Science.gov

Sample records for geologic nuclear waste

  1. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    SciTech Connect

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how

  2. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    SciTech Connect

    Murphy, W.M.; Kovach, L.A.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW.

  3. Geological aspects of the nuclear waste disposal problem

    SciTech Connect

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  4. Systems engineering programs for geologic nuclear waste disposal

    SciTech Connect

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  5. Assessing the performance of geologic repositories for nuclear waste

    SciTech Connect

    Pigford, T.H.

    1984-08-01

    Predictions of the rate of release of radionuclides from waste packages, their rates of dissolution in groundwater, their hydrogeologic transport to the environment, and their ultimate uptake by people are summarized. Both the details of performance assessment and conclusions on performance are affected by what performance criteria are adopted. 9 references, 1 figure, 1 table.

  6. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    SciTech Connect

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  7. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  8. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    SciTech Connect

    Carr, M.D.; Yount, J.C.

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  9. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  10. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    USGS Publications Warehouse

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  11. Radioactive waste management: the relation between geological disposal and advanced nuclear technologies

    SciTech Connect

    Schroder, Jantine

    2013-07-01

    Throughout this paper we aim to scope the most pregnant themes, issues and research questions concerning the relation between geological disposal and advanced nuclear technologies in the broad context of radioactive waste management. Especially from a socio-technical point of view the mutual impacts, divergences and complementarities between both strategies seem to have received limited dedicated examination up until today. Specific attention is paid to the main arguments that seem to underpin both research streams, related to how the issue of radioactive waste is contextualized and which problems and solutions are consequently identified and proposed. Ultimately we aim to encourage scientifically integer communication and constructive dialogue between both fields, to investigate the common possibilities of enhancing radioactive waste management as a whole. (authors)

  12. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    PubMed

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  13. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  14. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  15. Geotechnical support and topical studies for nuclear waste geologic repositories: Annual report, Fiscal Year 1986

    SciTech Connect

    Not Available

    1986-11-01

    The multidisciplinary project was initiated in fiscal year 1986. It comprises two major interrelated parts: (1) Technical Assistance. This part of the project includes: (a) review of the progress of major projects in the DOE Office of Civilian Radioactive Waste Management Program and advise the Engineering and Geotechnology Division on significant technical issues facing each project; (b) analyze geotechnical data, reports, tests, surveys and plans for the different projects; (c) review and comment on major technical reports and other program documents such as site characterization plans and area characterization plans and (d) provide scientific and technical input at technical meetings. (2) Topical Studies. This activity comprises studies on scientific and technical topics, and issues of significance to in-situ testing, test analysis methods, and performance assessment of nuclear waste geologic repositories. The subjects of study were selected based on discussions with DOE staff. For fiscal year 1986, one minor and one major area of investigation were undertaken. The minor topic is a preliminary consideration and planning exercise for post-closure monitoring studies. The major topic, with subtasks involving various geoscience disciplines, is on the mechanical, hydraulic, geophysical and geochemical properties of fractures in geologic rock masses. The present report lists the technical reviews and comments made during the fiscal year and summarizes the technical progress of the topical studies.

  16. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  17. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    SciTech Connect

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  18. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI)

    SciTech Connect

    1995-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1993 to 30 September 1994. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks which are listed below. Task 1: Quaternary Tectonics Task 3: Mineral Deposits, Volcanic Geology Task 4: Seismology Task 5: Tectonics Task 8: Basinal Studies.

  19. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again.

  20. Development of reference conditions for geologic repositories for nuclear waste in the USA

    SciTech Connect

    Raines, G. E.; Rickertsen, L. D.; Claiborne, H. C.; McElroy, J. L.; Lynch, R. W.

    1980-10-01

    Activities to determine interim reference conditions for temperatures, pressure, fluid, chemical, and radiation environments that are expected to exist in commercial and defense high-level nuclear waste and spent fuel repositories in salt, basalt, tuff, granite, and shale are summarized. These interim conditions are being generated by the Reference Repository Conditions Interface Working Groups (RRC-IWG), an ad hoc IWG established by the National Waste Terminal Storage Program's (NWTS) Isolation Interface Control Board (I-ICB).

  1. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  2. Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs

    SciTech Connect

    Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

    1987-09-01

    This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

  3. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    SciTech Connect

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.

  4. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    SciTech Connect

    Mattson, S.R.; Broxton, D.E.; Crowe, B.M.; Buono, A.; Orkild, P.P.

    1989-07-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation`s first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab.

  5. Development of reference conditions for geologic repositories for nuclear waste in the USA

    NASA Astrophysics Data System (ADS)

    Raines, G. E.; Rickertsen, L. D.; Claiborne, H. C.; McElroy, J. L.; Lynch, R. W.

    1980-10-01

    Activities are described which determine interim reference conditions for temperatures, pressure, fluid, chemical, and radiation environments that are expected to exist in commercial and defense high level nuclear waste and spent fuel repositories in salt, basalt, tuff, granite and shale. The reference repository conditions developed are intended to serve as a guide for: (1) scientists conducting material performance tests; (2) engineers preparing the design of repositories; (3) the technically conservative conditions to be used as a basis for DOE license applications; and (4) scientists and engineers developing waste forms.

  6. Nuclear waste

    SciTech Connect

    Not Available

    1988-05-01

    This paper discusses how, as part of the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommend to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE's failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million for the Deaf Smith site and $85 million for the Hanford site.

  7. Long-Term Environmental Monitoring of an Operating Deep Geologic Nuclear Waste Repository

    SciTech Connect

    Conca, J.; Kirchner, Th.; Monk, J.; Sage, S.

    2008-07-01

    In the present energy dilemma in which we find ourselves, the magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. Nuclear energy must be a major portion of the distribution. One often-cited strategic hurdle to the commercial production of nuclear energy is the apparent lack of an acceptable nuclear waste repository. This issue has been quietly addressed at the U. S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP; see http://www.wipp.energy.gov), the closest population center of significant size being Carlsbad, New Mexico. WIPP has been operating for about nine years, disposing of over 250,000 drum-equivalents of nuclear waste. From the standpoint of addressing operational and environmental risk, as well as public fear, WIPP has had extensive human health and environmental monitoring. The Carlsbad Environmental Monitoring and Research Center is in the Institute for Energy and the Environment, in the College of Engineering at New Mexico State University. Located in Carlsbad, NM, CEMRC has been the independent monitoring facility for the area around WIPP from 1993 to the present, i.e., from six years before disposal operations began to nine years of waste disposal operations (www.cemcr.org). Based on the radiological analyses of monitoring samples completed to date for area residents and site workers, and for selected aerosols, soils, sediments, drinking water and surface waters, there is no evidence of increases in radiological contaminants in the region of WIPP that could be attributed to releases from WIPP. Levels of radiological and non-radiological analytes measured since operations began in 1999 have been within the range of baseline levels measured previously, and are within the ranges measured by other entities at the State and local levels since well before disposal phase operations began in 1999. (authors)

  8. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    SciTech Connect

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  9. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    SciTech Connect

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-06-19

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

  10. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    SciTech Connect

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    2007-07-01

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried out at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)

  11. Assessment of effectiveness of geologic isolation systems. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and catastrophic events

    SciTech Connect

    Mara, S.J.

    1980-03-01

    SRI International has projected the rate, duration, and magnitude of geomorphic processes and events in the Southwest and Gulf Coast over the next million years. This information will be used by the Department of Energy`s Pacific Northwest Laboratory (PNL) as input to a computer model, which will be used to simulate possible release scenarios and the consequences of the release of nuclear waste from geologic containment. The estimates in this report, although based on best scientific judgment, are subject to considerable uncertainty. An evaluation of the Quaternary history of the two study areas revealed that each had undergone geomorphic change in the last one million years. Catastrophic events were evaluated in order to determine their significance to the simulation model. Given available data, catastrophic floods are not expected to occur in the two study areas. Catastrophic landslides may occur in the Southwest, but because the duration of the event is brief and the amount of material moved is small in comparison to regional denudation, such events need not be included in the simulation model. Ashfalls, however, could result in removal of vegetation from the landscape, thereby causing significant increases in erosion rates. Because the estimates developed during this study may not be applicable to specific sites, general equations were presented as a first step in refining the analysis. These equations identify the general relationships among the important variables and suggest those areas of concern for which further data are required. If the current model indicates that geomorphic processes (taken together with other geologic changes) may ultimately affect the geologic containment of nuclear waste, further research may be necessary to refine this analysis for application to specific sites.

  12. Seismic Response of a Deep Underground Geologic Repository for Nuclear Waste at the Waste Isolation Pilot Plant in New Mexico

    SciTech Connect

    Sanchez, P.E.

    1998-11-02

    The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.

  13. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    SciTech Connect

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

  14. Nuclear Waste Disposal in Deep Geological Formations: What are the Major Remaining Scientific Issues?

    SciTech Connect

    Toulhoat, Pierre

    2007-07-01

    For more than thirty years, considerable efforts have been carried out in order to evaluate the possibility of disposing of high level wastes in deep geological formations. Different rock types have been examined, such as water-under-saturated tuffs (USA), granites or crystalline rocks (Canada, Sweden, and Finland), clays (France, Belgium, and Switzerland), rock-salt (Germany). Deep clays and granites, (provided that the most fractured zones are avoided in the second case) are considered to fulfill most allocated functions, either on short term (reversibility) or long term. Chemically reducing conditions favor the immobilization of actinides and most fission products by precipitation, co-precipitation and sorption. If oxidizing conditions prevail, the safety demonstration will mostly rely on the performance of artificial confinement systems. Rock-salt offers limited performance considering the issue of reversibility, which is now perceived as essential, mostly for ethical and sociological reasons. However, several issues would deserve additional research programs, and as a first priority, a clear description of time/space succession of processes during the evolution of the repository. This will allow a better representation of coupled processes in performance assessment, such as the influence of gases (H{sub 2}) generated by corrosion, on the long term dynamics of the re-saturation. Geochemical interactions between the host formation and the engineered systems (packages + barriers) are still insufficiently described. Additional gains in performance could be obtained when taking into account processes such as isotopic exchange. Imaginative solutions, employing ceramic- carbon composite materials could be proposed to replace heavy and gas-generating overpacks, or to accommodate the small but probably significant amount of 'ultimate' wastes that will be inevitably produced by Generation IV reactor systems. (author)

  15. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  16. Development of tailored ceramics for geologic storage of nuclear wastes. Quarterly progress report, October 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-02-15

    Tailored ceramics are crystalline assemblages made by high-temperature and pressure consolidation of a nuclear waste with selected additives. The multitask program includes waste form development and characterizations, and process and equipment development. (DLC)

  17. Military nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    A National Research Council (NRC) panel has endorsed a plan for a proposed underground military nuclear waste disposal facility located on a site near Carlsbad, N.M. The Department of Energy (DOE) asked NRC to evaluate the geologic suitability of the site.The NRC panel, chaired by Frank L. Parker of Vanderbilt University, concluded in its final report that “the important issues about the geology of the site have been resolved…” Those issues include the purity and volume of salt, the absence of brine pockets at the repository horizon in the areas excavated, the absence of breccia pipes and of toxic gases, and the nearly horizontal bedding of the salt. Thick underground salt beds have long been considered prime candidates for nuclear waste repositories. The existence of salt beds is believed to indicate long-term stability. In addition, the salt is flexible and will seal cracks and discontinuities over time.

  18. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  19. Swedish nuclear waste efforts

    SciTech Connect

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  20. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    SciTech Connect

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

  1. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    SciTech Connect

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

  2. Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal

    SciTech Connect

    Not Available

    1994-09-01

    Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

  3. Nuclear waste forms for actinides.

    PubMed

    Ewing, R C

    1999-03-30

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The "mineralogic approach" is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.

  4. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    SciTech Connect

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program.

  5. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    PubMed

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  6. Studies of nuclear waste migration in geologic media. Annual report, October 1978-September 1979

    SciTech Connect

    Seitz, M. G.; Rickert, P. G.; Couture, R. A.; Williams, J.; Meldgin, N.; Fried, S. M.; Friedman, A. M.; Steindler, M. J.

    1980-01-01

    Experimental results obtained this year confirm the results obtained in previous years - that nuclides migrating by fluid flow in rock often exhibit complex behavior not predicted by simple chromatographic-type models. A phenomenon found previously to lead to complex behavior for leached radionuclides is that the amount of adsorbed nuclide was not proportional to the nuclide concentration in solution (nonlinear adsorption isotherm). For cesium adsorption on limestone and on basalt, nonlinear isotherms were found this year to occur in the range of cesium concentrations in the groundwater of about 10/sup -3/ to 10/sup -9/M. Because cesium concentrations in this range can readily be attained by the leaching of solid waste by groundwater, the effects of nonlinear isotherms are germane to nuclide migration. This dependence of cesium migration on the leached concentration of cesium emphasizes the importance of treating the leaching and migration processes simultaneously such as is done in the leach-migration experiments performed in this work. The existence of nonlinear isotherms precludes the use of a single partition coefficient (K/sub d/) to describe cesium migration at an arbitrary cesium concentration above 10/sup -9/M. Nonetheless, nonlinear isotherms can be studied experimentally (e.g., to give K/sub d/ as a function of concentration) and effects of nonlinear adsorption can be predicted quantitatively. Comparison of results from column and batch tests indicate that, in addition to nonlinear adsorption, kinetic effects need to be considered in predicting nuclide migration from the partition coefficients measured in batch tests. Results of batch experiments of 2 weeks or longer duration pertained to migration expected only at the very lowest (< 50 m/y) groundwater flow rates of interest.

  7. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    SciTech Connect

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Interfaces between transport and geologic disposal systems for high-level radioactive wastes and spent nuclear fuel: A new international guidance document

    SciTech Connect

    Pope, R.B.; Baekelandt, L.; Hoorelbeke, J.M.; Han, K.W.; Pollog, T.; Blackman, D.; Villagran, J.E.

    1994-04-01

    An International Atomic Energy Agency (IAEA) Technical Document (TECDOC) has been developed and will be published by the IAEA. The TECDOC addresses the interfaces between the transport and geologic disposal systems for, high-level waste (HLW) and spent nuclear fuel (SNF). The document is intended to define and assist in discussing, at both the domestic and the international level, regulatory, technical, administrative, and institutional interfaces associated with HLW and SNF transport and disposal systems; it identifies and discusses the interfaces and interface requirements between the HLW and SNF, the waste transport system used for carriage of the waste to the disposal facility, and the HLW/SNF disposal facility. It provides definitions and explanations of terms; discusses systems, interfaces and interface requirements; addresses alternative strategies (single-purpose packages and multipurpose packages) and how interfaces are affected by the strategies; and provides a tabular summary of the requirements.

  9. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    SciTech Connect

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

  10. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Hai

    2014-05-01

    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  11. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  12. Geological problems in radioactive waste isolation

    SciTech Connect

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  13. Politics of nuclear waste

    SciTech Connect

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  14. Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories

    SciTech Connect

    Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

    2008-10-23

    This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

  15. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material.

  16. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  17. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic

  18. OCRWM International Cooperation in Nuclear Waste Management

    SciTech Connect

    Jackson, R.; Levich, R.; Strahl, J.

    2002-02-27

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste.

  19. Axisymmetric analysis of multilayered thermoelastic media with application to a repository for heat-emitting high-level nuclear waste in a geological formation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Datcheva, Maria; Schanz, Tom

    2016-08-01

    Comprehensive analytical solutions to 3-D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.

  20. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  1. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  2. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction

  3. Development of tailored ceramics for geologic storage of nuclear wastes. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Not Available

    1980-05-15

    In the second quarter of activities on developing Tailored Ceramic waste forms for SRP waste compositions, emphasis was on the chemistry controlling the incorporation of the waste elements into the crystalline phases of the high-alumina content ceramic and the major factors affecting the consolidation process. Research on the design and synthesis of oxide and phosphate ceramic waste forms has continued with emphasis on fluorite-structure oxides and on rare earth phosphates with the monazite structure. Dissolution studies to date indicate that monazite is very stable.

  4. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  5. Managing Nuclear Waste: Options Considered

    SciTech Connect

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  6. Effects of silica redistribution on performance of high-level nuclear waste repositories in saturated geologic formations

    SciTech Connect

    Verma, A.; Pruess, K.

    1985-11-01

    Evaluation of the thermohydrological conditions near high-level waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock do not change in response to the thermal, mechanical or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in thermally driven flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, a repository-wide thermal convection problem, and different pore models were employed for the permeable medium (fractures with uniform or non-uniform cross sections). We find that silica redistribution generally has insignificant effects on host rock and canister temperatures, pore pressures, or flow velocites.

  7. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    SciTech Connect

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  8. Turning nuclear waste into glass

    SciTech Connect

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  9. Investigating α-particle radiation damage in phyllosilicates using synchrotron microfocus-XRD/XAS: implications for geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    Bower, W. R.; Pearce, C. I.; Pimblott, S. M.; Haigh, S. J.; Mosselmans, J. F. W.; Pattrick, R. A. D.

