map of California is locally refined to reflect the rapidly expanding database of VS30 measurements throughout California. We compare the accuracy of the new mapping method to a previously developed map of VS30 for California. We also illustrate the sensitivity of ground motions to the new VS30 map by comparing real and scenario ShakeMaps with VS30 values from our new map to those for existingVS30 maps.

  8. Spatial database for the management of "urban geology" geothematic information: the case of Drama City, Greece

    NASA Astrophysics Data System (ADS)

    Pantelias, Eustathios; Zervakou, Alexandra D.; Tsombos, Panagiotis I.; Nikolakopoulos, Konstantinos G.

    2008-10-01

    The aggregation of population in big cities leads to the concentration of human activities, economic wealth, over consumption of natural resources and urban growth without planning and sustainable management. As a result, urban societies are exposed to various dangers and threats with economical, social, ecological - environmental impacts on the urban surroundings. Problems associated with urban development are related to their geological conditions and those of their surroundings, e.g. flooding, land subsidence, groundwater pollution, soil contamination, earthquakes, landslides, etc. For these reasons, no sustainable urban planning can be done without geological information support. The first systematic recording, codification and documentation of "urban geology" geothematic information in Greece is implemented by the Institute of Geological and Mineral Exploration (I.G.M.E.) in the frame of project "Collection, codification and documentation of geothematic information for urban and suburban areas in Greece - pilot applications". Through the implementation of this project, all geothematic information derived from geological mapping, geotechnical - geochemical - geophysical research and measurements in four pilot areas of Greece Drama (North Greece), Nafplio & Sparti (Peloponnesus) and Thrakomakedones (Attica) is stored and processed in specially designed geodatabases in GIS environment containing vector and raster data. For the specific GIS application ArcGIS Personal Geodatabase is used. Data is classified in geothematic layers, grouped in geothematic datasets (e.g. Topography, Geology - Tectonics, Submarine Geology, Technical Geology, Hydrogeology, Soils, Radioactive elements, etc) and being processed in order to produced multifunctional geothematic maps. All compiled data constitute the essential base for land use planning and environmental protection in specific urban areas. With the termination of the project the produced geodatabase and other digital data (thematic maps, DEMs) will be available to all, public or private sector, concerning geological environment in urban and suburban areas, being in charge of protection and improvement of natural and human made environment.

  9. Map showing spatial and temporal relations of mountain and continental glaciations on the Northern Plains, primarily in northern Montana and northwestern North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.; Straub, Arthur W.

    2004-01-01

    This report is an overview of glacial limits and glacial history on the plains in northern Montana and northeastern North Dakota (long 102?-114?W.) and also in adjacent southern Alberta and Saskatchewan, Canada. In the Rocky Mountains and on the plains adjacent to the mountains in Montana, the map also depicts spatial relations of valley glaciers and piedmont ice lobes to continental ice sheets. Glacial limits east of 102?, in the United States and also in adjacent Canada, are depicted on published maps of the U.S. Geological Survey Quaternary Geologic Atlas of the United States (I-1420) map series. The limits shown here are from data compiled for the Lethbridge, Regina, Yellowstone, and Big Horn Mountains 4? x 6? quadrangles in the Quaternary Geologic Atlas series. This geospatial database has been prepared with a degree of detail appropriate for viewing at a scale of 1:1,000,000. Because of the degree of generalization required, the map is intended for regional analysis, rather than for detailed analysis in specific areas. It depicts the geographic positions of the limits of mountain and continental glaciations and the limits of selected glacial readvances. That information provides a foundation for reconstruction of geologic history and for reconstruction. The base map is simplified. Selected hydrographic features, selected towns and cities, selected physiographic features, and a grid of 1? x 2? topographic quadrangles are included to aid the reader in location of the glacial limits and other features that are depicted here on other maps at different scales. Most of the geologic data were compiled at 1:250,000 scale. The nominal reading scale of the digitized map data is 1:1,000,000. Enlargement will not restore resolution that was lost by simplification or generalization of data. Accompanying illustrations show regional directions of ice movement from Canada into the United States during maximum Illinoian glaciation, during maximum late Wisconsin glaciation, and during a later regional glacial readvance maximum

  10. Vegetation classification and distribution mapping report Mesa Verde National Park

    USGS Publications Warehouse

    Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne

    2009-01-01

    The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted during photointerpretation, and non-vegetated land cover, such as infrastructure, land use, and geological land cover. The base map classes consist of 5,007 polygons in the project area. A field-based accuracy assessment of the base map classes showed overall accuracy to be 43.5%. Seven map classes comprise 89.1% of the park vegetated land cover. The group map classes represent aggregations of the base map classes, approximating the group level of the National Vegetation Classification Standard, version 2 (Federal Geographic Data Committee 2007), and reflecting physiognomy and floristics. Terrestrial ecological systems, as described by NatureServe (Comer et al. 2003), were used as the fi rst approximation of the group level. The project team identified 14 group map classes for this project. The overall accuracy of the group map classes was determined using the same accuracy assessment data as for the base map classes. The overall accuracy of the group representation of vegetation was 80.3%. In consultation with park staff , the team developed management map classes, consisting of park-defined groupings of base map classes intended to represent a balance between maintaining required accuracy and providing a focus on vegetation of particular interest or import to park managers. The 23 management map classes had an overall accuracy of 73.3%. While the main products of this project are the vegetation classification and the vegetation map database, a number of ancillary digital geographic information system and database products were also produced that can be used independently or to augment the main products. These products include shapefiles of the locations of field-collected data and relational databases of field-collected data.

  11. Database of potential sources for earthquakes larger than magnitude 6 in Northern California

    USGS Publications Warehouse

    ,

    1996-01-01

    The Northern California Earthquake Potential (NCEP) working group, composed of many contributors and reviewers in industry, academia and government, has pooled its collective expertise and knowledge of regional tectonics to identify potential sources of large earthquakes in northern California. We have created a map and database of active faults, both surficial and buried, that forms the basis for the northern California portion of the national map of probabilistic seismic hazard. The database contains 62 potential sources, including fault segments and areally distributed zones. The working group has integrated constraints from broadly based plate tectonic and VLBI models with local geologic slip rates, geodetic strain rate, and microseismicity. Our earthquake source database derives from a scientific consensus that accounts for conflict in the diverse data. Our preliminary product, as described in this report brings to light many gaps in the data, including a need for better information on the proportion of deformation in fault systems that is aseismic.

  12. Possible costs associated with investigating and mitigating geologic hazards in rural areas of western San Mateo County, California with a section on using the USGS website to determine the cost of developing property for residences in rural parts of San Mateo County, California

    USGS Publications Warehouse

    Brabb, Earl E.; Roberts, Sebastian; Cotton, William R.; Kropp, Alan L.; Wright, Robert H.; Zinn, Erik N.; Digital database by Roberts, Sebastian; Mills, Suzanne K.; Barnes, Jason B.; Marsolek, Joanna E.

    2000-01-01

    This publication consists of a digital map database on a geohazards web site, http://kaibab.wr.usgs.gov/geohazweb/intro.htm, this text, and 43 digital map images available for downloading at this site. The report is stored as several digital files, in ARC export (uncompressed) format for the database, and Postscript and PDF formats for the map images. Several of the source data layers for the images have already been released in other publications by the USGS and are available for downloading on the Internet. These source layers are not included in this digital database, but rather a reference is given for the web site where the data can be found in digital format. The exported ARC coverages and grids lie in UTM zone 10 projection. The pamphlet, which only describes the content and character of the digital map database, is included as Postscript, PDF, and ASCII text files and is also available on paper as USGS Open-File Report 00-127. The full versatility of the spatial database is realized by importing the ARC export files into ARC/INFO or an equivalent GIS. Other GIS packages, including MapInfo and ARCVIEW, can also use the ARC export files. The Postscript map image can be used for viewing or plotting in computer systems with sufficient capacity, and the considerably smaller PDF image files can be viewed or plotted in full or in part from Adobe ACROBAT software running on Macintosh, PC, or UNIX platforms.

  13. The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy

    NASA Astrophysics Data System (ADS)

    Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana

    2010-05-01

    The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data (solutions: ArcIMS services from Arcmap projects or a specific SLD implementation for WMS services); - an update of "Guidelines for the supply of geological data" in a short time will be published; - the Geological Survey of Italy is officially involved in the IUGS-CGI working group for the processing and experimentation on the new GeoSciML language with the WMS/WFS services. The availability of geographic informations occurs through the metadata that can be distributed online so that search engines can find them through specialized research. The collected metadata in catalogs are structured in a standard (ISO 19135). The catalogs are a ‘common' interface to locate, view and query data and metadata services, web services and other resources. Then, while working in a growing sector of the environmental knowledgement the focus is to collect the participation of other subjects that contribute to the enrichment of the informative content available, so as to be able to arrive to a real portal of national interest especially in case of disaster management.

  14. Macrostrat and GeoDeepDive: A Platform for Geological Data Integration and Deep-Time Research

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.; Ross, I.; Czaplewski, J. J.

    2016-12-01

    Characterizing the quantity, lithology, age, and properties of rocks and sediments in the upper crust is central to many questions in Earth science. Although a large number of geological maps, regional syntheses, and sample-based measurements have been published in a variety of formats, there is no system for integrating and accessing rock record-derived data or for facilitating the large-scale quantitative interrogation of the physical, chemical, and biological properties of Earth's crust. Here we describe two data resources that aim to overcome some of these limitations: 1) Macrostrat, a geospatial database and supporting cyberinfrastructure that is designed to enable quantitative analyses of the entire assemblage of surface and subsurface sedimentary, igneous and metamorphic rocks, and 2) GeoDeepDive, a digital library and high throughput computing system designed to facilitate the location and extraction of information and data from the published literature. Macrostrat currently contains general summaries of the age and lithology of rocks and sediments in the upper crust at 1,474 regions in North and Central America, the Caribbean, New Zealand, and the deep sea. Distributed among these geographic regions are nearly 34,000 lithologically and chronologically-defined geological units, many of which are linked to a bedrock geologic map database with more than 1.7 million globally distributed units. Sample-derived data, including fossil occurrences in the Paleobiology Database and more than 180,000 geochemical and outcrop-derived measurements are linked to Macrostrat units and/or lithologies within those units. The rock names, lithological terms, and geological time intervals that are applied to Macrostrat units define a hierarchical, spatially and temporally indexed vocabulary that is leveraged by GeoDeepDive in order to provide researchers access to data within the scientific literature as it is published and ingested into the infrastructure. All data in Macrostrat are accessible via an Application Programming Interface, which enables the development of mobile and analytical applications. The GeoDeepDive infrastructure also supports the development and execution of applications that are tailored to the specific, literature-based data location and extraction needs of geoscientists.

  15. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone, siltstone, and phyllite.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics including the Moody Ledge pluton and the Scrag granite of Billings (1937). Subsequent plutonism related to the Acadian orogeny occurred after volcanism and deposition resulted in the Littleton Formation during the Late Devonian, including the intrusion of the Haverhill pluton and French Pond Granite found in the southern part of the map.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.

  16. Estimation of water table based on geomorphologic and geologic conditions using public database of geotechnical information over Japan

    NASA Astrophysics Data System (ADS)

    Koshigai, Masaru; Marui, Atsunao

    Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.

  17. Location and age database for selected foraminifer samples collected by Exxon Petroleum geologists in California

    USGS Publications Warehouse

    Brabb, Earl E.; Parker, John M.

    2003-01-01

    Most of the geologic maps published for central California before 1960 were made without the benefit of age determinations from microfossils. The ages of Cretaceous and Tertiary rocks in the mostly poorly exposed and structurally complex sedimentary rocks represented in the Coast Ranges are critical in determining stratigraphic succession or lack of it, and in determining whether the juxtaposition of similar appearing but different age formations means a fault is present. Since the 1930’s, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of the sediment containing the microfossils. This information has been so confidential that some companies even coded the names of foraminifers to prevent disclosure. In the past 20 years, however, the attitude of petroleum companies about this information has changed, and many of the formerly confidential materials and reports are now available. We report here on 1,964 Exxon foraminifer samples mostly from surface localities in the San Francisco Bay region, and elsewhere in California. Most but not all the samples were plotted on U. S. Geological Survey (USGS) 7.5’ topographic maps or on obsolete USGS 15’ maps. The information from the slides can be used to update geologic maps prepared without the benefit of microfossil data, to analyze the depth and temperature of ocean water covering parts of California during the Mesozoic and Cenozoic Eras, and for solving nomenclature and other scientific problems. A similar report on more than 30,000 slides for surface samples collected by Chevron geologists has been released (Brabb and Parker, 2003), and another report provides information on slides for more than 2000 oil test wells in Northern California (Brabb, Powell, and Brocher, 2001).

  18. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less than 2 degrees are shown as horizontal. Structure contours constructed on the base of the Boone Formation were hand drawn based on elevations of control points on both lower and upper contacts of the Boone Formation as well as other limiting information on their maximum or minimum elevations.

  19. Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.

  20. Geologic Surface Effects of Underground Nuclear Testing, Buckboard Mesa, Climax Stock, Dome Mountain, Frenchman Flat, Rainier/Aqueduct Mesa, and Shoshone Mountain, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Grasso, Dennis N.

