Sample records for geologic simulation model

  1. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactionsmore » of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.« less

  2. A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.

    2011-12-01

    In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.

  3. Geologic uncertainty in a regulatory environment: An example from the potential Yucca Mountain nuclear waste repository site

    NASA Astrophysics Data System (ADS)

    Rautman, C. A.; Treadway, A. H.

    1991-11-01

    Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.

  4. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  5. Research and implementation on 3D modeling of geological body

    NASA Astrophysics Data System (ADS)

    Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man

    2017-10-01

    This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.

  6. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  7. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  8. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  9. Multi-model approach to petroleum resource appraisal using analytic methodologies for probabilistic systems

    USGS Publications Warehouse

    Crovelli, R.A.

    1988-01-01

    The geologic appraisal model that is selected for a petroleum resource assessment depends upon purpose of the assessment, basic geologic assumptions of the area, type of available data, time available before deadlines, available human and financial resources, available computer facilities, and, most importantly, the available quantitative methodology with corresponding computer software and any new quantitative methodology that would have to be developed. Therefore, different resource assessment projects usually require different geologic models. Also, more than one geologic model might be needed in a single project for assessing different regions of the study or for cross-checking resource estimates of the area. Some geologic analyses used in the past for petroleum resource appraisal involved play analysis. The corresponding quantitative methodologies of these analyses usually consisted of Monte Carlo simulation techniques. A probabilistic system of petroleum resource appraisal for play analysis has been designed to meet the following requirements: (1) includes a variety of geologic models, (2) uses an analytic methodology instead of Monte Carlo simulation, (3) possesses the capacity to aggregate estimates from many areas that have been assessed by different geologic models, and (4) runs quickly on a microcomputer. Geologic models consist of four basic types: reservoir engineering, volumetric yield, field size, and direct assessment. Several case histories and present studies by the U.S. Geological Survey are discussed. ?? 1988 International Association for Mathematical Geology.

  10. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering variables on model predictions. Results suggest that (1) a horizontal and vertical resolution of 1/75 and 1/5~1/2 porosity correlation length is needed, respectively, to accurately capture the flow physics and mass balance. (2) the most sensitive variables that have first order impact on model predictions (i.e., regional storage, local displacement efficiency) are boundary condition, vertical permeability, relative permeability hysteresis, and injection rate. However, all else being equal, formation brine salinity has the most important effects on the concentrations of all dissolved components. Future work will define and simulate reactions of acid gases with formation brines and rocks which are currently under laboratory investigations.

  11. Optimization of Geothermal Well Placement under Geological Uncertainty

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian

    2017-04-01

    Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.

  12. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  13. Summary on several key techniques in 3D geological modeling.

    PubMed

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  14. Developing, deploying and reflecting on a web-based geologic simulation tool

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2015-12-01

    Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.

  15. Inexpensive Laboratory Model with Many Applications.

    ERIC Educational Resources Information Center

    Archbold, Norbert L.; Johnson, Robert E.

    1987-01-01

    Presents a simple, inexpensive and realistic model which allows introductory geology students to obtain subsurface information through a simulated drilling experience. Offers ideas on additional applications to a variety of geologic situations. (ML)

  16. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    NASA Astrophysics Data System (ADS)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage model to couple damage evolution with plasticity and with permeability for more geologically realistic simulation.

  17. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    NASA Astrophysics Data System (ADS)

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and effectively handle different types of input information to perform large-scale geostatistical modelling.

  18. Processing-optimised imaging of analog geological models by electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG

    2017-06-01

    In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.

  19. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  20. The Lake Tahoe Basin Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  1. Interactive Visualization to Advance Earthquake Simulation

    NASA Astrophysics Data System (ADS)

    Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn

    2008-04-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.

  2. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  3. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete nationalmore » coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the simplistic equation ignores.« less

  4. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  5. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  6. Geological terrain models

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  7. Implications and concerns of deep-seated disposal of hydrocarbon exploration produced water using three-dimensional contaminant transport model in Bhit Area, Dadu District of Southern Pakistan.

    PubMed

    Ahmad, Zulfiqar; Akhter, Gulraiz; Ashraf, Arshad; Fryar, Alan

    2010-11-01

    A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer's layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.

  8. Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit

    NASA Astrophysics Data System (ADS)

    Talebi, Hassan; Asghari, Omid; Emery, Xavier

    2013-12-01

    An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.

  9. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.

    2007-06-01

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  10. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: The participatory modeling approach

    NASA Astrophysics Data System (ADS)

    Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.

  11. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases

    NASA Astrophysics Data System (ADS)

    Vilhelmsen, T. N.; Christensen, S.

    2009-12-01

    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to be a serious disadvantage of applying MODFLOW-LGR. Another disadvantage in the studied cases was that the MODFLOW-LGR results proved to be somewhat dependent on the correction method used at the parent-child model interface. This indicates that when applying MODFLOW-LGR there is a need for thorough and case-specific considerations regarding choice of correction method. References: Mehl, S. and M. C. Hill (2005). "MODFLOW-2005, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL - DOCUMENTATION OF SHARED NODE LOCAL GRID REFINEMENT (LGR) AND THE BOUNDARY FLOW AND HEAD (BFH) PACKAGE " U.S. Geological Survey Techniques and Methods 6-A12

  12. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev., 8, 279-294, 2015, doi:10.5194/gmd-8-279-2015 [2] Afanasyev, A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations, Energy Procedia, 40, 365-374, 2013, doi:10.1016/j.egypro.2013.08.042

  13. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020; (supplement three to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.

  14. Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data

    NASA Astrophysics Data System (ADS)

    He, Xin; Koch, Julian; Sonnenborg, Torben O.; Jørgensen, Flemming; Schamper, Cyril; Christian Refsgaard, Jens

    2014-04-01

    Geological heterogeneity is a very important factor to consider when developing geological models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heterogeneity in such models can be accounted for. However, various types of uncertainties are associated with both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatistical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Denmark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation process. The study uses two types of observation data: borehole data and airborne geophysical data. It is commonly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution information and thus to identify geostatistical properties more accurately especially in the horizontal direction. However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates can be expected as compared to the use of borehole data. We have proposed a histogram probability matching method in order to link the information on resistivity to hydrofacies, while considering the data uncertainty at the same time. Transition probabilities and Markov Chain models are established using the transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations indicate significant differences of spatial structure depending on the type of conditioning data selected. It is to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are used in conditional geostatistical simulations in TProGS. Therefore, it provides valuable insights regarding the advantages and challenges of using such comprehensive data.

  15. Conditioning 3D object-based models to dense well data

    NASA Astrophysics Data System (ADS)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  16. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  17. Advance and application of the stratigraphic simulation model 2D- SedFlux: From tank experiment to geological scale simulation

    NASA Astrophysics Data System (ADS)

    Kubo, Yu'suke; Syvitski, James P. M.; Hutton, Eric W. H.; Paola, Chris

    2005-07-01

    The stratigraphic simulation model 2D- SedFlux is further developed and applied to a turbidite experiment in a subsiding minibasin. The new module dynamically simulates evolving hyperpycnal flows and their interaction with the basin bed. Comparison between the numerical results and the experimental results verifies the ability of 2D- SedFlux to predict the distribution of the sediments and the possible feedback from subsidence. The model was subsequently applied to geological-scale minibasins such as are located in the Gulf of Mexico. Distance from the sediment source is determined to be more influential than the sediment entrapment in upstream minibasin. The results suggest that efficiency of sediment entrapment by a basin was not influenced by the distance from the sediment source.

  18. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    PubMed

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2018-05-01

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  19. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  20. How much can we trust a geological model underlying a subsurface hydrological investigation?

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David

    2017-04-01

    Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.

  1. The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.

    ERIC Educational Resources Information Center

    Gilbert, R.

    1979-01-01

    Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)

  2. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007

    DOE R&D Accomplishments Database

    Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.

    2007-04-04

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  3. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less

  4. Parameters on reconstructions of geohistory, thermal history, and hydrocarbon generation history in a sedimentary basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, S.; Lerche, I.

    1988-01-01

    Geological processes related to petroleum generation, migration, and accumulation are very complicated in terms of time and variables involved, and are very difficult to simulate by laboratory experiments. For this reason, many mathematic/computer models have been developed to simulate these geological processes based on geological, geophysical, and geochemical principles. Unfortunately, none of these models can exactly simulate these processes because of the assumptions and simplifications made in these models and the errors in the input for the models. The sensitivity analysis is a comprehensive examination on how geological, geophysical, and geochemical parameters affect the reconstructions of geohistory, thermal history, andmore » hydrocarbon generation history. In this study, a one-dimensional fluid flow/compaction model has been used to run the sensitivity analysis. The authors will show the effects of some commonly used parameters such as depth, age, lithology, porosity, permeability, unconformity (time and eroded thickness), temperature at sediment surface, bottom hole temperature, present day heat flow, thermal gradient, thermal conductivity and kerogen type, and content on the evolutions of formation thickness, porosity, permeability, pressure with time and depth, heat flow with time, temperature with time and depth, vitrinite reflectance (R/sub 0/) and TTI with time and depth, oil window in terms of time and depth, and amount of hydrocarbon generated with time and depth.« less

  5. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less

  7. Thermohydrology of fractured geologic materials

    NASA Astrophysics Data System (ADS)

    Esh, David Whittaker

    1998-11-01

    Thermohydrological and thermohydrochemical modeling as applied to the disposal of radioactive materials in a geologic repository is presented. Site hydrology, chemistry, and mineralogy were summarized and conceptual models of the fundamental system processes were developed. The numerical model TOUGH2 was used to complete computer simulations of thermohydrological processes in fractured, geologic media. Sensitivity studies investigating the impact of dimensionality and different conceptual models to represent fractures (ECM, DK, MINC) on thermohydrological response were developed. Sensitivity to parameter variation within a given conceptual model was also considered. The sensitivity of response was examined against thermohydrological metrics derived from the flow and redistribution of moisture. A simple thermohydrochemical model to investigate a three-process coupling (thermal-hydrological-chemical) was presented. The redistribution of chloride was evaluated because the chemical behavior is well known and defensible. In addition, it is very important to overall system performance. For all of the simulations completed, chloride was found to be extremely concentrated in the fluids that eventually return to the engineered barrier system. Chloride concentration and mass flux were increased from ambient by over a factor of 1000 for some simulations. Thermohydrology was found to have the potential to significantly alter chemistry from ambient conditions.

  8. Comparison of long-term numerical simulations at the Ketzin pilot site using the Schlumberger ECLIPSE and LBNL TOUGH2 simulators

    NASA Astrophysics Data System (ADS)

    Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.

    2012-04-01

    Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a complex faulted system in the revised reservoir model demanding for an integrated concept to deal with connections between the elements aligned to faults in the TOUGH2-MP simulator. Furthermore, we developed a methodology to visualize and compare the TOUGH2-MP simulation results with those of the Eclipse simulator using the Petrel software package. The long-term simulation results of both simulators are generally in good agreement. Spatial and timely migration of the CO2 plume as well as residual gas saturation are almost identical for both simulators, even though a time-dependent approach of CO2 dissolution in the formation fluid was chosen in the ECLIPSE simulator. Our results confirmed that a scientific open-source simulator as the TOUGH2-MP software package is capable to provide the same accuracy as the industrial standard simulator ECLIPSE 100. However, the computational time and additional efforts to implement a suitable workflow for using the TOUGH2-MP simulator are significantly higher, while the open-source concept of TOUGH2 provides more flexibility regarding process adaptation.

  9. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  10. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  11. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  12. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).

  13. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.

  14. The DeepMIP Contribution to PMIP4: Experimental Design for Model Simulations of the EECO, PETM, and pre-PETM (version 1.0)

    NASA Technical Reports Server (NTRS)

    Lunt, Daniel J.; Huber, Matthew; Anagnostou, Eleni; Baatsen, Michiel L. J.; Caballero, Rodrigo; DeConto, Rob; Dijkstra, Henk A.; Donnadieu, Yannick; Evans, David; Feng, Ran; hide

    2017-01-01

    Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( greater than 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (approximately 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4(times) CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modeling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less

  16. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  17. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.

  18. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  19. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  20. Enhancing the revision of the static geological model of the Stuttgart Formation at the Ketzin pilot site by integration of reservoir simulations and 3D seismics

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan

    2017-04-01

    Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging to the reservoir simulation model grid. Our results exhibit an excellent well bottomhole pressure match, good agreement with the observed CO2 arrival times at the observation wells, a reasonable agreement of the spatial CO2 distribution with the CO2 thickness maps derived from the 2009, 2012 and 2015 3D seismic campaigns as well as a good agreement with hydraulic tests conducted before CO2 injection. Hence, the inversely determined permeability multipliers provide an excellent basis for further revision of the static geological model of the Stuttgart Formation.

  1. Section-constrained local geological interface dynamic updating method based on the HRBF surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan

    2018-02-01

    Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are consistent with expert explanations and help improve the quality of the models.

  2. Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.

    2008-12-01

    The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to evaluate what factors make this natural reservoir so effective for CO2 storage. Our characterization and simulation efforts are producing a CO2 sequestration framework that incorporates production and capacity estimation, area-of-review, injectivity, and trapping mechanisms. Likewise, mitigation and monitoring strategies have been formulated from the site characterization and modeling results.

  3. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  4. A kinetic rate model for crystalline basalt dissolution at temperature and pressure conditions relevant for geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Rimstidt, J. D.

    2016-12-01

    Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.

  5. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - Documentation of the Multiple-Refined-Areas Capability of Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2007-01-01

    This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.

  6. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    NASA Astrophysics Data System (ADS)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  7. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  8. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  9. Accounting for aquifer heterogeneity from geological data to management tools.

    PubMed

    Blouin, Martin; Martel, Richard; Gloaguen, Erwan

    2013-01-01

    A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  10. Simulation of cylindrical flow to a well using the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1993-01-01

    Cylindrical (axisymmetric) flow to a well is an important specialized topic of ground-water hydraulics and has been applied by many investigators to determine aquifer properties and determine heads and flows in the vicinity of the well. A recent modification to the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model provides the opportunity to simulate axisymmetric flow to a well. The theory involves the conceptualization of a system of concentric shells that are capable of reproducing the large variations in gradient in the vicinity of the well by decreasing their area in the direction of the well. The computer program presented serves as a preprocessor to the U.S. Geological Survey model by creating the input data file needed to implement the axisymmetric conceptualization. Data input requirements to this preprocessor are described, and a comparison with a known analytical solution indicates that the model functions appropriately.

  11. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com; Khamehchi, Ehsan

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks andmore » fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.« less

  12. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  13. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    NASA Astrophysics Data System (ADS)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  14. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  15. Modeling the October 2005 lahars at Panabaj (Guatemala)

    NASA Astrophysics Data System (ADS)

    Charbonnier, S. J.; Connor, C. B.; Connor, L. J.; Sheridan, M. F.; Oliva Hernández, J. P.; Richardson, J. A.

    2018-01-01

    An extreme rainfall event in October of 2005 triggered two deadly lahars on the flanks of Tolimán volcano (Guatemala) that caused many fatalities in the village of Panabaj. We mapped the deposits of these lahars, then developed computer simulations of the lahars using the geologic data and compared simulated area inundated by the flows to mapped area inundated. Computer simulation of the two lahars was dramatically improved after calibration with geological data. Specifically, detailed field measurements of flow inundation area, flow thickness, flow direction, and velocity estimates, collected after lahar emplacement, were used to calibrate the rheological input parameters for the models, including deposit volume, yield strength, sediment and water concentrations, and Manning roughness coefficients. Simulations of the two lahars, with volumes of 240,200 ± 55,400 and 126,000 ± 29,000 m3, using the FLO-2D computer program produced models of lahar runout within 3% of measured runouts and produced reasonable estimates of flow thickness and velocity along the lengths of the simulated flows. We compare areas inundated using the Jaccard fit, model sensitivity, and model precision metrics, all related to Bayes' theorem. These metrics show that false negatives (areas inundated by the observed lahar where not simulated) and false positives (areas not inundated by the observed lahar where inundation was simulated) are reduced using a model calibrated by rheology. The metrics offer a procedure for tuning model performance that will enhance model accuracy and make numerical models a more robust tool for natural hazard reduction.

  16. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ye

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination ofmore » the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model equivalency, all the stratigraphic models were successfully upscaled from the reference heterogeneous model for bulk flow and transport predictions (Zhang & Zhang, 2015). GCS simulation was then simulated with all models, yielding insights into the level of parameterization complexity that is needed for the accurate simulation of reservoir pore pressure, CO2 storage, leakage, footprint, and dissolution over both short (i.e., injection) and longer (monitoring) time scales. Important uncertainty parameters that impact these key performance metrics were identified for the stratigraphic models as well as for the heterogeneous model, leading to the development of reduced/simplified models at lower characterization cost that can be used for the reservoir uncertainty analysis. All the CO2 modeling was conducted using PFLOTRAN – a massively parallel, multiphase, multi-component, and reactive transport simulator developed by a multi-laboratory DOE/SciDAC (Scientific Discovery through Advanced Computing) project (Zhang et al., 2017, in review). Within the uncertainty analysis framework, increasing reservoir depth were investigated to explore its effect on the uncertainty outcomes and the potential for developing gravity-stable injection with increased storage security (Dai et al., 20126; Dai et al., 2017, in review). Finally, to accurately model CO2 fluid-rock reactions and resulting long-term storage as secondary carbonate minerals, a modified kinetic rate law for general mineral dissolution and precipitation was proposed and verified that is invariant to a scale transformation of the mineral formula weight. This new formulation will lead to more accurate assessment of mineral storage over geologic time scales (Lichtner, 2016).« less

  17. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.

  18. MODPATH-LGR; documentation of a computer program for particle tracking in shared-node locally refined grids by using MODFLOW-LGR

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, R.T.; Mehl, Steffen W.; Hill, Mary C.

    2011-01-01

    The computer program described in this report, MODPATH-LGR, is designed to allow simulation of particle tracking in locally refined grids. The locally refined grids are simulated by using MODFLOW-LGR, which is based on MODFLOW-2005, the three-dimensional groundwater-flow model published by the U.S. Geological Survey. The documentation includes brief descriptions of the methods used and detailed descriptions of the required input files and how the output files are typically used. The code for this model is available for downloading from the World Wide Web from a U.S. Geological Survey software repository. The repository is accessible from the U.S. Geological Survey Water Resources Information Web page at http://water.usgs.gov/software/ground_water.html. The performance of the MODPATH-LGR program has been tested in a variety of applications. Future applications, however, might reveal errors that were not detected in the test simulations. Users are requested to notify the U.S. Geological Survey of any errors found in this document or the computer program by using the email address available on the Web site. Updates might occasionally be made to this document and to the MODPATH-LGR program, and users should check the Web site periodically.

  19. Sensitivity analysis of 1-D dynamical model for basin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, S.

    1987-01-01

    Geological processes related to petroleum generation, migration and accumulation are very complicated in terms of time and variables involved, and it is very difficult to simulate these processes by laboratory experiments. For this reasons, many mathematic/computer models have been developed to simulate these geological processes based on geological, geophysical and geochemical principles. The sensitivity analysis in this study is a comprehensive examination on how geological, geophysical and geochemical parameters influence the reconstructions of geohistory, thermal history and hydrocarbon generation history using the 1-D fluid flow/compaction model developed in the Basin Modeling Group at the University of South Carolina. This studymore » shows the effects of some commonly used parameter such as depth, age, lithology, porosity, permeability, unconformity (eroded thickness and erosion time), temperature at sediment surface, bottom hole temperature, present day heat flow, thermal gradient, thermal conductivity and kerogen type and content on the evolutions of formation thickness, porosity, permeability, pressure with time and depth, heat flow with time, temperature with time and depth, vitrinite reflectance (Ro) and TTI with time and depth, and oil window in terms of time and depth, amount of hydrocarbons generated with time and depth. Lithology, present day heat flow and thermal conductivity are the most sensitive parameters in the reconstruction of temperature history.« less

  20. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x, -y, -z coordinates, down-hole depth, and stratigraphic information are available. 4) We grouped stratigraphic units into four main layers based on analysis of geological settings of the modeling area. The stratigraphic units extend from Quaternary, Cretaceous, Carboniferous to Devonian. In order to facilitate the determination of each unit boundaries, a series of standard code was used to integrate data with different descriptive attributes. 5) The Quaternary and Cretaceous units are characterized by subhorizontal layers. Kriging interpolation was processed to the borehole data in order to estimate data distribution and surface relief for the layers. 6) The Carboniferous and Devonian units are folded. The lack of software support, concerning simulating folds and the shallow depth of boreholes and cross sections constrained the determination of geological boundaries. A strategy of digitalizing the fold surfaces from cross sections and establishing them as inclined strata was followed. The modeling was simply subdivided into two steps. The first step consisted of importing data into the modeling software. The second step involved the construction of subhorizontal layers and folds, which were constrained by geological maps, cross sections and outcrops. The construction of the 3D stratigraphic model is of high relevance to further simulation and application, such as 1) lithological modeling; 2) answering simple questions such as "At which unit is the water table?" and calculating volume of groundwater storage during assessment of aquifer vulnerability to contamination; and 3) assigned by geotechnical properties in grids and providing them for user required application. Acknowledgements: Borehole data is kindly provided by the Municipality of Aachen. References: 1. Janet T. Watt, Jonathan M.G. Glen, David A. John and David A. Ponce (2007) Three-dimensional geologic model of the northern Nevada rift and the Beowawe geothermal system, north-central Nevada. Geosphere, v. 3; no. 6; p. 667-682 2. Martin Ross, Michel Parent and René Lefebvre (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeology Journal, 13:690-707 3. Martin Ross, Richard Martel, René Lefebvre, Michel Parent and Martine M. Savard (2004) Assessing rock aquifer vulnerability using downward advective times from a 3D model of surficial geology: A case study from the St. Lawrence Lowlands, Canada. Geofísica Internacional Vol. 43, Num. 4, pp. 591-602

  1. Documentation of a finite-element two-layer model for simulation of ground-water flow

    USGS Publications Warehouse

    Mallory, Michael J.

    1979-01-01

    This report documents a finite-element model for simulation of ground-water flow in a two-aquifer system where the two aquifers are coupled by a leakage term that represents flow through a confining layer separating the two aquifers. The model was developed by Timothy J. Durbin (U.S. Geological Survey) for use in ground-water investigations in southern California. The documentation assumes that the reader is familiar with the physics of ground-water flow, numerical methods of solving partial-differential equations, and the FORTRAN IV computer language. It was prepared as part of the investigations made by the U.S. Geological Survey in cooperation with the San Bernardino Valley Municipal Water District. (Kosco-USGS)

  2. A 3D modeling approach to complex faults with multi-source data

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  3. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Robertson, Jess

    2016-04-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Our framework consist of two layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, and (b) a network of RESTful synthetic sensor microservices which can query the ground-truth for underlying properties and produce a simulated measurement to a control layer, which could be a database or LIMS, a machine learner or a companies' existing data infrastructure. Ground truth data are generated by an implicit geological model which serves as a host for nested models of geological processes as smaller scales. Our two layers are implemented using Flask and Gunicorn, which are open source Python web application framework and server, the PyData stack (numpy, scipy etc) and Rabbit MQ (an open-source queuing library). Sensor data is encoded using a JSON-LD version of the SensorML and Observations and Measurements standards. Containerisation of the synthetic sensors using Docker and CoreOS allows rapid and scalable deployment of large numbers of sensors, as well as sensor discovery to form a self-organized dynamic network of sensors. Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  4. Evaluation of simulations to understand effects of groundwater development and artificial recharge on the surface water and riparian vegetation Sierra Vista subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Gungle, Bruce

    2012-01-01

    In 2007, the U.S. Geological Survey documented a five-layer groundwater flow model of the Sierra Vista and Sonoran subwatersheds of the Upper San Pedro Basin. The model has been applied by a private consultant to evaluate the effects of projected groundwater pumping through 2105 and effects of artificial recharge at three near-stream sites for 2012-2111. The main concern regarding simulations of long-term groundwater pumping is the effect of artificial model boundaries on modeled response, particularly for pumping near Cananea, Sonora, Mexico, which is adjacent to an artificial no-flow boundary. Concerns regarding the simulations of the effects of artificial recharge near streams include the resolution of the model and the representation of the model properties at the site scale; a possible limited ability of the model to correctly apportion recharge response between increased streamflow and increased evapotranspiration; a limited ability of the model to simulate detailed geometries of artificial recharge areas and evapotranspiration areas; and stream locations with the 820-foot grid spacing of the basin-scale model. In spite of these concerns, use of the U.S. Geological Survey five-layer groundwater flow model by the consultant are reasonable and valid.

  5. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    NASA Astrophysics Data System (ADS)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to the 3D multicomponent field survey data. Main features of the geological models, especially boundaries of main ore bodies were comparable in both data sets. This shows that the 3D geophysical model based on local geology and limited core samples is in fair agreement with the lithologic units confirmed from the field seismic survey data.

  6. Experimental design applications for modeling and assessing carbon dioxide sequestration in saline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John

    2014-11-29

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO 2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO 2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interactingmore » parameters in the development and operation of anthropogenic CO 2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO 2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO 2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO 2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO 2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.« less

  7. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.

  8. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  9. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-94, with projections to 2020; (supplement one to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.

  10. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  11. Post-injection Multiphase Flow Modeling and Risk Assessments for Subsurface CO2 Storage in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2015-12-01

    Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.

  12. U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource

    USGS Publications Warehouse

    Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.

    2009-01-01

    Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.

  13. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    NASA Astrophysics Data System (ADS)

    Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark

    2018-04-01

    Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.