    2014-12-01

    The response of mineral phases to the radiation fields that will be experienced in a geological disposal facility (GDF) for nuclear waste is poorly understood. Phyllosilicates are critical phases in a GDF with bentonite clay as the backfill of choice surrounding high level wastes in the engineered barrier, and clays and micas forming the most important reactive component of potential host rocks. It is essential that we understand changes in mineral properties and behaviour as a result of damage from both α and γ radiation over long timescales. Radiation damage has been demonstrated to affect the physical integrity and oxidation state1 of minerals which will also influence their ability to react with radionuclides. Using the University of Manchester's newly commissioned particle accelerator at the Dalton Cumbrian Facility, UK, model phyllosilicate minerals (e.g. biotite, chlorite) were irradiated with high energy (5MeV) alpha particles at controlled dose rates. This has been compared alongside radiation damage found in naturally formed 'radiohalos' - spherical areas of discolouration in minerals surrounding radioactive inclusions, resulting from alpha particle penetration, providing a natural analogue to study lattice damage under long term bombardment1,2. Both natural and artificially irradiated samples have been analysed using microfocus X-ray absorption spectroscopy and high resolution X-ray diffraction mapping on Beamline I18 at Diamond Light Source; samples were probed for redox changes and long/short range disorder. This was combined with lattice scale imaging of damage using HR-TEM (TitanTM Transmission Electron Microscope). The results show aberrations in lattice parameters as a result of irradiation, with multiple damage-induced 'domains' surrounded by amorphous regions. In the naturally damaged samples, neo-formed phyllosilicate phases are shown to be breakdown products of highly damaged regions. A clear reduction of the Fe(III) component has been

  10. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  11. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  12. Nuclear Waste Fund fee adequacy: An assessment

    SciTech Connect

    1990-11-01

    The purpose of this report is to present the Department of Energy`s (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee`s adequacy is required by the NWPA.

  13. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  14. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  15. Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices

    SciTech Connect

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement.

  16. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  17. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  18. Nuclear waste; Can we contain it

    SciTech Connect

    King, F.; Ikeda, B.M.; Shoesmith, D.W.

    1992-04-01

    This paper reports that the safe disposal of nuclear waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels. The disposal of such wastes deep in stable geological formations has been extensively researched since the late 1970s and is now the preferred option internationally. In all of the proposed disposal concepts, the natural barrier of the geological formation is supplemented by a series of engineered barriers each of which retards the transport of radionuclides to the environment. The geological formations being considered usually fall into one of three general categories: crystalline rock (Canada, Sweden, Switzerland, United Kingdom, United States); salt deposits (United States, Germany); and sedimentary deposits, such as clay or seabed sediments (Belgium, United Kingdom, United States), illustrates the Canadian disposal concept based on disposal in igneous rock in the Canadian Shield. The waste will consist of either used fuel bundles or immobilized reprocessed material. In the multibarrier approach the principal engineered component, and the only absolute barrier, is a metallic container enclosing the waste. The required period of containment will influence the choice of material and the thickness of the container.

  19. Radiation Effects in a Model Ceramic for Nuclear Waste Disposal

    SciTech Connect

    Devanathan, Ram; Weber, William J.

    2007-04-02

    The safe immobilization of nuclear waste in geological repositories is one of the major scientific challenges facing humanity today. Crystalline ceramics hold the promise of locking up actinides from nuclear fuel and excess weapons plutonium in their structure thereby isolating them from the environment. In this paper, we discuss the atomistic details of radiation damage in a model ceramic, zircon.

  20. Public attitudes about nuclear waste

    SciTech Connect

    Bisconti, A.S.

    1991-12-01

    There is general agreement that nuclear waste is an important national issue. It certainly is important to the industry. congress, too, gives high priority to nuclear waste disposal. In a recent pool by Reichman, Karten, Sword, 300 congressional staffers named nuclear waste disposal as the top nuclear energy-related legislative issue for Congress to address. In this paper most of the data the author discusses are from national polls that statistically represent the opinions of all American adults all across the country, as well as polls conducted in Nevada that statistically represent the opinions of all adults in that state. All the polls were by Cambridge Reports and have a margin of error of {plus_minus} 3%.

  1. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect

    Johnson, Bradley R.

    2014-01-30

    of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.

  2. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  3. Can shale safely host US nuclear waste?

    USGS Publications Warehouse

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  4. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  5. Public reactions to nuclear waste

    SciTech Connect

    Dunlap, R.E.; Kraft, M.E.; Rosa, E.A.

    1993-12-31

    For many scientists, engineers, and regulators, the public controversy over siting a repository for high-level nuclear wastes exemplifies the clash between rational scientific judgment and irrational public attitudes. Even many who are more sympathetic to public concerns about risk and management believe the controversy is exacerbated by incompatibilities between good science and public participation in regulatory decision-making. Understanding the incompatibilities, however, is crucial to managing science and technology in a democratic society and provides an important motivation to study the relationship between public opinion and nuclear waste policy. In this book, Dunlap and his colleagues present a solid base of empirical research on the subject, and the strength of the collection is the careful unraveling of social factors and context to explain the overwhelmingly negative public view of nuclear waste and its management.

  6. Multiple-Code BenchMaek Simulation Stidy of Coupled THMC Processes IN the EXCAVATION DISTURBED ZONE Associated with Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; X. Feng; J. Hudson; L. Jing; A. Kobayashi; T. Koyama; P.Pan; H. Lee; M. Rinne; E. Sonnenthal; Y. Yamamoto

    2006-05-08

    An international, multiple-code benchmark test (BMT) study is being conducted within the international DECOVALEX project to analyze coupled thermal, hydrological, mechanical and chemical (THMC) processes in the excavation disturbed zone (EDZ) around emplacement drifts of a nuclear waste repository. This BMT focuses on mechanical responses and long-term chemo-mechanical effects that may lead to changes in mechanical and hydrological properties in the EDZ. This includes time-dependent processes such as creep, and subcritical crack, or healing of fractures that might cause ''weakening'' or ''hardening'' of the rock over the long term. Five research teams are studying this BMT using a wide range of model approaches, including boundary element, finite element, and finite difference, particle mechanics, and elasto-plastic cellular automata methods. This paper describes the definition of the problem and preliminary simulation results for the initial model inception part, in which time dependent effects are not yet included.

  7. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  8. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  9. Depleted uranium as a backfill for nuclear fuel waste package

    SciTech Connect

    Forsberg, Charles W.

    1997-12-01

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  10. The Public and Nuclear Waste Management.

    ERIC Educational Resources Information Center

    Zinberg, Dorothy

    1979-01-01

    Discusses the public's negative attitude towards nuclear energy development. Explains the perceptions for the nuclear waste disposal problem, and the concern for the protection of the environment. (GA)

  11. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  12. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  13. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    SciTech Connect

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated.

  14. The Geopolitics of Nuclear Waste.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  15. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  16. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    SciTech Connect

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  18. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    PubMed

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations.

  19. Extrapolation of nuclear waste glass aging

    SciTech Connect

    Byers, C.D.; Ewing, R.C.; Jercinovic, M.J.; Keil, K.

    1984-01-01

    Increased confidence is provided to the extrapolation of long-term waste form behavior by comparing the alteration of experimentally aged natural basaltic glass to the condition of the same glass as it has been geologically aged. The similarity between the laboratory and geologic alterations indicates that important aging variables have been identified and incorporated into the laboratory experiments. This provides credibility to the long-term predictions made for waste form borosilicate glasses using similar experimental procedures. In addition, these experiments have demonstrated that the aging processes for natural basaltic glass are relevant to the alteration of nuclear waste glasses, as both appear to react via similar processes. The alteration of a synthetic basaltic glass was measured in MCC-1 tests done at 90/sup 0/C, a SA/V of 0.1 cm/sup -1/ and time periods up to 182 days. Tests were also done using (1) MCC-2 procedures at 190/sup 0/C, a SA/V of 0.1 cm/sup -1/ and time periods up to 91 days and (2) hydration tests in saturated water vapor at 240/sup 0/C, a SA/V of approx. 10/sup 6/ cm/sup -1/, and time periods up to 63 days. These results are compared to alteration observed in natural basaltic glasses of great age. 6 references, 6 figures, 1 table.

  20. Natural Analogues - One Way to Help Build Public Confidence in the Predicted Performance of a Mined Geologic Repository for Nuclear Waste

    SciTech Connect

    Stuckless, J. S.

    2002-02-26

    The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage into tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.

  1. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system.

  2. Nuclear waste policy and politics

    SciTech Connect

    Carter, L.J.

    1989-12-31

    The nation`s nuclear waste problem began in 1955 but did not draw widespread public attention until the early 1970s. It was then that the old Atomic Energy commission got in trouble by prematurely designating a site in Lyons, Kansas, as its first nuclear waste repository. This and several other false starts, coupled with the growing environmental and anti-nuclear movements, thrust the issue to the forefront of national consciousness. in the meantime, growing quantities of waste were accumulating at nuclear power plants across the country, creating mounting pressure for action. Congress acted in 1982 and again in 1987. Its 1987 decision was decisive: stop the nationwide search for a disposal site, and focus all efforts on Yucca Mountain in Nevada. Despite the clear Congressional mandate, the program is again bogged down in controversy, internal conflicts, and bureaucracy. Its future depends on a solution to these problems. And the solution involves charting some new and innovative paths around political and technical mine fields.

  3. Hazards of managing and disposing of nuclear waste

    SciTech Connect

    Kastenberg, W.E.; Gratton, L.J.

    1997-06-01

    When we bury long-lived nuclear wastes in geologic repositories, we have to worry about what may happen ten thousand{emdash}or even a million{emdash}years in the future.{copyright} {ital 1997 American Institute of Physics.}

  4. Nuclear waste: A cancer cure?

    SciTech Connect

    1995-07-01

    In a marriage of strange bedfellows, scientists at one of the country`s most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin`s disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life.

  5. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    SciTech Connect

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently.

  6. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  7. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  8. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  9. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2016-07-12

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  10. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    SciTech Connect

    Bell, J.; Drimmer, D.; Giovannini, A.; Manfroy, P.; Maquet, F.; Schittekat, J.; Van Cotthem, A.; Van Echelpoel, E.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which are rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  11. Irradiated Nuclear Fuel Management: Resource Versus Waste

    SciTech Connect

    Nash, Kenneth L.; Lumetta, Gregg J.; Vienna, John D.

    2013-01-01

    Management of irradiated fuel is an important component of commercial nuclear power production. Although it is broadly agreed that the disposition of some fraction of the fuel in geological repositories will be necessary, there is a range of options that can be considered that affect exactly what fraction of material will be disposed in that manner. Furthermore, until geological repositories are available to accept commercial irradiated fuel, these materials must be safely stored. Temporary storage of irradiated fuel has traditionally been conducted in storage pools, and this is still true for freshly discharged fuel. Criticality control technologies have led to greater efficiencies in packing of irradiated fuel into storage pools. With continued delays in establishing permanent repositories, utilities have begun to move some of the irradiated fuel inventory into dry storage. Fuel cycle options being considered worldwide include the once-through fuel cycle, limited recycle in which U and Pu are recycled back to power reactors as mixed oxide fuel, and advance partitioning and transmutation schemes designed to reduce the long term hazards associated with geological disposal from millions of years to a few hundred years. Each of these options introduces specific challenges in terms of the waste forms required to safely immobilize the hazardous components of irradiated fuel.

  12. Uranium immobilization and nuclear waste

    SciTech Connect

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  13. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  14. Magnetic fusion driventransmutation of nuclear waste (FTW)

    SciTech Connect

    Peng, Yueng Kay Martin; Cheng, E.T.

    1993-01-01

    The possibility of magnetic Fusion driven Transmutation of Waste (FTW) was revisted and discussed recently. Nuclear wastes include all transuranium elements: Pu isotopes, minor actinides separated from the spent fission fuel, and fissile products. Elimination of thse long-life nuclear wastes is necessary for the long-term viability of fission power. A Small Business Innovative Research program has been initiated under the leadership of TSI Research to examine the efficacy of fusion transmutation of waste utilizing small fusion drivers.

  15. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  16. Questioning nuclear waste substitution: a case study.

    PubMed

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  17. Nuclear waste disposal: Gambling on Yucca Mountain

    SciTech Connect

    Ginsburg, S.

    1995-05-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.

  18. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  19. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  20. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    -1, respectively. Phase 5, and its similar phase, phase 3 (Mg2Cl(OH)3:4H2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers, when Na-Mg-Cl dominated brines react with MgO or brucite. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.93 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application PA Baseline Calculations indicate that phase 5 instead of phase 3 is indeed a stable phase when GWB equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. 1. This research is funded by WIPP programs administered by the U.S. Department of Energy. 2. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  2. Reference analysis on the utility of engineered barriers for geologic disposal of spent nuclear fuel: overview

    SciTech Connect

    Cloninger, M.O.

    1981-09-01

    The development and characterization of waste forms, containers and other engineered barriers destined for use in the isolation of nuclear waste in deep geologic repositories has progressed to the point where there are several options for barrier systems that are available to help assure safe disposal of nuclear wastes. However, a rigorous basis has not yet developed to define whether various concepts or products are required or desirable, or how effective they should be for how long. This analysis is an attempt to contribute to that basis. Intent of the study is to determine what incentives exist for providing highly effective engineered barriers for the isolation of radioactive waste (spent fuel in this case) in a deep geologic repository. 6 figures.

  3. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  4. Nuclear waste disposal educational forum

    SciTech Connect

    Not Available

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  5. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  6. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  7. Nuclear Waste Management. Semiannual progress report, April 1984-September 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-12-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; and supporting studies. 33 figures, 13 tables.

  8. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  9. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  10. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  11. Nuclear-waste disposal: Technical issues and status

    NASA Astrophysics Data System (ADS)

    Hunter, T. O.

    The nuclear waste from the defense programs of the United States and the commercial nuclear fuel cycle are planned for disposal in mined geologic repositories. High-level waste will require the development of one to three repositories. A number of technical issues are associated with the selection and characterization of a suitable site, the design of surface and underground facilities, development of an appropriate waste package, and methods to assess the performance of the system relative to regulatory requirements. These issues are being addressed by four major projects to evaluate salt, basalt, volcanic tuff, and other crystalline rocks such as granite. The key technical issues and the status of activities to resolve those issues are reviewed.

  12. Case histories of EA documents for nuclear waste

    SciTech Connect

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making within the nuclear fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high-level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option.

  13. Application of rock melting to construction of storage holes for nuclear waste

    SciTech Connect

    Neudecker, J.W. Jr.

    1988-12-31

    Rock melting technology can provide in-situ glass liners in nuclear waste package emplacement holes to reduce permeability and increase borehole stability. Reduction of permeability would reduce the time and probability of groundwater contacting the waste packages. Increasing the stability of the storage boreholes would enhance the retrievability of the nuclear waste packages. The rock melting hole forming technology has already been tested in volcanic tuff similar to the geology at the proposed nuclear waste repository at Yucca Mountain, Nevada. 6 refs., 5 figs., 2 tabs.

  14. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  15. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg 3Cl(OH) 5·4H 2O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations

    NASA Astrophysics Data System (ADS)

    Xiong, Yongliang; Deng, Haoran; Nemer, Martin; Johnsen, Shelly

    2010-08-01

    In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg 3Cl(OH) 5·4H 2O, termed as phase 5, is determined from a series of solubility experiments in MgCl 2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction, MgCl(OH)·4HO+5H=3Mg+9HO(l)+Cl is calculated as 43.21 ± 0.33 (2 σ) based on the specific interaction theory (SIT) model for extrapolation to infinite dilution. The Gibbs free energy and enthalpy of formation for phase 5 at 25 °C are derived as -3384 ± 2 (2 σ) kJ mol -1 and -3896 ± 6 (2 σ) kJ mol -1, respectively. MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH) 2-based engineered barrier (bulk, pure Mg(OH) 2 corresponding to brucite) is to be employed in the Asse repository in Germany. Phase 5, and its similar phase, phase 3 (Mg 2Cl(OH) 3·4H 2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.94 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application Performance Assessment Baseline Calculations indicate that phase 5, instead of phase 3, is indeed a stable phase when the WIPP Generic Weep Brine (GWB), a Na-Mg-Cl-dominated brine associated with the Salado Formation, equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. Therefore, phase 5 is important to the WIPP, and potentially important to other repositories in salt formations.

  16. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  17. Nuclear Waste Primer: A Handbook for Citizens.

    ERIC Educational Resources Information Center

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  18. Nuclear waste: distant and expensive mirage

    SciTech Connect

    2008-08-15

    The situation in the U.S. regarding the disposal of nuclear waste is briefly summarized. Current estimates are that the site will not begin operation before 2020, and that the cost will be $96 billion, which includes construction, waste transport, operation through 2133, and closure of the facility. The Department of Energy is also considering whether more disposal sites might be needed.

  19. Overview assessment of nuclear-waste management

    NASA Astrophysics Data System (ADS)

    Burton, B. W.; Gutschick, V. P.; Perkins, B. A.; Reynolds, C. L.; Rodgers, J. C.; Steger, J. G.; Thompson, T. K.; Trocki, L. K.; Wewerka, E. M.; Wheeler, M. L.