    2003-01-01

    Surface effects maps were produced for 72 of 89 underground detonations conducted at the Frenchman Flat, Rainier Mesa and Aqueduct Mesa, Climax Stock, Shoshone Mountain, Buckboard Mesa, and Dome Mountain testing areas of the Nevada Test Site between August 10, 1957 (Saturn detonation, Area 12) and September 18, 1992 (Hunters Trophy detonation, Area 12). The ?Other Areas? Surface Effects Map Database, which was used to construct the maps shown in this report, contains digital reproductions of these original maps. The database is provided in both ArcGIS (v. 8.2) geodatabase format and ArcView (v. 3.2) shapefile format. This database contains sinks, cracks, faults, and other surface effects having a combined (cumulative) length of 136.38 km (84.74 mi). In GIS digital format, the user can view all surface effects maps simultaneously, select and view the surface effects of one or more sites of interest, or view specific surface effects by area or site. Three map layers comprise the database. They are: (1) the surface effects maps layer (oase_n27f), (2) the bar symbols layer (oase_bar_n27f), and (3) the ball symbols layer (oase_ball_n27f). Additionally, an annotation layer, named 'Ball_and_Bar_Labels,' and a polygon features layer, named 'Area12_features_poly_n27f,' are contained in the geodatabase version of the database. The annotation layer automatically labels all 295 ball-and-bar symbols shown on these maps. The polygon features layer displays areas of ground disturbances, such as rock spall and disturbed ground caused by the detonations. Shapefile versions of the polygon features layer in Nevada State Plane and Universal Transverse Mercator projections, named 'area12_features_poly_n27f.shp' and 'area12_features_poly_u83m.shp,' are also provided in the archive.

  1. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  2. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  3. Digital elevation data as an aid to land use and land cover classification

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1981-01-01

    In relatively well mapped areas such as the United States and Europe, digital data can be developed from topographic maps or from the stereo aerial photographic movie. For poorer mapped areas (which involved most of the world's land areas), a satellite designed to obtain stereo data offers the best hope for a digital elevation database. Such a satellite, known as Mapsat, has been defined by the U.S. Geological Survey. Utilizing modern solid state technology, there is no reason why such stereo data cannot be acquired simultaneously with the multispectral response, thus simplifying the overall problem of land use and land cover classification.

  4. Quantitative analysis of terrain units mapped in the northern quarter of Venus from Venera 15/16 data

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    The contacts between 34 geological/geomorphic terrain units in the northern quarter of Venus mapped from Venera 15/16 data were digitized and converted to a Sinusoidal Equal-Area projection. The result was then registered with a merged Pioneer Venus/Venera 15/16 altimetric database, root mean square (rms) slope values, and radar reflectivity values derived from Pioneer Venus. The resulting information includes comparisons among individual terrain units and terrain groups to which they are assigned in regard to percentage of map area covered, elevation, rms slopes, distribution of suspected craters greater than 10 km in diameter.

  5. Overcoming the momentum of anachronism: American geologic mapping in a twenty-first-century world

    USGS Publications Warehouse

    House, P. Kyle; Clark, Ryan; Kopera, Joe

    2013-01-01

    The practice of geologic mapping is undergoing conceptual and methodological transformation. Profound changes in digital technology in the past 10 yr have potential to impact all aspects of geologic mapping. The future of geologic mapping as a relevant scientific enterprise depends on widespread adoption of new technology and ideas about the collection, meaning, and utility of geologic map data. It is critical that the geologic community redefine the primary elements of the traditional paper geologic map and improve the integration of the practice of making maps in the field and office with the new ways to record, manage, share, and visualize their underlying data. A modern digital geologic mapping model will enhance scientific discovery, meet elevated expectations of modern geologic map users, and accommodate inevitable future changes in technology.

  6. Snake River Plain Geothermal Play Fairway Analysis - Phase 1 KMZ files

    DOE Data Explorer

    John Shervais

    2015-10-10

    This dataset contain raw data files in kmz files (Google Earth georeference format). These files include volcanic vent locations and age, the distribution of fine-grained lacustrine sediments (which act as both a seal and an insulating layer for hydrothermal fluids), and post-Miocene faults compiled from the Idaho Geological Survey, the USGS Quaternary Fault database, and unpublished mapping. It also contains the Composite Common Risk Segment Map created during Phase 1 studies, as well as a file with locations of select deep wells used to interrogate the subsurface.

  7. Partnerships - Working Together to Build The National Map

    USGS Publications Warehouse

    ,

    2004-01-01

    Through The National Map, the U.S. Geological Survey (USGS) is working with partners to ensure that current, accurate, and complete base geographic information is available for the Nation. Designed as a network of online digital databases, it provides a consistent geographic data framework for the country and serves as a foundation for integrating, sharing, and using data easily and reliably. It provides public access to high quality geospatial data and information from multiple partners to help inform decisionmaking by resource managers and the public, and to support intergovernmental homeland security and emergency management requirements.

  8. Quaternary Geology and Liquefaction Susceptibility, Napa, California 1:100,000 Quadrangle: A Digital Database

    USGS Publications Warehouse

    Sowers, Janet M.; Noller, Jay S.; Lettis, William R.

    1998-01-01

    Earthquake-induced ground failures such as liquefaction have historically brought loss of life and damage to property and infrastructure. Observations of the effects of historical large-magnitude earthquakes show that the distribution of liquefaction phenomena is not random. Liquefaction is restricted to areas underlain by loose, cohesionless sands and silts that are saturated with water. These areas can be delineated on the basis of thorough geologic, geomorphic, and hydrologic mapping and map analysis (Tinsley and Holzer, 1990; Youd and Perkins, 1987). Once potential liquefaction zones are delineated, appropriate public and private agencies can prepare for and mitigate seismic hazard in these zones. In this study, we create a liquefaction susceptibility map of the Napa 1:100,000 quadrangle using Quaternary geologic mapping, analysis of historical liquefaction information, groundwater data, and data from other studies. The study is atterned after state-of-the-art studies by Youd (1973) Dupre and Tinsley (1980) and Dupre (1990) in the Monterey-Santa Cruz area, Tinsley and others (1985) in the Los Angeles area, and Youd and Perkins (1987) in San Mateo County, California. The study area comprises the northern San Francisco Metropolitan Area, including the cities of Santa Rosa, Vallejo, Napa, Novato, Martinez, and Fairfield (Figure 1). Holocene estuarine deposits, Holocene stream deposits, eolian sands, and artificial fill are widely present in the region (Helley and Lajoie, 1979) and are the geologic materials of greatest concern. Six major faults capable of producing large earthquakes cross the study area, including the San Andreas, Rodgers Creek, Hayward, West Napa, Concord, and Green Valley faults (Figure 1).

  9. The National Nonindigenous Aquatic Species Database

    USGS Publications Warehouse

    Neilson, Matthew E.; Fuller, Pamela L.

    2012-01-01

    The U.S. Geological Survey (USGS) Nonindigenous Aquatic Species (NAS) Program maintains a database that monitors, records, and analyzes sightings of nonindigenous aquatic plant and animal species throughout the United States. The program is based at the USGS Wetland and Aquatic Research Center in Gainesville, Florida.The initiative to maintain scientific information on nationwide occurrences of nonindigenous aquatic species began with the Aquatic Nuisance Species Task Force, created by Congress in 1990 to provide timely information to natural resource managers. Since then, the NAS database has been a clearinghouse of information for confirmed sightings of nonindigenous, also known as nonnative, aquatic species throughout the Nation. The database is used to produce email alerts, maps, summary graphs, publications, and other information products to support natural resource managers.

  10. Active, capable, and potentially active faults - a paleoseismic perspective

    USGS Publications Warehouse

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  11. Coalbed gas potential in the Pittsburgh-Huntington synclinorium, northern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Schwietering, J.F.; Repine, T.E.

    1991-03-01

    The West Virginia Geological and Economic Survey (WVGES) received a subcontract from the Texas Bureau of Economic Geology to conduct a geologic evaluation of critical production parameters for coalbed methane resources in the northern Appalachian coal basin. The study area is a northeast-southwest-trending ellipse that coincides with the axis of the Pittsburgh-Huntington Synclinorium in north central West Virginia and southwestern Pennsylvania. Coalbed gas resources there have been estimated to be 61 bcf in previous work funded by the Gas Research institute. Data used in that study were mainly core descriptions and drillers' logs from coal exploration cores. The current researchmore » will integrate data from the WVGES' coal, oil and gas, and ground water databases to more carefully determine the number and thicknesses of coals below the Pittsburgh, and their hydrologic setting. Main objectives are to determine: the number of coals present; the geographic and stratigraphic positions of the thickest coals; locations of depocenters with stacked coals; the pressure regime of the area and geologic factors contributing to it; ground-water circulation patterns; and the presence of any potentiometric anomalies. Local and regional stratigraphic and structural cross sections and lithofacies and coal occurrence maps will be made for the coal-bearing interval below the Pittsburgh coal to show the distribution, structural attitude, and depositional systems. Regional and local control of structural elements, including fractures, on gas producibility from coalbeds will be determined. Gas and water production data will be collected from two small areas of current production and mapped and compared to maps of geologic parameters. The goal is to measure the effect on production of geologic parameters in these coalbed gas fields, and determine the locations of other 'sweet spots' in these coal beds.« less

  12. Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey

    2011-01-01

    A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.

  13. Development and Dissemination of a Nationwide Helium Database for a National Assessment of Helium Resources.

    NASA Astrophysics Data System (ADS)

    Brennan, S. T.; East, J. A., II; Garrity, C. P.

    2015-12-01

    In 2013, Congress passed the Helium Stewardship Act requiring the U.S. Geological Survey (USGS) to undertake a national helium gas resource assessment to determine the nation's helium resources. An important initial component necessary to complete this assessment was the development of a comprehensive database of Helium (He) concentrations from petroleum exploration wells. Because Helium is often used as the carrier gas for compositional analyses for commercial and exploratory oil and gas wells, this limits the available helium concentration data. A literature search in peer-reviewed publications, state geologic survey databases, USGS energy geochemical databases, and the Bureau of Land Management databases provided approximately 16,000 data points from wells that had measurable He concentrations in the gas composition analyses. The data from these wells includes, date of sample collection, American Petroleum Institute well number, formation name, field name, depth of sample collection, and location. The gas compositional analyses, some performed as far back as 1934, do not all have the same level of precision and accuracy, therefore the date of the analysis is critical to the assessment as it indicates the relative amount of uncertainty in the analytical results. Non-proprietary data was used to create a GIS based interactive web interface that allows users to visualize, inspect, interact, and download our most current He data. The user can click on individual locations to see the available data at that location, as well as zoom in and out on a data density map. Concentrations on the map range from .04 mol% (lowest concentration of economic value) to 12% (highest naturally occurring values). This visual interface will allow users to develop a rapid appreciation of the areas with the highest potential for high helium concentrations within oil and gas fields.

  14. Geologic map and digital database of the Apache Canyon 7.5' quadrangle, Ventura and Kern counties, California

    USGS Publications Warehouse

    Stone, Paul; Cossette, P.M.

    2000-01-01

    The Apache Canyon 7.5-minute quadrangle is located in southwestern California about 55 km northeast of Santa Barbara and 65 km southwest of Bakersfield. This report presents the results of a geologic mapping investigation of the Apache Canyon quadrangle that was carried out in 1997-1999 as part of the U.S. Geological Survey's Southern California Areal Mapping Project. This quadrangle was chosen for study because it is in an area of complex, incompletely understood Cenozoic stratigraphy and structure of potential importance for regional tectonic interpretations, particularly those involving the San Andreas fault located just northwest of the quadrangle and the Big Pine fault about 10 km to the south. In addition, the quadrangle is notable for its well-exposed sequences of folded Neogene nonmarine strata including the Caliente Formation of Miocene age from which previous workers have collected and described several biostratigraphically significant land-mammal fossil assemblages. During the present study, these strata were mapped in detail throughout the quadrangle to provide an improved framework for possible future paleontologic investigations. The Apache Canyon quadrangle is in the eastern part of the Cuyama 30-minute by 60-minute quadrangle and is largely part of an erosionally dissected terrain known as the Cuyama badlands at the east end of Cuyama Valley. Most of the Apache Canyon quadrangle consists of public lands in the Los Padres National Forest.

  15. Geologic map of the Calamity Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1955-01-01

    The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series. 

  16. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.

  17. Gemstones and geosciences in space and time. Digital maps to the "Chessboard classification scheme of mineral deposits"

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Weber, Berthold

    2013-12-01

    The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineralized sites. The various maps were designed based on the "Chessboard classification scheme of mineral deposits" proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin-tungsten, beryllium, lithium, zinc, calcium, boron, fluorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite-andalusite, corundum-spinel - diaspore, diamond, vermiculite-pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the deposition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and link them to gemological databases.

  18. The 20th-Century Topographic Survey as Source Data for Long-Term Landscape Studies at Local and Regional Scales

    USGS Publications Warehouse

    Varanka, Dalia

    2006-01-01

    Historical topographic maps are the only systematically collected data resource covering the entire nation for long-term landscape change studies over the 20th century for geographical and environmental research. The paper discusses aspects of the historical U.S. Geological Survey topographic maps that present constraints on the design of a database for such studies. Problems involved in this approach include locating the required maps, understanding land feature classification differences between topographic vs. land use/land cover maps, the approximation of error between different map editions of the same area, and the identification of true changes on the landscape between time periods. Suggested approaches to these issues are illustrated using an example of such a study by the author.

  19. Beyond data collection in digital mapping: interpretation, sketching and thought process elements in geological map making

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching, is yet to find the digital flow that is achieved with pencil on notebook page or map. Free-form integrated sketching and notebook functionality in geological mapping software packages is in its nascence. Hence, the result is a tendency for digital geological mapping to focus on the ease of data collection rather than on the thoughts and careful observations that come from notebook sketching and interpreting boundaries on a map in the field. The final digital geological map can be assessed for when and where data was recorded, but the thought processes of the mapper are less easily assessed, and the use of observations and sketching to generate ideas and interpretations maybe inhibited by reliance on digital mapping methods. All mapping methods used have their own distinct advantages and disadvantages and with more recent technologies both hardware and software issues have arisen. We present field examples of using conventional fieldslip mapping, and compare these with more advanced technologies to highlight some of the main advantages and disadvantages of each method and discuss where geological mapping may be going in the future.