  14. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota. The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.

  15. Linking statistically-and physically-based models for improved streamflow simulation in gaged and ungaged watersheds

    Treesearch

    Jacob LaFontaine; Lauren Hay; Stacey Archfield; William Farmer; Julie Kiang

    2016-01-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is...

  16. Challenges in Quantifying Pliocene Terrestrial Warming Revealed by Data-Model Discord

    NASA Technical Reports Server (NTRS)

    Salzmann, Ulrich; Dolan, Aisling M.; Haywood, Alan M.; Chan, Wing-Le; Voss, Jochen; Hill, Daniel J.; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Bragg, Frances J.; Chandler, Mark A.; hide

    2013-01-01

    Comparing simulations of key warm periods in Earth history with contemporaneous geological proxy data is a useful approach for evaluating the ability of climate models to simulate warm, high-CO2 climates that are unprecedented in the more recent past. Here we use a global data set of confidence-assessed, proxy-based temperature estimates and biome reconstructions to assess the ability of eight models to simulate warm terrestrial climates of the Pliocene epoch. The Late Pliocene, 3.6-2.6 million years ago, is an accessible geological interval to understand climate processes of a warmer world4. We show that model-predicted surface air temperatures reveal a substantial cold bias in the Northern Hemisphere. Particularly strong data-model mismatches in mean annual temperatures (up to 18 C) exist in northern Russia. Our model sensitivity tests identify insufficient temporal constraints hampering the accurate configuration of model boundary conditions as an important factor impacting on data- model discrepancies. We conclude that to allow a more robust evaluation of the ability of present climate models to predict warm climates, future Pliocene data-model comparison studies should focus on orbitally defined time slices.

  17. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  18. Recovery Act: Web-based CO{sub 2} Subsurface Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolini, Christopher; Castillo, Jose

    2012-11-30

    The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions.more » symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational science students and one geological science student in technologies relevant to carbon sequestration and problems involving flow in subsurface media. The three computational science students are currently finishing their doctorial studies on different aspects of modeling CO{sub 2} sequestration, while the geological science student completed his master’s thesis in modeling the thermal response of CO{sub 2} injection in brine and, as a direct result of participation in this project, is now employed at ExxonMobil as a full-time staff geologist.« less

  19. Bacterial interactions and transport in geological formation of alumino-silica clays.

    PubMed

    Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang

    2015-01-01

    Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.

  20. Planetary geology: Impact processes on asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Greenberg, R.; Weidenschilling, S. J.

    1982-01-01

    The fundamental geological and geophysical properties of asteroids were studied by theoretical and simulation studies of their collisional evolution. Numerical simulations incorporating realistic physical models were developed to study the collisional evolution of hypothetical asteroid populations over the age of the solar system. Ideas and models are constrained by the observed distributions of sizes, shapes, and spin rates in the asteroid belt, by properties of Hirayama families, and by experimental studies of cratering and collisional phenomena. It is suggested that many asteroids are gravitationally-bound "rubble piles.' Those that rotate rapidly may have nonspherical quasi-equilibrium shapes, such as ellipsoids or binaries. Through comparison of models with astronomical data, physical properties of these asteroids (including bulk density) are determined, and physical processes that have operated in the solar system in primordial and subsequent epochs are studied.

  1. Estimation of Groundwater Recharge in a Japanese Headwater Area by Intensive Collaboration of Field Survey and Modelling Work

    NASA Astrophysics Data System (ADS)

    Yano, S.; Kondo, H.; Tawara, Y.; Yamada, T.; Mori, K.; Yoshida, A.; Tada, K.; Tsujimura, M.; Tokunaga, T.

    2017-12-01

    It is important to understand groundwater systems, including their recharge, flow, storage, discharge, and withdrawal, so that we can use groundwater resources efficiently and sustainably. To examine groundwater recharge, several methods have been discussed based on water balance estimation, in situ experiments, and hydrological tracers. However, few studies have developed a concrete framework for quantifying groundwater recharge rates in an undefined area. In this study, we established a robust method to quantitatively determine water cycles and estimate the groundwater recharge rate by combining the advantages of field surveys and model simulations. We replicated in situ hydrogeological observations and three-dimensional modeling in a mountainous basin area in Japan. We adopted a general-purpose terrestrial fluid-flow simulator (GETFLOWS) to develop a geological model and simulate the local water cycle. Local data relating to topology, geology, vegetation, land use, climate, and water use were collected from the existing literature and observations to assess the spatiotemporal variations of the water balance from 2011 to 2013. The characteristic structures of geology and soils, as found through field surveys, were parameterized for incorporation into the model. The simulated results were validated using observed groundwater levels and resulted in a Nash-Sutcliffe Model Efficiency Coefficient of 0.92. The results suggested that local groundwater flows across the watershed boundary and that the groundwater recharge rate, defined as the flux of water reaching the local unconfined groundwater table, has values similar to the level estimated in the `the lower soil layers on a long-term basis. This innovative method enables us to quantify the groundwater recharge rate and its spatiotemporal variability with high accuracy, which contributes to establishing a foundation for sustainable groundwater management.

  2. A model-averaging method for assessing groundwater conceptual model uncertainty.

    PubMed

    Ye, Ming; Pohlmann, Karl F; Chapman, Jenny B; Pohll, Greg M; Reeves, Donald M

    2010-01-01

    This study evaluates alternative groundwater models with different recharge and geologic components at the northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS has been estimated using five methods, and five geological interpretations are available at the northern Yucca Flat area. Combining the recharge and geological components together with additional modeling components that represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed. This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted residuals vary more for the different geological models than for different recharge models. Most of the calibrated observations are not important for discriminating between the alternative models, because their weighted residuals vary only slightly from one model to another.

  3. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    USGS Publications Warehouse

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle tracking is anticipated to evaluate if these model design considerations are similarly important for understanding the primary modeling objective - to simulate reasonable groundwater age distributions.

  4. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Arthur J.; Dreger, Douglas S.; Pitarka, Arben

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. Wemore » use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.« less

  6. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in the lower ACFB may further improve water availability estimates and hydrologic simulations in the basin.

  7. Localized Smart-Interpretation

    NASA Astrophysics Data System (ADS)

    Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom

    2014-05-01

    The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.

  8. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    PubMed

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  10. RVA: A Plugin for ParaView 3.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-04

    RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  11. Seasonal thermal energy storage in aquifers: Mathematical modeling studies in 1979

    NASA Technical Reports Server (NTRS)

    Tsang, C. F.

    1980-01-01

    A numerical model of water and heat flow in geologic media was developed, verified, and tested. The hydraulic parameters (transmittivity and storativity) and the location of a linear hydrologic barrier were simulated and compared with results from field experiments involving two injection-storage-recovery cycles. For both cycles, the initial simulated and observed temperatures agree (55c).

  12. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less

  13. Predictive uncertainty analysis of plume distribution for geological carbon sequestration using sparse-grid Bayesian method

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhang, G.

    2013-12-01

    Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.

  14. Documentation of the dynamic parameter, water-use, stream and lake flow routing, and two summary output modules and updates to surface-depression storage simulation and initial conditions specification options with the Precipitation-Runoff Modeling System (PRMS)

    USGS Publications Warehouse

    Regan, R. Steve; LaFontaine, Jacob H.

    2017-10-05

    This report documents seven enhancements to the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS) hydrologic simulation code: two time-series input options, two new output options, and three updates of existing capabilities. The enhancements are (1) new dynamic parameter module, (2) new water-use module, (3) new Hydrologic Response Unit (HRU) summary output module, (4) new basin variables summary output module, (5) new stream and lake flow routing module, (6) update to surface-depression storage and flow simulation, and (7) update to the initial-conditions specification. This report relies heavily upon U.S. Geological Survey Techniques and Methods, book 6, chapter B7, which documents PRMS version 4 (PRMS-IV). A brief description of PRMS is included in this report.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    A regional hydrogeologic model is used to investigate the potential for water recharging in the Tushar Mountains to move at depth beneath the Mineral Mountains to discharge in Milford Valley. Simulations carried out over a range of water table positions and assumed depths to a lower impermeable boundary suggest it is unlikely that the topographic configuration alone could drive such a flow system. Specific geologic conditions are necessary if interbasin flow is to occur. However, simulations based on a simplified hydrologic model of the regional geology suggest this is not the case. A regional hydraulic anisotropy greater than 10:1 (Kx/Kz)more » leads to interflow if the granitic Mineral Mountain pluton and the volcanics in the Tushar Mountains have similar hydraulic conductivities. If either of these units is more nearly isotropic or if the granitic rocks have a greater vertical than horizontal hydraulic conductivity, no interbasin flow is observed. On the basis of available geologic evidence, this latter case seems to be the most likely.« less

  16. Simulation of streamflow, evapotranspiration, and groundwater recharge in the Lower Frio River watershed, south Texas, 1961-2008

    USGS Publications Warehouse

    Lizarraga, Joy S.; Ockerman, Darwin J.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; the City of Corpus Christi; the Guadalupe-Blanco River Authority; the San Antonio River Authority; and the San Antonio Water System, configured, calibrated, and tested a watershed model for a study area consisting of about 5,490 mi2 of the Frio River watershed in south Texas. The purpose of the model is to contribute to the understanding of watershed processes and hydrologic conditions in the lower Frio River watershed. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge by using a numerical representation of physical characteristics of the landscape, and meteorological and streamflow data. Additional time-series inputs to the model include wastewater-treatment-plant discharges, surface-water withdrawals, and estimated groundwater inflow from Leona Springs. Model simulations of streamflow, ET, and groundwater recharge were done for various periods of record depending upon available measured data for input and comparison, starting as early as 1961. Because of the large size of the study area, the lower Frio River watershed was divided into 12 subwatersheds; separate Hydrological Simulation Program-FORTRAN models were developed for each subwatershed. Simulation of the overall study area involved running simulations in downstream order. Output from the model was summarized by subwatershed, point locations, reservoir reaches, and the Carrizo-Wilcox aquifer outcrop. Four long-term U.S. Geological Survey streamflow-gaging stations and two short-term streamflow-gaging stations were used for streamflow model calibration and testing with data from 1991-2008. Calibration was based on data from 2000-08, and testing was based on data from 1991-99. Choke Canyon Reservoir stage data from 1992-2008 and monthly evaporation estimates from 1999-2008 also were used for model calibration. Additionally, 2006-08 ET data from a U.S. Geological Survey meteorological station in Medina County were used for calibration. Streamflow and ET calibration were considered good or very good. For the 2000-08 calibration period, total simulated flow volume and the flow volume of the highest 10 percent of simulated daily flows were calibrated to within about 10 percent of measured volumes at six U.S. Geological Survey streamflow-gaging stations. The flow volume of the lowest 50 percent of daily flows was not simulated as accurately but represented a small percent of the total flow volume. The model-fit efficiency for the weekly mean streamflow during the calibration periods ranged from 0.60 to 0.91, and the root mean square error ranged from 16 to 271 percent of the mean flow rate. The simulated total flow volumes during the testing periods at the long-term gaging stations exceeded the measured total flow volumes by approximately 22 to 50 percent at three stations and were within 7 percent of the measured total flow volumes at one station. For the longer 1961-2008 simulation period at the long-term stations, simulated total flow volumes were within about 3 to 18 percent of measured total flow volumes. The calibrations made by using Choke Canyon reservoir volume for 1992-2008, reservoir evaporation for 1999-2008, and ET in Medina County for 2006-08, are considered very good. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to better quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error. A sensitivity analysis was performed for the Upper San Miguel subwatershed model to show the effect of changes to model parameters on the estimated mean recharge, ET, and surface runoff from that part of the Carrizo-Wilcox aquifer outcrop. Simulated recharge was most sensitive to the changes in the lower-zone ET (LZ

  17. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  18. Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics

    NASA Astrophysics Data System (ADS)

    He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.

    2017-03-01

    Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.

  19. Efficient parallel simulation of CO2 geologic sequestration insaline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu

    2007-01-01

    An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The newmore » parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.« less

  20. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    USGS Publications Warehouse

    Kikuchi, Colin P.

    2013-01-01

    The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were estimated during field investigations on several small streams. Regional groundwater flow patterns were characterized by synthesizing previous water-table maps with a synoptic water-level measurement conducted during 2009. Time-series water-level data were collected at groundwater and lake monitoring stations over the study period (2009–present). Comparison of historical groundwater-level records with time-series groundwater-level data collected during this study showed similar patterns in groundwater-level fluctuation in response to precipitation. Groundwater-age data collected during previous studies show that water moves quickly through the groundwater system, suggesting that the system responds quickly to changes in climate forcing. Similarly, the groundwater system quickly returns to long-term average conditions following variability due to seasonal or interannual changes in precipitation. These analyses indicate that the groundwater system is in a state of dynamic equilibrium, characterized by water-level fluctuation about a constant average state, with no long-term trends in aquifer-system storage. To address the second study goal, a steady-state groundwater flow model was developed to simulate regional groundwater flow patterns. The groundwater flow model was bounded by physically meaningful hydrologic features, and appropriate internal model boundaries were specified on the basis of conceptualization of the groundwater system resulting in a three-layer model. Calibration data included 173 water‑level measurements and 18 measurements of streamflow gains and losses along small streams. Comparison of simulated and observed heads and flows showed that the model accurately simulates important regional characteristics of the groundwater flow system. This model is therefore appropriate for studying regional-scale groundwater availability. Mismatch between model-simulated and observed hydrologic quantities is likely because of the coarse grid size of the model and seasonal transient effects. Next steps towards model refinement include the development of a transient groundwater flow model that is suitable for analysis of seasonal variability in hydraulic heads and flows. In addition, several important groundwater budget components remain poorly quantified—including groundwater outflow to the Matanuska River, Little Susitna River, and Knik Arm.

  1. Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer

    NASA Astrophysics Data System (ADS)

    Ren, B.; Lake, L. W.; Bryant, S. L.

    2015-12-01

    Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.

  2. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  3. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  4. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  5. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  6. Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping

    NASA Astrophysics Data System (ADS)

    Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.

    2002-10-01

    This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.

  7. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  8. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  9. SECARB Commercial Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George J.; Pashin, Jack; Walsh, Peter

    The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes:more » modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO 2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO 2 injection and storage the subsurface.« less

  10. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  11. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  12. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models

    NASA Astrophysics Data System (ADS)

    Wellmann, J. Florian; Regenauer-Lieb, Klaus

    2012-03-01

    Analyzing, visualizing and communicating uncertainties are important issues as geological models can never be fully determined. To date, there exists no general approach to quantify uncertainties in geological modeling. We propose here to use information entropy as an objective measure to compare and evaluate model and observational results. Information entropy was introduced in the 50s and defines a scalar value at every location in the model for predictability. We show that this method not only provides a quantitative insight into model uncertainties but, due to the underlying concept of information entropy, can be related to questions of data integration (i.e. how is the model quality interconnected with the used input data) and model evolution (i.e. does new data - or a changed geological hypothesis - optimize the model). In other words information entropy is a powerful measure to be used for data assimilation and inversion. As a first test of feasibility, we present the application of the new method to the visualization of uncertainties in geological models, here understood as structural representations of the subsurface. Applying the concept of information entropy on a suite of simulated models, we can clearly identify (a) uncertain regions within the model, even for complex geometries; (b) the overall uncertainty of a geological unit, which is, for example, of great relevance in any type of resource estimation; (c) a mean entropy for the whole model, important to track model changes with one overall measure. These results cannot easily be obtained with existing standard methods. The results suggest that information entropy is a powerful method to visualize uncertainties in geological models, and to classify the indefiniteness of single units and the mean entropy of a model quantitatively. Due to the relationship of this measure to the missing information, we expect the method to have a great potential in many types of geoscientific data assimilation problems — beyond pure visualization.

  13. A refined characterization of the alluvial geology of yucca flat and its effect on bulk hydraulic conductivity

    USGS Publications Warehouse

    Phelps, G.A.; Halford, K.J.

    2011-01-01

    In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.

  14. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment

    DTIC Science & Technology

    2012-09-01

    ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow

  15. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  16. Characterization of potential transport pathways and implications for groundwater management near an anticline in the Central Basin area, Los Angeles County, California

    USGS Publications Warehouse

    Ponti, Daniel J.; Wagner, Brian J.; Land, Michael; Landon, Matthew K.

    2014-01-01

    The Central Groundwater Basin (Central Basin) of southern Los Angeles County includes ~280 mi2 of the Los Angeles Coastal Plain and serves as the primary source of water for more than two million residents. In the Santa Fe Springs–Whittier–Norwalk area, located in the northeastern part of the basin, several sources of volatile organic compounds have been identified. The volatile organic compunds are thought to have contributed to a large, commingled contaminant plume in groundwater that extends south-southwest downgradient from the Omega Chemical Corporation Superfund Site across folded geologic strata, known as the Santa Fe Springs Anticline. A multifaceted study—that incorporated a three-dimensional sequence-stratigraphic geologic model, two-dimensional groundwater particle-tracking simulations, and new groundwater chemistry data—was conducted to gain insight into the geologic and hydrologic controls on contaminant migration in the study area and to assess the potential for this shallow groundwater contamination to migrate into producing aquifer zones. Conceptual flow models were developed along a flow-parallel cross section based on the modeled stratigraphic architecture, observed geochemistry, and numerical model simulations that generally agree with observed water levels and contaminant distributions. These models predict that contaminants introduced into groundwater at shallow depths near the Omega Chemical Corporation Superfund Site and along the study cross section will likely migrate downgradient to depths intercepted by public supply wells. These conclusions, however, are subject to limitations and simplifications inherent in the modeling approaches used, as well as a significant scarcity of available geologic and hydrogeochemical information at depth and in the downgradient parts of the study area.

  17. The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio

    2015-04-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. Finally, the chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments.

  18. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO 2 Storage Efficiency. A Reservoir Simulation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO 2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef,more » fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO 2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO 2 storage resource of candidate formations. This study also improves the general understanding of depositional environment’s influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.« less

  19. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

    PubMed Central

    Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  20. Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model

    NASA Astrophysics Data System (ADS)

    Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.

    2016-02-01

    When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.

  1. Seismic velocity model of the central United States (Version 1): Description and simulation of the 18 April 2008 Mt. Carmel, Illinois, Earthquake

    USGS Publications Warehouse

    Ramírez‐Guzmán, Leonardo; Boyd, Oliver S.; Hartzell, Stephen; Williams, Robert A.

    2012-01-01

    We have developed a new three‐dimensional seismic velocity model of the central United States (CUSVM) that includes the New Madrid Seismic Zone (NMSZ) and covers parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky, and Tennessee. The model represents a compilation of decades of crustal research consisting of seismic, aeromagnetic, and gravity profiles; geologic mapping; geophysical and geological borehole logs; and inversions of the regional seismic properties. The density, P‐ and S‐wave velocities are synthesized in a stand‐alone spatial database that can be queried to generate the required input for numerical seismic‐wave propagation simulations. We test and calibrate the CUSVM by simulating ground motions of the 18 April 2008 Mw 5.4 Mt. Carmel, Illinois, earthquake and comparing the results with observed records within the model area. The selected stations in the comparisons reflect different geological site conditions and cover distances ranging from 10 to 430 km from the epicenter. The results, based on a qualitative and quantitative goodness‐of‐fit (GOF) characterization, indicate that both within and outside the Mississippi Embayment the CUSVM reasonably reproduces: (1) the body and surface‐wave arrival times and (2) the observed regional variations in ground‐motion amplitude, cumulative energy, duration, and frequency content up to a frequency of 1.0 Hz. In addition, we discuss the probable structural causes for the ground‐motion patterns in the central United States that we observed in the recorded motions of the 18 April Mt. Carmel earthquake.

  2. Numerical Simulation Of Cratering Effects In Adobe

    DTIC Science & Technology

    2013-07-01

    DEVELOPMENT OF MATERIAL PARAMETERS .........................................................7 PROBLEM SETUP...37 PARAMETER ADJUSTMENTS ......................................................................................38 GLOSSARY...dependent yield surface with the Geological Yield Surface (GEO) modeled in CTH using well characterized adobe. By identifying key parameters that

  3. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  4. Simulation of streamflow and the effects of brush management on water yields in the upper Guadalupe River watershed, south-central Texas, 1995-2010

    USGS Publications Warehouse

    Bumgarner, Johnathan R.; Thompson, Florence E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995-2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts. Model hydrology was calibrated with streamflow data collected at the U.S. Geological Survey streamflow-gaging station 08167500 Guadalupe River near Spring Branch, Tex., for 1995-2010. Simulated monthly streamflow showed very good agreement with measured monthly streamflow: a percent bias of -5, a coefficient of determination of 0.91, and a Nash-Sutcliffe coefficient of model efficiency of 0.85. Modified land-cover input datasets were generated for the model in order to simulate the replacement of ashe juniper with grasslands in 23 brush-management subbasins in the watershed. Each of the 23 simulations showed an increase in simulated water yields in the targeted subbasins and to Canyon Lake. The simulated increases in average annual water yields in the subbasins ranged from 6,370 to 119,000 gallons per acre of ashe juniper replaced with grasslands with an average of 38,900 gallons. The simulated increases in average annual water yields to Canyon Lake from upstream subbasins ranged from 6,640 to 72,700 gallons per acre of ashe juniper replaced with grasslands with an average of 34,700 gallons.

  5. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when simulated winds were used to force the model, and when observed winds were used to force the model, and differences between the two results did not accumulate over time.

  6. Modeling the hydrogeophysical response of lake talik evolution

    USGS Publications Warehouse

    Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre

    2014-01-01

    Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.

  7. Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package

    DTIC Science & Technology

    2007-12-01

    oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems

  8. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  9. Advantages of Computer Simulation in Enhancing Students' Learning about Landform Evolution: A Case Study Using the Grand Canyon

    ERIC Educational Resources Information Center

    Luo, Wei; Pelletier, Jon; Duffin, Kirk; Ormand, Carol; Hung, Wei-chen; Shernoff, David J.; Zhai, Xiaoming; Iverson, Ellen; Whalley, Kyle; Gallaher, Courtney; Furness, Walter

    2016-01-01

    The long geological time needed for landform development and evolution poses a challenge for understanding and appreciating the processes involved. The Web-based Interactive Landform Simulation Model--Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is an educational tool designed to help students better understand such processes,…

  10. The geological thought process: A help in developing business instincts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, S.A.

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences andmore » geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.« less

  11. Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating

    DOE PAGES

    Garitte, B.; Nguyen, T. S.; Barnichon, J. D.; ...

    2017-05-09

    Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in ordermore » to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.« less

  12. Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Nguyen, T. S.; Barnichon, J. D.

    Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in ordermore » to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.« less

  13. Geology and ground-water resources in the Zebulon area, Georgia

    USGS Publications Warehouse

    Chapman, M.J.; Milby, B.J.; Peck, M.F.

    1993-01-01

    The current (1991) surface-water source of drinking-water supply for the city of Zebulon, Pike County, Georgia, no longer provides an adequate water supply and periodically does not meet water-quality standards. The hydrogeology of crystalline rocks in the Zebulon area was evaluated to assess the potential of ground-water resources as a supplemental or alternative source of water to present surface-water supplies. As part of the ground-water resource evaluation, well location and construction data were compiled, a geologic map was constructed, and ground water was sampled and analyzed. Three mappable geologic units delineated during this study provide a basic understanding of hydrogeologic settings in the Zebulon area. Rock types include a variety of aluminosilicate schists, granitic rocks, amphibolites/honblende gneisses, and gondites. Several geologic features that may enhance ground-water availability were identified in the study area. These features include contacts between contrasting rock types, where a high degree of differential weathering has occurred, and well-developed structural features, such as foliation and jointing are present. High-yielding wells (greater than 25 gallons per minute) and low-yielding wells (less than one gallon per minute) were located in all three geologic units in a variety of topographic settings. Well yields range from less than one gallon per minute to 250 gallons per minute. The variable total depths and wide ranges of casing depths of the high-yielding wells are indicative of variations in depths to water-bearing zones and regolith thicknesses, respectively. The depth of water-bearing zones is highly variable, even on a local scale. Analyses of ground-water samples indicate that the distribution of iron concentration is as variable as well yield in the study area and does not seem to be related to a particular rock type. Iron concentrations in ground-water samples ranged from 0.02 to 5.3 milligrams per liter. Both iron concentration and well yield vary substantially over a relatively small area. Implementation and Verification of a One-Dimensional, Unsteady-Flow Model for Spring Brook near Warrenville, Illinois By Mary J. Turner, Anthony P. Pulokas, and Audrey L. Ishii Abstract A one-dimensional, unsteady-flow model, Full EQuations (FEQ) model, based on de Saint-Venant equations for dynamic flow in open channels, was calibrated and verified for a 0.75-mile reach of Spring Brook, a tributary to the West Branch Du Page River, near Warrenville in northeastern Illinois. The model was used to simulate streamflow in a small urban stream reach with two short culverts, one with overbank flow around the culvert during high flows. Streamflow data were collected on the reach during three high-flow periods. Data from one period were used to calibrate the model, and data from the other two periods were used to verify the model. Stages and discharges over the periods were simulated, and the results were compared graphically with stage and discharge data collected at 10 sites in the study reach. Errors in simulated stage and discharge were small except when debris, not represented in the model, clogged the culvert. The effects of changes in physical and computational model parameters also were studied. The model was insensit'lve to replacement of measured cross sections with interpolated cross sections, especially if the measured thalweg elevation was preserved. Variation of the roughness, slope, and length of the culvert over-bank section, as well as the chosen representative measured cross section, caused only slight changes in the simulated peak stage and discharge. Changes in the modeled culvert area caused large differences in the simulated highflows in the vicinity of the culvert, whereas simulated low flows were unaffected. At all flows, the misrepresentation of the culvert area caused the simulated water-surface elevations to deviate from the measured elevations, especially on the falling

  14. The Effects of Topography on Time Domain Controlled-Source Electromagnetic Data as it Applies to Impact Crater Sites

    NASA Astrophysics Data System (ADS)

    Hickey, M. S.