    1982-08-01

    The environmental control technologies associated with Department of Energy nuclear waste management programs were reviewed and the most urgent problems requiring further action or follow up were identified. In order of decreasing importance they are: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes.

  20. Radiation Effects in Nuclear Waste Materials

    SciTech Connect

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  1. Radiation Effects in Nuclear Waste Materials

    SciTech Connect

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  2. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  3. Doing the impossible: Recycling nuclear waste

    ScienceCinema

    None

    2016-07-12

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power—the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  4. Salt disposal of heat-generating nuclear waste.

    SciTech Connect

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  5. Nuclear waste incineration technology status

    SciTech Connect

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  6. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  7. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  8. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  9. Siting Patterns of Nuclear Waste Repositories.

    ERIC Educational Resources Information Center

    Solomon, Barry D.; Shelley, Fred M.

    1988-01-01

    Provides an inventory of international radioactive waste-management policies and repository siting decisions for North America, Central and South America, Europe, Asia, and Africa. This discussion stresses the important role of demographic, geologic, and political factors in siting decisions. (Author/BSR)

  10. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs.

  11. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  12. Nuclear waste glass product consistency test (PCT), Version 5. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  13. Nuclear waste glass Product Consistency Test (PCT), Version 3. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.

    1990-11-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples.

  14. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    SciTech Connect

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  15. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    SciTech Connect

    Chung, D.H.; Bernreuter, D.L.

    1984-05-08

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion.

  16. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    SciTech Connect

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  17. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  18. Microstructural characterization of nuclear-waste ceramics

    SciTech Connect

    Ryerson, F.J.; Clarke, D.R.

    1982-09-22

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables.

  19. Salvaging of nuclear waste by nuclear-optical converters

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  20. Radiation Effects in Nuclear Waste Materials

    SciTech Connect

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  1. Initial studies to assess microbial impacts on nuclear waste disposal

    SciTech Connect

    Horn, J.M.; Meike, A.; McCright, R.D.; Economides, B.

    1996-02-20

    The impacts of the native and introduced bacteria on the performance of geologic nuclear waste disposal facilities should be evaluated because these bacteria could promote corrosion of repository components and alteration of chemical and hydrological properties of the surrounding engineered and rock barriers. As a first step towards investigating these potentialities, native and introduced bacteria obtained from post-construction Yucca Mountain (YM) rock were isolated under varying conditions, including elevated temperature, low nutrient availability, and the absence of available oxygen. Individual isolates are being screened for activities associated with microbially induced corrosion of metals (MIC). Preliminary determination of growth rates of whole YM microbial communities under varying conditions was also undertaken.

  2. Chemical aspects of nuclear waste treatment

    SciTech Connect

    Bond, W. D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized.

  3. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  4. Recent Developments in Nuclear Waste Management in Canada

    SciTech Connect

    King, F.

    2002-02-27

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management.

  5. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  6. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    DTIC Science & Technology

    2009-02-06

    pr_121508_energysecnom.cfm. 13 Lawrence Berkeley National Laboratory, “Growing energy: Berkeley Lab’s Steve Chu on what termite guts have to do with global warming...does not seem an attractive alternative to the geological 60 Steven Nadis, “The Sub-Seabed Solution...could be done at Yucca Mountain.82 Such “salt creep” occurs more quickly at higher temperatures , which could result from the disposal of high-level waste

  7. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  8. Systems approach to nuclear waste glass development

    SciTech Connect

    Jantzen, C M

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan.

  9. Risk methodology for geologic disposal of radioactive waste

    SciTech Connect

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. ); Guzowski, R.V. )

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

  10. Recovery of fissile materials from nuclear wastes

    SciTech Connect

    Forsberg, C.W.

    1999-10-05

    A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  11. Recovery of fissile materials from nuclear wastes

    SciTech Connect

    Forsberg, Charles W.

    1997-12-01

    A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium, and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  12. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  13. Nuclear waste issues: a perspectives document

    SciTech Connect

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors.

  14. Subsurface geology of Louisiana hazardous waste landfills: A case study

    NASA Astrophysics Data System (ADS)

    Hanor, J. S.

    1995-09-01

    Many hazardous waste sites in the south Louisiana Gulf Coast have been emplaced in sediments of Plio-Pleistocene to Recent age. Because of the fining upward nature of these regressive-transgressive fluvial-deltaic sequences and the purported confining capabilities of the shallow clay layers within them, this area would seem to be ideal for the location of surface waste landfills. However, detailed geologic mapping at a site in southeastern Louisiana documents how the three-dimensional distribution of sediment types and early diagenetic features, both of which were ultimately controlled by depositional history, can increase effective vertical permeability of finegrained sequences. Many bodies of sand that appear to be isolated in standard geotechnical cross sections can be shown to be part of spatially complex three-dimensional distributary networks, with fine-grained sediments representing overbank and backswamp deposits. Some clay layers are actually a composite of thinner clay beds, each subjected to subaerial exposure and the development of secondary porosity related to soil formation. There has been documented leakage of wastes down through the clays, and a recent study indicates that the effective vertical hydraulic conductivity of the clay layers exceeds 10-5 cm s-1, or from one to four orders of magnitude higher than values measured on samples from cores of the same sediment. An understanding of the depositional framework, facies architecture, and diagenetic history of geologic materials underlying waste disposal sites in Louisiana is required for rational development of monitoring and remediation plans.

  15. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  16. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  17. Neutron pulse simulation in nuclear waste for waste characterization

    SciTech Connect

    Toffer, H.; Watson, W.T.; Roetman, V.E.

    1993-12-01

    The numerical simulations discussed in this paper show how analysis with computer-generated illustrations can be used to explain the concepts and advantages of pulsed neutron systems for tank waste evaluations. Furthermore, the analysis-illustration approach lends itself to parametric studies evaluating design features of hardware before it is fabricated. Nuclear material characteristics of hazardous or toxic simulants can be evaluated before preparing them or finding nontoxic or nonhazardous substitutes that will exhibit similar nuclear properties. Pulsed neutron systems hold significant promise for partial characterization of tank waste. The device could operate in a high background gamma radiation field and provide important information on moisture concentrations, fissionable material contents, and material interfaces quickly and at considerably less cost than obtainable from sample analyses.

  18. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  19. Quaternary geology and waste disposal in South Norfolk, England

    NASA Astrophysics Data System (ADS)

    Gray, J. M.

    South Norfolk is dominated by the till plain of the Anglian Glaciation in eastern England, and therefore there are very few disused gravel pits and quarries suitable for the landfilling of municipal waste. Consequently, in May 1991, Norfolk County Council applied for planning permission to develop an above ground or 'landraise' waste disposal site at a disused U.S. World War II Airfield at Hardwick in South Norfolk. The proposal involved excavating a pit 2-4 m deep into the Lowestoft Till and overfilling it to create a hill of waste up to 10 m above the existing till plain. In general, leachate containment was to be achieved by utilising the relatively low permeability till on the floor of the site, but with reworking of the till around the site perimeter because of sand lenses in the upper part of the till. This paper examines three aspects of the proposal and the wider issues relating to Quaternary geology and waste disposal planning in South Norfolk: (i) the suitability of the till as a natural leachate containment system; (ii) the appropriateness of the landraise landform; and (iii) alternative sites. A Public Inquiry into the proposals was held in January/February 1993 and notification of refusal of planning permission was published in August 1993. Among the grounds for refusal were an inadequate knowledge of the site's geology and hydrogeology and the availability of alternative sites. The paper concludes by stressing that a knowledge of Quaternary geology is crucial to both the planning and design of landfill sites in areas of glacial/Quaternary sediments.

  20. Strategies for characterizing mixed nuclear wastes: The challenges

    SciTech Connect

    Toste, A.P.

    1993-12-31

    The chemical analysis of nuclear wastes, especially mixed wastes, pose various problems to the analytical chemist. The chemical content may be very complex, particularly when organics are present. This report describes the analysis of two highly radioactive wastes: a neutralized cladding removal waste, and a volume reduction, double-shell slurry waste. The organic content analysis is described.

  1. Nuclear fuel corrosion over millennia interpreted using geologic data

    SciTech Connect

    Pearcy, E.C.; Manaktala, H.K.

    1994-12-31

    Corrosion of nuclear fuel over the 10,000 year regulatory period in a geologic repository will be a function of physical characteristics (e.g., crystallinity, crystal sizes, crystal forms) and chemical characteristics (e.g., crystal composition, compositional variability, accessory phases). Natural uraninite (nominally UO{sub 2+x}) which has undergone long-term corrosion can be studied to infer the long-term behavior of nuclear fuel. Previously, uraninite from the Nopal I deposit, Pena Blanca district, Chihuahua, Mexico, has been shown to constitute an outstanding analog material for comparison with nuclear fuel. Similarities between Nopal I uraninite and nuclear fuel have been shown to include bulk composition, general crystal structure, and total trace element content. Data presented here suggest that, as a bulk material, Nopal I uraninite compares favorably with irradiated nuclear fuel. Nevertheless, some fine-scale differences are noted between Nopal I uraninite and irradiated nuclear fuel with respect to both internal structures and compositions. These observations suggest that whereas the long-term responses of the two materials to oxidative alteration in a geologic repository may be similar, the detailed mechanisms of initial oxidant penetration and the short-term oxidative alternation of Nopal I uraninite and irradiated nuclear fuel are likely to be different.

  2. Review of radiation effects in solid-nuclear-waste forms

    SciTech Connect

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10/sup 3/ to 10/sup 6/ years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references.

  3. International nuclear waste management fact book

    SciTech Connect

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  4. Design of a nuclear-waste package for emplacement in tuff

    SciTech Connect

    O`Neal, W.C.; Rothman, A.J.; Gregg, D.W.; Hockman, J.N.; Revelli, M.A.; Russell, E.W.; Schornhorst, J.R.

    1983-02-01

    Design, modeling, and testing activities are under way at LLNL in the development of high level nuclear waste package designs. We discuss the geological characteristics affecting design, the 10CFR60 design requirements, conceptual designs, metals for containment barriers, economic analysis, thermal modeling, and performance modeling.

  5. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  6. Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan

    SciTech Connect

    Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

    1984-07-01

    The following recommendations have been abstracted from the body of this report. The Office of Nuclear Waste Isolation's Socioeconomic Program Plan for the Establishment of Mined Geologic Repositories to Isolate Nuclear Waste should be modified to: (1) encourage active public participation in the decision-making processes leading to repository site selection; (2) clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process. In addition, the Office of Nuclear Waste Isolation should carefully review the overall role that these persons and groups, including local pressure groups organized in the face of potential repository development, will play in the siting process; (3) place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; (4) include additional approaches to solving socioeconomic problems. For example, a reluctance to acknowledge that solutions to socioeconomic problems need to be found jointly with interested parties is evident in the plan; (5) recognize that mitigation mechanisms other than compensation and incentives may be effective; (6) as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and (7) comply fully with the pertinent provisions of NWPA.

  7. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    SciTech Connect

    Michalske, T.A.

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  8. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  9. Nuclear energy and radioactive waste disposal in the age of recycling

    SciTech Connect

    Conca, James L.; Apted, Michael

    2007-07-01

    The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives will drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)

  10. Contributions of basic nuclear physics to the nuclear waste management

    NASA Astrophysics Data System (ADS)

    Flocard, Hubert

    2002-04-01

    Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .

  11. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  12. Nuclear Waste Programs semiannual progress report, April--September 1992

    SciTech Connect

    Bates, J.K.; Bradley, C.R.; Buck, E.C.

    1994-05-01

    This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period April--September 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  13. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    SciTech Connect

    Rempe, N.T.

    1993-12-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible.

  14. The French Programme A development plan for a geological repository for high level and long-lived waste

    SciTech Connect

    Ouzounian, G.; Labalette, T.; Hoorelbeke, J.M.; Krieguer, J.M.

    2008-07-01

    On completion of the research required under the Waste Act of 30 December 1991, the 'Dossier 2005 Argile' submitted by ANDRA concluded that high-level and intermediate-level long-lived waste (HLW) geological disposal in the Callovo-Oxfordian clay formation is basically feasible. During 2005 this report received several assessments the conclusions of which were reported during January and February 2006: (i) the global scientific and technical report of the National Review Board (CNE), (ii) the opinion of the Nuclear Safety Authority (ASN), (iii) the report of the International Review Team conducted in the framework of an International Peer Review under the aegis of the Nuclear Energy Agency of the OECD at the request of Andra's supervisory ministries (Industry and Research). On the basis of all these elements, the results of other ways of research set up in 1991, and the reports of the public debate on management of radioactive waste, a Planning Act on sustainable waste management was publicised on 28 June 2006 (Act no. 2006-739). This Act stipulates that 'after surface storage, the ultimate radioactive waste that, for reasons of nuclear safety and radiological protection, cannot be disposed of above ground or at limited depth, shall be disposed of in a deep geological repository'. It also confers on ANDRA the task of 'conducting or contracting research and studies on storage and deep geological disposal and coordinating this research'. With regard to the reversible deep geological disposal, the Act states that 'appropriate studies and research shall be conducted for siting and designing a waste disposal facility so that on obtaining the study results, the licence application provided for can be examined in 2015, and if this licence is granted, the facility can be commissioned in 2025. The purpose of the development plan which main tasks are introduced in this paper is to present Andra's research and study strategy for meeting the objectives of the Planning Act

  15. US Geological Survey research in radioactive waste disposal, fiscal year 1979

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Roseboom, E. H., Jr.; Robertson, J. B.; Stevens, P. R.

    Geologic and hydrologic research related to the disposal of radioactive wastes is reported. The categories are described as they relate most directly to: (1) high level and transuranic wastes; (2) low level wastes; or (3) uranium mill tailings. The identification and geohydrologic characterization of waste disposal sites, investigations of specific sites where wastes have been stored, and regions or environments where waste disposal sites might be located are studied. Techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides are presented.

  16. Revised seismic and geologic siting regulations for nuclear power plants

    SciTech Connect

    Murphy, A.J.; Chokshi, N.C.

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  17. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  18. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  19. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  20. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  1. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  2. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  3. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  4. Public reactions to nuclear waste: Citizens' views of repository siting

    SciTech Connect

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada.

  5. Four themes that underlie the high-level nuclear waste management program

    SciTech Connect

    Sprecher, W.M.

    1989-01-01

    In 1982, after years of deliberation and in response to mounting pressures from environmental, industrial, and other groups, the US Congress enacted the Nuclear Waste Policy Act (NWPA) of 1982, which was signed into law by the President in January 1983. That legislation signified a major milestone in the nation's management of high-level nuclear waste, since it represented a consensus among the nation's lawmakers to tackle a problem that had evaded solution for decades. Implementation of the NWPA has proven to be exceedingly difficult, as attested by the discord generated by the US Department of Energy's (DOE's) geologic repository and monitored retrievable storage (MRS) facility siting activities. The vision that motivated the crafters of the 1982 act became blurred as opposition to the law increased. After many hearings that underscored the public's concern with the waste management program, the Congress enacted the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act), which steamlined and focused the program, while establishing three independent bodies: the MRS Review Commission, the Nuclear Waste Technical Review Board, and the Office of the Nuclear Waste Negotiator. Yet, even as the program evolves, several themes characterizing the nation's effort to solve the waste management problem continue to prevail. The first of these themes has to do with social consciousness, and the others that follow deal with technical leadership, public involvement and risk perceptions, and program conservatism.

  6. Congress Examines Nuclear Waste Disposal Recommendations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-02-01

    During an 8 February U.S. congressional hearing to examine how to move forward on dealing with spent nuclear fuel and to review other recommendations of the recently released final report of the White House-appointed Blue Ribbon Commission on America's Nuclear Future (BRC), Yucca Mountain was the 65,000-ton gorilla in the room. BRC's charge was to conduct a comprehensive review of policies to manage the back end of the nuclear fuel cycle and recommend a new strategy for dealing with the 65,000 tons of spent nuclear fuel currently stored at 75 sites around the country and the 2000 tons of new spent fuel being produced each year. However, BRC specifically did not evaluate Yucca Mountain. A 26 January letter from BRC to U.S. secretary of energy Steven Chu states, "You directed that the Commission was not to serve as a siting body. Accordingly, we have not evaluated Yucca Mountain or any other location as a potential site for the storage of spent nuclear fuel or disposal of high-level waste nor have we taken a position on the administration's request to withdraw the Yucca Mountain license application."

  7. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  8. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  9. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  10. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  11. Nevada may lose nuclear waste funds

    SciTech Connect

    Marshall, E.

    1988-06-24

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE`s work and would limit the ability of Nevada to go out and collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE.

  12. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  13. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  14. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  15. Environmental Degradation of Materials for Nuclear Waste Repositories Engineered Barriers

    SciTech Connect

    Rebak, R B

    2006-12-24

    Several countries are considering geological repositories for the storage of nuclear waste. Most of the environments for these repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, copper, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  16. Informing future societies about nuclear waste repositories

    SciTech Connect

    Jensen, M.