  20. Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk

    NASA Astrophysics Data System (ADS)

    Drozdov, D. S.; Rivkin, F. M.; Rachold, V.

    2004-12-01

    The Arctic coast is characterized by a diversity of geological-geomorphological structures and geocryological conditions, which are expected to respond differently to changes in the natural environment and in anthropogenic impacts. At present, oil fields are prospected and developed and permanent and temporary ports are constructed in the Arctic regions of Russia. Thus, profound understanding of the processes involved and measures of nature conservation for the coastal zone of the Arctic Seas are required. One of the main field of Arctic coastal investigations and database formation of coastal conditions is the mapping of the coasts. This poster presents a set of digital maps including geology, quaternary sediments, landscapes, engineering-geology, vegetation, geocryology and a series of regional sources, which have been selected to characterize the Russian Arctic coast. The area covered in this work includes the 200-km-wide band along the entire Russian Arctic coast from the Norwegian boundary in the west to the Bering Strait in the east. Methods included the collection of the majority of available hard copies of cartographic material and their digital formats and the transformation of these sources into a uniform digital graphic format. The atlas consists of environmental maps and maps of engineering-geological zoning. The set of environmental maps includes geology, quaternary sediments, landscapes and vegetation of the Russian Arctic coast at a scale of 1:4000000. The set of engineering-geocryological maps includes a map of engineering-geocryological zoning of the Russian Arctic coast, a map of the intensity of destructive coastal process and a map of industrial impact risk assessment ( 1:8000000 scale). Detailed mapping has been performed for key sites (at a scale of 1:100000) in order to enable more precise estimates of the intensity of destructive coastal process and industrial impact. The engineering-geocryological map of the Russian Arctic coast was compiled based on the analysis of geotechnical and geocryological conditions in the areas adjacent to the coastal band. Industrial impact assessment has been estimated differently for each engineering-geocryological region distinguished on the coast, considering technological features of construction and engineering facilities: aerial construction, highways and airdromes, underground (with positive and negative pipe temperatures) and surface pipelines and quarries. The atlas is being used as a base for the circum-Arctic segmentation of the coastline and the analyses of coastal dynamics within the Arctic Coastal Dynamics (ACD) Project. The work has been supported by INTAS (project number 01-2332).

  1. Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso.

    PubMed

    Courtois, Nathalie; Lachassagne, Patrick; Wyns, Robert; Blanchin, Raymonde; Bougaïré, Francis D; Somé, Sylvain; Tapsoba, Aïssata

    2010-01-01

    A country-scale (1:1,000,000) methodology has been developed for hydrogeologic mapping of hard-rock aquifers (granitic and metamorphic rocks) of the type that underlie a large part of the African continent. The method is based on quantifying the "useful thickness" and hydrodynamic properties of such aquifers and uses a recent conceptual model developed for this hydrogeologic context. This model links hydrodynamic parameters (transmissivity, storativity) to lithology and the geometry of the various layers constituting a weathering profile. The country-scale hydrogeological mapping was implemented in Burkina Faso, where a recent 1:1,000,000-scale digital geological map and a database of some 16,000 water wells were used to evaluate the methodology.

  2. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

  3. The IUGS/IAGC Task Group on Global Geochemical Baselines

    USGS Publications Warehouse

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  4. Remote science support during MARS2013: testing a map-based system of data processing and utilization for future long-duration planetary missions.

    PubMed

    Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot

    2014-05-01

    MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.

  5. Map of critical raw material deposits in Europe

    NASA Astrophysics Data System (ADS)

    Guillaume, Bertrand

    2016-04-01

    Map of critical raw material deposits in Europe Guillaume BERTRAND1, Daniel CASSARD1, Nikolaos ARVANITIDIS2, Gerry STANLEY3 and the EuroGeoSurvey Mineral Resources Expert Group4. 1 - Bureau de Recherches Géologiques et Minières (BRGM), Georesources Divison, 3 avenue Claude Guillemin, 45060 Orléans cedex 2, FRANCE. 2 - Sveriges Geologiska Undersökning (SGU), Box 670, SE-751 28, Uppsala, SWEDEN 3 - Geological Survey of Ireland (GSI), Beggars Bush, Haddington Road, Dublin D04 K7X4, IRELAND 4 - EuroGeoSurveys, Rue Joseph II 36-38, 1000 Brussels, BELGIUM The Critical Raw Material (CRM) Deposit Map of Europe, prepared by EuroGeoSurvey's Mineral Resources Expert Group (MREG), shows European mineral deposits from the ProMine Mineral Deposit database containing critical commodities, according to the 2014 list of critical raw materials of the European Commission. EuroGeoSurveys (EGS), The Geological Surveys of Europe, is a not-for-profit organization representing 37 National Geological Surveys and some regional Geological Surveys in Europe. It provides the European Institutions with expert, independent, balanced and practical pan-European advice and information as an aid to problem-solving, policy development, regulatory and programme formulation in areas such as natural resources, energy and geo-hazards. The EGS MREG is actively involved in contributing to policy and strategy-making processes aimed at identifying, characterizing and safeguarding resource potential, especially for critical raw materials through data provision, research, technological development and innovation. The European Union aspires to reducing the import dependency of raw materials, especially CRM, that are essential to Europe's industries. In this respect, mineral resource information, data sharing and networking by European Geological Surveys is crucial. The Strategic Implementation Plan of the European Innovation Partnership on Raw Materials highlights the need for establishing and maintaining a common interoperable EU Geological Knowledge Base. Such a Knowledge Base will support exploration for indigenous mineral resources and strengthen policy and decision making. In 2010, the European Commission identified 14 non energy non-agricultural raw materials as being critical. Criticality is based on both the scarcity of supply and the importance to European industry. This list was updated in 2014 to include 7 new commodities with one being dropped from the original list. The list now comprises: antimony, beryllium, borates, chromium, cobalt, coking coal, fluorspar, gallium, germanium, graphite, indium, magnesite, magnesium, niobium, phosphate rock, platinum group metals, light and heavy rare earth elements (separately), silicon metal and tungsten. ProMine was a European Union (EU) co-funded project, which had as its main objective the stimulation of the extractive industry to deliver new products to manufacturing industry. A major deliverable of the project was the ProMine Mineral Deposit (MD) database that contains information related to almost 13,000 mineral deposits in Europe. In order to extract data to be displayed on the CRM map of Europe, the ProMine MD database was queried for all commodities on the EC CRM list which were in the medium to super-large deposit size. Following this, the dataset was circulated to MREG in order to verify, validate and update the list.

  6. Development of a globally applicable model for near real-time prediction of seismically induced landslides

    USGS Publications Warehouse

    Nowicki, M. Anna; Wald, David J.; Hamburger, Michael W.; Hearne, Mike; Thompson, Eric M.

    2014-01-01

    Substantial effort has been invested to understand where seismically induced landslides may occur in the future, as they are a costly and frequently fatal threat in mountainous regions. The goal of this work is to develop a statistical model for estimating the spatial distribution of landslides in near real-time around the globe for use in conjunction with the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system. This model uses standardized outputs of ground shaking from the USGS ShakeMap Atlas 2.0 to develop an empirical landslide probability model, combining shaking estimates with broadly available landslide susceptibility proxies, i.e., topographic slope, surface geology, and climate parameters. We focus on four earthquakes for which digitally mapped landslide inventories and well-constrainedShakeMaps are available. The resulting database is used to build a predictive model of the probability of landslide occurrence. The landslide database includes the Guatemala (1976), Northridge (1994), Chi-Chi (1999), and Wenchuan (2008) earthquakes. Performance of the regression model is assessed using statistical goodness-of-fit metrics and a qualitative review to determine which combination of the proxies provides both the optimum prediction of landslide-affected areas and minimizes the false alarms in non-landslide zones. Combined with near real-time ShakeMaps, these models can be used to make generalized predictions of whether or not landslides are likely to occur (and if so, where) for earthquakes around the globe, and eventually to inform loss estimates within the framework of the PAGER system.

  7. Geologic map of the Scotts Mills, Silverton, and Stayton Northeast 7.5 minute quadrangles, Northwest Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry; Beeson, Marvin; Wheeler, Karen L.

    1999-01-01

    The Scotts Mills, Silverton, and Stayton NE 7.5 minute quadrangles are situated along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range (Fig. 1). The terrain within this area is of low to moderate relief, ranging from 100 to more than 1000 ft above sea level. This area is largely rural, with most of the valley floor and low-relief foothills under cultivation. In the last decade, the rural areas outside the boundaries of established towns have experienced significant growth in new homes built and the expansion of housing subdivisions. This growth has placed an increased demand on existing geologic resources (e.g., groundwater, sand and gravel, crushed stone) and the need to better understand potential geologic hazards within this region. Previous geologic mapping by Piper (1942), Peck and others (1964), Newton (1969), Hampton (1972), Miller and Orr (1984), Orr and Miller (1984), and Miller and Orr (1986, 1988) established and refined the general stratigraphic framework of this region. This mapping identified few faults or folds; earlier investigators were hindered by the lack of reliably identifiable marker horizons within the stratigraphic section. Werner (1991), using available seismic profile lines and well data in the Willamette Valley to locate the top of the Columbia River Basalt Group, was able to identify and map faults within the subsurface. Reconnaissance mapping of the Columbia River Basalt Group (CRBG) units in this region in the early 1980’s indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985, 1989; Beeson and Tolan, 1990). The major emphasis of this investigation was to identify and map CRBG units within the Scotts Mills, Silverton, and Stayton NE quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features.

  8. New generation of integrated geological-geomorphological reconstruction maps in the Rhine-Meuse delta, The Netherlands

    NASA Astrophysics Data System (ADS)

    Pierik, Harm Jan; Cohen, Kim; Stouthamer, Esther

    2016-04-01

    Geological-geomorphological reconstructions are important for integrating diverse types of data and improving understanding of landscape formation processes. This works especially well in densely populated Holocene landscapes, where large quantities of raw data are produced by geotechnical, archaeological, soil science and hydrological communities as well as in academic research. The Rhine-Meuse delta, The Netherlands, has a long tradition of integrated digital reconstruction maps and databases. This contributed to improve understanding of delta evolution, especially regarding the channel belt network evolution. In this contribution, we present a new generation of digital map products for the Holocene Rhine-Meuse delta. Our reconstructions expand existing channel belt network maps, with new map layers containing natural levee extent and relative elevation. The maps we present have been based on hundreds of thousands of lithological borehole descriptions, >1000 radiocarbon dates, and further integrate LIDAR data, soil maps and archaeological information. For selected time slices through the Late Holocene, the map products describe the patterns of levee distribution. Additionally, we mapped the palaeo-topography of the levees through the delta, aiming to resolve what parts of the overbank river landscape were the relatively low and high positioned areas in the past landscape. The resulting palaeogeographical maps are integrative products created for a very data-rich research area. They will allow for delta-wide analysis in studying changes in the Late Holocene landscape and the interaction with past habitation.

  9. BGS·SIGMA - Digital mapping at the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Smith, Nichola; Lawrie, Ken

    2017-04-01

    Geological mapping methods have evolved significantly over recent decades and this has included the transition to digital field data capture. BGS has been developing methodologies and technologies for this since 2001, and has now reached a stage where our custom built data capture and map compilation system (BGS·SIGMAv2015) is the default toolkit, within BGS, for bedrock and superficial mapping across the UK and overseas. In addition, BGS scientists also use the system for other data acquisition projects, such as landslide assessment, geodiversity audits and building stone studies. BGS·SIGMAv2015 is an integrated toolkit which enables assembly, interrogation and visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system, developed using ESRI's ArcGIS built on top of a bespoke relational data model, running on ruggedized tablet PCs with integrated GPS units, the system has evolved into a comprehensive system for digital geological data capture, mapping and compilation. The benefits, for BGS, of digital data capture are huge. Not only are the data being gathered in a standardised format, with the use of dictionaries to ensure consistency, but project teams can start building their digital geological map in the field by merging data collected by colleagues, building line-work and polygons, and subsequently identifying areas for further investigation. This digital data can then be easily incorporated into corporate databases and used in 3D modelling and visualisation software once back in the office. BGS is now at a stage where the free external release of our digital mapping system is in demand across the world, with 3000 licences being issued to date, and is successfully being used by other geological surveys, universities and exploration companies. However, we recognise that in some areas usage is restricted due to access to the software platform used by the system. To combat this, and to try and facilitate access to the system for all, BGS is now developing the BGS·SIGMA companion app. This will be developed for smart phones and tablets, and as well as enabling users of open source software to access to the system it will also facilitate rapid point based mapping, something BGS geologists are increasingly required to carry out. Alongside this, BGS is also developing a set of modular, re-usable tools for data capture, storage, manipulation and delivery that will help organisations, which are just starting their journey into the digital world, to learn from our experiences and implement a system that is already fully integrated and can be customised for specific user requirements.

  10. Publications - Beikman, H.M., 1980 | Alaska Division of Geological &

    Science.gov Websites

    main content USGS Beikman, H.M., 1980 Publication Details Title: Geologic map of Alaska Authors Warehouse Bibliographic Reference Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey, 1 USGS website Maps & Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Geologic Map

  11. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  12. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  13. Paleontologic Database for the Guadalupe Peak 1:100,000 Quadrangle: A Prototype for the National Paleontologic Database, Paleodata

    USGS Publications Warehouse

    Wardlaw, Bruce R.