    2008-05-01

    Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.

  15. Basin-scale geothermal model calibration: experience from the Perth Basin, Australia

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; Reid, Lynn

    2014-05-01

    The calibration of large-scale geothermal models for entire sedimentary basins is challenging as direct measurements of rock properties and subsurface temperatures are commonly scarce and the basal boundary conditions poorly constrained. Instead of the often applied "trial-and-error" manual model calibration, we examine here if we can gain additional insight into parameter sensitivities and model uncertainty with a model analysis and calibration study. Our geothermal model is based on a high-resolution full 3-D geological model, covering an area of more than 100,000 square kilometers and extending to a depth of 55 kilometers. The model contains all major faults (>80 ) and geological units (13) for the entire basin. This geological model is discretised into a rectilinear mesh with a lateral resolution of 500 x 500 m, and a variable resolution at depth. The highest resolution of 25 m is applied to a depth range of 1000-3000 m where most temperature measurements are available. The entire discretised model consists of approximately 50 million cells. The top thermal boundary condition is derived from surface temperature measurements on land and ocean floor. The base of the model extents below the Moho, and we apply the heat flux over the Moho as a basal heat flux boundary condition. Rock properties (thermal conductivity, porosity, and heat production) have been compiled from several existing data sets. The conductive geothermal forward simulation is performed with SHEMAT, and we then use the stand-alone capabilities of iTOUGH2 for sensitivity analysis and model calibration. Simulated temperatures are compared to 130 quality weighted bottom hole temperature measurements. The sensitivity analysis provided a clear insight into the most sensitive parameters and parameter correlations. This proved to be of value as strong correlations, for example between basal heat flux and heat production in deep geological units, can significantly influence the model calibration procedure. The calibration resulted in a better determination of subsurface temperatures, and, in addition, provided an insight into model quality. Furthermore, a detailed analysis of the measurements used for calibration highlighted potential outliers, and limitations with the model assumptions. Extending the previously existing large-scale geothermal simulation with iTOUGH2 provided us with a valuable insight into the sensitive parameters and data in the model, which would clearly not be possible with a simple trial-and-error calibration method. Using the gained knowledge, future work will include more detailed studies on the influence of advection and convection.

  16. Existing Soil Carbon Models Do Not Apply to Forested Wetlands

    Treesearch

    Carl C. Trettin; B. Song; M.F. Jurgensen; C. Li

    2001-01-01

    When assessing the biological,geological,and chemical cycling of nutrients and elements — or when assessing carbon dynamics with respect to global change — modeling and simulation are necessary. Although wetlands occupy a relatively small proportion of Earth’s terrestrial surface (

  17. Effect of modeling factors on the dissolution-diffusion-convection process during CO2 geological storage in deep saline formations

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    2013-06-01

    It is well known that during CO2 geological storage, density-driven convective activity can significantly accelerate the dissolution of injected CO2 into water. This action could limit the escape of supercritical CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells, consequently increasing permanence and security of storage. First, we investigated the effect of numerical perturbation caused by time and grid resolution and the convergence criteria on the dissolution-diffusion-convection (DDC) process. Then, using the model with appropriate spatial and temporal resolution, some uncertainty parameters investigated in our previous paper such as initial gas saturation and model boundaries, and other factors such as relative liquid permeability and porosity modification were used to examine their effects on the DDC process. Finally, we compared the effect of 2D and 3D models on the simulation of the DDC process. The above modeling results should contribute to clear understanding and accurate simulation of the DDC process, especially the onset of convective activity, and the CO2 dissolution rate during the convection-dominated stage.

  18. User's guide to SSARRMENU

    USGS Publications Warehouse

    Mastin, M.C.; Le, Thanh

    2001-01-01

    The U.S. Geological Survey, in cooperation with Pierce County Department of Public Works, Washington, has developed an operational tool called the Puyallup Flood-Alert System to alert users of impending floods in the Puyallup River Basin. The system acquires and incorporates meteorological and hydrological data into the Streamflow Synthesis and Reservoir Regulation (SSARR) hydrologic flow-routing model to simulate floods in the Puyallup River Basin. SSARRMENU is the user-interactive graphical interface between the user, the input and output data, and the SSARR model. In a companion cooperative project with Pierce County, the SSARR model for the Puyallup River Basin was calibrated and validated. The calibrated model is accessed through SSARRMENU, which has been specifically programed for the Puyallup River and the needs of Pierce County. SSARRMENU automates the retrieval of data from ADAPS (Automated DAta Processing System, the U.S. Geological Survey?s real-time hydrologic database), formats the data for use with SSARR, initiates SSARR model runs, displays alerts for impending floods, and provides utilities to display the simulated and observed data. An on-screen map of the basin and a series of menu items provide the user wi

  19. Linking MODFLOW with an agent-based land-use model to support decision making

    USGS Publications Warehouse

    Reeves, H.W.; Zellner, M.L.

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  20. Simulation and Characterization of Methane Hydrate Formation

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate saturation is followed by decrease in the porosity and permeability of the reservoir rock. Sensitivities on flow rates of gas and water are simulated, using different reservoir properties, fault angles and grid sizes to study the properties of hydrate formation and accumulation in the subsurface.

  1. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  2. SICONID: a FORTRAN-77 program for conditional simulation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, E.; Chica-Olmo, M.; Delgado-García, J.

    1992-07-01

    The SICONID program, written in FORTRAN 77 for the conditional simulation of geological variables in one dimension, is presented. The program permits all the necessary steps to obtain a simulated series of the experimental data to be carried out. These states are: acquisition of the experimental values, modelization of the anamorphosis function, variogram of the normal scores, conditional simulation, and restoration of the experimental histogram. A practical case of simulation of the evolution of the groundwater level in a survey to show the operation of the program is given.

  3. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  4. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE PAGES

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    2017-08-23

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  5. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  6. Modeling fine-scale geological heterogeneity--examples of sand lenses in tills.

    PubMed

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio; Renard, Philippe; Nilsson, Bertel; Klint, Knud Erik; Bjerg, Poul Løgstrup

    2013-01-01

    Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  7. Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.

    2005-12-01

    Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and geochemical data, with detailed monitoring plume data. It provided key insights for confirming alternative conceptual site models and assessing the performance of monitoring networks. A monitoring strategy based on this graded approach for assessing alternative conceptual models can provide the technical bases for identifying critical monitoring locations, adequate monitoring frequency, and performance indicator parameters for performance monitoring involving ground-water levels and PCE concentrations.

  8. The NASA environmental models of Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  9. The Fault Block Model: A novel approach for faulted gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursin, J.R.; Moerkeseth, P.O.

    1994-12-31

    The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less

  10. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.

    2016-12-01

    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  11. 78 FR 19261 - Safe Drinking Water Act Sole Source Aquifer Program; Designation of Bainbridge Island, Washington...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... aquifer (U.S. EPA, 1987, Sole Source Aquifer Designation Decision Process, Petition Review Guidance... the petition; U.S. Geological Survey, 2011, Conceptual Model and Numerical Simulation of the...

  12. Mapping Venus: Modeling the Magellan Mission.

    ERIC Educational Resources Information Center

    Richardson, Doug

    1997-01-01

    Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)

  13. Impacts of preferential flow on coastal groundwater-surface water interactions: The heterogeneous volcanic aquifer of Hawaii

    NASA Astrophysics Data System (ADS)

    Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.

    2017-12-01

    Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.

  14. Probability theory versus simulation of petroleum potential in play analysis

    USGS Publications Warehouse

    Crovelli, R.A.

    1987-01-01

    An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.

  15. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  16. Potential effects of climate change on ground water in Lansing, Michigan

    USGS Publications Warehouse

    Croley, T.E.; Luukkonen, C.L.

    2003-01-01

    Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celia, Michael A.

    This report documents the accomplishments achieved during the project titled “Model complexity and choice of model approaches for practical simulations of CO 2 injection,migration, leakage and long-term fate” funded by the US Department of Energy, Office of Fossil Energy. The objective of the project was to investigate modeling approaches of various levels of complexity relevant to geologic carbon storage (GCS) modeling with the goal to establish guidelines on choice of modeling approach.

  18. Integrated modeling of natural and human systems - problems and initiatives

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK and the Netherlands, for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and “predictions”. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey and the Geological Survey of the Netherlands have developed standard routines to link geological data to groundwater models, but these models are only aimed at solving one specific part of the earth's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Marte

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluidmore » flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.« less

  20. Simulating CO2 Leakage and Seepage From Geologic Carbon Sequestration Sites: Implications for Near-Surface Monitoring

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.

    2003-12-01

    The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  1. Numerical Simulations of the Natural Thermal Regime and Enhanced Geothermal Systems in the St. Lawrence Lowlands Basin, Quebec, Canad

    NASA Astrophysics Data System (ADS)

    Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.

    2017-12-01

    An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an area of contact of at least 1 km2 between the geofluid and the rock matrix, which would require horizontal and multilateral drilling with hydraulic stimulation, and (3) an initial temperature of at least 150 °C in a conductive geological formation, which would require drilling to depths of 6500 m.

  2. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.

  3. System-level modeling for geological storage of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.Themore » objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.« less

  4. Calibration of a distributed routing rainfall-runoff model at four urban sites near Miami, Florida

    USGS Publications Warehouse

    Doyle, W. Harry; Miller, Jeffrey E.

    1980-01-01

    Urban stormwater data from four Miami, Fla. catchments were collected and compiled by the U.S. Geological Survey and were used for testing the applicability of deterministic modeling for characterizing stormwater flows from small land-use areas. A description of model calibration and verification is presented for: (1) A 40.8 acre single-family residential area, (2) a 58.3-acre highway area, (3) a 20.4-acre commercial area, and (4) a 14.7-acre multifamily residential area. Rainfall-runoff data for 80, 108, 114, and 52 storms at sites, 1, 2, 3, and 4, respectively, were collected, analyzed, and stored on direct-access files. Rainfall and runoff data for these storms (at 1-minute time intervals) were used in flow-modeling simulation analyses. A distributed routing Geological Survey rainfall-runoff model was used to determine rainfall excess and route overland and channel flows at each site. Optimization of soil-moisture- accounting and infiltration parameters was performed during the calibration phases. The results of this study showed that, with qualifications, an acceptable verification of the Geological Survey model can be achieved. (Kosco-USGS)

  5. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  6. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  7. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  8. Evaluation of Lithofacies Up-Scaling Methods for Probabilistic Prediction of Carbon Dioxide Behavior

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Lee, S.; Lee, Y. I.; Kihm, J. H.; Kim, J. M.

    2017-12-01

    Behavior of carbon dioxide injected into target reservoir (storage) formations is highly dependent on heterogeneities of geologic lithofacies and properties. These heterogeneous lithofacies and properties basically have probabilistic characteristics. Thus, their probabilistic evaluation has to be implemented properly into predicting behavior of injected carbon dioxide in heterogeneous storage formations. In this study, a series of three-dimensional geologic modeling is performed first using SKUA-GOCAD (ASGA and Paradigm) to establish lithofacies models of the Janggi Conglomerate in the Janggi Basin, Korea within a modeling domain. The Janggi Conglomerate is composed of mudstone, sandstone, and conglomerate, and it has been identified as a potential reservoir rock (clastic saline formation) for geologic carbon dioxide storage. Its lithofacies information are obtained from four boreholes and used in lithofacies modeling. Three different up-scaling methods (i.e., nearest to cell center, largest proportion, and random) are applied, and lithofacies modeling is performed 100 times for each up-scaling method. The lithofacies models are then compared and analyzed with the borehole data to evaluate the relative suitability of the three up-scaling methods. Finally, the lithofacies models are converted into coarser lithofacies models within the same modeling domain with larger grid blocks using the three up-scaling methods, and a series of multiphase thermo-hydrological numerical simulation is performed using TOUGH2-MP (Zhang et al., 2008) to predict probabilistically behavior of injected carbon dioxide. The coarser lithofacies models are also compared and analyzed with the borehole data and finer lithofacies models to evaluate the relative suitability of the three up-scaling methods. Three-dimensional geologic modeling, up-scaling, and multiphase thermo-hydrological numerical simulation as linked methodologies presented in this study can be utilized as a practical probabilistic evaluation tool to predict behavior of injected carbon dioxide and even to analyze its leakage risk. This work was supported by the Korea CCS 2020 Project of the Korea Carbon Capture and Sequestration R&D Center (KCRC) funded by the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Korea.

  9. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.

  10. 14 CFR 1216.304 - Categorical exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... funds. (iv) Preparation of documents, including design and feasibility studies, analytical supply and... sampling, cultural resources surveys, biological surveys, geologic surveys, modeling or simulations, and... Indian tribe, State, and/or local law or requirements. (3) Research and Development (R&D) Activities...

  11. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems

    NASA Astrophysics Data System (ADS)

    Paparrizos, Spyridon; Maris, Fotios

    2017-05-01

    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  12. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  13. A Comparison of Traditional, Step-Path, and Geostatistical Techniques in the Stability Analysis of a Large Open Pit

    NASA Astrophysics Data System (ADS)

    Mayer, J. M.; Stead, D.

    2017-04-01

    With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.

  14. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  15. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - documentation of shared node local grid refinement (LGR) and the boundary flow and head (BFH) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2006-01-01

    This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.

  16. Stochastic simulation of spatially correlated geo-processes

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.

  17. 14 CFR § 1216.304 - Categorical exclusions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... funds. (iv) Preparation of documents, including design and feasibility studies, analytical supply and... sampling, cultural resources surveys, biological surveys, geologic surveys, modeling or simulations, and... Indian tribe, State, and/or local law or requirements. (3) Research and Development (R&D) Activities...

  18. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  19. Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity

    NASA Astrophysics Data System (ADS)

    Miah, Md Mamun

    This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by running a sensitivity analysis that shows an increase in injection well distance results in delayed slip nucleation and rupture propagation on the fault.

  20. Geology team

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.

  1. On the upscaling of process-based models in deltaic applications

    NASA Astrophysics Data System (ADS)

    Li, L.; Storms, J. E. A.; Walstra, D. J. R.

    2018-03-01

    Process-based numerical models are increasingly used to study the evolution of marine and terrestrial depositional environments. Whilst a detailed description of small-scale processes provides an accurate representation of reality, application on geological timescales is restrained by the associated increase in computational time. In order to reduce the computational time, a number of acceleration methods are combined and evaluated for a schematic supply-driven delta (static base level) and an accommodation-driven delta (variable base level). The performance of the combined acceleration methods is evaluated by comparing the morphological indicators such as distributary channel networking and delta volumes derived from the model predictions for various levels of acceleration. The results of the accelerated models are compared to the outcomes from a series of simulations to capture autogenic variability. Autogenic variability is quantified by re-running identical models on an initial bathymetry with 1 cm added noise. The overall results show that the variability of the accelerated models fall within the autogenic variability range, suggesting that the application of acceleration methods does not significantly affect the simulated delta evolution. The Time-scale compression method (the acceleration method introduced in this paper) results in an increased computational efficiency of 75% without adversely affecting the simulated delta evolution compared to a base case. The combination of the Time-scale compression method with the existing acceleration methods has the potential to extend the application range of process-based models towards geologic timescales.

  2. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less

  3. Rheological behavior of the crust and mantle in subduction zones in the time-scale range from earthquake (minute) to mln years inferred from thermomechanical model and geodetic observations

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan; Muldashev, Iskander

    2016-04-01

    The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.

  4. Achieving sustainable ground-water management by using GIS-integrated simulation tools: the EU H2020 FREEWAT platform

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman

    2017-04-01

    In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable management of combined use of ground- and surface-water resources in rural environments is accomplished by the Farm Process module embedded in MODFLOW-OWHM (Hanson et al., 2014), which allows to dynamically integrate crop water demand and supply from ground- and surface-water; • UCODE_2014 (Poeter et al., 2014) is implemented to perform sensitivity analysis and parameter estimation to improve the model fit through an inverse, regression method based on the evaluation of an objective function. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT aims at enhancing science and participatory approach and evidence-based decision making in water resource management, hence producing relevant outcomes for policy implementation. Acknowledgements This paper is presented within the framework of the project FREEWAT, which has received funding from the European Union's HORIZON 2020 research and innovation programme under Grant Agreement n. 642224. References Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, T., Niswonger, R.G. One-Water Hydrologic Flow Model (MODFLOW-OWHM), U.S. Geological Survey, Techniques and Methods 6-A51, 2014 134 p. Harbaugh A.W. (2005) - MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - the Ground-Water Flow Process. U.S. Geological Survey, Techniques and Methods 6-A16, 253 p. Langevin C.D., Thorne D.T. Jr., Dausman A.M., Sukop M.C. & Guo Weixing (2007) - SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport. U.S. Geological Survey Techniques and Methods 6-A22, 39 pp. Poeter E.P., Hill M.C., Lu D., Tiedeman C.R. & Mehl S. (2014) - UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and more. Integrated Groundwater Modeling Center Report Number GWMI 2014-02. Rossetto, R., Borsi, I. & Foglia, L. FREEWAT: FREE and open source software tools for WATer resource management, Rendiconti Online Società Geologica Italiana, 2015, 35, 252-255. Zheng C. & Wang P.P. (1999) - MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 pp.

  5. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  6. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE PAGES

    Huff, Kathryn

    2017-08-01

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  7. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    NASA Astrophysics Data System (ADS)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  8. Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip

    NASA Image and Video Library

    1970-11-02

    S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.

  9. Numerical investigation and Uncertainty Quantification of the Impact of the geological and geomechanical properties on the seismo-acoustic responses of underground chemical explosions

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Pitarka, A.; Vorobiev, O.; Glenn, L.; Antoun, T.

    2017-12-01

    We have performed three-dimensional high resolution simulations of underground chemical explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiments (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground chemical explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the chemical explosions and explosion yields. Through these investigations we have explored not only the near-field response of the chemical explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 experimental data and simulated results, then simulated SPE4-prime, SPE5, and SPE6 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo-acoustic responses of underground chemical explosions and 2) deciphering and ranking through a global sensitivity analysis the most important key parameters to be characterized on site to minimize uncertainties in prediction and discrimination.

  10. A user interface for the Kansas Geological Survey slug test model.

    PubMed

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.

  11. Performance prediction using geostatistics and window reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite.more » Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.« less

  12. Listings of model values for the simulation of ground-water flow in the Cimarron River alluvium and terrace deposits from Freedom to Guthrie, Oklahoma

    USGS Publications Warehouse

    Adams, G.P.

    1995-01-01

    This report contains MODFLOW input and output listings for the simulation of ground-water flow in alluvium and terrace deposits associated with the Cimarron River from Freedom to Guthrie, Oklahoma. These values are to be used in conjuction with the report, 'Geohydrology of alluvium and terrace deposits of the Cimarron River from Freedom to Guthrie, Oklahoma,' by G.P. Adams and D.L. Bergman, published as U.S. Geological Survey Water-Resources Investigatons Report 95-4066. The simulation used a digital ground-water flow model and was evaluated by a management and statistical program.

  13. Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.; Dyar, Thomas R.

    2007-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.

  14. Model Fusion Tool - the Open Environmental Modelling Platform Concept

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J. R.

    2010-12-01

    The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological data to groundwater models but these models are only aimed at solving one specific part of the earth’s system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper gives examples of the successful merging of geological and hydrological models from the UK and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Information System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner and thereby become useful for decision makers.

  15. A Simplified Model for Multiphase Leakage through Faults with Applications for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Watson, F. E.; Doster, F.

    2017-12-01

    In the context of geological CO2 storage, faults in the subsurface could affect storage security by acting as high permeability pathways which allow CO2 to flow upwards and away from the storage formation. To assess the likelihood of leakage through faults and the impacts faults might have on storage security numerical models are required. However, faults are complex geological features, usually consisting of a fault core surrounded by a highly fractured damage zone. A direct representation of these in a numerical model would require very fine grid resolution and would be computationally expensive. Here, we present the development of a reduced complexity model for fault flow using the vertically integrated formulation. This model captures the main features of the flow but does not require us to resolve the vertical dimension, nor the fault in the horizontal dimension, explicitly. It is thus less computationally expensive than full resolution models. Consequently, we can quickly model many realisations for parameter uncertainty studies of CO2 injection into faulted reservoirs. We develop the model based on explicitly simulating local 3D representations of faults for characteristic scenarios using the Matlab Reservoir Simulation Toolbox (MRST). We have assessed the impact of variables such as fault geometry, porosity and permeability on multiphase leakage rates.

  16. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  17. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    NASA Astrophysics Data System (ADS)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal water that the measurement of the permeability should be performed through a very careful process in order to guarantee a reliable simulation. As the fracture spacing became narrower, overall thermal distribution appeared to be similar to that from EPM model. This suggests that EPM model, which is easy to design and takes less time, can be replaced for the densely fractured medium. Change in fracture aperture within the range of that of actual rocks did not cause a remarkable difference in temperature distribution, which means that measuring accuracy of the actual aperture value in rocks is relatively less important. This demonstrates that the distribution and the structure of fracture system make a great contribution to the whole simulation for fluid and heat flow mechanisms in geologic medium, and thus require an intensive geologic investigation for the fractures including strike and dip information, permeability and connecting relation. In addition, the simulation results show that the heterogeneous model can include the description for the significant fracture flow and it can be a practical tool for a site-specific simulation for EGS sites. This preliminary simulation was useful to estimate the scale of the geothermal reservoir and the energy potential in Seokmodo and it can be further expanded to a long-term simulation to predict the evolution of the geothermal reservoir under the potential EGS operations. Acknowledgement: This study was financially supported by KIGAM, KETEP and BK21.

  18. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  19. Supercritical CO2 Migration under Cross-Bedded Structures: Outcrop Analog from the Jurassic Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.

    2011-12-01

    Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.

  20. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  1. 3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test

    NASA Astrophysics Data System (ADS)

    Jensen, R. P.; Preston, L. A.

    2017-12-01

    A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.

  2. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t

  3. PRMS-IV, the precipitation-runoff modeling system, version 4

    USGS Publications Warehouse

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  4. Use of in-vitro experimental results to model in-situ experiments: bio-denitrification under geological disposal conditions.

    PubMed

    Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira

    2013-01-01

    Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.

  5. Drought allocations using the Systems Impact Assessment Model: Klamath River

    USGS Publications Warehouse

    Flug, M.; Campbell, S.G.

    2005-01-01

    Water supply and allocation scenarios for the Klamath River, Ore. and Calif., were evaluated using the Systems Impact Assessment Model (SIAM), a decision support system developed by the U.S. Geological Survey. SIAM is a set of models with a graphical user interface that simulates water supply and delivery in a managed river system, water quality, and fish production. Simulation results are presented for drought conditions, one aspect of Klamath River water operations. The Klamath River Basin has experienced critically dry conditions in 1992, 1994, and 2001. Drought simulations are useful to estimate the impacts of specific legal or institutional flow constraints. In addition, simulations help to identify potential adverse water quality consequences including evaluating the potential for reducing adverse temperature impacts on anadromous fish. In all drought simulations, water supply was insufficient to fully meet upstream and downstream targets for endangered species.

  6. A 3D geological and geomechanical model of the 1963 Vajont landslide

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. The chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments. Finally 3D FEM analyses using the code MidasGTS have been performed adopting the 3D geological model. A c-phi reduction procedure was employed along the pre-defined failure surface until the onset of the landslide occurred. The initiation of the rock mass movements is properly described by considering the evolution of plastic shear strain in the failure surface. The stress, strain and displacement fields of the rock mass were analysed in detail and compared with the monitored data.

  7. Numerical Simulation of Potential Groundwater Contaminant Pathways from Hydraulically Fractured Oil Shale in the Nevada Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.

    2014-12-01

    In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.

  8. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  9. The Campus Mine: An Adaptable Instruction Approach Using Simulated Underground Geology in a Campus Building to Improve Geospatial Reasoning before Fieldwork

    ERIC Educational Resources Information Center

    Benson, Robert G.