    1994-04-01

    In 1990 a working group of the NKS (the Nordic nuclear safety program) was formed and give the task of established a basis for a common Nordic view of the need for information conservation for nuclear waste repositories. The Group investigated what tipy of information should be conserved; in what form the information should be kept; the quality of the information; and the problems of future retrieval of information, including retrieval after very long periods of time. Topics covered include the following: scientific aspects including social context of scientific solutions; information management; systems for conservation and retrieval of information including the problems of prediction; archives, markers, archives vs. markers, and continuing processes in society; Archive media including paper documents, microfilm, digital media, media lifetimes; and finally conclusions and recommendations.

  17. Observations on the geology and geohydrology of the Chernobyl' nuclear accident site, Ukraine

    USGS Publications Warehouse

    Matzko, J.R.; Percious, D.J.; Rachlin, J.; Marples, D.R.

    1994-01-01

    The most highly contaminated surface areas from cesium-137 fallout from the April 1986 accident at the Chernobyl' nuclear power station in Ukraine occur within the 30-km radius evacuation zone set up around the station, and an 80-km lobe extending to the west-southwest. Lower levels of contamination extend 300 km to the west of the power station. The geology, the presence of surface water, a shallow water table, and leaky aquifers at depth make this an unfavorable environment for the long-term containment and storage of the radioactive debris. An understanding of the general geology and hydrology of the area is important to assess the environmental impact of this unintended waste storage site, and to evaluate the potential for radionuclide migration through the soil and rock and into subsurface aquifers and nearby rivers. -from Authors

  18. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  19. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  20. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  1. Nuclear waste: Quarterly report on DOE`s nuclear waste program as of March 31, 1988

    SciTech Connect

    1988-12-31

    As part of the Department of Energy`s implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommend to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE`s failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin an orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million of the Deaf Smith site and $85 million for the Hanford site.

  2. Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.

    2015-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.

  3. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  4. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  5. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  6. For Sale: Nuclear Waste Sites--Anyone Buying?

    ERIC Educational Resources Information Center

    Hancock, Don

    1992-01-01

    Explores why the United States Nuclear Waste Program has been unable to find a volunteer state to host either a nuclear waste repository or monitored retrieval storage facility. Discusses the Department of Energy's plans for Nevada's Yucca Mountain as a repository and state and tribal responses to the plan. (21 references) (MCO)

  7. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    SciTech Connect

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  8. Factors controlling radionuclide transport behavior in a generic geological radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Liu, H.; Birkholzer, J. T.

    2013-12-01

    One of the main challenges in designing a geological repository for high-level nuclear waste is the assessment of postclosure safety, which involves the long-term ability of the engineered system and the geological host formation to contain and delay the leakage of radionuclides toward the biosphere. A correct assessment requires detailed knowledge of the factors controlling radionuclide transport in the different components of the geological disposal system. For instance, molecular diffusion, which is considered the dominant transport mechanism in low-permeable geological formations, may be influenced by the heterogeneity of the diffusive parameters and by electrochemical processes. Likewise, the prevalence of advective transport in the near-field excavation damaged zone (EDZ) may be controlled by the hydrogeological conditions in the host formation, as well as by hydrogeological and geometrical properties. In this study, we performed two-dimensional numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors on the prevailing transport mechanism (i.e., advection or molecular diffusion) in the different components of a geological nuclear waste repository system. Particular attention was given to the excavation damaged zone (EDZ) around the repository tunnels and access shaft, which was modeled as a single effective continuum as well as with the dual-porosity approach. We considered different hydrogeological and geometrical factors, including the ambient hydraulic gradient, the presence of groundwater pressure anomalies, and the thickness of the EDZ and its hydraulic properties. By comparing simulation results, we show that transport behavior and the role of the EDZ as a preferential flow path for radionuclide transport is most sensitive to the hydrogeological conditions in the host rock. When the hydraulic gradient in the host rock is reduced by a factor of 5 from the unit value, we observe a significant reduction

  9. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  10. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  11. Approach to resolution of geologic uncertainty in the licensing of a high-level-waste repository in tuff

    SciTech Connect

    Neal, J.T.

    1983-12-31

    Resolution of uncertainty in geological information is an essential element in the licensing process for a geologic repository. Evaluation of these uncertainties within the licensing framework established by the Nuclear Regulatory Commission (NRC) is required. The Nevada Nuclear Waste Storage Investigations (NNWSI), in focusing its site characterization program on unsaturated tuff, has developed a logic hierarchy of technical issues, including key issues, issues, and information needs. Key issues are statements of major requirements whose lack could be disqualifying. An example of a key issue is the demonstration of radionuclide containment and isolation within the required release limits and transport time set by the EPA and NRC. Key issues are broken down into issues, such as the groundwater flow time to the accessible environment. Resolving uncertainty ultimately comes back to satisfying individual information needs that collectively form issues. Hydraulic conductivity is an example of an information need required to determine groundwater flow rate. Sources of uncertainty often arise in either amount, quality, or other limitations in geological data. The hierarchical structuring of geological information needs provides a perspective that allows proportionate attention to be placed on various site characterization activities, and to view them within the whole range of licensing issues that must be satisfied to ensure public health and safety. However, it may not prevent an issue from being contentious, as some geological questions are known to be emotion-laden. The mitigation of uncertainty in geological information ultimately will depend on the validity and credibility of the information presented during the licensing process.

  12. System analyses on advanced nuclear fuel cycle and waste management

    NASA Astrophysics Data System (ADS)

    Cheon, Myeongguk

    To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of

  13. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all

  14. Status of the Canadian nuclear fuel waste management program

    SciTech Connect

    Allan, C.J.; Stephens, M.E. )

    1992-01-01

    The Canadian Concept for the permanent disposal of nuclear fuel waste has been developed extensively over the past several years, and is now well-advanced. The Concept, which involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock located in the Canadian Precambrian Shield, is supported by an R D program with the following objectives: (1) to develop and demonstrate technology to site, design, build and operate a disposal facility; (2) to develop and demonstrate a methodology to evaluate the performance of the disposal system; and (3) to demonstrate that sites are likely to exist in the Canadian Precambrian Shield that would meet the regulatory requirements. A combination of engineered and natural barriers will be used to ensure that the vault design will meet rigorous safety standards. Experimental work is being carried out to elucidate all the important phenomena associated with the safety of the vault, including the performance of engineered barriers, natural geological barriers, and the biosphere.

  15. Hydration process of nuclear-waste glass: an interim report

    SciTech Connect

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.

    1982-07-01

    Aging of simulated nuclear waste glass by contact with a controlled-temperature, humid atmosphere results in the formation of a double hydration layer penetrating the glass, as well as the formation of minerals on the glass surface. The hydration process can be described by Arrhenius behavior between 120 and 240/sup 0/C. Results suggest that simulated aging reactions are necessary for demonstrating that nuclear waste forms can meet projected Nuclear Regulatory Commission regulations. 16 figures, 4 tables.

  16. A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN

    SciTech Connect

    Masuda, S.

    2002-02-25

    This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

  17. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  18. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  19. The Italian Activities in the Field of Nuclear Waste Management - 12439

    SciTech Connect

    Giorgiantoni, Giorgio; Marzo, Giuseppe A.; Sepielli, Massimo

    2012-07-01

    The Italian situation in the field of nuclear waste management is characterized by a relative small quantity of wastes, as a consequence of the giving up of energy production by nuclear generation in 1986. Notwithstanding this situation, Italy is a unique case study since the country needs to undertake the final decommissioning of four shut-down NPPs (size 100-200 MWe), each one different from the others. Therefore all the regulatory, technical, and financial actions are needed in the same way as if there was actual nuclear generation. Furthermore, the various non-power generating applications of nuclear energy still require management, a legal framework, a regulatory body, an industrial structure, and technical know-how. Notwithstanding the absence of energy production from nuclear sources, the country has the burden of radioactive waste management from the previous nuclear operations, which obliges it to implement at first a robust legislative framework, then to explore all the complex procedures to achieve the localization of the national interim storage facility, not excluding the chance to have a European regional facility for geologic disposal, under the clauses of the Council Directive of 19 July 2011 'Establishing a Community Framework for the Responsible and Safe Management of Radioactive Waste'. Then, as far as industrial, medical and R and D aspects, the improvement of the legislative picture, the creation of a regulatory body, is a good start for the future, to achieve the best efficiency of the Italian system. (authors)

  20. Microbial studies in the Canadian nuclear fuel waste management program.

    PubMed

    Stroes-Gascoyne, S; West, J M

    1997-07-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for permanent geological disposal of used nuclear fuel in Canada. This concept, based on a multibarrier system, would involve disposal of nuclear fuel waste in titanium or copper containers, surrounded by compacted clay-based buffer and backfill materials, in a vault 500-1000 m deep in granitic rock of the Canadian Shield. Subsurface environments will not be sterile and an experimental program was initiated in 1991 by AECL to address and quantify the potential effects of microbial action on the integrity of the disposal vault. This microbial program focuses on answering specific questions in areas such as the survival of bacteria in compacted clay-based buffer materials under relevant radiation, temperature and desiccation conditions; mobility of microbes in compacted buffer materials; the potential for microbially influenced corrosion of containers; microbial gas production in backfill material; introduction of nutrients as a result of vault excavation and operation; the presence and activity of microbes in deep granitic groundwaters; and the effects of biofilms on radionuclide migration in the geosphere. This paper summarizes the results to date from the research activities at AECL.

  1. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  2. Nuclear-waste-management. Quarterly progress report, July-September 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  3. Nuclear waste treatment program: Annual report for FY 1987

    SciTech Connect

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  4. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  5. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  6. Nevada Nuclear Waste Storage Investigations environmental area characterization report, compiled July 1982

    SciTech Connect

    1984-07-01

    The Environmental Area Characterization Report describes the southwestern corner of the Nevada Test Site, Nye County, Nevada, a potential location for a geologic repository for high-level radioactive waste. The characterization summarizes reports supplied by Sandia National Laboratories, which cover the following topics: atmosphere, radiation background, hydrosphere, biosphere, energy and mineral resources, socioeconomics, and cultural resources. This report is one of a series of documents sponsored by the US Department of Energy, Nevada Nuclear Waste Storage Investigations Project. 43 references, 15 figures, 20 tables.

  7. An international initiative on long-term behavior of high-level nuclear waste glass

    SciTech Connect

    Gin, Stephane; Criscenti, Louise J.; Ebert, W. L.; Ferrand, Karine; Geisler, Thorsten; Harrison, Mike T.; Inagaki, Yaohiro; Mitsui, Seiichiro; Mueller, Karl T.; Marra, James C.; Pantano, Carlo G.; Pierce, Eric M.; Ryan, Joseph V.; Schofield, James M.; Steefel, Carl I.; Vienna, John D.

    2013-06-01

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  8. Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Materials, Under Simulated Repository Conditions

    SciTech Connect

    Horn, J.M.; Martin, S.I.; Rivera, A.J.; Bedrossian, P.J.; Lian, T.

    2000-01-12

    The U.S. Department of Energy has been charged with assessing the suitability of a geologic nuclear waste repository at Yucca Mountain (YM), NV. Microorganisms, both those endogenous to the repository site and those introduced as a result of construction and operational activities, may contribute to the corrosion of metal nuclear waste packaging and thereby decrease their useful lifetime as barrier materials. Evaluation of potential Microbiological Influenced Corrosion (MIC) on candidate waste package materials was undertaken reactor systems incorporating the primary elements of the repository: YM rock (either non-sterile or presterilized), material coupons, and a continual feed of simulated YM groundwater. Periodically, both aqueous reactor efflux and material coupons were analyzed for chemical and surfacial characterization. Alloy 22 coupons exposed for a year at room temperature in reactors containing non-sterile YM rock demonstrated accretion of chromium oxide and silaceous scales, with what appear to be underlying areas of corrosion.

  9. Climate considerations in long-term safety assessments for nuclear waste repositories.

    PubMed

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  10. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  11. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect

    Dees, Lawrence A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  12. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    SciTech Connect

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs.

  13. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  14. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  15. U.S. Geological Survey research in radioactive waste disposal; fiscal year 1979

    USGS Publications Warehouse

    Schneider, Robert; Roseboom, E.H.; Robertson, J.B.; Stevens, P.R.

    1982-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes; (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, investigations of specific sites where wastes have been stored, and studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and(or) retention of waste radionuclides. (USGS)

  16. U.S. Geological Survey research in radioactive waste disposal; fiscal year 1980

    USGS Publications Warehouse

    Schneider, Robert; Trask, N.J.

    1982-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) High-level and transuranic wastes; (2) Low-level wastes, or (3) Uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  17. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  18. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  19. Geological Repository Layout for Radioactive High Level Long Lived Waste in Argilite

    SciTech Connect

    Gaussen, J.L.

    2006-07-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high-level long-lived waste. This presentation is focused on the underground facilities that constitute the specific component of this project. The preliminary underground layout, which has been elaborated, is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in term of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimisation of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. 4 shafts ensure the link between the surface and the underground. The most important function of the disposal cells is to contribute to the long-term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in big

  20. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    SciTech Connect

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.

  1. A DEPTH OPTIMIZATION STUDY FOR GEOLOGIC ISOLATION OF RADIOACTIVE WASTES

    SciTech Connect

    Thadani, M.

    1980-02-01

    Current Federal plans for the isolation of high-level radioactive wastes and spent fuel include the possible placement of these wastes in deep geologic repositories. It is generally assumed that increasing the emplacement depth increases safety because the wastes are farther removed from the phenomena that might compromise the integrity of their isolation. Also, the path length for the migration of radionuclides to the biosphere increases with depth, thus delaying their arrival. However, increasing the depth of emplacement adds cost and operatiunal penalties. Therefore, a trade-off between the safety and the cost of waste isolation exists. A simple algorithm has been developed to relate the repository construction and operation costs, the costs associated with construction and operational hazards, and the costs resulting from radiological exposures to future generations to the depth of emplacement: The application of the algorithm is illustrated by SdDlP 1 e ca leul at ions u t il i zing se 1 ec ted parameters. The cost-optimum emplacement depths are estimated by summing the cost elements and determining the depth at which the sum would be the least. The relationship between the repository construction costs and the depth of the depository was derived from simplified rock mechanics and stability considerations applied to repository design concepts selected from the current literature and the available data base on mining and excavation costs. In developing the relationship between the repository costs and the depth of the depository, a worldwide cost information data base was used. The relationships developed are suitable for application to bedded sa1t, shale, and basalt geologies. The incremental impacts of hazards as a function of repository depth resulting from drilling, construction of repositories and hoisting systems, and operation of repositories were developed from the reported data on accidents involving shafts and mine construction activities and shaft

  2. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  3. An integrated approach to geological disposal of UK wastes containing carbon-14

    SciTech Connect

    Vines, Sarah; Lever, David

    2013-07-01

    Carbon-14 is a key radionuclide in the assessment of the safety of a geological disposal facility for radioactive waste because of the calculated assessment of the radiological consequences of gaseous carbon-14 bearing species [i]. It may be that such calculations are based on overly conservative assumptions and that better understanding could lead to considerably reduced assessment of the radiological consequences from these wastes. Alternatively, it may be possible to mitigate the impact of these wastes through alternative treatment, packaging or design options. The Radioactive Waste Management Directorate of the UK's Nuclear Decommissioning Authority (NDA RWMD) has established an integrated project team in which the partners are working together to develop a holistic approach to carbon-14 management in the disposal system [ii]. For a waste stream containing carbon-14 to be an issue: There must be a significant inventory of carbon-14 in the waste stream; and That waste stream has to generate carbon-14 bearing gas; and a bulk gas phase has to entrain the carbon-14 bearing gas: and these gases must migrate through the engineered barriers in significant quantities; and these gases must migrate through the overlying geological environment (either as a distinct gas phase or as dissolved gas); and these gases must interact with materials in the biosphere (i.e. plants) in a manner that leads to significant doses and risks to exposed groups or potentially exposed groups. The project team has developed and used this 'and' approach to structure and prioritise the technical work and break the problem down in a manageable way. We have also used it to develop our approach to considering alternative treatment, packaging and design options. For example, it may be possible to pre-treat some wastes to remove some of the inventory or to segregate other wastes so that they are removed from any bulk gas phase which might facilitate migration through the geosphere. Initially, the

  4. Can clays ensure nuclear waste repositories?

    PubMed Central

    Zaoui, A.; Sekkal, W.

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  5. Can clays ensure nuclear waste repositories?

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Sekkal, W.

    2015-03-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  6. Can clays ensure nuclear waste repositories?

    PubMed

    Zaoui, A; Sekkal, W

    2015-03-06

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  9. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  10. Cement-based grouts in geological disposal of radioactive waste

    SciTech Connect

    Onofrei, M.

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  11. Nuclear waste/nuclear power: their futures are linked

    SciTech Connect

    Skoblar, L.T.