    2008-01-01

    This report is a compilation of most of the known fossil locality data from Guadalupe Peak 1:100,000 quadrangle, West Texas. The data represent several major collection efforts over the past century by the Smithsonian Institution, the American Museum of Natural History, and the U.S. Geological Survey. This dataset is not meant to be all inclusive but instead is an attempt to pull together the vast amount of paleontologic data originally collected by Girty (1908) and King (1948), much of which is unpublished and (or) poorly located. The author visited most of the major fossil collection sites to collect for conodonts on a ten-year program funded by the Smithsonian Institution for collaborative research with Richard E. Grant. Guadalupe Mountains National Park occupies the northern part of the quadrangle, and the Park Service has been very helpful over the years in compiling the data and relocating the collection sites. This dataset serves as the prototype for the National Paleontologic Database, part of the National Geologic Map Database Project. The database is intended to be indexed to 1:100,000 quadrangles of the U.S. The minimum number of fields and information within those fields is shown in the report.

  14. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  15. The National Landslide Database and GIS for Great Britain: construction, development, data acquisition, application and communication

    NASA Astrophysics Data System (ADS)

    Pennington, Catherine; Dashwood, Claire; Freeborough, Katy

    2014-05-01

    The National Landslide Database has been developed by the British Geological Survey (BGS) and is the focus for national geohazard research for landslides in Great Britain. The history and structure of the geospatial database and associated Geographical Information System (GIS) are explained, along with the future developments of the database and its applications. The database is the most extensive source of information on landslides in Great Britain with over 16,500 records of landslide events, each documented as fully as possible. Data are gathered through a range of procedures, including: incorporation of other databases; automated trawling of current and historical scientific literature and media reports; new field- and desk-based mapping technologies with digital data capture, and crowd-sourcing information through social media and other online resources. This information is invaluable for the investigation, prevention and mitigation of areas of unstable ground in accordance with Government planning policy guidelines. The national landslide susceptibility map (GeoSure) and a national landslide domain map currently under development rely heavily on the information contained within the landslide database. Assessing susceptibility to landsliding requires knowledge of the distribution of failures and an understanding of causative factors and their spatial distribution, whilst understanding the frequency and types of landsliding present is integral to modelling how rainfall will influence the stability of a region. Communication of landslide data through the Natural Hazard Partnership (NHP) contributes to national hazard mitigation and disaster risk reduction with respect to weather and climate. Daily reports of landslide potential are published by BGS through the NHP and data collected for the National Landslide Database is used widely for the creation of these assessments. The National Landslide Database is freely available via an online GIS and is used by a variety of stakeholders for research purposes.

  16. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    NASA Astrophysics Data System (ADS)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  17. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  18. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  19. Earthquakes and faults in the San Francisco Bay area (1970-2003)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.; Wong, Florence L.; Saucedo, George J.

    2004-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.0 in the greater San Francisco Bay area. Twenty-two earthquakes magnitude 5.0 and greater are indicated on the map and listed chronologically in an accompanying table. The data are compiled from records from 1970-2003. The bathymetry was generated from a digital version of NOAA maps and hydrogeographic data for San Francisco Bay. Elevation data are from the USGS National Elevation Database. Landsat satellite image is from seven Landsat 7 Enhanced Thematic Mapper Plus scenes. Fault data are reproduced with permission from the California Geological Survey. The earthquake data are from the Northern California Earthquake Catalog.

  20. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    This report presents a newly revised and expanded digital geologic map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground)1 and with a horizontal positional accuracy of at least 20 m. The map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Dos Pueblos Canyon, Goleta, Santa Barbara, and Carpinteria 7.5' quadrangles. The new map supersedes an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002; revised 2006) that provided coastal coverage only within the Goleta and Santa Barbara quadrangles. In addition to new mapping to the west and east, geologic mapping in parts of the central map area has been significantly revised from the preliminary map compilation - especially north of downtown Santa Barbara in the Mission Ridge area - based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units, including several new units recognized in the areas of expanded mapping, are described in detail in the accompanying pamphlet. Abundant new biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations embedded in the digital map database are more complete owing to the addition of slip-sense determinations. Finally, the pamphlet accompanying the present report includes an expanded and refined summary of stratigraphic and structural observations and interpretations that are based on the composite geologic data contained in the new map compilation. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.

  1. Geologic Map of the Umiat Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2004-01-01

    This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.

  2. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  3. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch. Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies

  4. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  5. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Lynn Watney; John H. Doveton

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mappingmore » of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.« less

  7. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.

  8. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  9. Geologic map and database of the Salem East and Turner 7.5-minute quadrangles, Marion County, Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry L.; Beeson, Marvin H.; Digital Database by DuRoss, Christopher B.

    2000-01-01

    The Salem East and Turner 7.5-minute quadrangles are situated in the center of the Willamette Valley near the western margin of the Columbia River Basalt Group (CRBG) distribution. The terrain within the area is of low to moderate relief, ranging from about 150 to almost 1,100-ft elevation. Mill Creek flows northward from the Stayton basin (Turner quadrangle) to the northern Willamette Valley (Salem East quadrangle) through a low that dissects the Columbia River basalt that forms the Salem Hills on the west and the Waldo Hills to the east. Approximately eight flows of CRBG form a thickness of up to 700� in these two quadrangles. The Ginkgo intracanyon flow that extends from east to west through the south half of the Turner quadrangle is exposed in the hills along the southeast part of the quadrangle. Previous geologic mapping by Thayer (1939) and Bela (1981) while providing the general geologic framework did not subdivide the CRBG which limited their ability to delineate structural elements. Reconnaissance mapping of the CRBG units in the Willamette Valley indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985,1989; Beeson and Tolan, 1990). Crenna, et al. (1994) compiled previous mapping in the Willamette Valley in a study of the tectonics of the Salem area. The major emphasis of this study was to identify and map CRBG units within the Salem East and Turner Quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features. Water well logs were used to provide better subsurface stratigraphic control. Three other quadrangles (Scotts Mills, Silverton, and Stayton NE) in the Willamette Valley have been mapped in this way (Tolan and Beeson, 1999). This area was a lowland area of weathered and eroded marine sedimentary when the Columbia River basalts encroached on this area approximately 15-16 m.y. ago. An incipient Coast Range apparently stopped or diverted the fluid lava flows from moving much farther westward toward the coast at this latitude. It is assumed also that an ancestral Willamette River flowed northward through this low-lying area so that water was present as streams and ponds along the flood plain.

  10. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  11. Novice to Expert Cognition During Geologic Bedrock Mapping

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.

  12. Database for potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  13. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  14. Development of GIS Database for New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Birhanemeskel, Y. T.; Vlahovic, G.; Arroucau, P.; Malhotra, R.; Powell, C. A.

    2010-12-01

    The New Madrid Seismic Zone (NMSZ) of the central Mississippi river valley is currently the most seismically active region in the central and eastern United States. A number of earthquakes occurred in NMSZ between 1811 and 1812, of which three major earthquakes with magnitudes greater than 7 destroyed the town of New Madrid, Missouri. Intraplate seismicity like the New Madrid seismicity is difficult to explain in the framework of plate tectonics and requires analyzing various geological, geophysical and seismological data to better understand its causes. ArcGIS® 9.3.1 software with license type ArcEditor was used to build a geodatabase containing multiple layers that are useful for the study of intraplate seismicity. These layers include earthquake locations, gravity and magnetic anomalies, lithology, topography, velocity anomalies as resolved by arrival time tomography and geological structures like intrusions and faults. The data for these layers were obtained from the U.S Geological Survey, from the Center for Earthquake Research and Information at the University of Memphis, TN, and from paper maps. Zipped files of various formats (.xls, .shp, .txt, .tar, etc) were downloaded and converted to a format compatible with ArcGIS. To keep compatibility of the data, editing of the attribute table of the raw data was completed before importing the data to Arc Catalog. Geo-referencing and digitizing processes were also done to import layers of contour lines and geological structures with correct vector information from papers maps. Layers were clipped in order to make sure that they fit the spatial extent of the study area (from 34°S to 40°N in latitude and from 93°W to 86°W in longitude). The New Madrid seismicity will be analyzed by looking for possible relationships that exist between the data layers using various spatial and geostatistical tools. For example the distribution of earthquakes will be analyzed with respect to the potential field and velocity anomalies. In addition to layers already imported in the database stream (river) layer will also be added and database will be continuously updated as new research results become available.

  15. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  16. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    NASA Astrophysics Data System (ADS)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  17. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.

  18. WebEQ: a web-GIS System to collect, display and query data for the management of the earthquake emergency in Central Italy

    NASA Astrophysics Data System (ADS)

    Carbone, Gianluca; Cosentino, Giuseppe; Pennica, Francesco; Moscatelli, Massimiliano; Stigliano, Francesco

    2017-04-01

    After the strong earthquakes that hit central Italy in recent months, the Center for Seismic Microzonation and its applications (CentroMS) was commissioned by the Italian Department of Civil Protection to conduct the study of seismic microzonation of the territories affected by the earthquake of August 24, 2016. As part of the activities of microzonation, IGAG CNR has created WebEQ, a management tool of the data that have been acquired by all participants (i.e., more than twenty research institutes and university departments). The data collection was organized and divided into sub-areas, assigned to working groups with multidisciplinary expertise in geology, geophysics and engineering. WebEQ is a web-GIS System that helps all the subjects involved in the data collection activities, through tools aimed at data uploading and validation, and with a simple GIS interface to display, query and download geographic data. WebEQ is contributing to the creation of a large database containing geographical data, both vector and raster, from various sources and types: - Regional Technical Map em Geological and geomorphological maps em Data location maps em Maps of microzones homogeneous in seismic perspective and seismic microzonation maps em National strong motion network location. Data loading is done through simple input masks that ensure consistency with the database structure, avoiding possible errors and helping users to interact with the map through user-friendly tools. All the data are thematized through standardized symbologies and colors (Gruppo di lavoro MS 2008), in order to allow the easy interpretation by all users. The data download tools allow data exchange between working groups and the scientific community to benefit from the activities. The seismic microzonation activities are still ongoing. WebEQ is enabling easy management of large amounts of data and will form a basis for the development of tools for the management of the upcoming seismic emergencies.

  19. Aeromagnetics, Geology and the Geoscience Database for Africa

    NASA Astrophysics Data System (ADS)

    Reeves, Colin

    2010-05-01

    The process of systematic geological mapping of Africa, as established in the first half of the twentieth century, involved heroic periods of field mapping by individuals on single map sheets, supported eventually by interpretation of aerial photography, with the publication of colour maps and reports on paper as the ultimate aim. Despite the advent of satellite imagery in the 1970s, this activity trailed off in the final decades of the century. This was partly due to political changes in Africa but also due to the growing realization that the amount of outcrop available for examination is little to none over great swathes of the continent. Estimates indicate that less than half the sheets that cover the continent had been mapped by about the year 2000, and only half of those mapped had actually reached publication stage. Even then, ‘publication' often meant only that paper copies could be purchased from the sales office of a national geological survey, of which there are more than 50. The second half of the century saw the growing realization that aeromagnetic surveys (that effectively ‘saw through' weathering and widespread sedimentary veneers) could accelerate the geological mapping process and provide useful geological reconnaissance of large areas - typically whole African countries - in years rather than decades. With, in some cases, the support of international aid agencies, airborne geophysical programmes have been launched across Africa and, in some countries, re-launched with greater detail as airborne survey technology continuously improved with time. The advent of gamma-ray spectrometry of high resolution delivered a powerful additional tool after about 1990. It is certain that several hundred million dollars have now been invested in programmes of this type across Africa. It is argued that much of the value of this work has still to be realized. The extraction of geological information from airborne geophysical surveys involves the application of human intellect to the data. That, in turn, requires that the data be easily accessible to all those concerned with the geological reconnaissance of Africa. It is now almost 20 years since the first attempt was made to catalogue, compile and digitize aeromagnetic data across all of Africa (AMMP, 1989-1992). While excellent software tools now exist widely for individuals to work with such data sets, there are still unnecessary obstacles to accessing data on an Africa-wide basis. Africa itself, meanwhile, trails well behind the rest of the world in terms of its connectivity to internet. As a result, the use of current information and communication technology (ICT) as the most effective method of data publication to earth science professionals worldwide is unnecessarily difficult and African geoscientists are increasingly isolated from the global professional community. This talk pleads for a new, well financed initiative to collate information on African geology, continent-wide, that transcends national boundaries so that the mapping of the geology of Africa and its resources can reach a state of sophistication and understanding that is comparable with the rest of the world. Not least, this is necessary to realize the full value of expensive public sector investments that have already been made. The upturn in geological understanding and sustainable development of resources that would undoubtedly follow should realize tangible benefits to all inhabitants of the continent.

  20. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  1. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  2. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  3. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  4. Publications - RI 97-15C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 97-15C Publication Details Title: Surficial geologic map of the Tanana B-1 Quadrangle geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of Geological & Geophysical Maps & Other Oversized Sheets Sheet 1 Surficial geologic map of the Tanana B-1 Quadrangle, Central

  5. Sidescan-Sonar Imagery and Surficial Geologic Interpretations of the Sea Floor in Central Rhode Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Denny, J.F.; Haupt, T.A.; Crocker, J.M.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology of areas along the northeastern coast of the United States. During 2004, the NOAA Ship RUDE conducted Hydrographic Survey H11321 in Rhode Island Sound. This sidescan-sonar and bathymetry survey covers an area of 93 km? located 12 km southeast of Brenton Point, RI in water depths of 28-39 m (fig. 1). The purpose of this report is to delineate sea floor features and sedimentary environments of this area in central Rhode Island Sound using sidescan-sonar and bathymetric data from NOAA Survey H11321 and seismic-reflection data from a previous USGS field study (Needell and others, 1983a). This is important for the study of benthic habitats and provides a framework for future research. Prior work in this area includes the mapping of surface sediments and surficial geology. McMaster (1960) collected sediment samples from Rhode Island Sound and Narragansett Bay and mapped our study area as having a sandy sea floor. In addition, one sample of sand from the National Ocean Service (NOS) Hydrographic Database came from a location in the northeast part of our study area in 1939 (fig. 2; Poppe and others, 2003). McMaster and others (1968) used seismic-reflection profiles to map the locations of a cuesta of Cretaceous sediments crossing Rhode Island Sound and post-Cretaceous drainage channels. Knebel and others (1982) identified sedimentary environments in Rhode Island Sound using sidescan sonographs. Needell and others (1983b) studied the Quaternary geology and mapped the structure, sedimentary environments, and geologic hazards in Rhode Island Sound using sidescan-sonar and seismic-reflection data. Sidescan-sonar and bathymetric data from NOAA Survey H11320, which overlaps the far eastern edge of our study area, was interpreted to consist of basins surrounded by a moraine and bathymetric highs composed of till with areas of rocks, sand waves, hummocks, glaciolacustrine erosional outliers, small scarps and elongate hills (fig. 1; McMullen and others, 2007). Some of those features extend into this study area.