    2010-01-01

    Geospatial skills are critical to effective geologic mapping, and many geoscience students experience challenges in developing good geologic interpretation and projection skills. A physical (non-virtual) underground mine mapping simulation in a building on the Adams State College campus in Alamosa, Colorado, provides an excellent cost-effective…

  10. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less

  11. From Airborne EM to Geology, some examples

    NASA Astrophysics Data System (ADS)

    Gunnink, Jan

    2014-05-01

    Introduction Airborne Electro Magnetics (AEM) provide a model of the 3-dimensional distribution of resistivity of the subsurface. These resistivity models were used for delineating geological structures (e.g. Buried Valleys and salt domes) and for geohydrological modeling of aquifers (sandy sediments) and aquitards (clayey sediments). Most of the interpretation of the AEM has been carried out manually, by interpretation of 2 and 3-dimensional resistivity models into geological units by a skilled geologists / geophysicist. The manual interpretation is tiresome, takes a long time and is prone to subjective choices of the interpreter. Therefore, semi-automatic interpretation of AEM resistivity models into geological units is a recent research topic. Two examples are presented that show how resistivity, as obtained from AEM, can be "converted" to useful geological / geohydrolocal models. Statistical relation between borehole data and resistivity In the northeastern part of the Netherlands, the 3D distribution of clay deposits - formed in a glacio-lacustrine environment with buried glacial valleys - was modelled. Boreholes with description of lithology, were linked to AEM resistivity. First, 1D AEM resistivity models from each individual sounding were interpolated to cover the entire study area, resulting in a 3-dimensional model of resistivity. For each interval of clay and sand in the boreholes, the corresponding resistivity was extracted from the 3D resistivity model. Linear regression was used to link the clay and non-clay proportion in each borehole interval to the Ln(resistivity). This regression is then used to "convert" the 3D resistivity model into proportion of clay for the entire study area. This so-called "soft information" is combined with the "hard data" (boreholes) to model the proportion of clay for the entire study area using geostatistical simulation techniques (Sequential Indicator Simulation with collocated co-kriging). 100 realizations of the 3-dimensional distribution of clay and sand were calculated giving an appreciation of the variability of the 3-dimensional distribution of clay and sand. Each realization was input into a groundwatermodel to assess the protection the of the clay against pollution from the surface. Artificial Neural Networks AEM resistivity models in an area in Northern part of the Netherlands were interpreted by Artificial Neural Networks (ANN) to obtain a 3-dimensional model of a glacial till deposit that is important in geohydrological modeling. The groundwater in the study area was brackish to saline, causing the AEM resistivity model to be dominated by the low resistivity of the groundwater. After conducting Electrical Cone Penetration Tests (ECPTs) it became clear that the glacial till showed a distinct, non-linear, pattern of resistivity, that was discriminating it from the surrounding sediments. The patterns, found in the ECPTs were used to train an ANN and was consequently applied to the resistivity model that was derived from the AEM. The result was a 3-dimensional model of the probability of having the glacial till, which was checked against boreholes and proved to be quite reasonable. Conclusion Resistivity derived from AEM can be linked to geological features in a number of ways. Besides manual interpretation, statistical techniques are used, either in the form of regression or by means of Neural Networks, to extract geological and geohydrological meaningful interpretations from the resistivity model.

  12. Modeling and analysis of CSAMT field source effect and its characteristics

    NASA Astrophysics Data System (ADS)

    Da, Lei; Xiaoping, Wu; Qingyun, Di; Gang, Wang; Xiangrong, Lv; Ruo, Wang; Jun, Yang; Mingxin, Yue

    2016-02-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has been a highly successful geophysical tool used in a variety of geological exploration studies for many years. However, due to the artificial source used in the CSAMT technique, two important factors are considered during interpretation: non-plane-wave or geometric effects and source overprint effects. Hence, in this paper we simulate the source overprint effects and analyzed the rule and characteristics of its influence on CSAMT applications. Two-dimensional modeling was carried out using an adaptive unstructured finite element method to simulate several typical models. Also, we summarized the characteristics and rule of the source overprint effects and analyzed its influence on the data taken over several mining areas. The results obtained from the study shows that the occurrence and strength of the source overprint effect is dependent on the location of the source dipole, in relation to the receiver and the subsurface geology. In order to avoid source overprint effects, three principle were suggested to determine the best location for the grounded dipole source in the field.

  13. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA

    USGS Publications Warehouse

    White, S.P.; Allis, R.G.; Moore, J.; Chidsey, T.; Morgan, C.; Gwynn, W.; Adams, M.

    2005-01-01

    This paper investigates injection of CO2 into non-dome-shaped geological structures that do not provide the traps traditionally deemed necessary for the development of artificial CO2 reservoirs. We have developed a conceptual and two numerical models of the geology and groundwater along a cross-section lying approximately NW-SE and in the vicinity of the Hunter power station on the Colorado Plateau, Central Utah and identified a number of potential sequestration sites on this cross-section. Preliminary modeling identified the White Rim Sandstone as appearing to offer the properties required of a successful sequestration site. Detailed modeling of injection of CO2 into the White Rim Sandstone using the reactive chemical simulator ChemTOUGH found that 1000 years after the 30 year injection period began approximately 21% of the injected CO2 was permanently sequestered as a mineral, 52% was beneath the ground surface as a gas or dissolved in the groundwater and 17% had leaked to the surface and leakage to the surface was continuing. ?? 2005 Elsevier B.V. All rights reserved.

  14. Computer program for simulation of variable recharge with the U. S. Geological Survey modular finite-difference ground-water flow model (MODFLOW)

    USGS Publications Warehouse

    Kontis, A.L.

    2001-01-01

    The Variable-Recharge Package is a computerized method designed for use with the U.S. Geological Survey three-dimensional finitedifference ground-water flow model (MODFLOW-88) to simulate areal recharge to an aquifer. It is suitable for simulations of aquifers in which the relation between ground-water levels and land surface can affect the amount and distribution of recharge. The method is based on the premise that recharge to an aquifer cannot occur where the water level is at or above land surface. Consequently, recharge will vary spatially in simulations in which the Variable- Recharge Package is applied, if the water levels are sufficiently high. The input data required by the program for each model cell that can potentially receive recharge includes the average land-surface elevation and a quantity termed ?water available for recharge,? which is equal to precipitation minus evapotranspiration. The Variable-Recharge Package also can be used to simulate recharge to a valley-fill aquifer in which the valley fill and the adjoining uplands are explicitly simulated. Valley-fill aquifers, which are the most common type of aquifer in the glaciated northeastern United States, receive much of their recharge from upland sources as channeled and(or) unchanneled surface runoff and as lateral ground-water flow. Surface runoff in the uplands is generated in the model when the applied water available for recharge is rejected because simulated water levels are at or above land surface. The surface runoff can be distributed to other parts of the model by (1) applying the amount of the surface runoff that flows to upland streams (channeled runoff) to explicitly simulated streams that flow onto the valley floor, and(or) (2) applying the amount that flows downslope toward the valley- fill aquifer (unchanneled runoff) to specified model cells, typically those near the valley wall. An example model of an idealized valley- fill aquifer is presented to demonstrate application of the method and the type of information that can be derived from its use. Documentation of the Variable-Recharge Package is provided in the appendixes and includes listings of model code and of program variables. Comment statements in the program listings provide a narrative of the code. Input-data instructions and printed model output for the package are included.

  15. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  16. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    NASA Astrophysics Data System (ADS)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  17. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  18. Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao

    2010-10-01

    We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.

  19. Modeling Vegetation Growth Impact on Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Anurag, H.; Ng, G. H. C.; Tipping, R.

    2017-12-01

    Vegetation growth is affected by variability in climate and land-cover / land-use over a range of temporal and spatial scales. Vegetation also modifies water budget through interception and evapotranspiration and thus has a significant impact on groundwater recharge. Most groundwater recharge assessments represent vegetation using specified, static parameter, such as for leaf-area-index, but this neglects the effect of vegetation dynamics on recharge estimates. Our study addresses this gap by including vegetation growth in model simulations of recharge. We use NCAR's Community Land Model v4.5 with its BGC module (BGC is the new CLM4.5 biogeochemistry). It integrates prognostic vegetation growth with land-surface and subsurface hydrological processes and can thus capture the effect of vegetation on groundwater. A challenge, however, is the need to resolve uncertainties in model inputs ranging from vegetation growth parameters all the way down to the water table. We have compiled diverse data spanning meteorological inputs to subsurface geology and use these to implement ensemble model simulations to evaluate the possible effects of dynamic vegetation growth (versus specified, static vegetation parameterizations) on estimating groundwater recharge. We present preliminary results for select data-intensive test locations throughout the state of Minnesota (USA), which has a sharp east-west precipitation gradient that makes it an apt testbed for examining ecohydrologic relationships across different temperate climatic settings and ecosystems. Using the ensemble simulations, we examine the effect of seasonal to interannual variability of vegetation growth on recharge and water table depths, which has implications for predicting the combined impact of climate, vegetation, and geology on groundwater resources. Future work will include distributed model simulations over the entire state, as well as conditioning uncertain vegetation and subsurface parameters on remote sensing data and statewide water table records using data assimilation.

  20. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.

  1. Evaluation of modeling for groundwater flow and tetrachloroethylene transport in the Milford-Souhegan glacial-drift aquifer at the Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    USGS Publications Warehouse

    Harte, Philip T.

    2012-01-01

    The U.S. Geological Survey and the New Hampshire Department of Environmental Services entered into a cooperative agreement to assist in the evaluation of remedy simulations of the MSGD aquifer that are being performed by various parties to track the remedial progress of the PCE plume. This report summarizes findings from this evaluation. Topics covered include description of groundwater flow and transport models used in the study of the Savage Superfund site (section 2), evaluation of models and their results (section 3), testing of several new simulations (section 4), an assessment of the representation of models to simulate field conditions (section 5), and an assessment of models as a tool in remedial operational decision making (section 6).

  2. Water and Solute Flux Simulation Using Hydropedology Survey Data in South African Catchments

    NASA Astrophysics Data System (ADS)

    Lorentz, Simon; van Tol, Johan; le Roux, Pieter

    2017-04-01

    Hydropedology surveys include linking soil profile information in hillslope transects in order to define dominant subsurface flow mechanisms and pathways. This information is useful for deriving hillslope response functions, which aid storage and travel time estimates of water and solute movement in the sub-surface. In this way, the "soft" data of the hydropedological survey can be included in simple hydrological models, where detailed modelling of processes and pathways is prohibitive. Hydropedology surveys were conducted in two catchments and the information used to improve the prediction of water and solute responses. Typical hillslope response functions are then derived using a 2-D finite element model of the hydropedological features. Similar response types are mapped. These mapped response units are invoked in a simple SCS based, hydrological and solute transport model to yield water and solute fluxes at the catchment outlets. The first catchment (1.6 km2) comprises commercial forestry in a sedimentary geology of sandstone and mudstone formation while the second catchment (6.1 km2) includes mine waste impoundments in a granitic geology. In this paper, we demonstrate the method of combining hydropedological interpretation with catchment hydrology and solute transport simulation. The forested catchment, with three dominant hillslope response types, have solute response times in excess of 90 days, whereas the granitic responses occur within 10 days. The use of the hydropedological data improves the solute distribution response and storage simulation, compared to simulations without the hydropedology interpretation. The hydrological responses are similar, with and without the use of the hydropedology data, but the simulated distribution of water in the catchment is improved using the techniques demonstrated.

  3. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andy

    2017-03-16

    Simulations of future climate suggest profiles of temperature and precipitation may differ significantly from those in the past. These changes in climate will likely lead to changes in the hydrologic cycle. As such, natural resource managers are in need of tools that can provide estimates of key components of the hydrologic cycle, uncertainty associated with the estimates, and limitations associated with the climate forcing data used to estimate these components. To help address this need, the U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) provides a user friendly interface to deliver hydrologic and meteorological variables for monthly historic and potential future climatic conditions across the continental United States.

  4. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  5. Detecting subsurface fluid leaks in real-time using injection and production rates

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.

  6. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available geologic mapping and well information and to develop a digital, three-dimensional hydrogeologic model that could be used as the basis of a groundwater-flow model. This report describes the principal geologic and hydrogeologic units of the CPRAS and geologic map and well data that were compiled as part of the study. The report also describes simplified regional hydrogeologic sections and unit extent maps that were used to conceptualize the framework prior to development of the digital 3-dimensional framework model.

  7. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.

    2012-10-01

    We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.

  8. PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization

    NASA Astrophysics Data System (ADS)

    Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh

    2017-05-01

    Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.

  9. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  10. Resolution versus speckle relative to geologic interpretability of spaceborne radar images - A survey of user preference

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1982-01-01

    A survey conducted to evaluate user preference for resolution versus speckle relative to the geologic interpretability of spaceborne radar images is discussed. Thirteen different resolution/looks combinations are simulated from Seasat synthetic-aperture radar data of each of three test sites. The SAR images were distributed with questionnaires for analysis to 85 earth scientists. The relative discriminability of geologic targets at each test site for each simulation of resolution and speckle on the images is determined on the basis of a survey of the evaluations. A large majority of the analysts respond that for most targets a two-look image at the highest simulated resolution is best. For a constant data rate, a higher resolution is more important for target discrimination than a higher number of looks. It is noted that sand dunes require more looks than other geologic targets. At all resolutions, multiple-look images are preferred over the corresponding single-look image. In general, the number of multiple looks that is optimal for discriminating geologic targets is inversely related to the simulated resolution.

  11. The Thistle Field - Analysis of its past performance and optimisation of its future development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayat, M.G.; Tehrani, D.H.

    1985-01-01

    The Thistle Field geology and its reservoir performance over the past six years have been reviewed. The latest reservoir simulation study of the field, covering the performance history-matching, and the conclusions of various prediction cases are reported. The special features of PORES, Britoil in-house 3D 3-phase fully implicit numerical simulator and its modeling aids as applied to the Thistle Field are presented.

  12. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    USGS Publications Warehouse

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  13. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in PostScript format: BASINVIEW is used to display the distribution of parameters in the simulated cross-section of the basin for defined time steps. It is used in conjunction with the Ghostview software, which is freeware and available on most computer systems. AIBASIN provides PostScript output for Adobe Illustrator®, taking advantage of the layer-concept which facilitates further graphic manipulation. BASELINE is used to display parameter distribution at a defined well or to visualize the temporal evolution of individual elements located in the simulated sedimentary basin. The modular structure of the BASIN code allows additional processes to be included. A module to simulate reactive transport and diagenetic reactions is planned for future versions. The program has been applied to existing sedimentary basins, and it has also shown a high potential for classroom instruction, giving the possibility to create hypothetical basins and to interpret basin evolution in terms of sequence stratigraphy or petroleum potential.

  14. Development and evaluation of a reservoir model for the Chain of Lakes in Illinois

    USGS Publications Warehouse

    Domanski, Marian M.

    2017-01-27

    Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was calculated as 0.94. Evaluation of the model based on accuracy of peak prediction and the ability to simulate an elevation time series showed the performance of the model was satisfactory.

  15. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  16. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds together) occurs as streamflow channel infiltration. Diffuse recharge (direct infiltration of rainfall to the aquifer) accounts for the remaining 23 percent of recharge. For the Hondo Creek watershed, the HSPF recharge estimates for 1992–2003 averaged about 22 percent less than those estimated by the Puente method, a method the U.S. Geological Survey has used to compute annual recharge to the Edwards aquifer since 1978. HSPF recharge estimates for the Verde Creek watershed average about 40 percent less than those estimated by the Puente method.

  17. MODFLOW-LGR-Modifications to the streamflow-routing package (SFR2) to route streamflow through locally refined grids

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2011-01-01

    This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.

  18. Hydrogeological characterisation of a glacially affected barrier island - the North Frisian Island of Föhr

    NASA Astrophysics Data System (ADS)

    Burschil, T.; Scheer, W.; Kirsch, R.; Wiederhold, H.

    2012-04-01

    We present the application of geophysical investigations to characterise and improve the geological/hydrogeological model through the estimation of petrophysical parameters for groundwater modelling. Seismic reflection and airborne electromagnetic surveys in combination with borehole information enhance the 3-D geological model and allow a petrophysical interpretation of the subsurface. The North Sea Island of Föhr has a very complex underground structure what was already known from boreholes. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations disordered the Youngest Tertiary and Quaternary sediments by glaciotectonic thrust-faulting as well as incision and refill of glacial valleys. Both underground structures have a strong impact on the distribution of freshwater bearing aquifers. An initial hydrogeological model of Föhr was built from borehole data alone and was restricted to the southern part of the island where in the sandy areas of the Geest a large freshwater body was formed. We improved the geological/hydrogeological model by adding data from different geophysical methods, e.g. airborne electromagnetics (EM) for mapping the resistivity of the entire island, seismic reflections for detailed cross sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An integrated evaluation of the results from the different geophysical methods yields reliable data. To determinate petrophysical parameter about 18 borehole logs, more than 75 m deep, and nearby airborne EM inversion models were analyzed concerning resistivity. We establish an empirical relation between measured resistivity and hydraulic conductivity for the specific area - the North Sea island of Föhr. Five boreholes concerning seismic interval velocities discriminate sand and till. The interpretation of these data was the basis for building the geological/hydrogeological 3-D model. We fitted the relevant model layers to all geophysical and geological data and created a consistent 3-D model. This model is the fundament for groundwater simulations considering forecasted changes in precipitation and sea level rise due to climate change.

  19. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  20. Simulated Flyover of Mars Canyon Map Animation

    NASA Image and Video Library

    2014-12-12

    This frame from an animation simulates a flyover of a portion of a Martian canyon detailed in a geological map produced by the U.S. Geological Survey and based on observations by the HiRISE camera on NASA Mars Reconnaissance Orbiter.

  1. A Group Simulation of the Development of the Geologic Time Scale.

    ERIC Educational Resources Information Center

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  2. MISSISSIPPI EMBAYMENT AQUIFER SYSTEM IN MISSISSIPPI: GEOHYDROLOGIC DATA COMPILATION FOR FLOW MODEL SIMULATION.

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1986-01-01

    As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.

  3. Studies in matter antimatter separation and in the origin of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  4. Effectiveness of a mining simulation cooperative learning activity on the cognitive and affective achievement of students in a lower division physical geology course: A confluent approach

    NASA Astrophysics Data System (ADS)

    Tolhurst, Jeffrey Wayne

    Most students enrolled in lower division physical geology courses are non-majors and tend to finish the course with little appreciation of what it is geologists really do. They may also be expected to analyze, synthesize, and apply knowledge from previous laboratory experiences with little or no instruction and/or practice in utilizing the critical thinking skills necessary to do so. This study sought to answer two research questions: (1) do physical geology students enrolled in a course designed around a mining simulation activity perform better cognitively than students who are taught the same curriculum in the traditional fashion; and (2) do students enrolled in the course gain a greater appreciation of physical geology and the work that geologists do. Eighty students enrolled in the course at Columbia College, Sonora, California over a two year period. During the first year, thirty-one students were taught the traditional physical geology curriculum. During the second year, forty-nine students were taught the traditional curriculum up until week nine, then they were taught a cooperative learning mining simulation activity for three weeks. A static group, split plot, repeated measures design was used. Pre- and post-tests were administered to students in both the control and treatment groups. The cognitive assessment instrument was validated by content area experts in the University of South Carolina Geological Sciences Department. Students were given raw lithologic, gravimetric, topographic, and environmental data with which to construct maps and perform an overlay analysis. They were tested on the cognitive reasoning and spatial analysis they used to make decisions about where to test drill for valuable metallic ores. The affective instrument used a six point Likert scale to assess students' perceived enjoyment, interest, and importance of the material. Gains scores analysis of cognitive achievement data showed a mean of 2.43 for the control group and 4.47 for the treatment group, statistically significantly different at the alpha = 0.05 level (p = 0.0038). Gains scores for the affective data indicated no statistically significant differences between the treatment and control groups. The simulation seems to make a difference in terms of students' intellectual performance, but not in terms of their attitudinal perceptions of the course. Results support the hypothesis that cognitive achievement is improved by a cooperative learning mining simulation activity. One implication might include adapting and implementing the model in lower division physical geology courses. Another would be to develop similar activities for other lower division, non-majors earth science courses (i.e. environmental geology, astronomy, meteorology, oceanography, etc.) that could improve students' subject matter knowledge. Additionally, the research supports shifting the locus of control from the instructor to students as well as the use of the principles of active learning, cooperative learning, and confluent education in the science classroom.

  5. Analysis of water flow paths: methodology and example calculations for a potential geological repository in Sweden.

    PubMed

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2006-12-01

    Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.

  6. An interpretation model of GPR point data in tunnel geological prediction

    NASA Astrophysics Data System (ADS)

    He, Yu-yao; Li, Bao-qi; Guo, Yuan-shu; Wang, Teng-na; Zhu, Ya

    2017-02-01

    GPR (Ground Penetrating Radar) point data plays an absolutely necessary role in the tunnel geological prediction. However, the research work on the GPR point data is very little and the results does not meet the actual requirements of the project. In this paper, a GPR point data interpretation model which is based on WD (Wigner distribution) and deep CNN (convolutional neural network) is proposed. Firstly, the GPR point data is transformed by WD to get the map of time-frequency joint distribution; Secondly, the joint distribution maps are classified by deep CNN. The approximate location of geological target is determined by observing the time frequency map in parallel; Finally, the GPR point data is interpreted according to the classification results and position information from the map. The simulation results show that classification accuracy of the test dataset (include 1200 GPR point data) is 91.83% at the 200 iteration. Our model has the advantages of high accuracy and fast training speed, and can provide a scientific basis for the development of tunnel construction and excavation plan.

  7. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    PubMed

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  9. Proceedings of the Advanced Seminar on one-dimensional, open-channel Flow and transport modeling

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1989-01-01

    In view of the increased use of mathematical/numerical simulation models, of the diversity of both model investigations and informational project objectives, and of the technical demands of complex model applications by U.S. Geological Survey personnel, an advanced seminar on one-dimensional open-channel flow and transport modeling was organized and held on June 15-18, 1987, at the National Space Technology Laboratory, Bay St. Louis, Mississippi. Principal emphasis in the Seminar was on one-dimensional flow and transport model-implementation techniques, operational practices, and application considerations. The purposes of the Seminar were to provide a forum for the exchange of information, knowledge, and experience among model users, as well as to identify immediate and future needs with respect to model development and enhancement, user support, training requirements, and technology transfer. The Seminar program consisted of a mix of topical and project presentations by Geological Survey personnel. This report is a compilation of short papers that summarize the presentations made at the Seminar.

  10. Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation

    DTIC Science & Technology

    2012-02-01

    the different remedial time frames used in the modeling case studies. • Matrix Diffusion: Modeling results demonstrated that in fractured rock ...being used for the ISCO, EISB and SEAR fractured rock numerical simulations at the field scale. Figure 2-4 presents the distribution of intrinsic...sedimentary limestone, sandstone, and shale, igneous basalts and granites, and metamorphous rock . For the modeling sites, three general geologies are

  11. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    NASA Astrophysics Data System (ADS)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In contrast, the simulations were not able to capture small scale point groundwater discharge i.e. springs. This reflects that modelling small scale groundwater input to wetland ecosystems can be challenging without detailed information on the aquifer and wetland geology. Overall, the good consistency between simulations and observations demonstrated that wetland-groundwater interactions can be studied using fully-integrated physically-based groundwater-surface water models.

  12. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  13. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  14. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  15. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.

  16. Geologic Sequestration of CO2: Potential Permeability Changes in Host Formations of the San Juan Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Abel, A. P.; McPherson, B.; Lichtner, P.; Bond, G.; Stringer, J.; Grigg, R.

    2002-12-01

    Terrestrial sequestration through injection into geologic formations is one proposed method for the isolation of anthropogenic CO2 from the atmosphere. A variety of physical and chemical processes are known to occur both during and after geologic CO2 injection, including diagenetic chemical reactions and associated permeability changes. Although it is commonly assumed that CO2 sequestered in this way will ultimately become mineralized, the rates of these changes, including CO2 hydration in brines, are known to be relatively slow. Bond and others (this volume) have developed a biomimetic approach to CO2 sequestration, in which the rate of CO2 hydration is accelerated by the use of a biological catalyst. Together with the hydrated CO2, cations from produced brines may be used to form solid-state carbonate minerals at the earth's surface, or this bicarbonate solution may be reinjected for geologic sequestration. Chemical composition of produced brines will affect both the diagenetic reactions that occur within the host formation, and the precipitation reactions that will occur above ground. In a specific case study of the San Juan Basin, New Mexico, we are cataloging different brines present in that basin. We are using this information to facilitate evaluation of potential applications of the biomimetic process and geologic sequestration. In a separate collaborative study by Grigg and others (this volume), laboratory experiments have been conducted on multiphase CO2 and brine injection and flow through saturated rock cores. We are extending from that study to our specific case study of the San Juan basin, to examine and characterize potential permeability changes associated with accelerated diagenesis due to the presence of high concentrations of CO2 or bicarbonate solutions in situ. We are developing and conducting new laboratory experiments to evaluate relative permeability (to CO2 and brine) of selected strata from the Fruitland Formation and Pictured Cliffs Sandstone. In addition to relative permeability, we are conducting longer-term flow tests reflecting marked permeability changes, and documenting the changes by comparing detailed pre-test measurements of porosity and permeability to post-test measurements. We are using these experimental results to parameterize coupled-flow and reactive-chemistry models of a selected cross-section of the San Juan basin. Our flow and chemistry model is based on the Los Alamos National Laboratory reactive chemistry simulator, TRANS, coupled to the Lawrence Berkeley Laboratory flow simulator, TOUGH2. The purpose of these simulation models is to evaluate potential CO2- and bicarbonate-induced diagenetic changes in permeability and flow at the basin-scale. In addition they will provide useful information in relation to brine extraction. We are also using these calibrated basin models to examine natural diagenesis and permeability evolution associated with changing brine properties and flow conditions over geologic time.

  17. The Dawn Topography Investigation

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.; hide

    2011-01-01

    The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

  18. Three-Dimensional Multifluid Flow and Transport at the Brooklawn Site near Baton Rouge, LA: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Truex, Michael J.; Thorne, Paul D.