    1981-01-01

    This paper briefly reviews current aspects of radioactive waste disposal techniques and transportation. Addressed are high-level and low-level radioactive wastes, interim spent fuel storage and transportation. The waste options being explored by DOE are listed. Problems of public acceptance will be more difficult to overcome than technical problems. (DMC)

  12. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    SciTech Connect

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  13. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  14. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  15. Nuclear Waste Cross Site Transfer Pump Operational Resonance Resolution

    SciTech Connect

    HAUCK, F.M.

    1999-12-01

    Two single-volute, multi-stage centrifugal pumps are installed at a nuclear waste transfer station operated by the Department of Energy in Hanford, WA. The two parallel 100% pumps are Variable Frequency Drive operated and designed to transport waste etc.

  16. Method for forming microspheres for encapsulation of nuclear waste

    DOEpatents

    Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.

    1984-01-01

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  17. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  18. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  19. Microbial Effects on Nuclear Waste Packaging Materials

    SciTech Connect

    Horn, J; Martin, S; Carrillo, C; Lian, T

    2005-07-22

    Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM

  20. Nuclear physics information needed for accelerator driven transmutation of nuclear waste

    SciTech Connect

    Lisowski, P.W.; Bowman, C.D.; Arthur, E.D.; Young, P.G.

    1991-01-01

    There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for power production. This paper describes a new Los Alamos concept using thermal neutrons and examines the nuclear data requirements. 7 refs., 3 figs., 1 tab.

  1. Nuclear waste spectrum as evidence of technological extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Whitmire, D. P.; Wright, D. P.

    1980-04-01

    The possible observational consequences of galactic civilizations which utilize their local star as a repository for radioactive fissile waste material are considered. If a relatively small fraction of the nuclear resources present in the crust of a terrestrial-type planet were processed via breeder reactors, the resulting stellar spectrum would be selectively modified over geological time periods provided the star has a sufficiently shallow outer convective zone. Consideration of surface convective mixing and stellar lifetimes restricts the possible candidate stars to the approximate spectral range A5-F2. The abundance anomalies resulting from the slow neutron fission of plutonium-239 and uranium-233 are presented and it is argued that these anomalous distributions are unlikely to be duplicated by natural nucleosynthesis processes. Relative to solar system abundances, the elements praseodymium and neodymium are found to be the most overabundant. These elements, along with the radioactive elements technetium and plutonium, could be used to identify A5-F2 candidate stars in a preliminary spectral survey.

  2. NEAMS Nuclear Waste Management IPSC : evaluation and selection of tools for the quality environment.

    SciTech Connect

    Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter

    2011-05-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M&S capabilities, and establishing a defensible level of confidence in these M&S capabilities. The foundation for assessing the level of confidence is based upon

  3. Preliminary characterization of risks in the nuclear waste management system based on information in the literature

    SciTech Connect

    Daling, P.M.; Rhoads, R.E.; Van Luick, A.E.; Fecht, B.A.; Nilson, S.A.; Sevigny, N.L.; Armstrong, G.R.; Hill, D.H.; Rowe, M.; Stern, E.

    1992-01-01

    This document presents preliminary information on the radiological and nonradiological risks in the nuclear waste management system. The objective of the study was to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitude of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management systems. The study examined all of the portions of the nuclear waste management system currently expected to be developed by the DOE. The scope of this document includes the potential repository, the integral MRS facility, and the transportation system that supports the potential repository and the MRS facility. Relevant literature was reviewed for several potential repository sites and geologic media. A wide range of ``risk categories`` are addressed in this report: (1) public and occupational risks from accidents that could release radiological materials, (2) public and occupational radiation exposure resulting from routine operations, (3) public and occupational risks from accidents involving hazards other than radioactive materials, and (4) public and occupational risks from exposure to nonradioactive hazardous materials during routine operations. The report is intended to provide a broad spectrum of risk-related information about the waste management system. This information is intended to be helpful for planning future studies.

  4. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect

    Simpson, M.F.; Patterson, M.N.; Lee, J.; Wang, Y.; Versey, J.; Phongikaroon, S.

    2013-07-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  5. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  6. Spherical tokamak (ST) transmutation of nuclear wastes

    SciTech Connect

    Peng, Yueng Kay Martin; Cheng, E.T.; Galambos, John D; Cerbone, R. J.

    1995-01-01

    The concept for an ST fusion core that drives a He-cooled, actinide-bearing, molten-salt blanket of moderate power density to generate electricity is examined for the first time. The results show that the fusion core is suited for this purpose and require a level of plasma, power density, engineering, and material performances moderate in comparison with what has been considered desirable for fusion-only power plants. The low aspect ratio of ST introduces a relatively thick, diverted scrape-off layer which leads to reduced heat fluxes at the limiter and divertor tiles. The use of a demountable, water-cooled, single-turn copper center leg for the toroidal field coils enables simplifications of the fusion core configuration and improves overall practicality for future power applications. These result in much reduced size and cost of the fusion core for the transmutation power plant relative to an optimized fusion-only fusion core. Surrounded by a separate tritium-breeding zone, the molten-salt blanket concept is in principle less complex and costly than the thermal breeding blankets for fusion. These combine to effect major reductions in the cost and weight of the power core equipment for the transmutation power plant. The minimum cost of electricity for such a power plant is thus reduced from the best fusion-only counterpart by more than 30%, based on consistent but approximate modeling. The key issues, development steps, and the potential value inherent in the ST fusion core in addressing the world needs for nuclear waste reduction and energy production are discussed.

  7. Focusing transformations -- the reliable way to search for safe locations for nuclear waste disposal

    SciTech Connect

    Pozdniakov, V.A.; Tcheverda, V.A.; Safonov, D.V.

    1997-10-01

    At present pre-stack migration is widely used in seismic data processing in order to get wave image of a medium under investigation. Of course it is rather time-consuming procedure but its application is justified by necessity to deal with complicated geological structures and to recover them as completely as possible. The paper is devoted to the approach to pre-stack migration of multicoverage seismic data by means of diffraction and focusing transformation in application to the problem of careful geological investigation of consolidated rocky blocks in order to choose as safety as possible location of nuclear waste deposit. Results of some real seismic data processing gathered at Nijnekanskaja area near Krasnoyarsk city, where a granite block is searching for as a suitable candidate for disposal of radioactive waste, are presented and discussed.

  8. Row erupts over US firm's plan to import nuclear waste

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-06-01

    A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.

  9. Corrosion experience in calcination of liquid nuclear waste

    SciTech Connect

    Zimmerman, C A

    1980-01-01

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables.

  10. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  11. Constructibility issues associated with a nuclear waste repository in basalt

    SciTech Connect

    Turner, D.A.

    1981-12-04

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described. (DMC)

  12. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  14. Geologic constraints on clandestine nuclear testing in South Asia

    PubMed Central

    Davis, Dan M.; Sykes, Lynn R.

    1999-01-01

    Cavity decoupling in salt is the most plausible means by which a nation could conduct clandestine testing of militarily significant nuclear weapons. The conditions under which solution-mined salt can be used for this purpose are quite restrictive. The salt must be thick and reasonably pure. Containment of explosions sets a shallow limit on depth, and cavity stability sets a deep limit. These constraints are met in considerably <1% of the total land area of India and Pakistan. Most of that area is too dry for cavity construction by solution mining; disposal of brine in rivers can be detected easily. Salt domes, the most favorable structures for constructing large cavities, are not present in India and Pakistan. Confidence that they are adhering to the Comprehensive Test Ban Treaty (CTBT) is enhanced by their geological conditions, which are quite favorable to verification, not evasion. Thus, their participation in the CTBT is constrained overwhelmingly by political, not scientific, issues. Confidence in the verification of the CTBT could be enhanced if India and Pakistan permitted stations of the various monitoring technologies that are now widely deployed elsewhere to be operated on their territories. PMID:10500134

  15. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    SciTech Connect

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  16. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    USGS Publications Warehouse

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion

  17. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  18. Nuclear waste package design for the Vadose zone in tuff

    SciTech Connect

    O`Neal, W.C.; Ballou, L.B.; Gregg, D.W.; Russell, E.W.

    1984-02-01

    This report presents an overview of the selection and analysis of conceptual waste package designs that will be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for disposal of high-level nuclear waste (HLW) at the proposed Yucca Mountain, Nevada Site. The design requirements that the waste packages are required to meet are listed. Concept drawings for the reference designs and one alternative package design are shown. Four metal alloys; 304L SS, 321 SS, 316L SS and Incoloy 825 have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and economic analysis supporting the selection of the conceptual waste package designs is included. Post-closure containment and release rates are not discussed in this paper. 17 references, 2 figures, 2 tables.

  19. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  20. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger; Leigh, Christi

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  1. Nuclear Waste: Increasing Scale and Sociopolitical Impacts

    ERIC Educational Resources Information Center

    La Porte, Todd R.

    1978-01-01

    Discusses the impact of radioactive waste management system on social and political development. The article also presents (1) types of information necessary to estimate the costs and consequences of radioactive waste management; and (2) an index of radioactive hazards to improve the basis for policy decisions. (HM)

  2. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  3. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    J.K. Knudson

    2003-10-02

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  4. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    A. Alsaed

    2005-07-28

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  5. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  6. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    SciTech Connect

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  7. Nuclear waste glass product consistency test (PCT), Version 5.0. Revision 2

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  8. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    SciTech Connect

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-05-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m{sup 2}day) for all elements.

  9. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    PubMed

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins.

  10. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  11. Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System

    SciTech Connect

    Rodney M. Shurtliff

    2005-09-01

    Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

  12. Robotics and remote handling concepts for disposal of high-level nuclear waste

    SciTech Connect

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-04-27

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies.

  13. Geology summary of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Anderson, J.E.

    1996-08-01

    During FY 1994, three multiport wells were installed in Waste Area Grouping (WAG) 5. The wells were instrumented with Westbay multiport systems. The purpose of the wells is (1) to characterize different flow systems and (2) to monitor for contaminants. The geology of the individual boreholes (WAG 5-12, WAG 5-13, WAG 5-14) is documented in Bechtel National, Inc., (BNI) et al. (1994). The Bechtel report does not explicitly show geologic relationships between these boreholes or integrate this information into the geology of WAG 5. The purpose of this report is to document and present a summary of the distribution of geologic formations in WAG 5. This information is presented in several ways: (1) stratigraphic correlation diagrams based on the natural gamma ray log, (2) geologic cross sections, and (3) a geologic map. This work provides a reference frame for interpreting flow, water, and contaminant chemistry data from multiport wells.

  14. Radiological characterization of the nuclear waste streams of the Belgian nuclear research centre SCK.CEN

    SciTech Connect

    Maris, Patrick; Cornelissen, Rene; Bruggeman, Michel

    2007-07-01

    The radiological characterization of nuclear wastes of a research centre is difficult seen the many different processes that generate waste. Since these wastes may contain radionuclides relevant for the disposal option, the nuclide content and activity have to be known. Considering the fact that some wastes are generated only in minor quantities, complex approaches, involving sampling and successive analysis are not justified. Basic physical models can generally be applied to estimate activity ratios, from which the radionuclide inventory can be determined by non-destructive assay on waste-packages. This article discusses waste streams at the Belgian Nuclear Research Centre SCK.CEN and explains how nuclide inventories and activity are determined. The physical models, used to derive activity ratios, and other simple approaches are discussed. (authors)

  15. The Nuclear Waste Policy Act, as amended with appropriations acts appended

    SciTech Connect

    Not Available

    1994-03-01

    The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

  16. Public meetings on nuclear waste management: their function and organization

    SciTech Connect

    Duvernoy, E.G.; Marcus, A.A.; Overcast, T.; Schilling, A.H.

    1981-05-01

    This report focuses on public meetings as a vehicle for public participation in nuclear waste management. The nature of public meetings is reviewed and the functions served by meetings highlighted. The range of participants and their concerns are addressed, including a review of the participants from past nuclear waste management meetings. A sound understanding of the expected participants allows DOE to tailor elements of the meeting, such as notification, format, and agenda to accommodate the attendees. Finally, the report discusses the organization of public meetings on nuclear waste management in order to enhance the DOE's functions for such meetings. Possible structures are suggested for a variety of elements that are relevant prior to, during and after the public meeting. These suggestions are intended to supplement the DOE Public Participation Manual.

  17. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  18. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    SciTech Connect

    M.T. Peters; R.C. Ewing

    2006-06-22

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U{sup 6+}-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10{sup 5} years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings.

  19. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  20. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  1. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  2. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  3. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    SciTech Connect

    O`Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-11-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report.

  4. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  5. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  6. Recovery of transplutonium elements from nuclear reactor waste

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1977-05-24

    A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

  7. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  8. Peer review of the Nevada Nuclear Waste Storage Investigations, August 24-28, 1981

    SciTech Connect

    1984-02-01

    On August 24-28, 1981, a peer review of three major areas of the Nevada Nuclear Waste Storage Investigations was conducted at the Riviera Hotel in Las Vegas, Nevada. The three investigative areas were: (1) geology/hydrology, (2) geotechnical/geoengineering, and (3) environmental studies. A separate review panel was established for each of the investigative areas which was composed of experts representing appropriate fields of expertise. A total of twenty nationally known or prominent state and local experts served on the three review panels.

  9. Thermal investigation of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.

    1981-01-01

    A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.

  10. Disposition of salt-waste from pyrochemical nuclear fuel processing

    SciTech Connect

    Vance, E.R.

    2007-07-01

    Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

  11. Review and evaluation of metallic TRU nuclear waste consolidation methods

    SciTech Connect

    Montgomery, D.R.; Nesbitt, J.F.

    1983-08-01

    The US Department of Energy established the Commercial Waste Treatment Program to develop, demonstrate, and deploy waste treatment technology. In this report, viable methods are identified that could consolidate the volume of metallic wastes generated in a fuel reprocessing facility. The purpose of this study is to identify, evaluate, and rate processes that have been or could be used to reduce the volume of contaminated/irradiated metallic waste streams and to produce an acceptable waste form in a safe and cost-effective process. A technical comparative evaluation of various consolidation processes was conducted, and these processes were rated as to the feasibility and cost of producing a viable product from a remotely operated radioactive process facility. Out of the wide variety of melting concepts and consolidation systems that might be applicable for consolidating metallic nuclear wastes, the following processes were selected for evaluation: inductoslay melting, rotating nonconsumable electrode melting, plasma arc melting, electroslag melting with two nonconsumable electrodes, vacuum coreless induction melting, and cold compaction. Each process was evaluated and rated on the criteria of complexity of process, state and type of development required, safety, process requirements, and facility requirements. It was concluded that the vacuum coreless induction melting process is the most viable process to consolidate nuclear metallic wastes. 11 references.

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  13. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    SciTech Connect

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed.

  14. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    SciTech Connect

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs.

  15. Risk analysis and solving the nuclear waste siting problem

    SciTech Connect

    Inhaber, H.

    1993-12-01

    In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones.

  16. International High Level Nuclear Waste Management

    ERIC Educational Resources Information Center

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  17. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  18. Geologic Data Package for 2001 Immobilized Low-Activity Waste Performance Assessment

    SciTech Connect

    SP Reidel; DG Horton

    1999-12-21

    This database is a compilation of existing geologic data from both the existing and new immobilized low-activity waste disposal sites for use in the 2001 Performance Assessment. Data were compiled from both surface and subsurface geologic sources. Large-scale surface geologic maps, previously published, cover the entire 200-East Area and the disposal sites. Subsurface information consists of drilling and geophysical logs from nearby boreholes and stored sediment samples. Numerous published geological reports are available that describe the subsurface geology of the area. Site-specific subsurface data are summarized in tables and profiles in this document. Uncertainty in data is mainly restricted to borehole information. Variations in sampling and drilling techniques present some correlation uncertainties across the sites. A greater degree of uncertainty exists on the new site because of restricted borehole coverage. There is some uncertainty to the location and orientation of elastic dikes across the sites.

  19. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    SciTech Connect

    Weber, William J.; Zhang, Yanwen

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  20. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  1. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  2. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  3. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  4. Managing nuclear waste: Social and economic impacts

    SciTech Connect

    Hemphill, R.C.; Bassett, G.W. Jr.

    1993-03-01

    Recent research has focused on perceptions of risk dominant source of economic impacts due to siting a high level radioactive waste facility. This article addresses the social and economic considerations involved with the issue of risk perception and other types of negative imagery. Emphasis is placed on ways of measuring the potential for economic effects resulting from perceptions prior to construction and operation of a HLW facility. We describe the problems in arriving at defensible estimates of economic impacts. Our review has found that although legal and regulatory bases may soon allow inclusion of these impacts in EIS and for compensation purposes, credible scientific methods do not currently exist for predicting the existence or magnitude of changes in economic decision-making. Policy-makers should recognize the potential for perception-based economic impacts in determining the location and means of managing radioactive waste; but, they also need be cognizant of the current limitations of quantitative estimates of impacts in this area.

  5. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  6. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, G.W.; Allard, B.M.

    1980-05-30

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

  7. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    SciTech Connect

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  8. Nuclear Waste Disposal: Can Government Cope?