  6. USGS EDMAP Program-Training the Next Generation of Geologic Mappers

    USGS Publications Warehouse

    ,

    2010-01-01

    EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.

  7. Geologic mapping of Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Gorsline, Donn S.; Parker, Timothy J.

    1995-01-01

    This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

  8. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    NASA Astrophysics Data System (ADS)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded about each unit includes its rank, parentage, previous and alternative names and usage, geochronological age, lithology, environment of deposition / mode of origin, thickness, boundaries, type and reference localities and sections, geographical distribution, associated landforms, and literature references. BGS geoscientists use a web-based 'sandbox' system to write and revise definitions. The Lexicon currently stores information on approximately 13,400 geological units that BGS considers to be 'current', with cross references to some 6,000 other names that are considered to be obsolete or alternative names. The entries span the entire preserved geological history of the UK from Archaean to Recent, onshore and offshore.

  9. Developing INFOMAR's Seabed Mapping Data to Support a Sustainable Marine Economy

    NASA Astrophysics Data System (ADS)

    Judge, M. T.; Guinan, J.

    2016-02-01

    As Ireland's national seabed mapping programme, INFOMAR1 (INtegrated mapping FOr the sustainable development of Ireland's MARine resource) enters its eleventh year it continues to provide pivotal seabed mapping data products, e.g. databases, charts and physical habitat maps to support Ireland's Integrated Marine Plan. The programme, jointly coordinated by the Geological Survey of Ireland and the Marine Institute, has gained a world class reputation for developing seabed mapping technologies, infrastructure and expertise. In the government's current Integrated Marine Plan, the programme's critical role in marine spatial planning enabling infrastructural development, research and education has been cited2. INFOMAR's free data policy supports a thriving maritime economy by promoting easy access to seabed mapping datasets that underpin; maritime safety, security and surveillance, governance, business development, research and technology innovation and infrastructure. The first hydrographic surveys of the national marine mapping programme mapped the extent of Ireland's deepest offshore area, whilst in recent years the focus has been to map the coastal and shallow areas. Targeted coastal areas include 26 bays and 3 priority areas for which specialised equipment, techniques and vessels are required. This talk will discuss how the INFOMAR programme has evolved to address the scientific and technological challenges of seabed mapping across a range of water depths; particularly the challenges associated with addressing inshore data gaps. It will describe how the data converts to bathymetric and geological maps detailing seabed characteristics and habitats. We will expand on how maps are: incorporated into collaborative marine projects such as EMODnet, commercialised to identify marine resources and used as marine decision support tools that drive policy and promote protection of the vastly under discovered marine area.

  10. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    USGS Publications Warehouse

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps and photos of deposits, deposit information and a geochemical model. See the version history for details.

  11. Exposing USGS sample collections for broader discovery and access: collaboration between ScienceBase, IEDA:SESAR, and Paleobiology Database

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Bristol, S.; Lehnert, K. A.; Arko, R. A.; Peters, S. E.; Uhen, M. D.; Song, L.

    2014-12-01

    The U.S. Geological Survey (USGS) is an exemplar of the need for improved cyberinfrastructure for its vast holdings of invaluable physical geoscience data. Millions of discrete paleobiological and geological specimens lie in USGS warehouses and at the Smithsonian Institution. These specimens serve as the basis for many geologic maps and geochemical databases, and are a potential treasure trove of new scientific knowledge. The extent of this treasure is virtually unknown and inaccessible outside a small group of paleogeoscientists and geochemists. A team from the USGS, the Integrated Earth Data Applications (IEDA) facility, and the Paleobiology Database (PBDB) are working to expose information on paleontological and geochemical specimens for discovery by scientists and citizens. This project uses existing infrastructure of the System for Earth Sample Registration (SESAR) and PBDB, which already contains much of the fundamental data schemas that are necessary to accommodate USGS records. The project is also developing a new Linked Data interface for the USGS National Geochemical Database (NGDB). The International Geo Sample Number (IGSN) is the identifier that links samples between all systems. For paleontological specimens, SESAR and PBDB will be the primary repositories for USGS records, with a data syncing process to archive records within the USGS ScienceBase system. The process began with mapping the metadata fields necessary for USGS collections to the existing SESAR and PBDB data structures, while aligning them with the Observations & Measurements and Darwin Core standards. New functionality needed in SESAR included links to a USGS locality registry, fossil classifications, a spatial qualifier attribution for samples with sensitive locations, and acknowledgement of data and metadata licensing. The team is developing a harvesting mechanism to periodically transfer USGS records from within PBDB and SESAR to ScienceBase. For the NGDB, the samples are being registered with IGSNs in SESAR and the geochemical data are being published as Linked Data. This system allows the USGS collections to benefit from disciplinary and institutional strengths of the participating resources, while simultaneously increasing the discovery, accessibility, and citation of USGS physical collection holdings.

  12. Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Surveymore » (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.« less

  13. Airborne gamma-ray spectrometer and magnetometer survey, Durango B, Colorado. Final report Volume II C. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains eight appendices: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps. These appendices pertain to the Durango B detail area.

  14. Bedrock geologic map of Vermont

    USGS Publications Warehouse

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  15. An investigation of extensional tectonics of southern California

    NASA Technical Reports Server (NTRS)

    Richard, Steven M.; Crowell, John C.

    1992-01-01

    Geologic mapping and interpretation of Landsat TM imagery has filled in a significant gap in the geologic database for southwestern Arizona and southeastern California. The new data acquired, along with interpretation of existing data, forms the basis for a proposed reconstruction of late Tertiary faults in these regions. This reconstruction integrates available geological and geophysical data to define the eastern limit of deformation related to the San Andreas fault, and has significant implications for other recently proposed reconstructions of Tertiary deformation in the region. This progress in interpreting deformation during the last 10 Ma in the region forms a foundation for developing and testing models of older deformation in this region, including the initiation of San Andreas fault system, and the interaction of Early Miocene extension in the Basin and Range with the evolving San Andreas system.

  16. The Role of Geologic Mapping in NASA PDSI Planning

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.

  17. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  18. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    NASA Technical Reports Server (NTRS)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  19. Lithology and aggregate quality attributes for the digital geologic map of Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.; Green, Gregory N.; Langer, William H.

    1999-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.

  20. Geological Mapping Uses Landsat 4-5TM Satellite Data in Manlai Soum of Omnogovi Aimag

    NASA Astrophysics Data System (ADS)

    Norovsuren, B.

    2014-12-01

    Author: Bayanmonkh N1, Undram.G1, Tsolmon.R2, Ariunzul.Ya1, Bayartungalag B31 Environmental Research Information and Study Center 2NUM-ITC-UNESCO Space Science and Remote Sensing International Laboratory, National University of Mongolia 3Geology and Hydrology School, Korea University KEY WORDS: geology, mineral resources, fracture, structure, lithologyABSTRACTGeologic map is the most important map for mining when it does exploration job. In Mongolia geological map completed by Russian geologists which is done by earlier technology. Those maps doesn't satisfy for present requirements. Thus we want to study improve geological map which includes fracture, structural map and lithology use Landsat TM4-5 satellite data. If we can produce a geological map from satellite data with more specification then geologist can explain or read mineralogy very easily. We searched all methodology and researches of every single element of geological mapping. Then we used 3 different remote sensing methodologies to produce structural and lithology and fracture map based on geographic information system's softwares. There can be found a visible lithology border improvement and understandable structural map and we found fracture of the Russian geological map has a lot of distortion. The result of research geologist can read mineralogy elements very easy and discovered 3 unfound important elements from satellite image.

  1. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  2. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    USGS Publications Warehouse

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  3. Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The Highlandcroft Granodiorite and Joslin Turn tonalite plutons intruded during the Middle to Late Ordovician.West of the Monroe fault, the Connecticut Valley-Gaspé trough consists of the Silurian and Devonian Waits River and Gile Mountain Formations. The Waits River Formation is a carbonaceous muscovite-biotite-quartz (±garnet) phyllite containing abundant beds of micaceous quartz-rich limestone. The Gile Mountain Formation consists of interlayered metasandstone and graphitic (and commonly sulfidic) slate, along with minor calcareous metasandstone and ironstone. Graded bedding is common in the Gile Mountain Formation. Rocks of the Devonian New Hampshire Plutonic Suite intruded as plutons, dikes, and sills. The largest of these is the Victory pluton, which consists of weakly foliated, biotite granite and granodiorite. The Victory pluton also intruded a large part of the Albee Formation to the north.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.

  4. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    USGS Publications Warehouse

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  5. Preliminary northeast Asia geodynamics map

    USGS Publications Warehouse

    Parfenov, Leonid M.; Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2003-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. This map is the result of extensive geologic mapping and associated tectonic studies in Northeast Asia in the last few decades and is the first collaborative compilation of the geology of the region at a scale of 1:5,000,000 by geologists from Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. The map was compiled by a large group of international geologists using the below concepts and definitions during collaborative workshops over a six-year period. The map is a major new compilation and re-interpretation of pre-existing geologic maps of the region. The map is designed to be used for several purposes, including regional tectonic analyses, mineral resource and metallogenic analysis, petroleum resource analysis, neotectonic analysis, and analysis of seismic hazards and volcanic hazards. The map consists of two sheets. Sheet 1 displays the map at a scale of 1:5,000,000, explanation. Sheet 2 displays the introduction, list of map units, and source references. Detailed descriptions of map units and stratigraphic columns are being published separately. This map is one of a series of publications on the mineral resources, metallogenesis, and geodynamics,of Northeast Asia. Companion studies and other articles and maps , and various detailed reports are: (1) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000; Obolenskiy and others, in press a); (2) a series of metallogenic belt maps (Obolenskiy and others, 2001; in press b); (3) a lode mineral deposits and placer districts location map for Northeast Asia (Ariunbileg and others, in press b); (4) descriptions of metallogenic belts (Rodionov and others, in press); and (5) a database on significant metalliferous and selected nonmetalliferous lode deposits, and selected placer districts (Ariunbileg and others, in press a).

  6. Development of the Plate Tectonics and Seismology markup languages with XML

    NASA Astrophysics Data System (ADS)

    Babaie, H.; Babaei, A.

    2003-04-01

    The Extensible Markup Language (XML) and its specifications such as the XSD Schema, allow geologists to design discipline-specific vocabularies such as Seismology Markup Language (SeismML) or Plate Tectonics Markup Language (TectML). These languages make it possible to store and interchange structured geological information over the Web. Development of a geological markup language requires mapping geological concepts, such as "Earthquake" or "Plate" into a UML object model, applying a modeling and design environment. We have selected four inter-related geological concepts: earthquake, fault, plate, and orogeny, and developed four XML Schema Definitions (XSD), that define the relationships, cardinalities, hierarchies, and semantics of these concepts. In such a geological concept model, the UML object "Earthquake" is related to one or more "Wave" objects, each arriving to a seismic station at a specific "DateTime", and relating to a specific "Epicenter" object that lies at a unique "Location". The "Earthquake" object occurs along a "Segment" of a "Fault" object, which is related to a specific "Plate" object. The "Fault" has its own associations with such things as "Bend", "Step", and "Segment", and could be of any kind (e.g., "Thrust", "Transform'). The "Plate" is related to many other objects such as "MOR", "Subduction", and "Forearc", and is associated with an "Orogeny" object that relates to "Deformation" and "Strain" and several other objects. These UML objects were mapped into XML Metadata Interchange (XMI) formats, which were then converted into four XSD Schemas. The schemas were used to create and validate the XML instance documents, and to create a relational database hosting the plate tectonics and seismological data in the Microsoft Access format. The SeismML and TectML allow seismologists and structural geologists, among others, to submit and retrieve structured geological data on the Internet. A seismologist, for example, can submit peer-reviewed and reliable data about a specific earthquake to a Java Server Page on our web site hosting the XML application. Other geologists can readily retrieve the submitted data, saved in files or special tables of the designed database, through a search engine designed with J2EE (JSP, servlet, Java Bean) and XML specifications such as XPath, XPointer, and XSLT. When extended to include all the important concepts of seismology and plate tectonics, the two markup languages will make global interchange of geological data a reality.

  7. Airborne gamma-ray spectrometer and magnetometer survey, Durango D, Colorado. Final report Volume II B. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume comprises eight appendices containing the following information for the Durango D detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.

  8. Airborne gamma-ray spectrometer and magnetometer survey, Durango C, Colorado. Final report Volume II B. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume comprises eight appendices containing the following information for the Durango C detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.