    2007-03-19

    Disposal quantities of organic wastes at the Brooklawn Site in Louisiana are suspected to equal nearly 160 Ktons, making this site one of the most contaminated DNAPL sites in the world. Remedial activities at the site include groundwater and dense nonaqueous phase liquid (DNAPL) extraction from recovery wells. DNAPL recovery has markedly declined in recent years, with many of the peripheral wells showing negligible recovery of organic liquids. Three-dimensional simulations of DNAPL movement in the subsurface were conducted using the STOMP simulator, including a new coupled well model. The objectives of this modeling effort were to (1) determine the fatemore » and transport of infiltrated DNAPL, and (2) measure the effects of active recovery through DNAPL pumping. A detailed three-dimensional geologic model of the Brooklawn primary DNAPL disposal area was developed and used as the framework for DNAPL simulations. Additionally, site-specific data were obtained to obtain the most important hydraulic properties of the subsurface related to DNAPL movement and formation of entrapped DNAPL in the laboratory. Besides a simulation using the best available subsurface information, several sensitivity simulations were conducted to assess the effects on DNAPL migration. These simulations include DNAPL pumping, well screen extension, an alternative geology, increased DNAPL density, lower DNAPL viscosity, and more-permeable sand and silt deposits. Results of the simulations were compared to field data that define the extent of DNAPL movement based on where DNAPL has been extracted in the site recovery wells. The model simulations predict no significant reduction in the extent of the DNAPL as a result of pumping. Pumping returns diminish rapidly due to the limited radius of influence of the wells and movement of the DNAPL out of the zone of influence of the wells with a maximum radius of influence of about 6 m. The numerical analysis also demonstrates that it is impractical to extend existing wells or install new wells to retrieve enough DNAPL to affect the overall extent of DNAPL movement.« less

  19. A Graphical-User Interface for the U. S. Geological Survey's SUTRA Code using Argus ONE (for simulation of variable-density saturated-unsaturated ground-water flow with solute or energy transport)

    USGS Publications Warehouse

    Voss, Clifford I.; Boldt, David; Shapiro, Allen M.

    1997-01-01

    This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.

  20. A laboratory validation study of the time-lapse oscillatory pumping test for leakage detection in geological repositories

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Lu, Jiemin; Islam, Akand

    2017-05-01

    Geologic repositories are extensively used for disposing byproducts in mineral and energy industries. The safety and reliability of these repositories are a primary concern to environmental regulators and the public. Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, an operator may identify the potential repository anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures. The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results are further analyzed by developing a 3D flow model, using which the model parameters are estimated through frequency domain inversion.

  1. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  2. Multiple-Objective Stepwise Calibration Using Luca

    USGS Publications Warehouse

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  3. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  4. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  5. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major avenues of ground-water flow. Prior to this investigation, the conceptual model of ground-water flow for the region focused primarily on bedding planes and strike-parallel faults and joints as controls on ground-water flow but did not recognize the importance of cross-strike faults and fracture zones that allow ground water to flow downgradient across or through less permeable geologic formations. Results of the ground-water flow simulation indicate that current operations at the Center do not substantially affect either streamflow (less than a 5-percent reduction in annual streamflow) or ground-water levels in the Leetown area under normal climatic conditions but potentially could have greater effects on streamflow during long-term drought (reduction in streamflow of approximately 14 percent). On the basis of simulation results, ground-water withdrawals based on the anticipated need for an additional 150 to 200 gal/min (gallons per minute) of water at the Center also would not seriously affect streamflow (less than 8 to 9 percent reduction in streamflow) or ground-water levels in the area during normal climatic conditions. During drought conditions, however, the effects of current ground-water withdrawals and anticipated additional withdrawals of 150 to 200 gal/min to augment existing supplies result in moderate to substantial declines in water levels of 0.5-1.2 feet (ft) in the vicinity of the Center's springs and production wells. Streamflow was predicted to be reduced locally by approximately 21 percent. Such withdrawals during a drought or prolonged period of below normal ground-water levels would result in substantial declines in the flow of the Center's springs and likely would not be sustainable for more than a few months. The drought simulated in this model was roughly equivalent to the more than 1-year drought that affected the region from November 1998 through February 2000. The potential reduction in streamflow is a result of capture of ground water tha

  6. Optimal experimental design for placement of boreholes

    NASA Astrophysics Data System (ADS)

    Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael

    2014-05-01

    Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.

  7. Fractional Progress Toward Understanding the Fractional Diffusion Limit: The Electromagnetic Response of Spatially Correlated Geomaterials

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Beskardes, G. D.; Everett, M. E.

    2016-12-01

    In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging directions: a zooming down of the macroscopic (fractional derivative) view; and, a heuristic homogenization of the atomistic (brute force discretization) view.

  8. Use of the Water, Energy, and Biogeochemical Model (WEBMOD) to Simulate Water Quality at Five U.S. Geological Survey Research Watersheds

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.

    2003-12-01

    The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.

  9. Preprocessor and postprocessor computer programs for a radial-flow finite-element model

    USGS Publications Warehouse

    Pucci, A.A.; Pope, D.A.

    1987-01-01

    Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A. J.

    This is the final report for United States Geological Survey (USGS) National Earthquake Hazard Reduction Program (NEHRP) Project 08HQGR0022, entitled “Quantifying Uncertainties in Ground Motion Simulations for Scenario Earthquakes on the HaywardRodgers Creek Fault System Using the USGS 3D Seismic Velocity Model and Realistic Pseudodynamics Ruptures”. Work for this project involved three-dimensional (3D) simulations of ground motions for Hayward Fault (HF) earthquakes. We modeled moderate events on the HF and used them to evaluate the USGS 3D model of the San Francisco Bay Area. We also contributed to ground motions modeling effort for a large suite of scenario earthquakes onmore » the HF. Results were presented at conferences (see appendix) and in one peer-reviewed publication (Aagaard et al., 2010).« less

  11. Uranium adsorption on weathered schist - Intercomparison of modeling approaches

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Ochs, M.; Olin, M.; Tweed, C.J.

    2004-01-01

    Experimental data for uranium adsorption on a complex weathered rock were simulated by twelve modelling teams from eight countries using surface complexation (SC) models. This intercomparison was part of an international project to evaluate the present capabilities and limitations of SC models in representing sorption by geologic materials. The models were assessed in terms of their predictive ability, data requirements, number of optimised parameters, ability to simulate diverse chemical conditions and transferability to other substrates. A particular aim was to compare the generalised composite (GC) and component additivity (CA) approaches for modelling sorption by complex substrates. Both types of SC models showed a promising capability to simulate sorption data obtained across a range of chemical conditions. However, the models incorporated a wide variety of assumptions, particularly in terms of input parameters such as site densities and surface site types. Furthermore, the methods used to extrapolate the model simulations to different weathered rock samples collected at the same field site tended to be unsatisfactory. The outcome of this modelling exercise provides an overview of the present status of adsorption modelling in the context of radionuclide migration as practised in a number of countries worldwide.

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

  13. Hydrogeologic unit flow characterization using transition probability geostatistics.

    PubMed

    Jones, Norman L; Walker, Justin R; Carle, Steven F

    2005-01-01

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.

  14. Application of the U.S. Geological Survey's precipitation-runoff modeling system to the Prairie Dog Creek basin, southeastern Montana

    USGS Publications Warehouse

    Cary, L.E.

    1984-01-01

    The U.S. Geological Survey 's precipitation-runoff modeling system was tested using 2 year 's data for the daily mode and 17 storms for the storm mode from a basin in southeastern Montana. Two hydrologic response unit delineations were studied. The more complex delineation did not provide superior results. In this application, the optimum numbers of hydrologic response units were 16 and 18 for the two alternatives. The first alternative with 16 units was modified to facilitate interfacing with the storm mode. A parameter subset was defined for the daily mode using sensitivity analysis. Following optimization, the simulated hydrographs approximated the observed hydrograph during the first year, a year of large snowfall. More runoff was simulated than observed during the second year. There was reasonable correspondence between the observed snowpack and the simulated snowpack the first season but poor the second. More soil moisture was withdrawn than was indicated by soil moisture observations. Optimization of parameters in the storm mode resulted in much larger values than originally estimated, commonly larger than published values of the Green and Ampt parameters. Following optimization, variable results were obtained. The results obtained are probably related to inadequate representation of basin infiltration characteristics and to precipitation variability. (USGS)

  15. Spatially explicit shallow landslide susceptibility mapping over large areas

    Treesearch

    Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...

  16. Modeling Water Temperature in the Yakima River, Washington, from Roza Diversion Dam to Prosser Dam, 2005-06

    USGS Publications Warehouse

    Voss, Frank D.; Curran, Christopher A.; Mastin, Mark C.

    2008-01-01

    A mechanistic water-temperature model was constructed by the U.S. Geological Survey for use by the Bureau of Reclamation for studying the effect of potential water management decisions on water temperature in the Yakima River between Roza and Prosser, Washington. Flow and water temperature data for model input were obtained from the Bureau of Reclamation Hydromet database and from measurements collected by the U.S. Geological Survey during field trips in autumn 2005. Shading data for the model were collected by the U.S. Geological Survey in autumn 2006. The model was calibrated with data collected from April 1 through October 31, 2005, and tested with data collected from April 1 through October 31, 2006. Sensitivity analysis results showed that for the parameters tested, daily maximum water temperature was most sensitive to changes in air temperature and solar radiation. Root mean squared error for the five sites used for model calibration ranged from 1.3 to 1.9 degrees Celsius (?C) and mean error ranged from ?1.3 to 1.6?C. The root mean squared error for the five sites used for testing simulation ranged from 1.6 to 2.2?C and mean error ranged from 0.1 to 1.3?C. The accuracy of the stream temperatures estimated by the model is limited by four errors (model error, data error, parameter error, and user error).

  17. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of increased temperature (blue bubble) around a generic repository of HLW in a representative geological setting, 1000 years after emplacement of HLW

  18. Blizzards to hurricanes: computer modeling of hydrology, weathering, and isotopic fractionation across hydroclimatic regions

    Treesearch

    Richard MT Webb; David L. Parkhurst

    2016-01-01

    The U.S. Geological Survey’s (USGS) Water, Energy, and Biogeochemical Model (WEBMOD) was used to simulate hydrology, weathering, and isotopic fractionation in the Andrews Creek watershed in Rocky Mountain National Park, Colorado and the Icacos River watershed in the Luquillo Experimental Forest, Puerto Rico. WEBMOD includes hydrologic modules derived from the USGS...

  19. Researchers Mine Information from Next-Generation Subsurface Flow Simulations

    DOE PAGES

    Gedenk, Eric D.

    2015-12-01

    A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.

  20. Forecasting and evaluating patterns of energy development in southwestern Wyoming

    USGS Publications Warehouse

    Garman, Steven L.

    2015-01-01

    The effects of future oil and natural gas development in southwestern Wyoming on wildlife populations are topical to conservation of the sagebrush steppe ecosystem. To aid in understanding these potential effects, the U.S. Geological Survey developed an Energy Footprint simulation model that forecasts the amount and pattern of energy development under different assumptions of development rates and well-drilling methods. The simulated disturbance patterns produced by the footprint model are used to assess the potential effects on wildlife habitat and populations. A goal of this modeling effort is to use measures of energy production (number of simulated wells), well-pad and road-surface disturbance, and potential effects on wildlife to identify build-out designs that minimize the physical and ecological footprint of energy development for different levels of energy production and development costs.

  1. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  2. Hot as You Like It: Models of the Long-term Temperature History of Earth Under Different Geological Assumptions

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S.; Sheldon, N. D.

    2012-12-01

    The long-term temperature history of the Earth is a subject of continued, vigorous debate. Past models of the climate of early Earth that utilize paleosol contraints on carbon dioxide struggle to maintain temperatures significantly greater than 0°C. In these models, the incoming stellar radiation is much lower than today, consistent with an expectation that the Sun was significantly fainter at that time. In contrast to these models, many proxies for ancient temperatures suggest much warmer conditions. The surface of the planet seems to have been generally free of glaciers throughout this period, other than a brief glaciation at ~2.9 billion years ago and extensive glaciation at ~2.4 billion years ago. Such glacier-free conditions suggest mean surface temperatures greater than 15°C. Measurements of oxygen isotopes in phosphates are consistent with temperatures in the range of 20-30°C; and similar measurements in cherts suggest temperatures over 50°C. This sets up a paradox. Models constrained by one set of geological proxies cannot reproduce the warm temperatures consistent with another set of geological proxies. In this presentation, we explore several potential resolutions to this paradox. First, we model the early Earth under modern-day conditions, but with the lower solar luminosity expected at the time. The next simulation allows carbon dioxide concentrations to increase up to the limits provided by paleosol constraints. Next, we lower the planet's surface albedo in a manner consistent with greater ocean coverage prior to the complete growth of continents. Finally, we remove all constraints on carbon dioxide and attempt to maximize surface temperatures without any geological constraints on model parameters. This set of experiments will allow us to set up potential resolutions to the paradox, and to drive a conversation on which solutions are capable of incorporating the greatest number of geological and geochemical constraints.

  3. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    NASA Astrophysics Data System (ADS)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.

  4. Verification of the GIS-based Newmark method through 2D dynamic modelling of slope stability

    NASA Astrophysics Data System (ADS)

    Torgoev, A.; Havenith, H.-B.

    2012-04-01

    The goal of this work is to verify the simplified GIS-based Newmark displacement approach through 2D dynamic modelling of slope stability. The research is applied to a landslide-prone area in Central Asia, the Mailuu-Suu Valley, situated in the south of Kyrgyzstan. The comparison is carried out on the basis of 30 different profiles located in the target area, presenting different geological, tectonic and morphological settings. One part of the profiles were selected within landslide zones, the other part was selected in stable areas. Many of the landslides are complex slope failures involving falls, rotational sliding and/or planar sliding and flows. These input data were extracted from a 3D structural geological model built with the GOCAD software. Geophysical and geomechanical parameters were defined on the basis of results obtained by multiple surveys performed in the area over the past 15 years. These include geophysical investigation, seismological experiments and ambient noise measurements. Dynamic modelling of slope stability is performed with the UDEC version 4.01 software that is able to compute deformation of discrete elements. Inside these elements both elasto-plastic and purely elastic materials (similar to rigid blocks) were tested. Various parameter variations were tested to assess their influence on the final outputs. And even though no groundwater flow was included, the numerous simulations are very time-consuming (20 mins per model for 10 secs simulated shaking) - about 500 computation hours have been completed so far (more than 100 models). Preliminary results allow us to compare Newmark displacements computed using different GIS approaches (Jibson et al., 1998; Miles and Ho, 1999, among others) with the displacements computed using the original Newmark method (Newmark, 1965, here simulated seismograms were used) and displacements produced along joints by the corresponding 2D dynamical models. The generation of seismic amplification and its impact on peak-ground-acceleration, Arias Intensity and permanent slope movements (total and slip on joints) is assessed for numerous morphological-lithological settings (curvature, slope angle, surficial geology, various layer dips and orientations) throughout the target area. The final results of our studies should allow us to define the limitations of the simplified GIS-based Newmark displacement modelling; thus, the verified method would make landslide susceptibility and hazard mapping in seismically active regions more reliable.

  5. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also, pressure increases caused by the impurities and the partitioning between CO2 and other non-condensable gases were explored. In addition, the possibility of using these contaminants as a tracer were examined.

  6. An overview of TOUGH-based geomechanics models

    DOE PAGES

    Rutqvist, Jonny

    2016-09-22

    After the initial development of the first TOUGH-based geomechanics model 15 years ago based on linking TOUGH2 multiphase flow simulator to the FLAC3D geomechanics simulator, at least 15 additional TOUGH-based geomechanics models have appeared in the literature. This development has been fueled by a growing demand and interest for modeling coupled multiphase flow and geomechanical processes related to a number of geoengineering applications, such as in geologic CO 2 sequestration, enhanced geothermal systems, unconventional hydrocarbon production, and most recently, related to reservoir stimulation and injection-induced seismicity. This paper provides a short overview of these TOUGH-based geomechanics models, focusing on somemore » of the most frequently applied to a diverse set of problems associated with geomechanics and its couplings to hydraulic, thermal and chemical processes.« less

  7. MODFLOW Ground-Water Model - User Guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Water-Table Aquifers

    USGS Publications Warehouse

    Leake, S.A.; Galloway, D.L.

    2007-01-01

    A new computer program was developed to simulate vertical compaction in models of regional ground-water flow. The program simulates ground-water storage changes and compaction in discontinuous interbeds or in extensive confining units, accounting for stress-dependent changes in storage properties. The new program is a package for MODFLOW, the U.S. Geological Survey modular finite-difference ground-water flow model. Several features of the program make it useful for application in shallow, unconfined flow systems. Geostatic stress can be treated as a function of water-table elevation, and compaction is a function of computed changes in effective stress at the bottom of a model layer. Thickness of compressible sediments in an unconfined model layer can vary in proportion to saturated thickness.

  8. Geological Investigation Program for the Site of a New Nuclear Power Plant in Hungary

    NASA Astrophysics Data System (ADS)

    Gerstenkorn, András; Trosits, Dalma; Chikán, Géza; János Katona, Tamás

    2015-04-01

    Comprehensive site evalaution program is implemented for the new Nuclear Power Plant to be constructed at Paks site in Hungary with the aim of confirmation of acceptability of the site and definition of site-related design basis data. Most extensive part of this program is to investigate geological-tectonical features of the site with particular aim on the assessment of the capability of faults at and around the site, characterization of site seismic hazard, and definition of the design basis earthquake. A brief description of the scope and methodology of the geological, seismological, geophysical, geotechnical and hydrogeological investigations will be given on the poster. Main focus of the presentation is to show the graded structure and extent of the geological investigations that follow the needs and scale of the geological modeling, starting with the site and its vicinity, as well as on the near regional and the regional scale. Geological inverstigations includes several boreholes up-to the base-rock, plenty of boreholes discovering the Pannonian and large number of shallow boreholes for investigation of more recent development. The planning of the geological investigations is based on the 3D seismic survey performed around the site, that is complemented by shallow-seimic survey at and in the vicinity of the site. The 3D geophysical imaging provides essential geodynamic information to assess the capability of near site faults and for the seismic hazard analysis, as well as for the hydrogeological modeling. The planned seismic survey gives a unique dataset for understanding the spatial relationship between individual fault segments. Planning of the research (trenching, etc.) for paleoseismic manifestations is also based on the 3D seismic survey. The seismic survey and other geophysical data (including data of space geodesy) allow the amendment of the understanding and the model of the tectonic evolution of the area and geological events. As it is known from earlier studies, seismic sources in the near regional area are the dominating contributors to the site seimic hazard. Therefore a 3D geological model will be developed for the 50 km region around the site in order to consider different geological scenarios. Site-scale investigations are aimed on the characterization of local geotechnical and hydrogeological conditions. The geotechnical investigations provide data for the evaluation of site response, i.e. the free-field ground motion response spectra, assessment of the liquefaction hazard and foundation design. Important element of the hydrogeological survey is numerical groundwater modeling. The aim of hydrogeological modeling is the summary of hydrogeological data in a numeric system, the description, simulation of underground water flow and transport conditions.

  9. 'Cape capture': Geologic data and modeling results suggest the holocene loss of a Carolina Cape

    USGS Publications Warehouse

    Thieler, E.R.; Ashton, A.D.

    2011-01-01

    For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes-Hatteras, Lookout, Fear, and Romain-off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fiuvial system during the early Holocene transgression, when this portion of the shelf was fiooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of 'cape capture.' The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history. ?? 2011 Geological Society of America.

  10. Precomputing upscaled hydraulic conductivity for complex geological structures

    NASA Astrophysics Data System (ADS)

    Mariethoz, G.; Jha, S. K.; George, M.; Maheswarajah, S.; John, V.; De Re, D.; Smith, M.

    2013-12-01

    3D geological models are built to capture the geological heterogeneity at a fine scale. However groundwater modellers are often interested in the hydraulic conductivity (K) values at a much coarser scale to reduce the numerical burden. Upscaling is used to assign conductivity to large volumes, which necessarily causes a loss of information. Recent literature has shown that the connectivity in the channelized structures is an important feature that needs to be taken into account for accurate upscaling. In this work we study the effect of channel parameters, e.g. width, sinuosity, connectivity etc. on the upscaled values of the hydraulic conductivity and the associated uncertainty. We devise a methodology that derives correspondences between a lithological description and the equivalent hydraulic conductivity at a larger scale. The method uses multiple-point geostatistics simulations (MPS) and parameterizes the 3D structures by introducing continuous rotation and affinity parameters. Additional statistical characterization is obtained by transition probabilities and connectivity measures. Equivalent hydraulic conductivity is then estimated by solving a flow problem for the entire heterogeneous domain by applying steady state flow in horizontal and vertical directions. This is systematically performed for many random realisations of the small scale structures to enable a probability distribution for the equivalent upscaled hydraulic conductivity. This process allows deriving systematic relationships between a given depositional environment and precomputed equivalent parameters. A modeller can then exploit the prior knowledge of the depositional environment and expected geological heterogeneity to bypass the step of generating small-scale models, and directly work with upscaled values.

  11. Modern Workflows for Fracture Rock Hydrogeology

    NASA Astrophysics Data System (ADS)

    Doe, T.

    2015-12-01

    Discrete Fracture Network (DFN) is a numerical simulation approach that represents a conducting fracture network using geologically realistic geometries and single-conductor hydraulic and transport properties. In terms of diffusion analogues, equivalent porous media derive from heat conduction in continuous media, while DFN simulation is more similar to electrical flow and diffusion in circuits with discrete pathways. DFN modeling grew out of pioneering work of David Snow in the late 1960s with additional impetus in the 1970's from the development of the development of stochastic approaches for describing of fracture geometric and hydrologic properties. Research in underground test facilities for radioactive waste disposal developed the necessary linkages between characterization technologies and simulation as well as bringing about a hybrid deterministic stochastic approach. Over the past 40 years DFN simulation and characterization methods have moved from the research environment into practical, commercial application. The key geologic, geophysical and hydrologic tools provide the required DFN inputs of conductive fracture intensity, orientation, and transmissivity. Flow logging either using downhole tool or by detailed packer testing identifies the locations of conducting features in boreholes, and image logging provides information on the geology and geometry of the conducting features. Multi-zone monitoring systems isolate the individual conductors, and with subsequent drilling and characterization perturbations help to recognize connectivity and compartmentalization in the fracture network. Tracer tests and core analysis provide critical information on the transport properties especially matrix diffusion unidentified conducting pathways. Well test analyses incorporating flow dimension boundary effects provide further constraint on the conducting geometry of the fracture network.

  12. PHYSICAL MODELING OF CONTRACTED FLOW.

    USGS Publications Warehouse

    Lee, Jonathan K.

    1987-01-01

    Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.

  13. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  14. Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Fields, A. L., III

    2015-12-01

    Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.

  15. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams - A Modification to SFR1

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.

    2005-01-01

    Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward progression of a wetting front through an unsaturated column. A third hypothetical simulation is presented that includes interaction between a stream and aquifer separated by an unsaturated zone. This simulation is included to demonstrate the utility of unsaturated flow in SFR2 with MODFLOW-2000. This report includes a description of the data input requirements for simulating unsaturated flow in SFR2.

  16. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  17. A new model for early Earth: heat-pipe cooling

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.

    2013-12-01

    In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the surface rocks were forced radially inward, resulting in uplift, exhumation, and shortening. Declining heat sources over time led to an abrupt, dynamically spontaneous transition to plate tectonics. The model predicts a geological record with rapid, semi-continuous volcanic resurfacing; contractional deformation; a low geothermal gradient across the bulk of the lithosphere; and a rapid decrease in heat-pipe volcanism after the initiation of plate tectonics. Review of data from ancient cratons and the detrital zircon record is consistent with these predictions. In this presentation, we review these findings with a focus on comparison of the model predictions with the geologic record. This comparison suggests that Earth cooled via heat pipes until a ~3.2 Ga subduction initiation episode. The Isua record reflects long-lived contractional deformation, and the Barberton and Pilbara records preserve heat-pipe lithospheric development in regions without significant contraction. In summary, the heat-pipe model provides a view of early Earth that is more globally applicable than existing plate and vertical tectonic models.

  18. The Mississippi Embayment Regional Aquifer Study (MERAS): Documentation of a Groundwater-Flow Model Constructed to Assess Water Availability in the Mississippi Embayment

    USGS Publications Warehouse

    Clark, Brian R.; Hart, Rheannon M.

    2009-01-01

    The Mississippi Embayment Regional Aquifer Study (MERAS) was conducted with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater. This report documents the construction and calibration of a finite-difference groundwater model for use as a tool to quantify groundwater availability within the Mississippi embayment. To approximate the differential equation, the MERAS model was constructed with the U.S. Geological Survey's modular three-dimensional finite-difference code, MODFLOW-2005; the preconditioned conjugate gradient solver within MODFLOW-2005 was used for the numerical solution technique. The model area boundary is approximately 78,000 square miles and includes eight States with approximately 6,900 miles of simulated streams, 70,000 well locations, and 10 primary hydrogeologic units. The finite-difference grid consists of 414 rows, 397 columns, and 13 layers. Each model cell is 1 square mile with varying thickness by cell and by layer. The simulation period extends from January 1, 1870, to April 1, 2007, for a total of 137 years and 69 stress periods. The first stress period is simulated as steady state to represent predevelopment conditions. Areal recharge is applied throughout the MERAS model area using the MODFLOW-2005 Recharge Package. Irrigation, municipal, and industrial wells are simulated using the Multi-Node Well Package. There are 43 streams simulated by the MERAS model. Each stream or river in the model area was simulated using the Streamflow-Routing Package. The perimeter of the model area and the base of the flow system are represented as no-flow boundaries. The downgradient limit of each model layer is a no-flow boundary, which approximates the extent of water with less than 10,000 milligrams per liter of dissolved solids. The MERAS model was calibrated by making manual changes to parameter values and examining residuals for hydraulic heads and streamflow. Additional calibration was achieved through alternate use of UCODE-2005 and PEST. Simulated heads were compared to 55,786 hydraulic-head measurements from 3,245 wells in the MERAS model area. Values of root mean square error between simulated and observed hydraulic heads of all observations ranged from 8.33 feet in 1919 to 47.65 feet in 1951, though only six root mean square error values are greater than 40 feet for the entire simulation period. Simulated streamflow generally is lower than measured streamflow for streams with streamflow less than 1,000 cubic feet per second, and greater than measured streamflow for streams with streamflow more than 1,000 cubic feet per second. Simulated streamflow is underpredicted for 18 observations and overpredicted for 10 observations in the model. These differences in streamflow illustrate the large uncertainty in model inputs such as predevelopment recharge, overland flow, pumpage (from stream and aquifer), precipitation, and observation weights. The groundwater-flow budget indicates changes in flow into (inflows) and out of (outflows) the model area during the pregroundwater-irrigation period (pre-1870) to 2007. Total flow (sum of inflows or outflows) through the model ranged from about 600 million gallons per day prior to development to 18,197 million gallons per day near the end of the simulation. The pumpage from wells represents the largest outflow components with a net rate of 18,197 million gallons per day near the end of the model simulation in 2006. Groundwater outflows are offset primarily by inflow from aquifer storage and recharge.