    DTIC Science & Technology

    1983-12-01

    Codes December 1983Avlardo Dist Special The original version of this study was prepared by the author, Jackie L. Braitman, as a dissertation in partial...disposal, are to be met. The work originates from a supposition that the failure, thus far, S S of the Department of Energy (DOE) to site and develop...develop the capabilities needed to site a high-level radioactive waste repository. Lester Salamon (1981) advances a similar question in his critique of

  9. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing.

  10. Fluid Transport Driven by Heat-Generating Nuclear Waste in Bedded Salt

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Harp, D. R.; Stauffer, P. H.; Ten Cate, J. A.; Labyed, Y.; Boukhalfa, H.; Lu, Z.; Person, M. A.; Robinson, B. A.

    2013-12-01

    The question of where to safely dispose high-level nuclear waste (HLW) provides ample motivation for scientific research on deep geologic disposal options. The goal of this study is to model the dominant heat and mass transport processes that would be driven by heat generating nuclear waste buried in bedded salt. The interaction between liquid brine flow towards the heat source, establishment of a heat pipe in the mine-run salt backfill, boiling, and vapor condensation leads to changes in porosity, permeability, saturation, thermal conductivity, and rheology of the salt surrounding potential waste canisters. The Finite Element Heat and Mass transfer code (FEHM) was used to simulate these highly coupled thermal, hydrological, and chemical processes. The numerical model has been tested against recent and historical experimental data to develop and improve the salt material model. We used the validated numerical model to make predictions of temperature gradients, porosity changes, and tracer behavior that will be testable in a future 2-year field-scale heater experiment to be carried out in an experimental test bed at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, NM.

  11. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    SciTech Connect

    Ulmer, G.C.; Grandstaff, D.E. . Dept. of Geology)

    1984-11-21

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs.

  12. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  13. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  14. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  15. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    SciTech Connect

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs.

  16. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    SciTech Connect

    Gupalo, T; Milovidov, V; Prokopoca, O; Jardine, L

    2002-12-27

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide sufficient information to make an estimate of the suitability of locating a radioactive waste (R W) underground isolation facility at the Nizhnekansky granitoid massif

  17. Can Shale Safely Host U.S. Nuclear Waste?

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    2013-07-01

    Even as cleanup efforts after Japan's Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America's Nuclear Future, 2012].

  18. ORNL Solid Waste Storage Area 6 trench photos and geologic descriptions, July 1984-September 1985

    SciTech Connect

    Davis, E.C.; Marshall, D.S.; Stansfield, R.G.; Dreier, R.B.

    1986-03-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has initiated a photographic and descriptive geologic study of low-level waste trenches opened in Solid Waste Storage Area 6 (SWSA-6). From July 1984 through September 1985, trenches were excavated, geologically described, and photographed before being filled and closed. Only three trenches (Nos. 438, 448, and 465) were excavated and closed before photography could be scheduled. It is recommended that the systematic trench characterization procedure outlined in this report be continued under the direction of ORNL's Operations Division with support from both Environmental Sciences and the Engineering divisions. Publication of such a compilation of trench photos on a yearly basis will serve not only as a part of Department of Energy trench documentation requirements but also as a component of a SWSA-6 geologic data base being developed for current research and development activities. 2 refs., 38 figs.

  19. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  20. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of shipment of irradiated reactor fuel or nuclear waste must contain the following... irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel...

  1. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  2. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  3. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect

    Holt, R.M.; Powers, D.W. )

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  4. Radioactive Waste Management in Non-Nuclear Countries - 13070

    SciTech Connect

    Kubelka, Dragan; Trifunovic, Dejan

    2013-07-01

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

  5. Analysis of mercury in simulated nuclear waste

    SciTech Connect

    Policke, T.A.; Johnson, L.C.; Best, D.R.

    1991-12-31

    Mercury, Hg, is a non-radioactive component in the High Level Waste at the Savannah River Site (SRS). Thus, it is a component of the Defense Waste Processing Facility`s (DWPF) process streams. It is present because mercuric nitrate (Hg(NO{sub 3}){sub 2}) is used to dissolve spent fuel rods. Since mercury halides are extremely corrosive, especially at elevated temperatures such as those seen in a melter (1150{degrees}C), its concentration throughout the process needs to be monitored so that it is at an acceptable level prior to reaching the melter off-gas system. The Hg can be found in condensates and sludge feeds and throughout the process and process lines, i.e., at any sampling point. The different samples types that require Hg determinations in the process streams are: (1) sludges, which may be basic or acidic and may or may not include aromatic organics, (2) slurries, which are sludges with frit and will always contain organics (formate and aromatics), and (3) condensates, from feed prep and melter off-gas locations. The condensates are aqueous and the mercury may exist as a complex mixture of halides, oxides, and metal, with levels between 10 and 100 ppm. The mercury in the sludges and slurries can be Hg{sup 0}, Hg{sup +1}, or Hg{sup +2}, with levels between 200 and 3000 ppm, depending upon the location, both time and position, of sampling. For DWPF, both total and soluble Hg concentrations need to be determined. The text below describes how these determinations are being made by the Defense Waste Processing Technology (DWPT) Analytical Laboratory at the Savannah River Site. Both flame atomic absorption (FAA) and cold vapor atomic (CVAA) measurements are discussed. Also, the problems encountered in the steps toward measuring HG in these samples types of condensates and sludges are discussed along with their solutions.

  6. Analysis of mercury in simulated nuclear waste

    SciTech Connect

    Policke, T.A.; Johnson, L.C.; Best, D.R.

    1991-01-01

    Mercury, Hg, is a non-radioactive component in the High Level Waste at the Savannah River Site (SRS). Thus, it is a component of the Defense Waste Processing Facility's (DWPF) process streams. It is present because mercuric nitrate (Hg(NO{sub 3}){sub 2}) is used to dissolve spent fuel rods. Since mercury halides are extremely corrosive, especially at elevated temperatures such as those seen in a melter (1150{degrees}C), its concentration throughout the process needs to be monitored so that it is at an acceptable level prior to reaching the melter off-gas system. The Hg can be found in condensates and sludge feeds and throughout the process and process lines, i.e., at any sampling point. The different samples types that require Hg determinations in the process streams are: (1) sludges, which may be basic or acidic and may or may not include aromatic organics, (2) slurries, which are sludges with frit and will always contain organics (formate and aromatics), and (3) condensates, from feed prep and melter off-gas locations. The condensates are aqueous and the mercury may exist as a complex mixture of halides, oxides, and metal, with levels between 10 and 100 ppm. The mercury in the sludges and slurries can be Hg{sup 0}, Hg{sup +1}, or Hg{sup +2}, with levels between 200 and 3000 ppm, depending upon the location, both time and position, of sampling. For DWPF, both total and soluble Hg concentrations need to be determined. The text below describes how these determinations are being made by the Defense Waste Processing Technology (DWPT) Analytical Laboratory at the Savannah River Site. Both flame atomic absorption (FAA) and cold vapor atomic (CVAA) measurements are discussed. Also, the problems encountered in the steps toward measuring HG in these samples types of condensates and sludges are discussed along with their solutions.

  7. Nevada Nuclear Waste Storage Investigations: Quality

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The geohydrologic setting and underground rock masses of the Nevada Test Site and contiguous areas were evaluated to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. A quality assurance program which conforms to the criteria given in the Code of Federal Regulations is needed to control the quality aspects of the work. This Quality Assurance Plan describes the general quality assurance program for the overall project under which the quality assurance programs of the individual participating organizations and support contractors are to operate.

  8. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  9. CORROSION RELIABILITY PREDICTION: LONG TERM NUCLEAR WASTE STORAGE IN YUCCA MOUNTAIN

    SciTech Connect

    G.S. Frankel; E. Tada; B. Maier

    2005-08-18

    The US. Department of Energy has proposed the disposal of high level nuclear waste from commercial and defense reactors in a mined geologic repository under Yucca Mountain, Nevada. The waste will be stored in metallic canisters. The barrier against corrosion will be an Alloy 22 canister and a Ti Grade 7 drip shield. Both of these materials are extremely corrosion resistant. The environment inside Yucca Mountain is relatively benign, but the long time period over which these materials must resist penetration makes corrosion a concern. This paper presents a background of the corrosion issues and shows some recent results regarding measurements of localized corrosion under thin aqueous layers and layers that simulate wet dust deposits.

  10. Characterization of Oversized Crates containing Nuclear Waste

    SciTech Connect

    Berg, Randal K.; Haggard, Daniel L.; Hilliard, Jim; Mozhayev, Andrey V.

    2007-11-01

    The 212-N Building at the Hanford Site held fifteen large crates containing glove boxes and process equipment associated with the development and fabrication of mixed oxide (MOX) fuel. The gloveboxes and associated equipment originated from the 308 Building of the Hanford Site and had been placed in the crates after a process upset in the 1960s. The crates were transported to the 212-N Building and had been in storage since 1972. In an effort to reduce the hazard categorization of 212-N the crates were removed from the building and Nondestructive Assay (NDA) was performed to characterize the crate contents meeting both Safeguards and Waste Management interests. A measurement system consisting of four configurable neutron slab detectors and high purity germanium (HPGe) detectors was deployed. Since no viable information regarding the waste matrix and configuration was available it was essential to correct for attenuation with a series of transmission measurements using californium and europium sources for both neutron and gamma applications. The gamma and neutron results obtained during this measurement campaign are compared and discussed in the paper.

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  12. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  13. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  14. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  15. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  16. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  17. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  18. Fault Frictional Stability in a Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the

  19. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    SciTech Connect

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

  20. A proliferation of nuclear waste for the Southeast.

    PubMed

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  1. Sub-Seabed Repository for Nuclear Waste - a Strategic Alternative - 13102

    SciTech Connect

    McAllister, Keith R.

    2013-07-01

    It was recognized at the outset of nuclear power generation in the 1950's that the waste products would require isolation away from humans for periods in excess of 10,000 years. After years studying alternatives, the DOE recommended pursuing the development of a SNF/HLW disposal facility within Yucca Mountain in the desert of Nevada. That recommendation became law with passage of the NWPAA, effectively stopping development of other approaches to the waste problem. In the face of political resistance from the state of Nevada, the 2010 decision to withdraw the license application for the geologic repository at Yucca Mountain has delayed further the most mature option for safe, long-term disposal of SNF and HLW. It is time to revisit an alternative option, sub-seabed disposal within the US Exclusive Economic Zone (EEZ), which would permanently sequester waste out of the biosphere, and out of the reach of saboteurs or terrorists. A proposal is made for a full scale pilot project to demonstrate burying radioactive waste in stable, deep ocean sediments. While much of the scientific work on pelagic clays has been done to develop a sub-seabed waste sequestration capability, this proposal introduces technology from non-traditional sources such as riser-less ocean drilling and the Navy's Sound Surveillance System. The political decisions affecting the issue will come down to site selection and a thorough understanding of comparative risks. The sub-seabed sequestration of nuclear waste has the potential to provide a robust solution to a critical problem for this clean and reliable energy source. (authors)

  2. The suitability of a supersulfated cement for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  3. Ventilation planning for a prospective nuclear waste repository

    SciTech Connect

    Wallace, K.G. Jr.

    1987-12-31

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval.

  4. Selected, annotated bibliography of studies relevant to the isolation of nuclear wastes. [705 references

    SciTech Connect

    Hyder, L.K.; Fore, C.S.; Vaughan, N.D.; Faust, R.A.

    1980-09-01

    This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.

  5. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect

    Witherspoon, P.A.

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  6. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    SciTech Connect

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  7. Graphite matrix materials for nuclear waste isolation

    SciTech Connect

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  8. "Hanford: A Conversation About Nuclear Waste and Cleanup"

    SciTech Connect

    Gephart, Roy E.

    2003-05-10

    In ''Hanford: A Conversation about Nuclear Waste and Cleanup'', Roy Gephart takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry.

  9. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  10. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    SciTech Connect

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-06-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses.

  11. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  12. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  13. Tokamak Transmutation of (nuclear) Waste (TTW): Parametric studies

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Krakowski, R. A.; Peng, Y. K. M.

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses.

  14. Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste

    SciTech Connect

    Schlegel, Steven C.

    2007-01-10

    The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Since weapons program and commercial applications do not mix in the United States, the facilities in the weapons complex that no longer have a mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either geological sites or low-level waste sites.

  15. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  16. Nuclear waste management and the use of the sea. Special report

    SciTech Connect

    Not Available

    1984-04-01

    This report reviews the current situation on nuclear-waste-disposal policies in the United States and elsewhere and relates these policies to implications for the oceans. The report describes the worldwide inventory of radioactive waste, the varying types of radioactive wastes, international and domestic laws governing radioactive waste disposal, scientific analysis of marine radioactivity, and possible U.S. proposals on ocean disposal of nuclear waste. Detailed appendices describe nuclear and health physics, waste management strategies of other nations, prior U.S. dumping of radioactive wastes, signatories to the London Dumping Convention, specific case histories, among others.

  17. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    SciTech Connect

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  18. Treatment and geological disposal of waste from NET pre-design

    NASA Astrophysics Data System (ADS)

    Brodén, Karin; Aggeryd, Ingrid; Lindberg, Maria; Olsson, Gunnar

    1993-06-01

    Within the European Fusion Technology programs Studsvik RadWaste AB has performed studies on fusion waste treatment and disposal for several years. This paper deals with the treatment and geological disposal of radioactive waste from NET operation and decommissioning. Results from calculations on radioactive waste fluxes for the operation and decommissioning of NET are reported. The calculations are based on the NET predesign report published 1993 and include results for the exchangeable in-vessel and external parts of the machine as well as permanent reactor components. Different aspects of treatment, packaging, transportation, and interim storage of the waste are discussed. The volumes of waste conditioned for final disposal are preliminarily quantified, according to German and Swedish scenarios for radioactive waste disposal. A total repository volume of approximately 45,000 m3 is required in the German Scenario and 35,000 m3 is required in the Swedish Scenario. Results from dose rate calculations for NET waste in final repositories are presented for the Swedish Scenario. This work was financially supported by the Swedish Natural Science Research Council (NFR) and the European Atomic Energy Community, under an association contract between Euratom and Sweden.

  19. The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B

    SciTech Connect

    1984-05-01

    A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

  20. The role of frit in nuclear waste vitrification

    SciTech Connect

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.; Hrma, P.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202) and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.

  1. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  2. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    PubMed

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  3. Alcohol-free alkoxide process for containing nuclear waste

    DOEpatents

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  4. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  5. Workshop on fundamental geochemistry needs for nuclear waste isolation

    SciTech Connect

    Heiken, J.H.

    1985-09-01

    In their deliberations, workshop participants did not attempt to incorporate the constraints that the 1982 National Nuclear Waste Management Policy Act placed upon the site-specific investigations. In particular, there was no attempt to (1) identify the research areas that apply most strongly to a particular potential repository site, (2) identify the chronological time when the necessary data or knowledge could be available, or (3) include a sensitivity analysis to prioritize and limit data needs. The workshop participants felt these are the purview of the site-specific investigations; the purpose of the workshop was to discuss the generic geochemistry research needs for a nuclear waste repository among as broad spectrum of individual scientists as possible and to develop a consensus of what geochemical information is important and why.

  6. Nuclear Waste Disposal in Space: BEP's Best Hope?

    SciTech Connect

    Coopersmith, Jonathan

    2006-05-02

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun.

  7. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  8. NRC nuclear waste management technical support in the development of nuclear waste form criteria. Task 4. Test development review

    SciTech Connect

    Czyscinski, K.S.; Swyler, K.J.; Klamut, C.J.

    1980-05-01

    This interim report concerns the development of testing procedures to assess the performance of waste packages to be used for high-level waste disposal in geologic repositories. Single component testing of the waste package is determined to be a workable strategy for testing and evaluation in terms of NRC release rate criteria. An initial literature review has identified key tests and those variables which must be included in testing procedures to simulate repository conditions. The range of these conditions remains to be determined precisely. Methods for leach, corrosion, and sorption testing are reviewed and initial recommendations made for preferred procedures. A combination of static and dynamic tests is needed to evaluate waste package component performance. Additional research is necessary in certain areas both to establish reliable testing methods and to define the range of testing variables. Research recommendations are included in the report. Ancillary measurements will be required to ensure that key tests rigorously assess the durability of waste package components under anticipated repository conditions. In particular, radiation effects in the repository environment must be considered and, where necessary, simulated during critical testing. Research is recommended to aid in determining when and how this should be done.

  9. Control of Nepheline Crystallization in Nuclear Waste Glass

    SciTech Connect

    Fox, Kevin

    2008-07-01

    Glass frits with a high B{sub 2}O{sub 3} concentration have been designed which, when combined with high-alumina concentration nuclear waste streams, will form glasses with durabilities that are acceptable for repository disposal and predictable using a free energy of hydration model. Two glasses with nepheline discriminator values closest to 0.62 showed significant differences in normalized boron release between the quenched and heat treated versions of each glass. X-ray diffraction confirmed that nepheline crystallized in the glass with the lowest nepheline discriminator value, and nepheline may also exist in the second glass as small nanocrystals. The high-B{sub 2}O{sub 3} frit was successful in producing simulated waste glasses with no detectable nepheline crystallization at waste loadings of up to 45 wt%. The melt rate of this frit was also considerably better than other frits with increased concentrations of Na{sub 2}O.