  9. A nationwide classification of New Zealand aquifer properties

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; Tschritter, Constanze; Rawlinson, Zara; White, Paul

    2017-04-01

    Groundwater plays an essential role in water provision for domestic, industrial and agricultural use. Groundwater is also vital for ecology and environment, since it provides baseflow to many streams, rivers and wetlands. As groundwater is a 'hidden' resource that is typically poorly understood by the public, simple and informative maps can assist to enhance awareness for understanding groundwater and associated environmental issues. The first national aquifer map for New Zealand (2001) identified 200 aquifers at a scale of approximately 1:5 Million. Subsequently, regional councils and unitary authorities have updated their aquifer boundaries using a variety of methods. However, with increasing demand of groundwater in New Zealand and drought impacts expected to be more significant in the future, more consistent and more advanced aquifer characterisation and mapping techniques are needed to improve our understanding of the available resources. Significant resources have gone into detailed geological mapping in recent years, and the New Zealand 1:250,000 Geological Map (QMAP) was developed and released as a seamless GIS database in 2014. To date, there has been no national assessment of this significant data set for aquifer characterisation purposes. This study details the use of the QMAP lithological and chrono-stratigraphic information to develop a nationwide assessment of hydrogeological units and their properties. The aim of this study is to map hydrogeological units in New Zealand, with a long-term goal to use this as a basis for a nationally-consistent map of aquifer systems and aquifer properties (e.g., hydraulic conductivity estimates). Internationally accepted aquifer mapping studies were reviewed and a method was devised that classifies hydrogeological units based on the geological attributes of the QMAP ArcGIS polygons. The QMAP attributes used in this study were: main rock type; geological age; and secondary rock type. The method was mainly based on values of permeability after global, continental and New Zealand studies. The classification followed a tiered workflow. Tier 1 ('Hydrolithological units') consisted of the classification of only the main rock type, based on median permeability value. Tier 2 ('Hydrogeological units') consisted of a combined classification of main rock type and age, assuming that permeability shows an exponential decay over geological age. Tier 3 ('Hydrogeological units') included all three attributes, where the permeabilities of main and secondary rock types were averaged with weighting. Tier 4 was a simplification of the 10 classes in Tier 3 to four 'Aquifer Potential' classes, i.e., 'Poor', 'Low', 'Medium', and 'High'. The results show a good match with existing overlaying maps of aquifer boundaries The map is capable of refining aquifer boundaries at the regional scale where these boundaries have not been updated since 2001. Additionally, the map provides a quick and simple way to communicate hydrogeological information. This fundamental dataset is essential for future studies of the impact of climate and humans on groundwater in New Zealand. Future work will include categorising geological system knowledge (e.g., depositional environment) to allow for 3D mapping and characterisation, compilation and incorporation of nation-wide measured hydraulic conductivity values, including uncertainty, and linking with other national data sets.

  10. Geologic map of the Tetilla Peak Quadrangle, Santa Fe and Sandoval counties, New Mexico

    USGS Publications Warehouse

    Sawyer, D.A.; Shroba, R.R.; Minor, S.A.; Thompson, R.A.

    2002-01-01

    This digital geologic map summarizes all available geologic information for the Tetilla Peak quadrangle located immediately southwest of Santa Fe, New Mexico. The geologic map consists of new polygon (geologic map units) and line (contact, fault, fold axis, dike, flow contact, hachure) data, as well as point data (locations for structural measurements, geochemical and geochronologic data, geophysical soundings, and water wells). The map database has been generated at 1:24,000 scale, and provides significant new geologic information for an area of the southern Cerros del Rio volcanic field, which sits astride the boundary of the Espanola and Santo Domingo basins of the Rio Grande rift. The quadrangle includes the west part of the village of La Cienega along its eastern border and includes the southeasternmost part of the Cochiti Pueblo reservation along its northwest side. The central part of the quadrangle consists of Santa Fe National Forest and Bureau of Land Management lands, and parts of several Spanish-era land grants. Interstate 25 cuts through the southern half of the quadrangle between Santa Fe and Santo Domingo Pueblo. Canada de Santa Fe, a major river tributary to the Rio Grande, cuts through the quadrangle, but there is no dirt or paved road along the canyon bottom. A small abandoned uranium mine (the La Bajada mine) is found in the bottom of the Canada de Santa Fe about 3 km east of the La Bajada fault zone; it has been partially reclaimed. The surface geology of the Tetilla Peak quadrangle consists predominantly of a thin (1-2 m generally, locally as thick as 10? m) layer of windblown surficial deposits that has been reworked colluvially. Locally, landslide, fluvial, and pediment deposits are also important. These colluvial deposits mantle the principal bedrocks units, which are (from most to least common): (1) basalts, basanites, andesite, and trachyte of the Pliocene (2.7-2.2 Ma) Cerros del Rio volcanic field; (2) unconsolidated deposits of the Santa Fe Group, mainly along the western border, in the hanging wall of the La Bajada fault zone, but locally extending 2-3 km east under the Cerros del Rio volcanic field; (3) older Tertiary volcanic and sedimentary rocks (Abiquiu?, Espinaso, and Galisteo Formations); (4) intrusive rocks of the Cerrillos intrusive center that are roughly coeval with the Espinaso volcanic rocks; and (5) Mesozoic sedimentary rocks ranging in age from the Upper Triassic Chinle Formation to the Upper Cretaceous Mancos Shale.

  11. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  12. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    USGS Publications Warehouse

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.

  13. Using geologic maps and seismic refraction in pavement-deflection analysis

    DOT National Transportation Integrated Search

    1999-10-01

    The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...

  14. Digital mining claim density map for federal lands in Nevada: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Nevada as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  15. Digital mining claim density map for federal lands in Utah: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Utah as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  16. Digital mining claim density map for federal lands in Wyoming: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  17. Digital mining claim density map for federal lands in Colorado: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  18. Digital mining claim density map for federal lands in California: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in California as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  19. Digital mining claim density map for federal lands in New Mexico: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in New Mexico as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  20. Digital mining claim density map for federal lands in Washington: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  1. Digital mining claim density map for federal lands in Arizona: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Arizona as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  2. Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.

    NASA Astrophysics Data System (ADS)

    Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane

    2017-04-01

    The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.

  3. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  4. The EarthServer Geology Service: web coverage services for geosciences

    NASA Astrophysics Data System (ADS)

    Laxton, John; Sen, Marcus; Passmore, James

    2014-05-01

    The EarthServer FP7 project is implementing web coverage services using the OGC WCS and WCPS standards for a range of earth science domains: cryospheric; atmospheric; oceanographic; planetary; and geological. BGS is providing the geological service (http://earthserver.bgs.ac.uk/). Geoscience has used remote sensed data from satellites and planes for some considerable time, but other areas of geosciences are less familiar with the use of coverage data. This is rapidly changing with the development of new sensor networks and the move from geological maps to geological spatial models. The BGS geology service is designed initially to address two coverage data use cases and three levels of data access restriction. Databases of remote sensed data are typically very large and commonly held offline, making it time-consuming for users to assess and then download data. The service is designed to allow the spatial selection, editing and display of Landsat and aerial photographic imagery, including band selection and contrast stretching. This enables users to rapidly view data, assess is usefulness for their purposes, and then enhance and download it if it is suitable. At present the service contains six band Landsat 7 (Blue, Green, Red, NIR 1, NIR 2, MIR) and three band false colour aerial photography (NIR, green, blue), totalling around 1Tb. Increasingly 3D spatial models are being produced in place of traditional geological maps. Models make explicit spatial information implicit on maps and thus are seen as a better way of delivering geosciences information to non-geoscientists. However web delivery of models, including the provision of suitable visualisation clients, has proved more challenging than delivering maps. The EarthServer geology service is delivering 35 surfaces as coverages, comprising the modelled superficial deposits of the Glasgow area. These can be viewed using a 3D web client developed in the EarthServer project by Fraunhofer. As well as remote sensed imagery and 3D models, the geology service is also delivering DTM coverages which can be viewed in the 3D client in conjunction with both imagery and models. The service is accessible through a web GUI which allows the imagery to be viewed against a range of background maps and DTMs, and in the 3D client; spatial selection to be carried out graphically; the results of image enhancement to be displayed; and selected data to be downloaded. The GUI also provides access to the Glasgow model in the 3D client, as well as tutorial material. In the final year of the project it is intended to increase the volume of data to 20Tb and enhance the WCPS processing, including depth and thickness querying of 3D models. We have also investigated the use of GeoSciML, developed to describe and interchange the information on geological maps, to describe model surface coverages. EarthServer is developing a combined WCPS and xQuery query language, and we will investigate applying this to the GeoSciML described surfaces to answer questions such as 'find all units with a predominant sand lithology within 25m of the surface'.

  5. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  6. A multiagency and multijurisdictional approach to mapping the glacial deposits of the Great Lakes region in three dimensions

    USGS Publications Warehouse

    Berg, Richard C.; Brown, Steven E.; Thomason, Jason F.; Hasenmueller, Nancy R.; Letsinger, Sally L.; Kincare, Kevin A.; Esch, John M.; Kehew, Alan E.; Thorleifson, L. Harvey; Kozlowski, Andrew L.; Bird, Brian C.; Pavey, Richard R.; Bajc, Andy F.; Burt, Abigail K.; Fleeger, Gary M.; Carson, Eric C.

    2016-01-01

    The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program's unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.

  7. Aniakchak National Monument and Preserve: Geologic resources inventory report

    USGS Publications Warehouse

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  8. A New Database Dedicated to Volcanic Hazards and Risks: The atlas of Merapi Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Lavigne, Franck; Surono, Dr; Mei, Estuning; de Belizal, Edouard; Cholik, Noer; Picquout, Adrien; Komorowski, Jean-Christophe; Morin, Julie; sri Hadmoko, Danang

    2014-05-01

    Merapi volcano is one of the most active volcanoes worldwide. Approximately 1.3 million people live within a radius 20 km from the summit. In the framework of both, the FP7 MIA VITA Project, and the SEDIMER Project funded by AXA Research Fund, we have built a database at the village scale, which includes the elements at risk and the local resources. This unique geospatial database was used to build a series of maps at the scale of the volcano, providing the core of the Merapi atlas. Designed by the French Laboratory of Physical Geography in Meudon (France) and the Center of Volcanology and Geological Hazards Mitigation in Bandung (Indonesia), this atlas provides a state of the art synthesis of knowledge on Merapi, from the reconstruction of past eruptions and assessment of volcanic hazards to the quantification of vulnerability and capacities. It is pertinent to a broad audience ranging from volcanologists to the Indonesian population interested to learn about their sacred volcano. The primary goal of this Atlas is to provide an essential blueprint for planners and public officials involved in long-term development as well as risk and crisis management. The atlas contains 63 color plates gathered in 6 chapters: the introduction summarises the geological context as well as the environmental and human context of Merapi volcano. The second chapter pertains to the geology, the past activity, and the volcanic hazards at Merapi. The third chapter is dedicated to the resources offered by the volcano, including agriculture, livestock, and sand mining activities. The fourth chapter focuses on vulnerability and capacities. The fifth chapter provides a reconstruction of the 2010 VEI 4 eruption of Merapi and its environmental consequences. The sixth chapter summarises the socio-economical impact of the eruption, including mapping of casualties, evacuation, building damage, and an assessment of air traffic disturbance. The seventh chapter focuses on rain-triggered lahar activity following the 2010 eruption, and the associated impact at the local scale. In the conclusion, we show how the 2010 eruption of Merapi improved volcanic risk management, through an updated volcanic hazard map, the establishment of a new high-tech monitoring system, as well as the development of community-based disaster reduction measures. Extensive use of colour in maps at various scales, graphics, and photos, provides a visually appealing synthesis of the hazards and risks at Merapi volcano, one of the most dangerous in the world. This atlas is available online in free access.

  9. Geologic map of the Cucamonga Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Matti, J.C.; Digital preparation by Koukladas, Catherine; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Cucamonga Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  10. Geologic map of the Telegraph Peak 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, D.M.; Woodburne, M.O.; Foster, J.H.; Morton, Gregory; Cossette, P.M.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Telegraph Peak 7.5’ topographic quadrangle in conjunction with the geologic map.

  11. Geologic map of the Valjean Hills 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Calzia, J.P.; Troxel, Bennie W.; digital database by Raumann, Christian G.

    2003-01-01

    FGDC-compliant metadata for the ARC/INFO coverages. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3 above) or plotting the postscript file (2 above).

  12. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  13. Publications - PDF 98-37A v. 1.1 | Alaska Division of Geological &

    Science.gov Websites

    main content DGGS PDF 98-37A v. 1.1 Publication Details Title: Geologic map of the Tanana A-1 and A-2 ., 1998, Geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska: Alaska Division of Geological & Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Preliminary geologic map of the

  14. Geologic map of the Gbanka Quadrangle, Liberia

    USGS Publications Warehouse

    Force, E.R.; Dunbar, J.D.N.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). 

  15. Analyzing legacy U.S. Geological Survey geochemical databases using GIS: applications for a national mineral resource assessment

    USGS Publications Warehouse

    Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew

    2012-01-01

    This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.

  16. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    USGS Publications Warehouse

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  17. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  18. Publications - PDF 99-24D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide

  19. A virtual tour of geological heritage: Valourising geodiversity using Google Earth and QR code

    NASA Astrophysics Data System (ADS)

    Martínez-Graña, A. M.; Goy, J. L.; Cimarra, C. A.

    2013-12-01

    When making land-use plans, it is necessary to inventory and catalogue the geological heritage and geodiversity of a site to establish an apolitical conservation protection plan to meet the educational and social needs of society. New technologies make it possible to create virtual databases using virtual globes - e.g., Google Earth - and other personal-use geomatics applications (smartphones, tablets, PDAs) for accessing geological heritage information in “real time” for scientific, educational, and cultural purposes via a virtual geological itinerary. Seventeen mapped and georeferenced geosites have been created in Keyhole Markup Language for use in map layers used in geological itinerary stops for different applications. A virtual tour has been developed for Las Quilamas Natural Park, which is located in the Spanish Central System, using geological layers and topographic and digital terrain models that can be overlaid in a 3D model. The Google Earth application was used to import the geosite placemarks. For each geosite, a tab has been developed that shows a description of the geology with photographs and diagrams and that evaluates the scientific, educational, and tourism quality. Augmented reality allows the user to access these georeferenced thematic layers and overlay data, images, and graphics in real time on their mobile devices. These virtual tours can be incorporated into subject guides designed by public. Seven educational and interpretive panels describing some of the geosites were designed and tagged with a QR code that could be printed at each stop or in the printed itinerary. These QR codes can be scanned with the camera found on most mobile devices, and video virtual tours can be viewed on these devices. The virtual tour of the geological heritage can be used to show tourists the geological history of the Las Quilamas Natural Park using new geomatics technologies (virtual globes, augmented reality, and QR codes).