  19. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  20. Status of surface-water modeling in the U.S. Geological Survey

    USGS Publications Warehouse

    Jennings, Marshall E.; Yotsukura, Nobuhiro

    1979-01-01

    The U.S. Geological Survey is active in the development and use of models for the analysis of various types of surface-water problems. Types of problems for which models have been, or are being developed, include categories such as the following: (1)specialized hydraulics, (2)flow routing in streams, estuaries, lakes, and reservoirs, (3) sedimentation, (4) transport of physical, chemical, and biological constituents, (5) surface exchange of heat and mass, (6) coupled stream-aquifer flow systems, (7) physical hydrology for rainfall-runoff relations, stream-system simulations, channel geometry, and water quality, (8) statistical hydrology for synthetic streamflows, floods, droughts, storage, and water quality, (9) management and operation problems, and (10) miscellaneous hydrologic problems. Following a brief review of activities prior to 1970, the current status of surface-water modeling is given as being in a developmental, verification, operational, or continued improvement phase. A list of recently published selected references, provides useful details on the characteristics of models.

  1. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  2. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  3. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  4. An application of sedimentation simulation in Tahe oilfield

    NASA Astrophysics Data System (ADS)

    Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He

    2017-12-01

    The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.

  5. Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissmann, Gary S

    2013-12-06

    The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether establishedmore » dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.« less

  6. Modelling the mid-Pliocene Warm Period with the IPSLGCM: contribution to PlioMIP and feedback mechanisms from the presence of mega-lakes

    NASA Astrophysics Data System (ADS)

    Contoux, C.; Jost, A.; Sepulchre, P.; Ramstein, G.

    2012-04-01

    The mid-Pliocene Warm Period (mPWP, ca. 3.3 -3 Ma) is the last geological period showing a warmer climate than the preindustrial during a sustained period of time, much longer than interglacial periods of the last million years. Moreover, mPWP position of the continents and atmospheric pCO2 are very close to present-day, both conditions making the mPWP a relevant analogue for future global warming. For these reasons, the mPWP has been the focus of Pliocene Modelling Intercomparison Project (PlioMIP), which associates data analysis and modelling. We use the IPSLCM5 Earth System model and its atmospheric component alone (LMDZ), to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs), topography, ice sheet extent and vegetation are the ones used within the PlioMIP framework. On a global scale we show the impact of different boundary conditions with LMDZ, and of a global coupling on the simulated climate. Results from the Earth System model are also compared to SST reconstructions, particularly in the North Atlantic Ocean, where an important warming occurs, generally poorly reproduced by models. These results will then be part of the multi-model analysis for the Pliocene. The PlioMIP exercise is also about better understanding model/data mismatches. In the present-day desertic regions of Lake Chad (Africa) and Lake Eyre (Australia), vegetation data show the presence of tropical savanna at the expense of deserts during the mPWP. Vegetation models forced by mPWP climatic simulations fail to reproduce more humid vegetation in these locations. There might be a reason for this model/data discrepancy: geological data stand for the presence of mega-lakes in these two regions during the mPWP that are not accounted for in previous simulations. Such extended waterbodies could have important feedbacks on the hydrological cycle and regional climate. We use the LMDZ4 atmospheric model imbedding explicitly resolved lake surfaces to simulate the climate under mega-lake conditions, using a zoom on the regions of interest. This allows us to determine the viability of such waterbodies under mid-Pliocene climatic conditions as well as their feedbacks on the climate system.

  7. Watershed scale response to climate change--Yampa River Basin, Colorado

    USGS Publications Warehouse

    Hay, Lauren E.; Battaglin, William A.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation. Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Yampa River Basin at Steamboat Springs, Colorado.

  8. Integrated water flow model and modflow-farm process: A comparison of theory, approaches, and features of two integrated hydrologic models

    USGS Publications Warehouse

    Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2016-01-01

    Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.

  9. Terrestrial and Lunar Geological Terminology for Non-Geoscientists

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.

    2009-01-01

    This slide presentation reviews several geologic concepts applicable to lunar geology with particular interest in creating lunar regolith simulant. Fundamental ways in which the Moon differs from the Earth. Concepts that are described in detail are: minerals, glass, and rocks.

  10. Geochemistry and the Understanding of Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.

  11. Application of the Precipitation-Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin in the southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland J.; Markstrom, Steve L.; Regan, R. Steve; Elliott, Caroline M.; Jones, John W.

    2013-01-01

    A hydrologic model of the Apalachicola–Chattahoochee–Flint River Basin (ACFB) has been developed as part of a U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center effort to provide integrated science that helps resource managers understand the effect of climate change on a range of ecosystem responses. The hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. The ACFB PRMS model simulates streamflow throughout the approximately 50,700 square-kilometer basin on a daily time step for the period 1950–99 using gridded climate forcings of air temperature and precipitation, and parameters derived from spatial data layers of altitude, land cover, soils, surficial geology, depression storage (small water bodies), and data from 56 USGS streamgages. Measured streamflow data from 35 of the 56 USGS streamgages were used to calibrate and evaluate simulated basin streamflow; the remaining gage locations were used for model delineation only. The model matched measured daily streamflow at 31 of the 35 calibration gages with Nash-Sutcliffe Model Efficiency Index (NS) greater than 0.6. Streamflow data for some calibration gages were augmented for regulation and water use effects to represent more natural flow volumes. Time-static parameters describing land cover limited the ability of the simulation to match historical runoff in the more developed subbasins. Overall, the PRMS simulation of the ACFB provides a good representation of basin hydrology on annual and monthly time steps. Calibration subbasins were analyzed by separating the 35 subbasins into five classes based on physiography, land use, and stream type (tributary or mainstem). The lowest NS values were rarely below 0.6, whereas the median NS for all five classes was within 0.74 to 0.96 for annual mean streamflow, 0.89 to 0.98 for mean monthly streamflow, and 0.82 to 0.98 for monthly mean streamflow. The median bias for all five classes was within –4.3 to 0.8 percent for annual mean streamflow, –6.3 to 0.5 percent for mean monthly streamflow, and –9.3 to 1.3 percent for monthly mean streamflow. The NS results combined with the percent bias results indicated a good to very good streamflow volume simulation for all subbasins. This simulation of the ACFB provides a foundation for future modeling and interpretive studies. Streamflow and other components of the hydrologic cycle simulated by PRMS can be used to inform other types of simulations; water-temperature, hydrodynamic, and ecosystem-dynamics simulations are three examples. In addition, possible future hydrologic conditions could be studied using this model in combination with land cover projections and downscaled general circulation model results.

  12. A Computational Model to Simulate Groundwater Seepage Risk in Support of Geotechnical Investigations of Levee and Dam Projects

    DTIC Science & Technology

    2013-03-01

    Allen 1974, 1978; Bridge and Leeder 1979; Mackey and Bridge 1992) that computes synthetic stratigraphy for a floodplain cross section. The model...typical of that used to record and communicate geologic information for engineering applications. The computed stratigraphy differentiates between...belt dimensions measured for two well-studied river systems: (A) the Linge River within the Rhine-Meuse Delta , Netherlands, and (B) the Lower

  13. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  14. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic; ...

    2016-09-20

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  15. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan

    2016-03-01

    After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).

  16. Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA

    USGS Publications Warehouse

    Gingerich, S.B.; Voss, C.I.

    2005-01-01

    Three-dimensional modeling of groundwater flow and solute transport in the Pearl Harbor aquifer, southern Oahu, Hawaii, shows that the readjustment of the freshwater-saltwater transition zone takes a long time following changes in pumping, irrigation, or recharge in the aquifer system. It takes about 50-years for the transition zone to move 90% of the distance to its new steady position. Further, the Ghyben-Herzberg estimate of the freshwater/saltwater interface depth occurred between the 10 and 50% simulated seawater concentration contours in a complex manner during 100-years of the pumping history of the aquifer. Thus, it is not a good predictor of the depth of potable water. Pre-development recharge was used to simulate the 1880 freshwater-lens configuration. Historical pumpage and recharge distributions were used and the resulting freshwater-lens size and position were simulated through 1980. Simulations show that the transition zone moved upward and landward during the period simulated. Previous groundwater flow models for Oahu have been limited to areal models that simulate a sharp interface between freshwater and saltwater or solute-transport models that simulate a vertical aquifer section. The present model is based on the US Geological Survey's three-dimensional solute transport (3D SUTRA) computer code. Using several new tools for pre- and post-processing of model input and results have allowed easy model construction and unprecedented visualization of the freshwater lens and underlying transition zone in Hawaii's most developed aquifer. ?? Springer-Verlag 2005.

  17. The use of sequential indicator simulation to characterize geostatistical uncertainty; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, K.M.

    1992-10-01

    Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the characterization of uncertainty about the structure or behavior of natural systems. This report discusses a simulation experiment designed to study the quality of uncertainty bounds generated using SIS. The results indicate that, while SIS may produce reasonable uncertainty bounds in many situations, factors like the number and location of available sample data, the quality of variogram models produced by the user, and the characteristics of the geologic region to be modeled, can all have substantial effects on the accuracy and precision of estimated confidence limits. It ismore » recommended that users of SIS conduct validation studies for the technique on their particular regions of interest before accepting the output uncertainty bounds.« less

  18. Land Cover Applications, Landscape Dynamics, and Global Change

    USGS Publications Warehouse

    Tieszen, Larry L.

    2007-01-01

    The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.

  19. Hydrogeology and simulation of source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer near Shippensburg, Cumberland and Franklin Counties, Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.

    2005-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the Shippensburg Borough Authority to evaluate the source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer in Cumberland and Franklin Counties, Pa. The areal extent of the zone of contribution was simulated for three production wells near Shippensburg, Pa. by use of a ground-water-flow model. A 111-square-mile area was selected as the model area and includes areas of the South Mountain Section and the Great Valley Section of the Valley and Ridge Physiographic Province. Within the model area, the geologic units in the South Mountain area are predominantly metamorphic rocks and the geologic units in the Great Valley are predominantly carbonate rocks. Hydrologic and geologic information were compiled to establish a conceptual model of ground-water flow. Characteristics of aquifer materials were determined, and streamflow and water levels were measured. Streamflow measurements in November 2003 showed all streams lost water as they flowed from South Mountain over the colluvium-mantled carbonate aquifer into the Great Valley. Some streams lost more than 1 cubic foot per second to the aquifer in this area. The Shippensburg Borough Authority owns three production wells in the model area. Two wells, Cu 969 and Fr 823, are currently (2004) used as production wells and produce 500,000 and 800,000 gallons per day, respectively. Well Cu 970 is intended to be brought on line as a production well in the future. Water levels were measured in 43 wells to use for model calibration. Water-level fluctuations and geophysical logs indicated confined conditions in well Cu 970. Ground-water flow was simulated with a model that consisted of two vertical layers, with five zones in each layer. The units were hydrostratigraphic units that initially were based on geologic formations, but boundaries were adjusted during model calibration. Model calibration resulted in a root mean square error of 9.8 feet. A parameter-estimation package was used during model calibration to estimate three parameters. The parameter estimation resulted in a value of 233 feet per day for horizontal hydraulic conductivity of the highly fractured carbonate rocks and sandy colluvium in layer 1; 3.97 feet per day for horizontal hydraulic conductivity of the ridge-forming unit in layer 1; and a value of 1.73 for horizontal anisotropy in both layers. The calibrated model was used to delineate the areal extent of the zone of contribution for wells Cu 969 and Fr 823. Although well Cu 970 is not currently (2004) being used, the areal extent of its zone of contribution also was simulated without additional model calibration. The shape of the areal extent of the zone of contribution was similar for each well and included an area that extended from the well southwest along the Tomstown Formation, and then extended southeast into the metamorphic rocks of South Mountain. The contributing areas from the watersheds of losing streams were also delineated because losing stream reaches bisect the areal extent of the zones of contribution. Spatial uncertainty of the areal extent of the zone of contribution was illustrated using a Monte-Carlo analysis. The model was run 1,000 times using randomly generated parameter sets that were normally distributed within the confidence interval around the optimal values for the three estimated parameters. The model converged and had a reasonable water budget for 980 of the model runs. For each of those 980 model runs, the recharge area was determined, and the results for all runs were compiled and contoured. The results of the Monte-Carlo analysis were compared to the results of the deterministic model, illustrating that the deterministic model has the greatest certainty in the area closest to each well in the Tomstown Formation. The areas farther from the well, upgradient, and in the metamorphic rocks have a higher degree

  20. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15

  1. Documentation of a restart option for the U.S. Geological Survey coupled Groundwater and Surface-Water Flow (GSFLOW) model

    USGS Publications Warehouse

    Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.

    2015-10-02

    The spin-up simulation should be run for a sufficient length of time necessary to establish antecedent conditions throughout a model domain. Each GSFLOW application can require different lengths of time to account for the hydrologic stresses to propagate through a coupled groundwater and surface-water system. Typically, groundwater hydrologic processes require many years to come into equilibrium with dynamic climate and other forcing (or stress) data, such as precipitation and well pumping, whereas runoff-dominated surface-water processes respond relatively quickly. Use of a spin-up simulation can substantially reduce execution-time requirements for applications where the time period of interest is small compared to the time for hydrologic memory; thus, use of the restart option can be an efficient strategy for forecast and calibration simulations that require multiple simulations starting from the same day.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McPherson, Brian J.; Grigg, Reid B.

    Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less

  3. Simulation of Ground-Water Flow in the Middle Rio Grande Basin Between Cochiti and San Acacia, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Barroll, Peggy

    2002-01-01

    This report describes a three-dimensional, finite difference, ground-water-flow model of the Santa Fe Group aquifer system within the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. The aquifer system is composed of the Santa Fe Group of middle Tertiary to Quaternary age and post-Santa Fe Group valley and basin-fill deposits of Quaternary age. Population increases in the basin since the 1940's have caused dramatic increases in ground-water withdrawals from the aquifer system, resulting in large ground-water-level declines. Because the Rio Grande is hydraulically connected to the aquifer system, these ground-water withdrawals have also decreased flow in the Rio Grande. Concern about water resources in the basin led to the development of a research plan for the basin focused on the hydrologic interaction of ground water and surface water (McAda, D.P., 1996, Plan of study to quantify the hydrologic relation between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico: U.S. Geological Survey Water-Resources Investigations Report 96-4006, 58 p.). A multiyear research effort followed, funded and conducted by the U.S. Geological Survey and other agencies (Bartolino, J.R., and Cole, J.C., 2002, Ground-water resources of the Middle Rio Grande Basin, New Mexico: U.S. Geological Survey Circular 1222, 132 p.). The modeling work described in this report incorporates the results of much of this work and is the culmination of this multiyear study. The purpose of the model is (1) to integrate the components of the ground-water-flow system, including the hydrologic interaction between the surface-water systems in the basin, to better understand the geohydrology of the basin and (2) to provide a tool to help water managers plan for and administer the use of basin water resources. The aquifer system is represented by nine model layers extending from the water table to the pre-Santa Fe Group basement rocks, as much as 9,000 feet below the NGVD 29. The horizontal grid contains 156 rows and 80 columns, each spaced 3,281 feet (1 kilometer) apart. The model simulates predevelopment steady-state conditions and historical transient conditions from 1900 to March 2000 in 1 steady-state and 52 historical stress periods. Average annual conditions are simulated prior to 1990, and seasonal (winter and irrigation season) conditions are simulated from 1990 to March 2000. The model simulates mountain-front, tributary, and subsurface recharge; canal, irrigation, and septic-field seepage; and ground-water withdrawal as specified-flow boundaries. The model simulates the Rio Grande, riverside drains, Jemez River, Jemez Canyon Reservoir, Cochiti Lake, riparian evapotranspiration, and interior drains as head-dependent flow boundaries. Hydrologic properties representing the Santa Fe Group aquifer system in the ground-water-flow model are horizontal hydraulic conductivity, vertical hydraulic conductivity, specific storage, and specific yield. Variable horizontal anisotropy is applied to the model so that hydraulic conductivity in the north-south direction (along model columns) is greater than hydraulic conductivity in the east-west direction (along model rows) over much of the model. This pattern of horizontal anisotropy was simulated to reflect the generally north-south orientation of faulting over much of the modeled area. With variable horizontal anisotropy, horizontal hydraulic conductivities in the model range from 0.05 to 60 feet per day. Vertical hydraulic conductivity is specified in the model as a horizontal to vertical anisotropy ratio (calculated to be 150:1 in the model) multiplied by the horizontal hydraulic conductivity along rows. Specific storage was estimated to be 2 x 10-6 per foot in the model. Specific yield was estimated to be 0.2 (dimensionless). A ground-water-flow model is a tool that can integrate the complex interactions of hydrologic boundary conditions, aquifer materials

  4. A groundwater-flow model for the Treasure Valley and surrounding area, southwestern Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Vincent, Sean

    2017-04-17

    The U.S. Geological Survey (USGS), in partnership with the Idaho Department of Water Resources (IDWR) and Idaho Water Resource Board (IWRB), will construct a numerical groundwater-flow model of the Treasure Valley and surrounding area. Resource managers will use the model to simulate potential anthropogenic and climatic effects on groundwater for water-supply planning and management. As part of model construction, the hydrogeologic understanding of the aquifer system will be updated with information collected during the last two decades, as well as new data collected for the study.

  5. A Combined Remote Sensing-Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide

    2016-04-01

    Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D distinct element simulations to better understand the stochastic nature of the geological structure and its effect on the quarry slope failure mechanism. The numerical modelling results highlight the influence of discontinuity characteristics and kinematics on the slope failure mechanism and the variability in the size and shape of the failed blocks.

  6. Large Scale Geologic Controls on Hydraulic Stimulation

    NASA Astrophysics Data System (ADS)

    McLennan, J. D.; Bhide, R.

    2014-12-01

    When simulating a hydraulic fracturing, the analyst has historically prescribed a single planar fracture. Originally (in the 1950s through the 1970s) this was necessitated by computational restrictions. In the latter part of the twentieth century, hydraulic fracture simulation evolved to incorporate vertical propagation controlled by modulus, fluid loss, and the minimum principal stress. With improvements in software, computational capacity, and recognition that in-situ discontinuities are relevant, fully three-dimensional hydraulic simulation is now becoming possible. Advances in simulation capabilities enable coupling structural geologic data (three-dimensional representation of stresses, natural fractures, and stratigraphy) with decision making processes for stimulation - volumes, rates, fluid types, completion zones. Without this interaction between simulation capabilities and geological information, low permeability formation exploitation may linger on the fringes of real economic viability. Comparative simulations have been undertaken in varying structural environments where the stress contrast and the frequency of natural discontinuities causes varying patterns of multiple, hydraulically generated or reactivated flow paths. Stress conditions and nature of the discontinuities are selected as variables and are used to simulate how fracturing can vary in different structural regimes. The basis of the simulations is commercial distinct element software (Itasca Corporation's 3DEC).

  7. Simulating the evolution of coastal morphology and stratigraphy with a new morphological-behaviour model (GEOMBEST)

    USGS Publications Warehouse

    Stolper, D.; List, J.H.; Thieler, E.R.

    2005-01-01

    A new morphological-behaviour model is used to simulate evolution of coastal morphology associated with cross-shore translations of the shoreface, barrier, and estuary. The model encapsulates qualitative principles drawn from established geological concepts that are parameterized to provide quantitative predictions of morphological change on geological time scales (order 10 3 years), as well as shorter time scales applicable for long-term coastal management (order 101 to 102 years). Changes in sea level, and sediment volume within the shoreface, barrier, and estuary, drive the model behaviour. Further parameters, defining substrate erodibility, sediment composition, and time-dependent shoreface response, constrain the evolution of the shoreface towards an equilibrium profile. Results from numerical experiments are presented for the low-gradient autochthonous setting of North Carolina and the steep allochthonous setting of the Washington shelf. Simulations in the Currituck region of North Carolina examined the influence of sediment supply, substrate composition, and substrate erodibility on barrier transgression. Results demonstrate that the presence of a lithified substrate reduces the rate of barrier transgression compared to scenarios where an erodible, sand-rich substrate exists. Simulations of the Washington coast, 20 km north of the Columbia River, confirmed that the model can reproduce complex stratigraphy involving regressive and transgressive phases of coastal evolution. Results suggest that the first major addition of sediment to the shelf occurred around 12 900 years ago and resulted from the rapid addition of sediment volume from the Columbia River attributed to the Missoula floods. This was followed by a period where little or no sediment was added (12 400-9100 BP) and a third period when most sediment was added to the shelf (9100 BP to present) from the Columbia River. Comparing results from each setting demonstrates an indirect control that substrate slope has on shoreface transgression rates. Shoreface transgression is shown to be sensitive to the rate of estuarine sedimentation, with the sensitivity increasing as substrate slope decreases. 

  8. A laboratory validation study of the time-lapse oscillatory pumping test concept for leakage detection in geological repositories

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Islam, A.; Lu, J.

    2017-12-01

    Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based monitoring technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, a site operator may identify the potential anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures ( 120psi). The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results were further analyzed by developing a 3D flow model, using which the model parameters were estimated through frequency domain inversion.

  9. Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, H.; Zhang, K.; Karasaki, K.

    Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO{sub 2} geologic storage that predicts not only CO{sub 2} migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO{sub 2} injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO{sub 2} injection on near-surfacemore » aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km x 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO{sub 2} was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO{sub 2} plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.« less

  10. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial improvements to the previous models of the Fena Valley watershed and Reservoir. Datasets associated with this report are available as a U.S. Geological Survey data release (Rosa and Hay, 2017; DOI:10.5066/F7HH6HV4).

  11. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times.

    PubMed

    Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie

    2018-03-27

    Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.

  12. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  13. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  14. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  15. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  16. Aggregation of estimated numbers of undiscovered deposits: an R-script with an example from the Chu Sarysu Basin, Kazakhtan: Chapter B in Global mineral resource assessment

    USGS Publications Warehouse

    Schuenemeyer, John H.; Zientek, Michael L.; Box, Stephen E.

    2011-01-01

    Mineral resource assessments completed by the U.S. Geological Survey during the past three decades express geologically based estimates of numbers of undiscovered mineral deposits as probability distributions. Numbers of undiscovered deposits of a given type are estimated in geologically defined regions. Using Monte Carlo simulations, these undiscovered deposit estimates are combined with tonnage and grade models to derive a probability distribution describing amounts of commodities and rock that could be present in undiscovered deposits within a study area. In some situations, it is desirable to aggregate the assessment results from several study areas. This report provides a script developed in open-source statistical software, R, that aggregates undiscovered deposit estimates of a given type, assuming independence, total dependence, or some degree of correlation among aggregated areas, given a user-specified correlation matrix.

  17. Paleogeodesy of the Southern Santa Cruz Mountains Frontal Thrusts, Silicon Valley, CA

    NASA Astrophysics Data System (ADS)

    Aron, F.; Johnstone, S. A.; Mavrommatis, A. P.; Sare, R.; Hilley, G. E.

    2015-12-01

    We present a method to infer long-term fault slip rate distributions using topography by coupling a three-dimensional elastic boundary element model with a geomorphic incision rule. In particular, we used a 10-m-resolution digital elevation model (DEM) to calculate channel steepness (ksn) throughout the actively deforming southern Santa Cruz Mountains in Central California. We then used these values with a power-law incision rule and the Poly3D code to estimate slip rates over seismogenic, kilometer-scale thrust faults accommodating differential uplift of the relief throughout geologic time. Implicit in such an analysis is the assumption that the topographic surface remains unchanged over time as rock is uplifted by slip on the underlying structures. The fault geometries within the area are defined based on surface mapping, as well as active and passive geophysical imaging. Fault elements are assumed to be traction-free in shear (i.e., frictionless), while opening along them is prohibited. The free parameters in the inversion include the components of the remote strain-rate tensor (ɛij) and the bedrock resistance to channel incision (K), which is allowed to vary according to the mapped distribution of geologic units exposed at the surface. The nonlinear components of the geomorphic model required the use of a Markov chain Monte Carlo method, which simulated the posterior density of the components of the remote strain-rate tensor and values of K for the different mapped geologic units. Interestingly, posterior probability distributions of ɛij and K fall well within the broad range of reported values, suggesting that the joint use of elastic boundary element and geomorphic models may have utility in estimating long-term fault slip-rate distributions. Given an adequate DEM, geologic mapping, and fault models, the proposed paleogeodetic method could be applied to other crustal faults with geological and morphological expressions of long-term uplift.

  18. Using improved technology for widespread application of a geological carbon sequestration study

    NASA Astrophysics Data System (ADS)

    Raney, J.