  10. Nuclear Waste Glasses: Beautiful Simplicity of Complex Systems

    SciTech Connect

    Hrma, Pavel R.

    2009-01-01

    The behavior of glasses with a large number of components, such as waste glasses, is not more complex than the behavior of simple glasses. On the contrary, the presence of many components restricts the composition region of these glasses in a way that allows approximating composition-property relationships by linear functions. This has far-reaching practical consequences for formulating nuclear waste glasses. On the other hand, processing high-level and low-activity waste glasses presents various problems, such as crystallization, foaming, and salt segre-gation in the melter. The need to decrease the settling of solids in the melter to an acceptable level and to maximize the rate of melting presents major challenges to processing technology. However, the most important property of the glass product is its chemical durability, a somewhat vague concept in lieu of the assessment of the glass resistance to aqueous attack while the radioactivity decays over tens of thousands of years.

  11. Behavior of technetium in nuclear waste vitrification processes.

    PubMed

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with (99m)Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  12. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  13. Method of determining a content of a nuclear waste container

    DOEpatents

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  14. Framing ethical acceptability: a problem with nuclear waste in Canada.

    PubMed

    Wilding, Ethan T

    2012-06-01

    Ethical frameworks are often used in professional fields as a means of providing explicit ethical guidance for individuals and institutions when confronted with ethically important decisions. The notion of an ethical framework has received little critical attention, however, and the concept subsequently lends itself easily to misuse and ambiguous application. This is the case with the 'ethical framework' offered by Canada's Nuclear Waste Management Organization (NWMO), the crown-corporation which owns and is responsible for the long-term management of Canada's high-level nuclear fuel waste. It makes a very specific claim, namely that it is managing Canada's long-lived radioactive nuclear fuel waste in an ethically responsible manner. According to this organization, what it means to behave in an ethically responsible manner is to act and develop policy in accordance with its ethical framework. What, then, is its ethical framework, and can it be satisfied? In this paper I will show that the NWMO's ethical and social framework is deeply flawed in two respects: (a) it fails to meet the minimum requirements of a code of ethic or ethical framework by offering only questions, and no principles or rules of conduct; and (b) if posed as principles or rules of conduct, some of its questions are unsatisfiable. In particular, I will show that one of its claims, namely that it seek informed consent from individuals exposed to risk of harm from nuclear waste, cannot be satisfied as formulated. The result is that the NWMO's ethical framework is not, at present, ethically acceptable.

  15. Biogeochemical Changes at Early Stage After the Closure of Radioactive Waste Geological Repository in South Korea

    SciTech Connect

    Choung, Sungwook; Um, Wooyong; Choi, Seho; Francis, Arokiasamy J.; Kim, Sungpyo; Park, Jin beak; Kim, Suk-Hoon

    2014-09-01

    Permanent disposal of low- and intermediate-level radioactive wastes in the subterranean environment has been the preferred method of many countries, including Korea. A safety issue after the closure of a geological repository is that biodegradation of organic materials due to microbial activities generates gases that lead to overpressure of the waste containers in the repository and its disintegration with the release of radionuclides. As part of an ongoing large-scale in situ experiment using organic wastes and groundwater to simulate geological radioactive waste repository conditions, we investigated the geochemical alteration and microbial activities at an early stage (~63 days) intended to be representative of the initial period after repository closure. The increased numbers of both aerobes and facultative anaerobes in waste effluents indicate that oxygen content could be the most significant parameter to control biogeochemical conditions at very early periods of reaction (<35 days). Accordingly, the values of dissolved oxygen and redox potential were decreased. The activation of anaerobes after 35 days was supported by the increased concentration to ~50 mg L-1 of ethanol. These results suggest that the biogeochemical conditions were rapidly altered to more reducing and anaerobic conditions within the initial 2 months after repository closure. Although no gases were detected during the study, activated anaerobic microbes will play more important role in gas generation over the long term.

  16. Buying time: Franchising hazardous and nuclear waste cleanup

    SciTech Connect

    Hale, D.R.

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  17. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    SciTech Connect

    Not Available

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes.

  18. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    PubMed

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.

  19. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    PubMed

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF.

  20. The petrographic criteria of selection of geological environments for building high-level waste (HLW) repository

    SciTech Connect

    Omelyanenko, B.I.; Petrov, V.A.; Yudintsev, S.V.; Zaraisky, G.P.; Starostin, V.I.

    1993-12-31

    Igneous rocks of basic composition (basalts, diabases, gabbro-dolerites, dunites, etc.) are an appropriate geological environment for high-level waste disposal. During interaction with hot ground waters their isolation ability will increase due to the decrease of hydraulic permeability and increase of their sorption ability. According to petrophysical characteristics, such rocks are viscous-rigid media with the highest mechanical stability and do not undergo any changes in properties over the whole temperature range, which is possible in a HLW repository.

  1. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  2. Local acceptance of a high-level nuclear waste repository.

    PubMed

    Sjöberg, Lennart

    2004-06-01

    The siting of nuclear waste facilities has been very difficult in all countries. Recent experience in Sweden indicates, however, that it may be possible, under certain circumstances, to gain local support for the siting of a high-level nuclear waste (HLNW) repository. The article reports on a study of attitudes and risk perceptions of people living in four municipalities in Sweden where HLNW siting was being intensely discussed at the political level, in media, and among the public. Data showed a relatively high level of consensus on acceptability of at least further investigation of the issue; in two cases local councils have since voted in favor of a go-ahead, and in one case only a very small majority defeated the issue. Models of policy attitudes showed that these were related to attitude to nuclear power, attributes of the perceived HLNW risk, and trust. Factors responsible for acceptance are discussed at several levels. One is the attitude to nuclear power, which is becoming more positive, probably because no viable alternatives are in sight. Other factors have to do with the extensive information programs conducted in these municipalities, and with the logical nature of the conclusion that they would be good candidates for hosting the national HLNW repository.

  3. Corrosion of steel in simulated nuclear waste solutions

    SciTech Connect

    Mickalonis, J.I.

    1993-12-01

    Processing of inhibited nuclear waste to forms for long-term storage will cause waste tank environments to have dynamic conditions. During processing compositional changes in the waste may produce a corrosive environment for the plain carbon steel tanks. Large concentrations of nitrates which corrode steel are contained in the waste. Nitrite and hydroxides are added to inhibit any corrosion. Concentration changes of nitrate and nitrite were investigated to identify corrosion regimes that may occur during processing. Corrosion testing was performed with cyclic potentiodynamic polarization and linear polarization resistance. Test samples were plain carbon steel which was similar to the material of construction of the waste tanks. The corrosion morphology of test samples was investigated by visual evaluation and scanning electron microscopy. Qualitative chemical analysis was also performed using energy dispersive spectroscopy. The corrosion mechanism changed as a function of the nitrate concentration. As the nitrate concentration was increased the steel transitioned from a passive state to general attack, and finally pitting and crevice corrosion. The nitrate anion appeared to destabilize the surface oxide. Nitrite countered the oxide breakdown, although the exact mechanism was not determined.

  4. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces.

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  6. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  7. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect

    Lee, S.

    2009-06-01

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  8. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  9. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  10. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  11. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    SciTech Connect

    Swift, P.N.; Corbet, T.F.

    1999-03-04

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.

  12. Colloid formation during waste form reaction: implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; ten Brink, Marilyn Buchholtz

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  13. Evaluation of research and development for terminal isolation of nuclear wastes

    SciTech Connect

    Burton, B.W.

    1982-08-01

    The National Waste Terminal Storage program is responsible for identifying and constructing a geologic repository for spent reactor fuel, high-level waste, and transuranic waste. Extensive research and development work is in progress in the areas of site selection, waste treatment and waste form development, model development and validation, and long-term repository performance assessment. Many potential technologies are under investigation, but specific technologies cannot be identified until a repository site is selected. It is too early in the program to assess the adequacy of environmental control technologies for deep geologic disposal.

  14. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors

  15. Two citizen task forces and the challenge of the evolving nuclear waste siting process

    SciTech Connect

    Peelle, E.B.

    1990-01-01

    Siting any nuclear waste facility is problematic in today's climate of distrust toward nuclear agencies and fear of nuclear waste. This study compares and contrasts the siting and public participation processes as two citizen task forces dealt with their difficult responsibilities. 10 refs., 3 tabs.

  16. Application of gaseous core reactors for transmutation of nuclear waste

    NASA Technical Reports Server (NTRS)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  17. Nuclear microprobe applications to radioactive waste management basic research

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Badillo, V.; Barré, N.; Bois, L.; Cachoir, C.; Gallien, J. P.; Guilbert, S.; Mercier, F.; Tiffreau, C.

    1999-10-01

    Radioactive waste management is one of the major technical and scientific challenge to be solved by industrialized countries near the beginning of the 21st century. Relevant questions arise about the extrapolation of the long term-behavior of materials from waste package, engineered barriers and near field repository. Whatever the strategical option might be, wet atmosphere or water intrusion through the different barriers constitute the two main remobilization factors for radionuclides in the geosphere and the biosphere. The study of solid alteration processes and elemental sorption phenomena on mineral surfaces is one of the most efficient basic research approaches to assess the long term performance of waste materials. Ion beam analysis and more recently nuclear microprobe techniques have been applied to investigate exchange mechanisms near representative solid/liquid interfaces such as glass/deionized water, uranium dioxide/granitic or clay water or mineral surface/aqueous solution doped with chemical elements analogue to actinide or fission products. This paper intends to describe the different works that have been carried out in Saclay using the nuclear microprobe facility. The coupling of μRBS, μPIXE and μNRA permits to determine the evolution of the surface composition induced by chemical reactions involved. Complementary observation of solid morphology and solution analysis allows to obtain a complete elemental balance on exchange processes.

  18. Processing of historic high radioactive waste coming from nuclear applications

    SciTech Connect

    Van Velzen, L.P.M.; Vos, R.M. de; Roobol, L.P.; IJpelaan, R.; Van Tongeren, R.

    2007-07-01

    At ECN-NRG irradiations of materials have been performed with the aid of the High Flux Reactor at the site for investigations of their properties under different conditions as well for nuclear isotope productions since 1967 e.g. molybdenum. The high radioactive waste (HRW) coming from these nuclear applications are stored since the start in an interim storage facility located at the site. Due to the site license the HRW has to be transported to COVRA. Therefore a project has been set-up to transport all the HRW to COVRA. However, COVRA accepts a limited number of HLW containers among the CASTOR{sup R} MTR-2 container and thus all temporary stored drums have to be over packed. As the existing infra structure at the site is not suited a new facility has to be build. This also creates the opportunity to minimize, by separation of the HRW in low- and intermediate level waste, the amount of waste that has to be classified as HLW. The applied methodology, design and specifications of the HRW-ILW non-destructive assay characterization and separation system will be described. (authors)

  19. Allocating resources and building confidence in public-safety decisions for nuclear waste sites

    SciTech Connect

    Lew, K L; Wilder, D G

    1999-05-21

    There are three basic ways to protect the public from the hazards of exposure to radionuclides in nuclear waste: completely contain the waste; limit the rate at which radionuclides are released; and, once radionuclides are released, minimize their impact by reducing concentrations and retarding transport. A geologic repository system that implements all three provides maximum protection for the public: if one element fails, the others serve to protect. This is ''defense-in-depth.'' Demonstrating confidence in the ability of a designed system to provide the requisite safety to the public must rely on a combination of the following aspects relating to engineered and natural system components: 1 Knowledge or understanding of properties and processes 2 Uniformity of (or ability to understand or control) the range of variability associated with each component 3 Experience over time This paper proposes a tool based on defining a ''confidence region'' determined by these three essential aspects of confidence. The defense-in-depth decision-making tool described identifies the portion of the ultimate confidence region that is not well demonstrated and indicates where there is potential for changing a specific component's confidence region, therefore providing in-formation for decisions on emphasis--either for demonstrating performance or for focusing on further studies. The US Yucca Mountain Site Characterization Project (YMP), wherein Yucca Mountain is being investigated as a potential site for a nuclear waste repository, and the Swedish geologic repository studies are used as examples of this tool. of protective or operating components such that failure of a single component does not by itself lead to system failure. The greater the exposure to loss, the greater the requirements for design margins (the margin of conservatism associated with the fabrication and operation of important components in complex engineering projects) or for compensation by defense-in-depth. Thus

  20. Managing the nation`s nuclear waste. Site descriptions: Cypress Creek, Davis Canyon, Deaf Smith, Hanford Reference, Lavender Canyon, Richton Dome, Swisher, Vacherie Dome, and Yucca Mountain

    SciTech Connect

    1985-12-31

    In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A final EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.

  1. Health Cost of a Nuclear Waste Repository, WIPP

    NASA Astrophysics Data System (ADS)

    Kula, Erhun

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP), the United States of America’s first nuclear waste dumping site, has over the years generated a great deal of concern and controversy. The most sensitive aspect of this project is that it may impose serious health risks on future generations. The first leg of this project is about to be completed and at the time of writing the Department of Energy is planning to perform experiments with a small quantity of waste for operational demonstrations. If everything goes well, then towards the end of this decade large quantities of wastes will be transported to the site for disposal. This article reconsiders the health cost of this project from an economic perspective in light of recent developments in the field of social discounting. As in earlier studies, two cases of health risks are considered: total cancer and genetic deformity over a one million year cutoff period. The analysis shows that whereas ordinary discounting method wipes out the future health detriments, expressed in monetary terms, the modified discounting criterion retains a substantial proportion of such costs in economic analysis.

  2. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    SciTech Connect

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  3. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1--June 30, 1991

    SciTech Connect

    1996-08-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

  4. Nuclear waste-form risk assessment for US Defense waste at Savannah River Plant. Annual report FY 1981

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.; Jackson, D.D.; Revelli, M.A.

    1981-12-01

    Savannah River Plant has been supporting the Lawrence Livermore National Laboratory in its present effort to perform risk assessments of alternative waste forms for defense waste. This effort relates to choosing a suitable combination of solid form and geologic medium on the basis of risk of exposure to future generations; therefore, the focus is on post-closure considerations of deep geologic repositories. The waste forms being investigated include borosilicate glass, SYNROC, and others. Geologic media under consideration are bedded salt, basalt, and tuff. The results of our work during FY 1981 are presented in this, our second annual report. The two complementary tasks that comprise our program, analysis of waste-form dissolution and risk assessment, are described.

  5. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  6. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    SciTech Connect

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  7. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  8. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  9. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    SciTech Connect

    Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia; Zhang, Jiandong; Zhu, Zihua; Riley, Brian Joseph; Ryan, Joseph Vincent

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG), glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.

  10. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  11. Draft environmental assessment: Swisher County site, Texas. Nuclear Waste Policy Act (Section 112). [Contains Glossary

    SciTech Connect

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a location in Swisher County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The potentially acceptable site was subsequently narrowed to an area of 9 square miles. To determine their suitability, the Swisher site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Swisher site is not disqualified under the guidelines. The site is contained in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Deaf Smith site. Although the Swisher site appears to be suitable for site characterization, the DOE has concluded that the Deaf Smith site is the preferred site in the Permian Basin and is proposing to nominate the Deaf Smith site rather than the Swisher site as one of the five sites suitable for characterization.

  12. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  13. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    SciTech Connect

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

  14. Shale: an overlooked option for US nuclear waste disposal

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  15. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  16. Thermodynamic data management system for nuclear waste disposal performance assessment

    SciTech Connect

    Phillips, S.L.; Hale, F.V.; Siegel, M.D.

    1988-04-01

    Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

  17. Critique of rationale for transmutation of nuclear waste

    SciTech Connect

    Smith, C.F.; Cohen, J.J.

    1980-07-01

    It has been suggested that nuclear transmutation could be used in the elimination or reduction of hazards from radioactive wastes. The rationale for this suggestion is the subject of this paper. The objectives of partitioning-transmutation are described. The benefits are evaluated. The author concludes that transmutation would appear at best to offer the opportunity of reducing an already low risk. This would not seem to be justifiable considering the cost. If non-radiological risks are considered, there is a negative total benefit. (DC)

  18. Double Diffusive Natural Convection in a Nuclear Waste Repository

    SciTech Connect

    Hao, Y; Nitao, J J; Buscheck, T A; Sun, Y

    2006-07-24

    In this study, we conduct a two dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have a strong impact on in-drift convective flow and transport.

  19. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    SciTech Connect

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-03-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

  20. Impact of transporting defense high-level waste to a geologic repository

    SciTech Connect

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options.

  1. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  2. Gas generation and gas migration in deep geological repositories for radioactive waste

    SciTech Connect

    Haijtink, B.