  20. Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1973-01-01

    A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.

  1. Geospatial data infrastructure: The development of metadata for geo-information in China

    NASA Astrophysics Data System (ADS)

    Xu, Baiquan; Yan, Shiqiang; Wang, Qianju; Lian, Jian; Wu, Xiaoping; Ding, Keyong

    2014-03-01

    Stores of geoscience records are in constant flux. These stores are continually added to by new information, ideas and data, which are frequently revised. The geoscience record is in restrained by human thought and technology for handling information. Conventional methods strive, with limited success, to maintain geoscience records which are readily susceptible and renewable. The information system must adapt to the diversity of ideas and data in geoscience and their changes through time. In China, more than 400,000 types of important geological data are collected and produced in geological work during the last two decades, including oil, natural gas and marine data, mine exploration, geophysical, geochemical, remote sensing and important local geological survey and research reports. Numerous geospatial databases are formed and stored in National Geological Archives (NGA) with available formats of MapGIS, ArcGIS, ArcINFO, Metalfile, Raster, SQL Server, Access and JPEG. But there is no effective way to warrant that the quality of information is adequate in theory and practice for decision making. The need for fast, reliable, accurate and up-to-date information by providing the Geographic Information System (GIS) communities are becoming insistent for all geoinformation producers and users in China. Since 2010, a series of geoinformation projects have been carried out under the leadership of the Ministry of Land and Resources (MLR), including (1) Integration, update and maintenance of geoinformation databases; (2) Standards research on clusterization and industrialization of information services; (3) Platform construction of geological data sharing; (4) Construction of key borehole databases; (5) Product development of information services. "Nine-System" of the basic framework has been proposed for the development and improvement of the geospatial data infrastructure, which are focused on the construction of the cluster organization, cluster service, convergence, database, product, policy, technology, standard and infrastructure systems. The development of geoinformation stores and services put forward a need for Geospatial Data Infrastructure (GDI) in China. In this paper, some of the ideas envisaged into the development of metadata in China are discussed.

  2. Database of mineral deposits in the Islamic Republic of Mauritania (phase V, deliverables 90 and 91): Chapter S in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Marsh, Erin; Anderson, Eric D.

    2015-01-01

    Three ore deposits databases from previous studies were evaluated and combined with new known mineral occurrences into one database, which can now be used to manage information about the known mineral occurrences of Mauritania. The Microsoft Access 2010 database opens with the list of tables and forms held within the database and a Switchboard control panel from which to easily navigate through the existing mineral deposit data and to enter data for new deposit locations. The database is a helpful tool for the organization of the basic information about the mineral occurrences of Mauritania. It is suggested the database be administered by a single operator in order to avoid data overlap and override that can result from shared real time data entry. It is proposed that the mineral occurrence database be used in concert with the geologic maps, geophysics and geochemistry datasets, as a publically advertised interface for the abundant geospatial information that the Mauritanian government can provide to interested parties.

  3. Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2009-01-01

    This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules applied in this compilation. Next, the fields of the data file are considered. Finally, we provide new grade and tonnage models that are, for the most part, based on a classification of deposits using observable geologic units from regional-scaled maps.

  4. Publications - RI 97-15A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 97-15A Publication Details Title: Geologic map of the Tanana B-1 Quadrangle, central ., and Weber, F.R., 1997, Geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of ; Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Geologic map of the Tanana B-1

  5. Edwin James' and John Hinton's revisions of Maclure's geologic map of the United States

    NASA Astrophysics Data System (ADS)

    Aalto, K. R.

    2012-03-01

    William Maclure's pioneering geologic map of the eastern United States, published first in 1809 with Observations on the Geology of the United States, provided a foundation for many later maps - a template from which geologists could extend their mapping westward from the Appalachians. Edwin James, botanist, geologist and surgeon for the 1819/1820 United States Army western exploring expedition under Major Stephen H. Long, published a full account of this expedition with map and geologic sections in 1822-1823. In this he extended Maclure's geology across the Mississippi Valley to the Colorado Rockies. John Howard Hinton (1791-1873) published his widely read text: The History and Topography of the United States in 1832, which included a compilations of Maclure's and James' work in a colored geologic map and vertical sections. All three men were to some degree confounded in their attempts to employ Wernerian rock classification in their mapping and interpretations of geologic history, a common problem in the early 19th Century prior to the demise of Neptunist theory and advent of biostratigraphic techniques of correlation. However, they provided a foundation for the later, more refined mapping and geologic interpretation of the eastern United States.

  6. Groundwater modeling in integrated water resources management--visions for 2020.

    PubMed

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  7. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and it affords a previously unheard of potential for communicating the complexity of key exposures. For example, in studies of metamorphic structures we often search for days to find "Rosetta Stone" outcrops that display key geometric relationships. While conventional photographs rarely can capture the essence of the field exposure, capturing a true 3D representation of the exposure with multiple photos from many orientations can solve this communication problem. As spatial databases evolve these 3D models should be readily importable into the database.

  8. Preliminary geologic map of the Los Angeles 30' x 60' quadrangle, Southern California

    USGS Publications Warehouse

    complied by Yerkes, Robert F.; Campbell, Russell H.; digital preparation by Alvarez, Rachel M.; Bovard, Kelly R.

    2005-01-01

    This data set maps and describes the geology of the Los Angeles 30? x 60? quadrangle, southern California. Compilation of the Los Angeles quadrangle is based upon published mapping at scales of 1:12,000 and smaller, unpublished mapping at scales of 1:12,000 and smaller, with reconnaissance mapping by the compilers to resolve some edge-matching problems. The Los Angeles 30? x 60? quadrangle covers approximately 5,000 km2 including some of the most densely populated urban and suburban areas of the southern California megalopolis. It extends about 90 km E-W and about 55 km N-S, from Fillmore and Thousand Oaks in the west to Vincent in the northeast and Montebello in the southeast, and includes urban San Gabriel Valley and San Gabriel Mountain foothill communities from Monrovia to Pasadena, as well as Glendale, downtown Los Angeles, Hollywood, Santa Monica, Malibu, in addition to all the communities in the San Fernando Valley, Simi Valley, and the upper Santa Clara River Valley. From the 2000 Census, the population of these urban and suburban areas totals approximately 5.6 million, and estimates of property value total hundreds of billions of dollars. Residents and transient visitors are subject to potential hazards from earthquakes, debris flows and other landslides, floods, wildfires, subsidence from ground water and petroleum withdrawal, and swelling soils; and coastal areas are exposed to flooding and erosion by storm and tsunami waves. Topographic relief ranges from about one hundred meters sub sea (in Santa Monica Bay) to more than 2,000 meters above sea level at Pacifico Mountain in the high San Gabriel Mountains. In addition to the populated area, the quadrangle includes significant areas of wilderness in the Angeles and Los Padres National Forests, in the Santa Monica Mountains National Recreation Area, and the Sespe Condor Sanctuary. The geologic map illustrates the general distribution of the rocks and surficial deposits in the area and their structural and stratigraphic relations to one another. The principal characteristics of the map units are described and are part of the database. The map provides a regional geologic framework as an aid to better evaluations of the potential for hazard from active earth processes. It synthesizes and combines studies by many earth scientists. Most of the source maps are at more detailed scales than 1:100,000, and we utilized the most detailed source materials available. We have not attempted to resolve all problems of stratigraphic correlation and nomenclature. In most areas we have retained the unit designations of source-map authors, but in some areas, particularly in the igneous-metamorphic complex of the San Gabriel Mountains, some unit designations have been changed. Hopefully, this map will stimulate further work to describe and correlate the many units within the scope of a more coherent, more accurate geologic history.

  9. A guided inquiry approach to learning the geology of the U.S

    USGS Publications Warehouse

    Leech, M.L.; Howell, D.G.; Egger, A.E.

    2004-01-01

    A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when undergraduate students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group's findings to the class, describing their geologic provinces and the reasoning behind their choices.

  10. Database of Geoscientific References Through 2007 for Afghanistan, Version 2

    USGS Publications Warehouse

    Eppinger, Robert G.; Sipeki, Julianna; Scofield, M.L. Sco

    2007-01-01

    This report describes an accompanying database of geoscientific references for the country of Afghanistan. Included is an accompanying Microsoft? Access 2003 database of geoscientific references for the country of Afghanistan. The reference compilation is part of a larger joint study of Afghanistan's energy, mineral, and water resources, and geologic hazards, currently underway by the U.S. Geological Survey, the British Geological Survey, and the Afghanistan Geological Survey. The database includes both published (n = 2,462) and unpublished (n = 174) references compiled through September, 2007. The references comprise two separate tables in the Access database. The reference database includes a user-friendly, keyword-searchable, interface and only minimum knowledge of the use of Microsoft? Access is required.

  11. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  12. Preserving Geological Samples and Metadata from Polar Regions

    NASA Astrophysics Data System (ADS)

    Grunow, A.; Sjunneskog, C. M.

    2011-12-01

    The Office of Polar Programs at the National Science Foundation (NSF-OPP) has long recognized the value of preserving earth science collections due to the inherent logistical challenges and financial costs of collecting geological samples from Polar Regions. NSF-OPP established two national facilities to make Antarctic geological samples and drill cores openly and freely available for research. The Antarctic Marine Geology Research Facility (AMGRF) at Florida State University was established in 1963 and archives Antarctic marine sediment cores, dredge samples and smear slides along with ship logs. The United States Polar Rock Repository (USPRR) at Ohio State University was established in 2003 and archives polar rock samples, marine dredges, unconsolidated materials and terrestrial cores, along with associated materials such as field notes, maps, raw analytical data, paleomagnetic cores, thin sections, microfossil mounts, microslides and residues. The existence of the AMGRF and USPRR helps to minimize redundant sample collecting, lessen the environmental impact of doing polar field work, facilitates field logistics planning and complies with the data sharing requirement of the Antarctic Treaty. USPRR acquires collections through donations from institutions and scientists and then makes these samples available as no-cost loans for research, education and museum exhibits. The AMGRF acquires sediment cores from US based and international collaboration drilling projects in Antarctica. Destructive research techniques are allowed on the loaned samples and loan requests are accepted from any accredited scientific institution in the world. Currently, the USPRR has more than 22,000 cataloged rock samples available to scientists from around the world. All cataloged samples are relabeled with a USPRR number, weighed, photographed and measured for magnetic susceptibility. Many aspects of the sample metadata are included in the database, e.g. geographical location, sample description, collector, rock age, formation, section location, multimedia images as well structural data, field observations, logistics, surface features, etc. The metadata are entered into a commercial, museum based database called EMu. The AMGRF houses more than 25,000m of deep-sea cores and drill cores as well as nearly 3,000 meters of rotary cored geological material from Antarctica. Detailed information on the sediment cores including location, sediment composition are available in cruise reports posted on the AMGRF web-site. Researchers may access the sample collections through the online websites (http://www-bprc.mps.ohio-state.edu/emuwebusprr and http://www.arf.fsu.edu). Searches may be done using multiple search terms or by use of the mapping feature. The on-line databases provide an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient.

  13. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    USGS Publications Warehouse

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  14. Onshore and offshore geologic map of the Coal Oil Point area, southern California

    USGS Publications Warehouse

    Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.

    2011-01-01

    Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil Point area. Results from this report directly address issues raised in the California Ocean Protection Act (COPA) Five Year Strategic Plan. For example, one of the guiding principles of the COPA five-year strategic plan is to 'Recognize the interconnectedness of the land and the sea, supporting sustainable uses of the coast and ensuring the health of ecosystems.' Results from this USGS report directly connect the land and sea with the creation of both a seamless onshore and offshore digital terrain model (DTM) and geologic map. One of the priority goals (and objectives) of the COPA plan is to 'monitor and map the ocean environment to provide data about conditions and trends.' Maps within this report provide land and sea geologic information for mapping and monitoring nearshore sediment processes, pollution transport, and sea-level rise and fall.

  15. Publications - PDF 99-24B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska (6.4 M) Keywords Ar-Ar; Bedrock; Bedrock Geologic Map; Bedrock Geology; Economic Geology; Geochronology ; Geologic; Geologic Map; Geology; Gold; Lode; Plutonic; Plutonic Hosted; Porphyry; STATEMAP Project; Silver

  16. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f

  17. Use of Bedrock and Geomorphic Mapping Compilations in Assessing Geologic Hazards at Recreation Sites on National Forests in NW California

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Bell, A.; Elder, D.; Mowery, R.; Mikulovsky, R.; Klingel, H.; Stevens, M.