    2013-12-01

    The Kansas Geological Survey is part of an ongoing collaboration between DOE-NETL, academia, and the petroleum industry to investigate the feasibility of carbon utilization and storage in Kansas. Latest findings in the 25,000 mi2 study area in southern Kansas estimate CO2 storage capacity ranges from 8.8 to 75.5 billion metric tons in a deep Lower Orodovican-age Arbuckle saline aquifer. In addition, an estimated 100 million tonnes of CO2 could be used for extracting additional oil from Kansas' fields, making transitions to carbon management economic. This partnership has a rare opportunity to synchronize abundant, yet previously disseminated knowledge into a cohesive scientific process to optimize sequestration site selection and implementation strategies. Following a thorough characterization, a small-scale CO2 injection of 70,000 tonnes will be implemented in Wellington Field in Sumner County, including a five-plot miscible CO2-EOR flood of a Mississippian reservoir followed by the underlying Arbuckle saline aquifer. Best practices and lessons learned from the field study will improve estimates on CO2 storage capacity, plume migration models, and identify potential leakage pathways to pursue safe and effective geological carbon sequestration at commercial scales. A highly accessible and multifunctional online database is being developed throughout the study that integrates all acquired geological, physical, chemical, and hydrogeologic knowledge. This public database incorporates tens of thousands of data points into easily viewable formats for user downloads. An Interactive Project Map Viewer is a key mechanism to present the scientific research, and will delineate compartment candidates and reservoirs matching reference criteria or user defined attributes. This tool uses a familiar pan and zoom interface to filter regional project data or scale down to detailed digitized information from over 3,300 carefully selected preexisting Kansas wells. A Java-based log analysis program can combine public LAS data with privately owned digital petrophysical information to create refined cross sections with details on lithology and geochemistry. The interactive mapper displays geophysical surveys such as depth and time converted 3D seismic, gravity, magnetic, remote sensing, simulations, regional geologic base layers, and launches web-based well profile tools. Geocelluar models that demonstrate porosity, fault boundaries, seal continuity, and other hydrostratigraphic parameters will illustrate the presence of aquifers and caprocks. Dynamic models will use this input to simulate in situ CO2 plume migration and entrapment mechanisms over time. Additional outreach activities such as core workshops that showcase geological samples, conference presentations to describe technology experiences, and publishing peer-review journal articles will ensure the scientific research is delivered to the general public and useful in academia. Next steps will seek to enhance the current 3D depiction of the subsurface, leading to a direct visual connection between conceptual models and their supporting scientific evidence. Together, these tools aim to unite various industries to perform streamlined data analysis leading to a greater understanding of future geological carbon utilization and storage.

  19. Machine processing of remotely sensed data - quantifying global process: Models, sensor systems, and analytical methods; Proceedings of the Eleventh International Symposium, Purdue University, West Lafayette, IN, June 25-27, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengel, S.K.; Morrison, D.B.

    1985-01-01

    Consideration is given to global biogeochemical issues, image processing, remote sensing of tropical environments, global processes, geology, landcover hydrology, and ecosystems modeling. Topics discussed include multisensor remote sensing strategies, geographic information systems, radars, and agricultural remote sensing. Papers are presented on fast feature extraction; a computational approach for adjusting TM imagery terrain distortions; the segmentation of a textured image by a maximum likelihood classifier; analysis of MSS Landsat data; sun angle and background effects on spectral response of simulated forest canopies; an integrated approach for vegetation/landcover mapping with digital Landsat images; geological and geomorphological studies using an image processing technique;more » and wavelength intensity indices in relation to tree conditions and leaf-nutrient content.« less

  20. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic modelmore » of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.« less

  1. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  2. Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state

    DOE PAGES

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Cole, David R.; ...

    2016-10-11

    In this study, a field-scale carbon dioxide (CO 2) injection pilot project was conducted as part of the Southeast Regional Sequestration Partnership (SECARB) at Cranfield, Mississippi. We present higher-order finite element simulations of the compositional two-phase CO 2-brine flow and transport during the experiment. High- resolution static models of the formation geology in the Detailed Area Study (DAS) located below the oil- water contact (brine saturated) are used to capture the impact of connected flow paths on breakthrough times in two observation wells. Phase behavior is described by the cubic-plus-association (CPA) equation of state, which takes into account the polarmore » nature of water molecules. Parameter studies are performed to investigate the importance of Fickian diffusion, permeability heterogeneity, relative permeabilities, and capillarity. Simulation results for the pressure response in the injection well and the CO 2 breakthrough times at the observation wells show good agreement with the field data. For the high injection rates and short duration of the experiment, diffusion is relatively unimportant (high P clet numbers), while relative permeabilities have a profound impact on the pressure response. High-permeability pathways, created by fluvial deposits, strongly affect the CO 2 transport and highlight the importance of properly characterizing the formation heterogeneity in future carbon sequestration projects.« less

  3. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have concentrations determined via in situ radiation measurements with high purity germanium detectors (HPGe) and aerial survey measurements. These various measurement techniques have been compared and found to produce consistent results. Finally, modeling using Monte Carlo N-Particle Transport Code (MCNP), a particle physics modeling code, has allowed us to derive concentration to exposure rate coefficients. These simulations also have shown that differences in major element chemistry have little impact on the gamma ray emissions of geologic materials.

  4. Quantifying Risks and Uncertainties Associated with Induced Seismicity due to CO2 Injection into Geologic Formations with Faults

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nguyen, B. N.; Bacon, D. H.; White, M. D.; Murray, C. J.

    2016-12-01

    A multiphase flow and reactive transport simulator named STOMP-CO2-R has been developed and coupled to the ABAQUS® finite element package for geomechanical analysis enabling comprehensive thermo-hydro-geochemical-mechanical (THMC) analyses. The coupled THMC simulator has been applied to analyze faulted CO2 reservoir responses (e.g., stress and strain distributions, pressure buildup, slip tendency factor, pressure margin to fracture) with various complexities in fault and reservoir structures and mineralogy. Depending on the geological and reaction network settings, long-term injection of CO2 can have a significant effect on the elastic stiffness and permeability of formation rocks. In parallel, an uncertainty quantification framework (UQ-CO2), which consists of entropy-based prior uncertainty representation, efficient sampling, geostatistical reservoir modeling, and effective response surface analysis, has been developed for quantifying risks and uncertainties associated with CO2 sequestration. It has been demonstrated for evaluating risks in CO2 leakage through natural pathways and wellbores, and for developing predictive reduced order models. Recently, a parallel STOMP-CO2-R has been developed and the updated STOMP/ABAQUS model has been proven to have a great scalability, which makes it possible to integrate the model with the UQ framework to effectively and efficiently explore multidimensional parameter space (e.g., permeability, elastic modulus, crack orientation, fault friction coefficient) for a more systematic analysis of induced seismicity risks.

  5. A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.; Caers, J.

    2016-12-01

    There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.

  6. Coupled Hydro-mechanical process of natural fracture network formation in sedimentary basin

    NASA Astrophysics Data System (ADS)

    Ouraga, zady; Guy, Nicolas; Pouya, amade

    2017-04-01

    In sedimentary basin numerous phenomenon depending on the geological time span and its history can lead to a decrease in effective stress and therefore result in fracture initiation. Thus, during its formation, under certain conditions, natural fracturing and fracture network formation can occur in various context such as under erosion, tectonic loading and the compaction disequilibrium due to significant sedimentation rate. In this work, natural fracture network and fracture spacing induced by significant sedimentation rate is studied considering mode I fracture propagation, using a coupled hydro-mechanical numerical methods. Assumption of vertical fracture can be considered as a relevant hypothesis in our case of low ratio of horizontal total stress to vertical stress. A particular emphasis is put on synthetic geological structure on which a constant sedimentation rate is imposed on its top. This synthetic geological structure contains defects initially closed and homogeneously distributed. The Fractures are modeled with a constitutive model undergoing damage and the flow is described by poiseuille's law. The damage parameter affects both the mechanical and the hydraulic opening of the fracture. For the numerical simulations, the code Porofis based on finite element modeling is used, fractures are taken into account by cohesive model and the flow is described by Poiseuille's law. The effect of several parameters is also studied and the analysis lead to a fracture network and fracture spacing criterion for basin modeling.

  7. Numerical Modeling of Pot-Hole Subsidence Due to Shallow Underground Coal Mining in Structurally Disturbed Ground

    NASA Astrophysics Data System (ADS)

    Lokhande, Ritesh D.; Murthy, V. M. S. R.; Singh, K. B.; Verma, Chandan Prasad; Verma, A. K.

    2018-04-01

    Stability analysis of underground mining is, generally, complex in nature and is difficult to carry out through analytical solutions more so in case of pot-hole subsidence prediction. Thus, application of numerical modeling technique for simulating and finding a solution is preferred. This paper reports the development of a methodology for simulating the pot-hole subsidence using FLAC3D. This study is restricted to geologically disturbed areas where presence of fault was dominating factor for occurrence of pot-hole subsidence. The results demonstrate that the variation in the excavation geometry and properties of immediate roof rocks play a vital role in the occurrence of pot-hole subsidence.

  8. Simulation of scenario earthquake influenced field by using GIS

    USGS Publications Warehouse

    Zuo, H.-Q.; Xie, L.-L.; Borcherdt, R.D.

    1999-01-01

    The method for estimating the site effect on ground motion specified by Borcherdt (1994a, 1994b) is briefly introduced in the paper. This method and the detail geological data and site classification data in San Francisco bay area of California, the United States, are applied to simulate the influenced field of scenario earthquake by GIS technology, and the software for simulating has been drawn up. The paper is a partial result of cooperative research project between China Seismological Bureau and US Geological Survey.

  9. Measurement and evaluation of the relationships between capillary pressure, relative permeability, and saturation for surrogate fluids for laboratory study of geological carbon sequestration

    NASA Astrophysics Data System (ADS)

    Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.

    2013-12-01

    Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This comparison demonstrated that the experimentally derived constitutive relationships matched the experimental data more accurately than the simulation using constitutive relationships derived from scaling methods and van Genuchten - Mualem model. However, simulated imbibition fronts did not match well, suggesting the need for further study. In general, the study demonstrated the feasibility of using surrogate fluids to obtain both Pc - Sw and kr - Sw relationships to be used in multiphase models of scCO2 migration and entrapment.

  10. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 3. Generator routines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.; Argo, R.S.

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.« less

  11. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 1. Initialization, operation, and documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less

  12. Forested Communities of the Upper Montane in the Central and Southern Sierra Nevada

    Treesearch

    Donald A. Potter

    1998-01-01

    Upper montane forests in the central and southern Sierra Nevada of California were classified into 26 plant associations by using information collected from 0.1-acre circular plots. Within this region, the forested environment including the physiographic setting, geology, soils, and vegetation is described in detail. A simulation model is presented for this portion of...

  13. Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey

    USGS Publications Warehouse

    Chang, Ming; Tasker, Gary D.; Nieswand, Steven

    2001-01-01

    Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.

  14. Channel characterization using multiple-point geostatistics, neural network, and modern analogy: A case study from a carbonate reservoir, southwest Iran

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyedhossein; Javaherian, Abdolrahim; Ataee-pour, Majid; Tahmasebi, Pejman; Khoshdel, Hossein

    2014-12-01

    In facies modeling, the ideal objective is to integrate different sources of data to generate a model that has the highest consistency to reality with respect to geological shapes and their facies architectures. Multiple-point (geo)statistics (MPS) is a tool that gives the opportunity of reaching this goal via defining a training image (TI). A facies modeling workflow was conducted on a carbonate reservoir located southwest Iran. Through a sequence stratigraphic correlation among the wells, it was revealed that the interval under a modeling process was deposited in a tidal flat environment. Bahamas tidal flat environment which is one of the most well studied modern carbonate tidal flats was considered to be the source of required information for modeling a TI. In parallel, a neural network probability cube was generated based on a set of attributes derived from 3D seismic cube to be applied into the MPS algorithm as a soft conditioning data. Moreover, extracted channel bodies and drilled well log facies came to the modeling as hard data. Combination of these constraints resulted to a facies model which was greatly consistent to the geological scenarios. This study showed how analogy of modern occurrences can be set as the foundation for generating a training image. Channel morphology and facies types currently being deposited, which are crucial for modeling a training image, was inferred from modern occurrences. However, there were some practical considerations concerning the MPS algorithm used for facies simulation. The main limitation was the huge amount of RAM and CPU-time needed to perform simulations.

  15. Operational modeling system with dynamic-wave routing

    USGS Publications Warehouse

    Ishii, A.L.; Charlton, T.J.; Ortel, T.W.; Vonnahme, C.C.; ,

    1998-01-01

    A near real-time streamflow-simulation system utilizing continuous-simulation rainfall-runoff generation with dynamic-wave routing is being developed by the U.S. Geological Survey in cooperation with the Du Page County Department of Environmental Concerns for a 24-kilometer reach of Salt Creek in Du Page County, Illinois. This system is needed in order to more effectively manage the Elmhurst Quarry Flood Control Facility, an off-line stormwater diversion reservoir located along Salt Creek. Near real time simulation capabilities will enable the testing and evaluation of potential rainfall, diversion, and return-flow scenarios on water-surface elevations along Salt Creek before implementing diversions or return-flows. The climatological inputs for the continuous-simulation rainfall-runoff model, Hydrologic Simulation Program - FORTRAN (HSPF) are obtained by Internet access and from a network of radio-telemetered precipitation gages reporting to a base-station computer. The unit area runoff time series generated from HSPF are the input for the dynamic-wave routing model. Full Equations (FEQ). The Generation and Analysis of Model Simulation Scenarios (GENSCN) interface is used as a pre- and post-processor for managing input data and displaying and managing simulation results. The GENSCN interface includes a variety of graphical and analytical tools for evaluation and quick visualization of the results of operational scenario simulations and thereby makes it possible to obtain the full benefit of the fully distributed dynamic routing results.

  16. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S; Larsen, S; Wagoner, J

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D)more » finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications. In FY03 specifically, a large and complex simulation experiment was conducted that tested the full modeling-based approach to geological characterization using E2D, the K-L statistical methodology, and matched field processing applied to tunnel detection with surface seismic sensors. The simulation validated the full methodology and the need for geological heterogeneity to be accounted for in the overall approach. The Lake Lynn site area was geologically modeled using the code Earthvision to produce a 32 million node 3D model grid for E3D. Model linking issues were resolved and a number of full 3D model runs were accomplished using shot locations that matched the data. E3D-generated wavefield movies showed the reflection signal would be too small to be observed in the data due to trapped and attenuated energy in the weathered layer. An analysis of the few sensors coupled to bedrock did not improve the reflection signal strength sufficiently because the shots, though buried, were within the surface layer and hence attenuated. Ability to model a complex 3D geological structure and calculate synthetic seismograms that are in good agreement with actual data (especially for surface waves and below the complex weathered layer) was demonstrated. We conclude that E3D is a powerful tool for assessing the conditions under which a tunnel could be detected in a specific geological setting. Finally, the Lake Lynn tunnel explosion data were analyzed using standard array processing techniques. The results showed that single detonations could be detected and located but simultaneous detonations would require a strategic placement of arrays.« less

  18. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    NASA Astrophysics Data System (ADS)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised valley fluvial system and the resulting stratigraphy is shown and discussed for different tide amplitudes. 1 Sesterhenn, J.: "A characteristic-type formulation of the Navier-Stokes equations for high-order upwind schemes", Computers & Fluids 30 (1) 37-67, 2001.;

  19. Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2000-01-01

    Analysis of samples from the springs and a nearby municipal well identified large contrasts in chemistry, even for springs within 50 feet of one another. The differences were stable over time, were present in both ion and isotope analyses, and showed a distinct gradation from high nitrate, high calcium, Ordovician-carbonate dominated water in western spring vents to low nitrate, lower calcium, Cambrian-sandstone influenced water in eastern spring vents. The difference in chemistry was attributed to distinctive bedrock geology as demonstrated by overlaying the 50 percent probability capture zone over a bedrock geology map for the area. This finding gives additional confidence to the capture zone calculated by the ground-water flow model.

  20. Simulation of the interaction of karstic lakes Magnolia and Brooklyn with the upper Floridan Aquifer, southwestern Clay County, Florida

    USGS Publications Warehouse

    Merritt, M.L.

    2001-01-01

    The stage of Lake Brooklyn, in southwestern Clay County, Florida, has varied over a range of 27 feet since measurements by the U.S. Geological Survey began in July 1957. The large stage changes have been attributed to the relation between highly transient surface-water inflow to the lake and subsurface conduits of karstic origin that permit a high rate of leakage from the lake to the Upper Floridan aquifer. After the most recent and severe stage decline (1990-1994), the U.S. Geological Survey began a study that entailed the use of numerical ground-water flow models to simulate the interaction of the lake with the Upper Floridan aquifer and the large fluctuations of stage that were a part of that process. A package (set of computer programs) designed to represent lake/aquifer interaction in the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model (MODFLOW-96) and the Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D) simulators was prepared as part of this study, and a demonstration of its capability was a primary objective of the study. (Although the official names are Brooklyn Lake and Magnolia Lake (Florida Geographic Names), in this report the local names, Lake Brooklyn and Lake Magnolia, are used.) In the simulator of lake/aquifer interaction used in this investigation, the stage of each lake in a simulation is updated in successive time steps by a budget process that takes into account ground-water seepage, precipitation upon and evaporation from the lake surface, stream inflows and outflows, overland runoff inflows, and augmentation or depletion by artificial means. The simulator was given the capability to simulate both the division of a lake into separate pools as lake stage falls and the coalescence of several pools into a single lake as the stage rises. This representational capability was required to simulate Lake Brooklyn, which can divide into as many as 10 separate pools at sufficiently low stage. In the first of two calibrated models, recharge to the water table, specified as a monthly rate, was set equal to 40 percent of the monthly rainfall rate. The specified rate of inflow to the uppermost stream segment was set equal to outflows from Lake Lowry estimated from lake stage and the 1994-97 rating table. Leakage to the intermediate and Upper Floridan aquifers was assumed to occur from the surficial aquifer system through the confining layers directly beneath deeper parts of the lake bottom. A leakance coefficient value of 0.001 feet per day per foot of thickness was used beneath Lake Magnolia, and a value of 0.005 feet per day per foot of thickness was used beneath most of Lake Brooklyn. With these values, the conductance through the confining layers beneath Lake Brooklyn was about 19 times that beneath Lake Magnolia. The simulated stages of Lake Brooklyn matched the measured stages reasonably well in the early (1957-72) and later (1990-98) parts of the simulation time period, but the match was unsatisfactory in an intermediate time period (1973-89). To resolve this discrepancy, the hypothesis was proposed that undocumented losses of water from Alligator Creek upstream from Lake Brooklyn or from the lake itself occurred between 1973 and 1989 when there was sufficient streamflow. The resulting simulation of lake stages matched the measured lake stages accurately during the entire simulation time period. The model was then revised to incorporate the assumption that only 20 percent of precipitation recharged the water table (the second calibrated model). Recalibration of the model required that leakance values for the confining units under deeper parts of the lakes also be reduced by nearly 50 percent. The stages simulated with the new parameter assumptions, but retaining the assumption of surface-water losses, were an excellent match of the measured values. The stage of Lake Magnolia was also simulated accurately. The results of sensitivity analyses show that simulated s

  1. Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert; Will, Robert

    This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less

  2. Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty

    DOE PAGES

    Ampomah, William; Balch, Robert; Will, Robert; ...

    2017-07-01

    This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less

  3. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  4. Preliminary evaluation of the hydrogeologic system in Owens Valley, California

    USGS Publications Warehouse

    Danskin, W.R.

    1988-01-01

    A preliminary, two-layer, steady-state, groundwater flow model was used to evaluate present data and hydrologic concepts of Owens Valley, California. Simulations of the groundwater system indicate that areas where water levels are most affected by changes in recharge and discharge are near toes of alluvial fans and along the edge of permeable volcanic deposits. Sensitivity analysis for each model parameter shows that steady state simulations are most sensitive to uncertainties in evapotranspiration rates. Tungsten Hills, Poverty Hills, and Alabama Hills were found to act as virtually impermeable barriers to groundwater flow. Accurate simulation of the groundwater system between Bishop and Lone Pine appears to be possible without simulating the groundwater system in Round Valley, near Owens Lake, or in aquifer materials more than 1,000 ft below land surface. Although vast amounts of geologic and hydrologic data have been collected for Owens Valley, many parts of the hydrogeologic system have not been defined with sufficient detail to answer present water management questions. Location and extent of geologic materials that impede the vertical movement of water are poorly documented. The likely range of aquifer characteristics, except vertical hydraulic conductivity, is well known, but spatial distribution of these characteristics is not well documented. A set of consistent water budgets is needed, including one for surface water, groundwater, and the entire valley. The largest component of previous water budgets (evapotranspiration) is largely unverified. More definitive estimates of local gains and losses for Owens River are needed. Although groundwater pumpage from each well is measured, the quantity of withdrawal from different zones of permeable material has not been defined. (USGS)

  5. Terrestrial and Lunar Geological Terminology

    NASA Technical Reports Server (NTRS)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  6. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  7. Integrated watershed-scale response to climate change for selected basins across the United States

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.

    2012-01-01

    A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

  8. Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin

    USGS Publications Warehouse

    Lampe, David C.

    2009-01-01

    The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

  9. The Mechanics of Impact Basin Formation: Comparisons between Modeling and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.

    2010-12-01

    Impact basins are the largest geologic structures on planetary surfaces. Single or multiple ring-shaped scarps or arcuate chains of massifs typically surround basin-sized craters (e.g., larger than about 300 km diameter on the moon [1]). Impact basins also possess central mass anomalies related to ejection of a portion of the crust (and mantle) and uplift of the mantle. I will discuss insights into the mechanics of impact basin formation derived from numerical simulations and focus on features that may be compared with gravity and topography data. The simulations of basin formation use the method of [2] with an improved rheological model that includes dynamic weakening of faults and more accurate treatment of the mantle solidus. Two-dimensional simulations of vertical impacts onto spherical planets utilize a central gravity field, and three-dimensional simulations of oblique impacts include a self-gravity calculation. During the opening and collapse of the transient crater, localization of strain leads to deformation features that are interpreted as deep faults through the lithosphere. Based on simulations of mantle-excavating impacts onto the moon and Mars with thermal gradients that intersect the solidus in the asthenosphere, the final impact structure has three major features: (i) an inner basin filled with melt and bounded by the folded lithosphere, (ii) a broad shallow terrace of faulted and translated lithosphere with an ejecta deposit, and (iii) the surrounding autochthonous lithosphere with radially thinning ejecta. The folded lithosphere is a complex structure that experiences translation inward and then outward again during collapse of the transient cavity. The uplifted mantle within this structure is overlain by a thin layer of hot crustal material. In addition to asymmetry in the excavated material, 45-degree impact events produce an asymmetric terrace feature. The principal observations for comparison to the calculations are the inferred locations of major ring structures (derived from topography and geologic mapping) and the crustal thickness and mantle topography (derived from gravity and topography) [see also 3]. Preliminary comparisons indicate that the simulations produce the major features in the observations. I will present detailed comparisons between simulations and observations for major basins on the moon, including South Pole-Aitken, for different initial lithospheric thicknesses and thermal gradients. [1] Spudis, P.D. (1993) The Geology of Multi-Ring Impact basins: Cambridge University Press. [2] Senft, L.E. and S.T. Stewart (2009) Earth and Planetary Science Letters 287, 471-482. [3] Lillis, R.J., et al. (2010) AGU Fall Meeting.

  10. Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): implications for hazard evaluation and mapping

    NASA Astrophysics Data System (ADS)

    Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.

    2007-05-01

    The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations solved by a parallel and adaptive mesh, that can concentrate computing power in region of special interest. First of all, simulations of known past events, were compared with the geological data validating the effectiveness of the method. Afterwards, numerous simulations have been executed varying input parameters as friction angles, starting point and initial volume, in order to obtain a global perspective over the possible expected debris avalanche scenarios. The input parameters were selected considering the geological, structural and topographic factors controlling instability of the volcanic cone, especially in case of renewed eruptive activity. The interoperability between TITAN2D and GIS softwares permitted to draw a semi-quantitative hazard map by crossing simulation outputs with the distribution of deposits generated by past episodes of instability, mapped during the field work.

  11. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    USGS Publications Warehouse

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each stream reach. State watershed boundaries replaced the Digital Elevation Model-derived watersheds where coincident. After a number of corrections, the watersheds were coded to indicate major and minor basin, mean annual streamflow, and each watershed's unique identifier as well as that of the downstream watershed. Land segments and watersheds were intersected to create land-watershed segments for the model.

  12. Precipitation-Runoff Modeling System (PRMS) and Streamflow Response to Spatially Distributed Precipitation in Two Large Watersheds in Northern California

    NASA Astrophysics Data System (ADS)

    Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.

    2016-12-01

    The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.

  13. Geodynamic simulation of ore-bearing geological structural units by the example of the Strel'tsovka uranium ore field

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Leksin, A. B.; Pogorelov, V. V.; Rebetsky, Yu. L.; San'kov, V. A.; Ashurkov, S. V.; Rasskazov, I. Yu.