    1996-12-31

    It is generally accepted that there will be some degree of gas generation in deep geological repositories for radioactive waste. This gas generation will depend on a number of factors such as the nature of the waste, the waste container, the buffer material and the near field host rock. In an ideal situation the gas generated would all dissolve in the groundwater and/or be transported away from the deep repository by the mechanisms of advection, diffusion and dispersion. However the sought-after characteristic of a repository host medium of very low permeability, e.g. bentonite buffer material and argillaceous geological media can be problematic when considering gas migration. High gas pressures might be build-up which could lead to potential fracturing of engineered barriers in the near field and enhancing groundwater flow and radionuclide migration. Various theoretical as well as experimental research activities have been undertaken to investigate the different phenomena. Within the framework of R&D programmes on Management and Storage of Radioactive Waste, conducted by the European Commission, some of the research activities are grouped together in a coordinated project named PEGASUS (Project on the Effects of GAS in an Underground Storage facility). In this project a total of about twenty research institutes and laboratories from seven different European countries are involved. This PEGASUS project will be followed up by a new project named PROGRESS (PROject of Research into Gas generation and migration in radioactive waste REpository SystemS). In this paper, an overview is given of the various research activities carried out and results obtained so far.

  3. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  4. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  5. Myth of nuclear explosions at waste disposal sites

    SciTech Connect

    Stratton, W.R.

    1983-10-01

    Approximately 25 years ago, an event is said to have occurred in the plains immediately west of the southern Ural mountains of the Soviet Union that is being disputed to this very day. One person says it was an explosion of nuclear wastes buried in a waste disposal site; other people say it was an above-ground test of an atomic weapon; still others suspect that an alleged contaminated area (of unknown size or even existence) is the result of a series of careless procedures. Since the event, a number of articles about the disposal-site explosion hypothesis written by a Soviet exile living in the United Kingdom have been published. Although the Soviet scientist's training and background are in the biological sciences and his knowledge of nuclear physics or chemistry is limited, people who oppose the use of nuclear energy seem to want to believe what he says without question. The work of this Soviet biologist has received wide exposure both in the United Kingdom and the United States. This report presents arguments against the disposal-site explosion hypothesis. Included are discussions of the amounts of plutonium that would be in a disposal site, the amounts of plutonium that would be needed to reach criticality in a soil-water-plutonium mixture, and experiments and theoretical calculations on the behavior of such mixtures. Our quantitative analyses show that the postulated nuclear explosion is so improbable that it is essentially impossible and can be found only in the never-never land of an active imagination. 24 references, 14 figures, 5 tables.

  6. SPENT NUCLEAR FUEL WASTE PACKAGE FILLER TESTING TECHNICAL GUIDELINES DOCUMENT

    SciTech Connect

    J.A. Cogar

    1996-08-28

    The purpose of this work is to provide supporting calculations for determination of the radiation source terms specific to subsurface shielding design and analysis. These calculations are not intended to provide the absolute values of the source terms, which are under the charter of the Waste Package Operations (WPO) Group. Rather, the calculations focus on evaluation of the various combinations of fuel enrichment, burnup and cooling time for a given decay heat output, consistent with the waste package (WP) thermal design basis. The objective is to determine the worst-case combination of the fuel characteristics (enrichment, burnup and cooling time) which would give the maximum radiation fields for subsurface shielding considerations. The calculations are limited to PWR fuel only, since the WP design is currently evolving with thinner walls and a reduced heat load as compared to the viability assessment (VA) reference design. The results for PWR fuel will provide a comparable indication of the trend for BWR fuel, as their characteristics are similar. The source term development for defense high-level waste and other spent nuclear fuel (SNF) is the responsibility of the WPO Group, and therefore, is not included this work. This work includes the following items responsive to the stated purpose and objective: (1) Determine the possible fuel parameters (initial enrichment, burnup and cooling time), that give the same decay heat value as specified for the waste package thermal design; (2) Obtain the neutron and gamma source terms for the various combinations of the fuel parameters for use in radiation field calculations; and (3) Calculate radiation fields on the surfaces of the waste package and its transporter to quantify the effects of the fuel parameters with the same decay heat value for use in identifying the worst-case combination of the fuel parameters.

  7. Heat Transfer in Waste Glass Melts - Measurement and Implications for Nuclear Waste Vitrification

    NASA Astrophysics Data System (ADS)

    Wang, Chuan

    Thermal properties of waste glass melts, such as high temperature density and thermal conductivity, are relevant to heat transfer processes in nuclear waste vitrification. Experimental measurement techniques were developed and applied to four nuclear waste glasses representative of those currently projected for treatment of Hanford HLW and LAW streams to study heat flow mechanisms in nuclear waste vitrification. Density measurement results by Archimedes' method indicated that densities of the melts investigated varied considerably with composition and temperature. Thermal diffusivities of waste melts were determined at nominal melter operating temperatures using a temperature-wave technique. Thermal conductivities were obtained by combining diffusivity data with the experimentally-acquired densities of the melts and their known heat capacities. The experimental results display quite large positive dependences of conductivities on temperature for some samples and much weaker positive temperature dependences for others. More importantly, there is observed a big change in the slopes of the conductivities versus temperature as temperature is increased for two of the melts, but not for the other two. This behavior was interpreted in terms of the changing contributions of radiation and conduction with temperature and composition dependence of the absorption coefficient. Based on the obtained thermal conductivities, a simple model for a waste glass melter was set up, which was used to analyze the relative contributions of conduction and radiation individually and collectively to the overall heat flow and to investigate factors and conditions that influence the radiation contribution to heat flow. The modeling results showed that unlike the case at lower temperatures, the radiant energy flow through waste melts could be predominant compared with conduction at temperature of about 900 °C or higher. However, heat flow due to radiation was roughly equal to that from

  8. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    PubMed

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself.

  9. Records of wells, test borings, and some measured geologic sections near the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.

    1985-01-01

    The Western New York Nuclear Service Center (WNYNSC) is a 3 ,336-acre tract of land in northern Cattaraugus County, NY, about 30 mi south of Buffalo. In 1963, 247 acres within the WNYNSC was developed for a nuclear-fuel reprocessing plant and ancillary facilities, including (1) a receiving and storage facility to store fuel prior to reprocessing, (2) underground storage tanks for liquid high-level radioactive wastes from fuel reprocessing, (3) a low-level wastewater treatment plant, and (4) two burial grounds for shallow burial of solid radioactive waste. A series of geologic and hydrologic investigations was done as part of the initial development and construction of the facilities by numerous agencies during 1960-62; these produced a large quantity of well data, some of which are difficult to locate or obtain. This report is a compilation of well and boring data collected during this period. The data include records of 236 wells, geologic logs of 145 wells and 167 test borings, and descriptions of 20 measured geologic sections. Two oversized maps show locations of the reported data. (USGS)

  10. 76 FR 17970 - Board Meeting: April 27, 2011-Amherst, New York; the U.S. Nuclear Waste Technical Review Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: April 27, 2011--Amherst, New York; the U.S. Nuclear Waste Technical Review... 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear...

  11. 25 CFR 170.900 - What is the purpose of the provisions relating to transportation of hazardous and nuclear waste?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transportation of hazardous and nuclear waste? 170.900 Section 170.900 Indians BUREAU OF INDIAN AFFAIRS... and Nuclear Waste Transportation § 170.900 What is the purpose of the provisions relating to transportation of hazardous and nuclear waste? Sections 170.900 through 170.907 on transportation of nuclear...

  12. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  13. Nuclear waste management and the use of the sea. Special report

    SciTech Connect

    Not Available

    1984-04-01

    This report reviews the current situation on nuclear waste disposal policies in the United States and elsewhere and relates these policies to implications for the oceans. The report does not comment on nuclear power as an energy source. In a comprehensive background information section, the report describes the worldwide inventory of radioactive waste, the varying types of radioactive wastes, international and domestic laws governing radioactive waste disposal, scientific analysis of marine radioactivity, and possible U.S. proposals on ocean disposal of nuclear waste. Detailed appendices describe nuclear and health physics, waste management strategies of other nations, prior U.S. dumping of radioactive wastes, signatories to the London Dumping Convention, specific case histories, among others.

  14. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-31

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

  15. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  16. Radiation effects in nuclear waste materials. 1997 annual progress report

    SciTech Connect

    Weber, W.J.; Corrales, L.R.

    1997-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding at the atomic, microscopic, and macroscopic levels of radiation effects in glass and ceramics. This research will provide the underpinning science and models for evaluation and performance assessments of glass and ceramic waste forms for the immobilization and disposal of high-level tank waste, plutonium residues and scrap, and excess weapons plutonium. Studies will focus on the effects of ionization and elastic collision interactions on defect production, defect interactions, diffusion, solid-state phase transformations, and gas accumulation using actinide-containing materials, gamma irradiation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of a-decay and p-decay on nuclear waste glasses and ceramics. This program will exploit a variety of structural, optical, and spectroscopic probes to characterize the nature and behavior of the defects, defect aggregates, and phase transforma-tions. Computer simulation techniques will be used to determine defect production, calculate defect stability, defect energies, damage processes within an a-recoil cascade, and defect/gas diffusion and interactions. A number of irradiation facilities and capabilities will be used, including user facilities at several national laboratories, to study the effects of irradiation under different conditions.'

  17. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect

    Strauss, S.H.

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  18. Numerical Techniques for Radioactive Waste Repository Safety Assessment Based on Transport in Geological Media Models - 12083

    SciTech Connect

    Kapyrin, Ivan; Vassilevski, Yuri; Rastorguev, Alexander; Ivanov, Valeriy; Galinov, Alexander

    2012-07-01

    Radionuclide migration in geological media is considered within the framework of safety assessment of radioactive waste disposal facility. In this context groundwater flow and transport models are necessary. Computational technologies allowing for semiautomatic generation of unstructured meshes with different cell types, i.e. tetrahedra, hexahedra and pyramids and the subsequent solution of groundwater flow problems on these meshes are introduced. The application of methods is demonstrated in the groundwater flow model for a decommissioned subsurface reactor vessel, buried on its current location. (authors)

  19. Nuclear characteristics of vitrified high-level waste at the West Valley Demonstration Project

    SciTech Connect

    Arakali, V.S.; Barnes, S.M. )

    1991-11-01

    High-level liquid nuclear waste stored in underground tanks at West Valley, New York, will be vitrified as borosilicate glass and stored in stainless steel canisters prior to disposal at a waste repository. The nuclear characteristics of the vitrified waste must meet certain repository design specifications. This paper presents an evaluation of the waste form produced at West Valley with respect to its compliance to the repository specifications of heat and gas generation rates and neutron and gamma dose rates. The method consists of analyzing the composition of liquid nuclear waste in underground tanks and estimating the amount of other chemicals needed to encapsulate radionuclides in glass matrices. The number of waste canisters and the composition of each batch of canistered waste are determined from the vitrification process flow sheet. This data is used in computer codes to evaluate the waste form against repository specifications.

  20. Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases

  1. Corrosion issues in high-level nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  2. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  3. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  4. IRON PHOSPHATE GLASSES: AN ALTERNATIVE FOR VITRIFYING CERTAIN NUCLEAR WASTES

    SciTech Connect

    Day, Delbert E.; Kim, Cheol-Woon

    2004-06-28

    The unusual properties and beneficial characteristics of iron phosphate glasses, as viewed from the standpoint of alternative glasses for vitrifying nuclear and hazardous wastes (which contain components that make them poorly suited for vitrification in borosilicate glass), have been investigated by the University of Missouri-Rolla with support from the Environmental Management Science Program (EMSP), DOE [DEFG07- 96ER45618]. During the past year, the corrosion resistance of Inconel 690 and 693 coupons submerged in an iron phosphate melt at 1050 C for up to 155 days has been investigated to determine whether iron phosphate glasses could be melted in a Joule Heated Melter (JHM) equipped with such electrodes in the same manner as now being used to melt borosilicate glass. Substituting iron phosphate glasses for borosilicate glasses could significantly reduce the time and cost for clean up due to the higher waste loading possible in iron phosphate glass. The iron phosphate melt, which contained 30 wt% of the Hanford Low Activity Waste (LAW), did not corrode the Inconel 690 to any greater extent than what has been reported for Inconel 690 electrodes in the borosilicate melt in the JHM at the Defense Waste Processing Facility. Furthermore, Inconel 693 appeared to be an even better candidate for use in iron phosphate melts since its corrosion rate (0.7 {micro}m/day) was only about one half that (1.3 {micro}m/day) of Inconel 690. In the past year, the results of the research on iron phosphate glasses have been described in nine technical papers and one report and have been presented at four international and national meetings.

  5. Migration of radionuclides through backfill in a nuclear waste repository

    SciTech Connect

    Lung, H.

    1986-01-01

    Four models are analyzed to predict the performance of a backfill layer as part of the waste package emplacement in a nuclear waste repository. The corresponding computer code for each model is also developed. The time-dependent mass transfer analysis on a spherical waste-backfill geometry indicates that the radioactive decay effect can enhance the mass transfer rate from the backfill instead of reducing it. The analysis yields the breakthrough time of the backfill layer, which in turn characterizes the backfill performance. A non-linear (Langmuir) sorption isotherm is used to describe the sorption saturation in the backfill. The steady state mass transport analysis through a prolate spheroidal waste-backfill geometry shows that a simple formula can be used to calculate the individual resistances to mass transport in backfill and in host rock. A general, non-recursive analytical solution is derived for a radioactive decay chain of arbitrary length in either a finite or a semi-infinite medium. Numerical examples are given for different boundary conditions and for different decay chains. The results justify that for a backfill layer made of low permeability material, a zero water velocity can be used in the backfill analysis. It is also shown that under normal repository conditions, the mass transfer rate from the backfill is quite small. For the daughter member with a smaller retardation coefficient than that of the mother nuclide, such as /sup 226/Ra in the /sup 234/U ..-->.. /sup 230/Th ..-->.. /sup 226/Ra chain, an interior maximum in the concentration profile appears in the backfill. This phenomenon can be seen only in a chain calculation.

  6. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    SciTech Connect

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented.

  7. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel.

    SciTech Connect

    Ackerman, J.

    1998-04-16

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail.

  8. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    , hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

  9. CESAR: A Code for Nuclear Fuel and Waste Characterisation

    SciTech Connect

    Vidal, J.M.; Grouiller, J.P.; Launay, A.; Berthion, Y.; Marc, A.; Toubon, H.

    2006-07-01

    CESAR (Simplified Evolution Code Applied to Reprocessing) is a depletion code developed through a joint program between CEA and COGEMA. In the late 1980's, the first use of this code dealt with nuclear measurement at the Laboratories of the La Hague reprocessing plant. The use of CESAR was then extended to characterizations of all entrance materials and for characterisation, via tracer, of all produced waste. The code can distinguish more than 100 heavy nuclides, 200 fission products and 100 activation products, and it can characterise both the fuel and the structural material of the fuel. CESAR can also make depletion calculations from 3 months to 1 million years of cooling time. Between 2003-2005, the 5. version of the code was developed. The modifications were related to the harmonisation of the code's nuclear data with the JEF2.2 nuclear data file. This paper describes the code and explains the extensive use of this code at the La Hague reprocessing plant and also for prospective studies. The second part focuses on the modifications of the latest version, and describes the application field and the qualification of the code. Many companies and the IAEA use CESAR today. CESAR offers a Graphical User Interface, which is very user-friendly. (authors)

  10. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  11. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  13. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    SciTech Connect

    Fellinger, A.

    2009-10-15

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  14. Ocean storage of nuclear wastes? Experiences from the Russian Arctic.

    PubMed

    Champ, M A; Gomez, L S; Makeyev, V M; Brooks, J M; Palmer, H D; Betz, F

    2001-01-01

    An international demonstration (RD&D) project for ocean storage of radioactive wastes should be proposed, to study the feasibility of the concept of ocean storage of nuclear waste. This international project should utilize the scientific, engineering and technical capabilities of selected universities, oceanographic institutions, NGOs and industries. This project would need to be an independent (non-governmental) study, utilizing the capabilities of selected universities, oceanographic institutions, environmental NGOs (Non-Governmental Organizations) and industries. Scientists and engineers first need to conduct an engineering, environmental, and economic feasibility study of the concept. The goal of the project would be to determine if ocean-based storage reduced the risks to the environment and public health to a greater degree than land-based storage. This would require comparing the risks and factors involved and making the data and information available to anyone, anywhere, anytime on the internet. The mere presence of an investigation of the ocean storage option could facilitate scientific and engineering competition between the two options, could subsequently reduce environmental and public risks and provide better protection and cost benefits in the system utilized. One of the primary concerns of the scientific community would be related to the sensitivity and precision of the monitoring of individaul containers on the ocean bottom. An advantage of the land-based option is that if there is a release, its presence could be detected at very low levels and be contained in the storage facility. On the ocean bottom, a release from a container might not be easily detected due to dispersion. Therefore the containment system would have to be a system within a system with monitoring between the two providing greater protection. Ocean storage may have greater technical and political hurdles than land-based options, but it may provide greater protection over time

  15. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    SciTech Connect

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10{sup {minus}11} to 10{sup {minus}10} cm{sup 2}/s and for Sr were 10{sup {minus}12} cm{sup 2}/s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m{sup 2}{center_dot}day) for Cs and between 0.34 and 0.70 g/(m{sup 2}{center_dot}day) industry-accepted standard while Cs losses indicate a process sensitive parameter.

  16. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  17. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  18. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    SciTech Connect

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  19. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    PubMed

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  20. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.