    2010-12-01

    Geologic hazards on US Forest Service lands have a long history of producing catastrophic events. In 1890 (prior to the establishment of the Forest Service), the China Mine landslide buried a miner’s camp along the Trinity River in NW California, killing a number of miners. An earthquake in southwestern Montana triggered a massive landslide which killed 28 people in a US Forest Service campground in 1959. In 1980, Mount St. Helens erupted in Oregon, killing 57 people. Debris flows from a winter storm in 2003 on the burned hillslopes of the San Bernardino National Forest in California killed 14 people at the St. Sophia youth Camp. A rockfall in the summer of 2009 in Lassen National Park killed a 9 year old boy. The most recent catastrophe occurred on June 11, 2010 when 20 people died in a flash flood at the Albert Pike Campground on the Ouachita National Forest. These and other disasters point out the need for geologic hazard mapping and assessments on the National Forests. The US Forest Service (USFS) is currently assessing geologic hazards in the Northern Province of USFS Region 5 (Pacific Southwest Region), which includes the Klamath, Mendocino, Shasta-Trinity, and Six Rivers National Forests. The most common geologic hazards (relatively short return intervals) in this area include landslides, rock falls, debris flows, flooding, temporary dam failures (landslide or woody debris), naturally occurring hazardous materials, (asbestos radon, etc), and rarely, karst subsidence. Seismic and volcanic hazards are also important at longer return intervals. This assessment will be conducted in three phases, and is patterned after a process developed by Region 8 of the US Forest Service. The first phase is a reconnaissance level assessment based on existing information such as spatial databases, aerial photos, Digital Elevation Models, State of California Alquist-Priolo Earthquake Fault Zone maps, previous investigations and anecdotal accounts of past events. The bedrock coverage is a compilation of the best available mapping for all National Forests in California. The geomorphic coverage includes features such as active and dormant landslides, alluvial fans, headwall basins, glacial features, and valley inner gorge. Criteria will be developed which utilize elements of this data to evaluate geologic hazards in the vicinity of developed recreation sites. The second phase will be conducted later and involves site specific analyses focusing on areas identified as higher hazard in the first phase, along with verification and updating of phase 1 findings. The third phase will complete any site level geologic or hydrologic investigations, and wrap up the hazard assessment process. A summary report with hazard maps and recommendations will be prepared at the end of each phase. The overriding goal of this project is to provide sound geologic information to managers so they can use a science-based approach in recognizing and managing geologic hazards at recreation sites.

  18. usSEABED: Gulf of Mexico and Caribbean (Puerto Rico and U.S. Virgin Islands) offshore surficial sediment data release

    USGS Publications Warehouse

    Buczkowski, Brian J.; Reid, Jane A.; Jenkins, Chris J.; Reid, Jamey M.; Williams, S. Jeffress; Flocks, James G.

    2006-01-01

    Over the past 50 years there has been an explosion in scientific interest, research effort and information gathered on the geologic sedimentary character of the United States continental margin. Data and information from thousands of publications have greatly increased our scientific understanding of the geologic origins of the shelf surface but rarely have those data been combined and integrated. This publication is the first release of the Gulf of Mexico and Caribbean (Puerto Rico and U.S. Virgin Islands) coastal and offshore data from the usSEABED database. The report contains a compilation of published and previously unpublished sediment texture and other geologic data about the sea floor from diverse sources. usSEABED is an innovative database system developed to bring assorted data together in a unified database. The dbSEABED system is used to process the data. Examples of maps displaying attributes such as grain size and sediment color are included. This database contains information that is a scientific foundation for the USGS Marine Aggregate Resources and Processes Assessment and Benthic Habitats projects, and will be useful to the marine science community for other studies of the Gulf of Mexico and Caribbean continental margins. This publication is divided into ten sections: Home, Introduction, Content, usSEABED (data), dbSEABED (processing), Data Catalog, References, Contacts, Acknowledgments and Frequently Asked Questions. Use the navigation bar on the left to navigate to specific sections of this report. Underlined topics throughout the publication are links to more information. Links to specific and detailed information on processing and those to pages outside this report will open in a new browser window.

  19. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  20. Presentations - Loveland, A.M. and others, 2009 | Alaska Division of

    Science.gov Websites

    Details Title: Geologic map of the South-central Sagavanirktok Quadrangle, North Slope, Alaska (poster , Geologic map of the South-central Sagavanirktok Quadrangle, North Slope, Alaska (poster): Alaska Geological quadrangle, North Slope, Alaska (14.0 M) Keywords Energy Resources Posters and Presentations; Geologic Map

  1. Bedrock geologic map of the Littleton and Lower Waterford quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-06-13

    The bedrock geologic map of the Littleton and Lower Waterford quadrangles covers an area of approximately 107 square miles (277 square kilometers) north and south of the Connecticut River in east-central Vermont and adjacent New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks. The northwestern part of the map is divided by the Monroe fault which separates Early Devonian rocks of the Connecticut Valley-Gaspé trough from rocks of the Bronson Hill anticlinorium.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic suite, and extends from Maine, down the eastern side of the Connecticut River in New Hampshire, to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary rocks and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (upper and lower sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of metamorphic and metasedimentary rocks. The Ammonoosuc Volcanics overlies the Albee Formation that consists of interlayered feldspathic sandstone, siltstone, pelite, and slate.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics, including the Whitefield pluton to the east, the Scrag granite of Billing (1937) in the far southeastern corner of the map, the Highlandcroft Granodiorite just to the west of the Ammonoosuc fault, and the Joslin Turn tonalite (just north of the Connecticut River). To the east of the Monroe fault lies the late Silurian Comerford Intrusive Complex, which consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes of the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics well east of the Monroe fault.This report consists of a single geologic map sheet and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information.

  2. Characteristics of water-well yields in part of the blue ridge geologic Province in Loudoun County, Virginia

    USGS Publications Warehouse

    Sutphin, D.M.; Drew, L.J.; Schuenemeyer, J.H.; Burton, W.C.

    2001-01-01

    Loudoun County, Virginia, which is located about 50 km to the west of Washington, DC, was the site of intensive suburban development during the 1980s and 1990s. In the western half of the county, the source of water for domestic use has been from wells drilled into the fractured crystalline bedrock of the Blue Ridge Geologic Province. A comprehensive digital database that contains information on initial yield, location, depth, elevation, and other data for 3651 wells drilled in this 825.5-km2 area was combined with a digital geologic map to form the basis for a study of geologic and temporal controls on water-well yields. Statistical modeling procedures were used to determine that mean yields for the wells were significantly different as a function of structural setting, genetic rock type, and geologic map unit. The Bonferroni procedure then was used to determine which paired comparisons contributed to these significant differences. The data were divided into 15 temporal drilling increments to determine if the time-dependent trends that exist for the Loudoun County data are similar to those discovered in a previous study of water-well yields in the Pinardville 7.5-min quadrangle, New Hampshire. In both regions, trends, which include increasing proportions of very low yield wells and increasing well depths through time, and the counterintuitive result of increasing mean well yields through time, were similar. In addition, a yield-to-depth curve similar to that discovered in the Pinardville quadrangle was recognized in this study. Thus, the temporal model with a feed-forward-loop mechanism to explain the temporal trends in well characteristics proposed for the New Hampshire study appears to apply to western Loudoun County. ?? 2001 International Association for Mathematical Geology.

  3. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  4. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  5. Estimated sand and gravel resources of the South Merrimack, Hillsborough County, New Hampshire, 7.5-minute quadrangle

    USGS Publications Warehouse

    Sutphin, D.M.; Drew, L.J.; Fowler, B.K.

    2006-01-01

    A computer methodology is presented that allows natural aggregate producers, local governmental, and nongovernmental planners to define specific locations that may have sand and gravel deposits meeting user-specified minimum size, thickness, and geographic and geologic criteria, in areas where the surficial geology has been mapped. As an example, the surficial geologic map of the South Merrimack quadrangle was digitized and several digital geographic information system databases were downloaded from the internet and used to estimate the sand and gravel resources in the quadrangle. More than 41 percent of the South Merrimack quadrangle has been mapped as having sand and (or) gravel deposited by glacial meltwaters. These glaciofluvial areas are estimated to contain a total of 10 million m3 of material mapped as gravel, 60 million m3 of material mapped as mixed sand and gravel, and another 50 million m3 of material mapped as sand with minor silt. The mean thickness of these areas is about 1.95 meters. Twenty tracts were selected, each having individual areas of more than about 14 acres4 (5.67 hectares) of stratified glacial-meltwater sand and gravel deposits, at least 10-feet (3.0 m) of material above the watertable, and not sterilized by the proximity of buildings, roads, streams and other bodies of water, or railroads. The 20 tracts are estimated to contain between about 4 and 10 million short tons (st) of gravel and 20 and 30 million st of sand. The five most gravel-rich tracts contain about 71 to 82 percent of the gravel resources in all 20 tracts and about 54-56 percent of the sand. Using this methodology, and the above criteria, a group of four tracts, divided by narrow areas sterilized by a small stream and secondary roads, may have the highest potential in the quadrangle for sand and gravel resources. ?? Springer Science+Business Media, LLC 2006.

  6. Geologic map of the Washougal quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Tolan, Terry L.

    2013-01-01

    The Washougal 7.5’ quadrangle spans the boundary between the Portland Basin and the Columbia River Gorge, approximately 30 km east of Portland, Oregon. The map area contains the westernmost portion of the Columbia River Gorge National Scenic area as well as the rapidly growing areas surrounding the Clark County, Washington, cities of Camas and Washougal. The Columbia River transects the map area, and two major tributaries, the Washougal River in Washington and the Sandy River in Oregon, also flow through the quadrangle. The Columbia, Washougal, and Sandy Rivers have all cut deep valleys through hilly uplands, exposing Oligocene volcanic bedrock in the north part of the map area and lava flows of the Miocene Columbia River Basalt Group in the western Columbia River Gorge. Elsewhere in the map area, these older rocks are buried beneath weakly consolidated to well-consolidated Neogene and younger basin-fill sedimentary rocks and Quaternary volcanic and sedimentary deposits. The Portland Basin is part of the Coastal Lowland that separates the Cascade Range from the Oregon Coast Range. The basin has been interpreted as a pull-apart basin located in the releasing stepover between two en echelon, northwest-striking, right-lateral fault zones. These fault zones are thought to reflect regional transpression, transtension, and dextral shear within the forearc in response to oblique subduction of the Pacific plate along the Cascadia Subduction Zone. The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded on its northeast flank by the Portland Hills Fault Zone, which is probably an active structure. The nature of the corresponding northeastern margin of the basin is less clear, but a series of poorly defined and partially buried dextral extensional structures has been hypothesized from topography, microseismicity, potential-field anomalies, and reconnaissance geologic mapping. This map is a contribution to a program designed to improve the geologic database for the Portland Basin region of the Pacific Northwest urban corridor, the densely populated Cascadia forearc region of western Washington and Oregon. Updated, more detailed information on the bedrock and surficial geology of the basin and its surrounding area will facilitate improved assessments of seismic risk, and resource availability in this rapidly growing region.

  7. A design for the geoinformatics system

    NASA Astrophysics Data System (ADS)

    Allison, M. L.

    2002-12-01

    Informatics integrates and applies information technologies with scientific and technical disciplines. A geoinformatics system targets the spatially based sciences. The system is not a master database, but will collect pertinent information from disparate databases distributed around the world. Seamless interoperability of databases promises quantum leaps in productivity not only for scientific researchers but also for many areas of society including business and government. The system will incorporate: acquisition of analog and digital legacy data; efficient information and data retrieval mechanisms (via data mining and web services); accessibility to and application of visualization, analysis, and modeling capabilities; online workspace, software, and tutorials; GIS; integration with online scientific journal aggregates and digital libraries; access to real time data collection and dissemination; user-defined automatic notification and quality control filtering for selection of new resources; and application to field techniques such as mapping. In practical terms, such a system will provide the ability to gather data over the Web from a variety of distributed sources, regardless of computer operating systems, database formats, and servers. Search engines will gather data about any geographic location, above, on, or below ground, covering any geologic time, and at any scale or detail. A distributed network of digital geolibraries can archive permanent copies of databases at risk of being discontinued and those that continue to be maintained by the data authors. The geoinformatics system will generate results from widely distributed sources to function as a dynamic data network. Instead of posting a variety of pre-made tables, charts, or maps based on static databases, the interactive dynamic system creates these products on the fly, each time an inquiry is made, using the latest information in the appropriate databases. Thus, in the dynamic system, a map generated today may differ from one created yesterday and one to be created tomorrow, because the databases used to make it are constantly (and sometimes automatically) being updated.

  8. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  9. Geologic map of the Richland 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Mosesmore » Lake, Ritzville quadrangles have already been released.« less

  10. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1972-01-01

    A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.

  11. Global land information system (GLIS) access to worldwide Landsat data

    USGS Publications Warehouse

    Smith, Timothy B.; Goodale, Katherine L.

    1993-01-01

    The Landsat Technical Working Group (LTWG) and the Landsat Ground Station Operations Working Group (LGSOWG) have encouraged Landsat receiving stations around the world to share information about their data holdings through the exchange of metadata records. Receiving stations forward their metadata records to the U.S. Geological Survey's EROS Data Center (EDC) on a quarterly basis. The EDC maintains the records for each station, coordinates changes to the database, and provides metadata to the stations as requested. The result is a comprehensive international database listing most of the world's Landsat data acquisitions This exchange of information began in the early 1980's with the inclusion in the EDC database os scenes acquired by a receiving station in Italy. Through the years other stations have agreed to participate; currently ten of the seventeen stations actively share their metadata records. Coverage maps have been generated to depict the status of the database. The Worldwide Landsat database is also available though the Global Land Information System (GLIS).

  12. Geologic Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Fridrich, Chris J.; Lindsay, Charles R.; Snee, Lawrence W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geologic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Geologic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Geologic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Geologic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Geologic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Geologic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Geologic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Geologic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Geologic Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Geologic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Geologic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Yount, James

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Geologic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Geologic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Williams, Van S.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Geologic Map of Quadrangles 3064, 3066, 2964, and 2966, Laki-Bander (611), Jahangir-Naweran (612), Sreh-Chena (707), Shah-Esmail (617), Reg-Alaqadari (618), and Samandkhan-Karez (713) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Geologic Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Geologic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Geologic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Geologic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Sawyer, David A.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geologic Map of Quadrangles 3560, 3562, and 3662, Sir Band (402), Khawja-Jir (403), Bala-Murghab (404), and Darah-I-Shor-I-Karamandi (122) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Geologic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Geologic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Geologic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Geologic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Geologic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Geologic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Yount, James C.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Geologic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

Top