    2017-05-01

    Information on designing a 3D integrated model of the deflected mode (DM) of rock massif near the Strel'tsovka uranium ore field (SUOF) in the southeastern Transbaikal region is presented in the paper. This information is based on the contemporary stresses estimated by geostructural and tectonophysical techniques and by studying the seismotectonic deformation of the Earth's surface using the data on earthquake source mechanisms and GPS geodesy focused on the recognition of active faults. A combination of the results of geostructural, geophysical, geotectonic, and petrophysical research, as well as original maps of faulting and the arrangement of seismic dislocations and seismotectonic regimes (stress tensors), allowed us to design models of the structure, properties, and rheological links of the medium and to determine the boundary conditions for numerical tectonophysical simulation using the method of terminal elements. The computed 2D and 3D models of the state of the rock massif have been integrated into 3D GIS created on the basis of the ArcGIS 10 platform with an ArcGIS 3D-Analyst module. The simulation results have been corroborated by in situ observations on a regional scale (the Klichka seismodislocation, active from the middle Pliocene to date) and on a local scale (heterogeneously strained rock massif at the Antei uranium deposit). The development of a regional geodynamic model of geological structural units makes it possible to carry out procedures to ensure the safety of mining operations under complex geomechanical conditions that can expose the operating mines and mines under construction, by the Argun Mining and Chemical Production Association (PAO PPGKhO) on a common methodical and geoinformational platform, to the hazards of explosions, as well as to use the simulation results aimed at finding new orebodies to assess the flanks and deep levels of the ore field.

  14. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    USGS Publications Warehouse

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  15. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    NASA Astrophysics Data System (ADS)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  16. Analogue modelling for localization of deformation in the extensional pull-apart basins: comparison with the west part of NAF, Turkey

    NASA Astrophysics Data System (ADS)

    Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola

    2017-04-01

    Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.

  17. Numerical modeling of zero-offset laboratory data in a strong topographic environment: results for a spectral-element method and a discretized Kirchhoff integral method

    NASA Astrophysics Data System (ADS)

    Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.

    2014-08-01

    Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.

  18. Simulation of streamflow in the McTier Creek watershed, South Carolina

    USGS Publications Warehouse

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient of model-fit efficiency index, Pearson's correlation coefficient, the root mean square error, the bias, and the mean absolute error. In addition, a number of graphical tools were used to assess how well the models captured the characteristics of the observed data at the Monetta and New Holland streamflow-gaging stations. The graphical tools included temporal plots of simulated and observed daily mean flows, flow-duration curves, single-mass curves, and various residual plots. The results indicated that TOPMODEL and GBMM generally produced simulations that reasonably capture the quantity, variability, and timing of the observed streamflow. For the periods modeled, the total volume of simulated daily mean flows as compared to the total volume of the observed daily mean flow from TOPMODEL was within 1 to 5 percent, and the total volume from GBMM was within 1 to 10 percent. A noticeable characteristic of the simulated hydrographs from both models is the complexity of balancing groundwater recession and flow at the streamgage when flows peak and recede rapidly. However, GBMM results indicate that groundwater recession, which affects the receding limb of the hydrograph, was more difficult to estimate with the spatially explicit curve number approach. Although the purpose of this report is not to directly compare both models, given the characteristics of the McTier Creek watershed and the fact that GBMM uses the spatially explicit curve number approach as compared to the variable-source-area concept in TOPMODEL, GBMM was able to capture the flow characteristics reasonably well.

  19. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  20. Geological trainings for analogue astronauts: Lessons learned from MARS2013 expedition, Morocco

    NASA Astrophysics Data System (ADS)

    Orgel, C.; Achorner, I.; Losiak, A.; Gołębiowska, I.; Rampey, M.; Groemer, G.

    2013-09-01

    The Austrian Space Forum (OeWF) is a national organisation for space professionals and space enthusiasts. In collaboration with internal partner organisations, the OeWF focuses on Mars analogue research with their space volunteers and organises space-related outreach/education activities and conducts field tests with the Aouda.X and Aouda.S spacesuit simulators in Mars analogue environment. The main project of OeWF is called "PolAres" [1]. As the result of lessons learned from the Río Tinto 2011 expedition [4], we started to organise geological training sessions for the analogue astronauts. The idea was to give them basic geological background to perform more efficiently in the field. This was done in close imitation of the Apollo astronaut trainings that included theoretical lectures (between Jan. 1963-Nov. 1972) about impact geology, igneous petrology of the Moon, geophysics and geochemistry as well as several field trips to make them capable to collect useful samples for the geoscientists on Earth [3] [5]. In the last year the OeWF has organised three geoscience workshops for analogue astronauts as the part of their "astronaut" training. The aim was to educate the participants to make them understand the fundamentals in geology in theory and in the field (Fig. 1.). We proposed the "Geological Experiment Sampling Usefulness" (GESU) experiment for the MARS2013 simulation to improve the efficiency of the geological trainings. This simulation was conducted during February 2013, a one month Mars analogue research was conducted in the desert of Morocco [2] (Fig. 2.).

  1. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    NASA Astrophysics Data System (ADS)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured grids is presented.

  2. Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network

    NASA Astrophysics Data System (ADS)

    Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan

    2018-06-01

    Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.

  3. Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results

    USGS Publications Warehouse

    Pope, J.O.; Collins, M.; Haywood, A.M.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.; Pound, M.J.

    2011-01-01

    Examination of the mid-Pliocene Warm Period (mPWP; ~. 3.3 to 3.0. Ma BP) provides an excellent opportunity to test the ability of climate models to reproduce warm climate states, thereby assessing our confidence in model predictions. To do this it is necessary to relate the uncertainty in model simulations of mPWP climate to uncertainties in projections of future climate change. The uncertainties introduced by the model can be estimated through the use of a Perturbed Physics Ensemble (PPE). Developing on the UK Met Office Quantifying Uncertainty in Model Predictions (QUMP) Project, this paper presents the results from an initial investigation using the end members of a PPE in a fully coupled atmosphere-ocean model (HadCM3) running with appropriate mPWP boundary conditions. Prior work has shown that the unperturbed version of HadCM3 may underestimate mPWP sea surface temperatures at higher latitudes. Initial results indicate that neither the low sensitivity nor the high sensitivity simulations produce unequivocally improved mPWP climatology relative to the standard. Whilst the high sensitivity simulation was able to reconcile up to 6 ??C of the data/model mismatch in sea surface temperatures in the high latitudes of the Northern Hemisphere (relative to the standard simulation), it did not produce a better prediction of global vegetation than the standard simulation. Overall the low sensitivity simulation was degraded compared to the standard and high sensitivity simulations in all aspects of the data/model comparison. The results have shown that a PPE has the potential to explore weaknesses in mPWP modelling simulations which have been identified by geological proxies, but that a 'best fit' simulation will more likely come from a full ensemble in which simulations that contain the strengths of the two end member simulations shown here are combined. ?? 2011 Elsevier B.V.

  4. Groundwater-abstraction induced land subsidence and groundwater regulation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Guo, H.; Wang, L.; Cheng, G.; Zhang, Z.

    2015-11-01

    Land subsidence can be induced when various factors such as geological, and hydrogeological conditions and intensive groundwater abstraction combine. The development and utilization of groundwater in the North China Plain (NCP) bring great benefits, and at the same time have led to a series of environmental and geological problems accompanying groundwater-level declines and land subsidence. Subsidence occurs commonly in the NCP and analyses show that multi-layer aquifer systems with deep confined aquifers and thick compressible clay layers are the key geological and hydrogeological conditions responsible for its development in this region. Groundwater overdraft results in aquifer-system compaction, resulting in subsidence. A calibrated, transient groundwater-flow numerical model of the Beijing plain portion of the NCP was developed using MODFLOW. According to available water supply and demand in Beijing plain, several groundwater regulation scenarios were designed. These different regulation scenarios were simulated with the groundwater model, and assessed using a multi-criteria fuzzy pattern recognition model. This approach is proven to be very useful for scientific analysis of sustainable development and utilization of groundwater resources. The evaluation results show that sustainable development of groundwater resources may be achieved in Beijing plain when various measures such as control of groundwater abstraction and increase of artificial recharge combine favourably.

  5. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

    NASA Astrophysics Data System (ADS)

    Rudianto, Indra; Sudarmaji

    2018-04-01

    We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

  6. Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California

    USGS Publications Warehouse

    Guay, J.R.; Smith, P.E.

    1988-01-01

    Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)

  7. Geophysical and Geochemical Aspects of Pressure and CO2 Saturation Modeling due to Migration of Fluids into the Above Zone Monitoring Interval of a Geologic Carbon Storage Site

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.

    2016-12-01

    An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.

  8. Sources and transport of phosphorus to rivers in California and adjacent states, U.S., as determined by SPARROW modeling

    USGS Publications Warehouse

    Domagalski, Joseph L.; Saleh, Dina

    2015-01-01

    The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.

  9. Nonassociative plasticity model for cohesionless materials and its implementation in soil-structure interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashmi, Q.S.E.

    A constitutive model based on rate-independent elastoplasticity concepts is developed and used to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths. The model accounts for various factors such as friction, stress path, and stress history that influence the behavior of geologic materials. A hierarchical approach is adopted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associate model. Nonassociativeness is introduced as correction or perturbation to the basic model. Deviation of normality of the plastic-strain increments to the yield surface F is captured through nonassociativeness. The plastic potential Q is obtained by applying amore » correction to F. This simplified approach restricts the number of extra parameters required to define the plastic potential Q. The material constants associated with the model are identified, and they are evaluated for three different sands (Leighton Buzzard, Munich and McCormick Ranch). The model is then verified by comparing predictions with laboratory tests from which the constants were found, and typical tests not used for finding the constants. Based on the above findings, a soil-footing system is analyzed using finite-element techniques.« less

  10. Simulation modeling and preliminary analysis of TIMS data from the Carlin area and the northern Grapevine Mountains, Nevada

    NASA Technical Reports Server (NTRS)

    Watson, Ken; Hummer-Miller, Susanne; Kruse, Fred A.

    1986-01-01

    A theoretical radiance model was employed together with laboratory data on a suite of igneous rock to evaluate various algorithms for processing Thermal Infrared Multispectral Scanner (TIMS) data. Two aspects of the general problem were examined: extraction of emissivity information from the observed TIMS radiance data, and how to use emissivity data in a way that is geologically meaningful. The four algorithms were evaluated for appropriate band combinations of TIMS data acquired on both day and night overflights of the Tuscarora Mountains, including the Carlin gold deposit, in north-central Nevada. Analysis of a color composited PC decorrelated image (Bands 3, 4, 5--blue/green/red) of the Northern Grapevine Mountains, Nevada, area showed some useful correlation with the regional geology. The thermal infrared region provides fundamental spectral information that can be used to discriminate the major rock types occurring on the Earth's surface.

  11. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-08-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  12. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  13. Synthetic Sediments and Stochastic Groundwater Hydrology

    NASA Astrophysics Data System (ADS)

    Wilson, J. L.

    2002-12-01

    For over twenty years the groundwater community has pursued the somewhat elusive goal of describing the effects of aquifer heterogeneity on subsurface flow and chemical transport. While small perturbation stochastic moment methods have significantly advanced theoretical understanding, why is it that stochastic applications use instead simulations of flow and transport through multiple realizations of synthetic geology? Allan Gutjahr was a principle proponent of the Fast Fourier Transform method for the synthetic generation of aquifer properties and recently explored new, more geologically sound, synthetic methods based on multi-scale Markov random fields. Focusing on sedimentary aquifers, how has the state-of-the-art of synthetic generation changed and what new developments can be expected, for example, to deal with issues like conceptual model uncertainty, the differences between measurement and modeling scales, and subgrid scale variability? What will it take to get stochastic methods, whether based on moments, multiple realizations, or some other approach, into widespread application?

  14. The Water, Energy, and Biogeochemical Model (WEBMOD): A TOPMODEL application developed within the Modular Modeling System

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.

    2004-12-01

    Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.

  15. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  16. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  17. Quantification of key long-term risks at CO₂ sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    DOE PAGES

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; ...

    2014-12-31

    Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less

  18. Is there a metric for mineral deposit occurrence probabilities?

    USGS Publications Warehouse

    Drew, L.J.; Menzie, W.D.

    1993-01-01

    Traditionally, mineral resource assessments have been used to estimate the physical inventory of critical and strategic mineral commodities that occur in pieces of land and to assess the consequences of supply disruptions of these commodities. More recently, these assessments have been used to estimate the undiscovered mineral wealth in such pieces of land to assess the opportunity cost of using the land for purposes other than mineral production. The field of mineral resource assessment is an interdisciplinary field that draws elements from the disciplines of geology, economic geology (descriptive models), statistics and management science (grade and tonnage models), mineral economics, and operations research (computer simulation models). The purpose of this study is to assert that an occurrenceprobability metric exists that is useful in "filling out" an assessment both for areas in which only a trivial probability exists that a new mining district could be present and for areas where nontrivial probabilities exist for such districts. ?? 1993 Oxford University Press.

  19. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  20. 3D voxel modelling of the marine subsurface: the Belgian Continental Shelf case

    NASA Astrophysics Data System (ADS)

    Hademenos, Vasileios; Kint, Lars; Missiaen, Tine; Stafleu, Jan; Van Lancker, Vera

    2017-04-01

    The need for marine space grows bigger by the year. Dredging, wind farms, aggregate extraction and many other activities take up more space than ever before. As a result, the need for an accurate model that describes the properties of the areas in use is a priority. To address this need a 3D voxel model of the subsurface of the Belgian part of the North Sea has been created in the scope of the Belgian Science Policy project TILES ('Transnational and Integrated Long-term Marine Exploitation Strategies'). Since borehole data in the marine environment are a costly endeavour and therefore relatively scarce, seismic data have been incorporated in order to improve the data coverage. Lithostratigraphic units have been defined and lithoclasses are attributed to the voxels using a stochastic interpolation. As a result each voxel contains a unique value of one of 7 lithological classes (spanning in grain size from clay to gravel) in association with the geological layer it belongs to. In addition other forms of interpolation like sequential indicator simulation have allowed us to calculate the probability occurrence of each lithoclass, thus providing additional info from which the uncertainty of the model can be derived. The resulting 3D voxel model gives a detailed image of the distribution of different sediment types and provides valuable insight on the different geological settings. The voxel model also allows to estimate resource volumes (e.g. the availability of particular sand classes), enabling a more targeted exploitation. The primary information of the model is related to geology, but the model can additionally host any type of information.

  1. Revised Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Miller, Lisa D.

    2009-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in 2046) to assess changes in water quality over time. All scenario modeling used an external nutrient-decay model to simulate degradation and assimilation of nutrients along the riverine reach upstream from Pueblo Reservoir. Reservoir modeling was conducted using the U.S. Army Corps of Engineers CE-QUAL-W2 two-dimensional water-quality model. Lake hydrodynamics, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, algal biomass, and total iron were simulated. Two reservoir site locations were selected for comparison. Results of simulations at site 3B were characteristic of a riverine environment in the reservoir, whereas results at site 7B (near the dam) were characteristic of the main body of the reservoir. Simulation results for the epilimnion and hypolimnion at these two sites also were evaluated and compared. The simulation results in the hypolimnion at site 7B were indicative of the water quality leaving the reservoir. Comparisons of the different scenario results were conducted to assess if substantial differences were observed between selected scenarios. Each of the scenarios was simulated for three contiguous years representing a wet, average, and dry annual hydrologic cycle (water years 2000 through 2002). Additionally, each selected simulation scenario was evaluated for differences in direct and cumulative effects on a particular scenario. Direct effects are intended to isolate the future effects of the scenarios. Cumulative effects are intended to evaluate the effects of the scenarios in conjunction with all reasonably foreseeable future activities in the study area. Comparisons between the direct- and cumulative-effects analyses indicated that there were not large differences in the results between most of the simulation scenarios, and, as such, the focus of this report was on results for the direct-effects analysis. Additionally, the differences between simulation results generally were

  2. Effects of future sulfate and nitrate deposition scenarios on Linville Gorge and Shining Rock Wildernesses

    Treesearch

    Katherine J. Elliott; James M. Vose; William A. Jackson

    2013-01-01

    We used the Nutrient Cycling Model (NuCM) to simulate the effects of various sulfur (S) and nitrogen (N) deposition scenarios on wilderness areas in Western North Carolina. Linville Gorge Wilderness (LGW) and Shining Rock Wilderness (SRW) were chosen because they are high elevation acidic cove forests and are located on geologic parent material known to be low in base...

  3. Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Vannier, Olivier; Braud, Isabelle; Anquetin, Sandrine

    2013-04-01

    The estimation of catchment-scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally done on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison of cumulated streamflow and precipitation to assess catchment-scale storage capacities. The DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber (Water Resources Research 13(3), 1977) to estimate water storage capacities and lateral saturated hydraulic conductivities of the non-documented deep horizons. The analysis is applied to a sample of twenty-three catchments (0.2 km² - 291 km²) located in the Cévennes-Vivarais region (south of France). In a regionalisation purpose, the obtained results are compared to the dominant catchments geology. This highlights a clear hierarchy between the different geologies present in the area. Hard crystalline rocks are found to be associated to the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be the less thick and the most conductive. Consequently, deep soil layers with thicknesses and hydraulic conductivities differing with the geology were added to a distributed hydrological model implemented over the Cévennes-Vivarais region. Preliminary simulations show a major improvement in terms of simulated discharge when compared to simulations done without deep soil layers. KEY WORDS: hydraulic soil properties, streamflow recession, deep soil horizons, soil databases, Boussinesq equation, storage capacity, regionalisation

  4. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  5. CIRMIS Data system. Volume 2. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less

  6. Evaluation of the U.S. Geological Survey standard elevation products in a two-dimensional hydraulic modeling application for a low relief coastal floodplain

    USGS Publications Warehouse

    Witt, Emitt C.

    2015-01-01

    Growing use of two-dimensional (2-D) hydraulic models has created a need for high resolution data to support flood volume estimates, floodplain specific engineering data, and accurate flood inundation scenarios. Elevation data are a critical input to these models that guide the flood-wave across the landscape allowing the computation of valuable engineering specific data that provides a better understanding of flooding impacts on structures, debris movement, bed scour, and direction. High resolution elevation data are becoming publicly available that can benefit the 2-D flood modeling community. Comparison of these newly available data with legacy data suggests that better modeling outcomes are achieved by using 3D Elevation Program (3DEP) lidar point data and the derived 1 m Digital Elevation Model (DEM) product relative to the legacy 3 m, 10 m, or 30 m products currently available in the U.S. Geological Survey (USGS) National Elevation Dataset. Within the low topographic relief of a coastal floodplain, the newer 3DEP data better resolved elevations within the forested and swampy areas achieving simulations that compared well with a historic flooding event. Results show that the 1 m DEM derived from 3DEP lidar source provides a more conservative estimate of specific energy, static pressure, and impact pressure for grid elements at maximum flow relative to the legacy DEM data. Better flood simulations are critically important in coastal floodplains where climate change driven storm frequency and sea level rise will contribute to more frequent flooding events.

  7. ‘Cape capture’: Geologic data and modeling results suggest the Holocene loss of a Carolina Cape

    USGS Publications Warehouse

    Thieler, E. Robert; Ashton, Andrew D.

    2011-01-01

    For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes—Hatteras, Lookout, Fear, and Romain—off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fluvial system during the early Holocene transgression, when this portion of the shelf was flooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of ‘cape capture.’ The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history.

  8. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE PAGES

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.; ...

    2016-08-02

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  9. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to differentmore » particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.« less

  11. Increased ventilation of Antarctic deep water during the warm mid-Pliocene.

    PubMed

    Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S

    2013-01-01

    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.

  12. Increased ventilation of Antarctic deep water during the warm mid-Pliocene

    PubMed Central

    Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.

    2013-01-01

    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667

  13. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  14. Using Copulas in the Estimation of the Economic Project Value in the Mining Industry, Including Geological Variability

    NASA Astrophysics Data System (ADS)

    Krysa, Zbigniew; Pactwa, Katarzyna; Wozniak, Justyna; Dudek, Michal

    2017-12-01

    Geological variability is one of the main factors that has an influence on the viability of mining investment projects and on the technical risk of geology projects. In the current scenario, analyses of economic viability of new extraction fields have been performed for the KGHM Polska Miedź S.A. underground copper mine at Fore Sudetic Monocline with the assumption of constant averaged content of useful elements. Research presented in this article is aimed at verifying the value of production from copper and silver ore for the same economic background with the use of variable cash flows resulting from the local variability of useful elements. Furthermore, the ore economic model is investigated for a significant difference in model value estimated with the use of linear correlation between useful elements content and the height of mine face, and the approach in which model parameters correlation is based upon the copula best matched information capacity criterion. The use of copula allows the simulation to take into account the multi variable dependencies at the same time, thereby giving a better reflection of the dependency structure, which linear correlation does not take into account. Calculation results of the economic model used for deposit value estimation indicate that the correlation between copper and silver estimated with the use of copula generates higher variation of possible project value, as compared to modelling correlation based upon linear correlation. Average deposit value remains unchanged.

  15. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through 2002) were compared to the No Action scenario (projected demands in 2046) to assess changes in water quality over time. All scenario modeling used an external nutrient-decay model to simulate degradation and assimilation of nutrients along the riverine reach upstream from Pueblo Reservoir. Reservoir modeling was conducted using the U.S. Army Corps of Engineers CE-QUAL-W2 two-dimensional water-quality model. Lake hydrodynamics, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, algal biomass, and total iron were simulated. Two reservoir site locations were selected for comparison. Results of simulations at site 3B were characteristic of a riverine environment in the reservoir while results at site 7B (near the dam) were characteristic of the main body of the reservoir. Simulation results for the epilimnion and hypolimnion at these two sites also were evaluated and compared. The simulation results in the hypolimnion at site 7B were indicative of the water quality leaving the reservoir. Comparisons of the different scenario results were conducted to assess if substantial differences were observed between selected scenarios. Each of the scenarios was simulated for three contiguous years representing a wet, average, and dry annual hydrologic cycle (water years 2000 through 2002). Additionally, each selected simulation scenario was evaluated for differences in direct- and cumulative-effects on a particular scenario. Direct effects are intended to isolate the future effects of the scenarios. Cumulative effects are intended to evaluate the effects of the scenarios in conjunction with all reasonably foreseeable future activities in the study area. Comparisons between the direct- and cumulative-effects analyses indicated that there were not large differences in the results between most of the simulation scenarios and, as such, the focus of this report was on results for the direct-effects analysis. Addi

  16. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  17. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  18. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  19. A heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    USGS Publications Warehouse

    Emerson, Douglas G.

    1994-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The model's transfer of heat is based on an equation developed from Fourier's equation for heat flux. The model's transfer of water within the soil profile is based on the concept of capillary forces. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal, and snow cover was continuous throughout the winter. The winter of 1986-87 was warmer than normal, and snow accumulated for only short periods of several days. as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibration simulations for plots 1 and 3 using the 1985-86 data indicated little improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  20. Preliminary study of the water-temperature regime of the North Santiam River downstream from Detroit and Big Cliff dams, Oregon

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    A riverine-temperature model and associated data-collection system were developed to help the Corps of engineers determine cost benefits of selective-withdrawal structures for future use with dams on the Willamette River System. A U.S. Geological Survey Lagrangian reference frame, digital computer model was used to simulate stream temperatures on the North Santiam River downstream of the multipurpose Detroit dam and a reregulating dam (Big Cliff), from river mile 45.6 to 2.9. In simulation, only available air-temperature and windspeed information from a nearby National Weather Service station at Salem, Oregon were used. This preliminary investigation found that the model predicted mean daily temperatures to within 0.4 C standard deviation. Analysis of projected selective-withdrawal scenarios showed that the model has the sensitivity to indicate water-temperature changes 42.7 miles downstream on the North Santiam River. (USGS)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'',more » or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.« less

  2. Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

    PubMed Central

    Dowsett, Harry J.; Foley, Kevin M.; Stoll, Danielle K.; Chandler, Mark A.; Sohl, Linda E.; Bentsen, Mats; Otto-Bliesner, Bette L.; Bragg, Fran J.; Chan, Wing-Le; Contoux, Camille; Dolan, Aisling M.; Haywood, Alan M.; Jonas, Jeff A.; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J.; Nisancioglu, Kerim H.; Abe-Ouchi, Ayako; Ramstein, Gilles; Riesselman, Christina R.; Robinson, Marci M.; Rosenbloom, Nan A.; Salzmann, Ulrich; Stepanek, Christian; Strother, Stephanie L.; Ueda, Hiroaki; Yan, Qing; Zhang, Zhongshi

    2013-01-01

    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. PMID:23774736

  3. Summary of FY15 results of benchmark modeling activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, J. Guadalupe

    2015-08-01

    Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance ofmore » the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.« less

  4. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1988-01-01

    The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)

  5. Lithostratigraphy does not always equal lithology: lessons learned in communicating uncertainty from stochastic modelling glacial and post glacial deposits in Glasgow U.K.

    NASA Astrophysics Data System (ADS)

    Kearsey, Tim; Williams, John; Finlayson, Andrew; Williamson, Paul; Dobbs, Marcus; Kingdon, Andrew; Campbell, Diarmad

    2014-05-01

    Geological maps and 3D models usually depict lithostragraphic units which can comprise of many different types of sediment (lithologies). The lithostratigraphic units shown on maps and 3D models of glacial and post glacial deposits in Glasgow are substantially defined by the method of the formation and age of the unit rather than its lithological composition. Therefore, a simple assumption that the dominant lithology is the most common constituent of any stratigraphic unit is erroneous and is only 58% predictive of the actual sediment types seen in a borehole. This is problematic for non-geologist such as planners, regulators and engineers attempting to use these models to inform their decisions and can lead to such users viewing maps and models as of limited use in such decision making. We explore the extent to which stochastic modelling can help to make geological models more predictive of lithology in heterolithic units. Stochastic modelling techniques are commonly used to model facies variations in oil field models. The techniques have been applied to an area containing >4000 coded boreholes to investigate the glacial and fluvial deposits in the centre of the city of Glasgow. We test the predictions from this method by deleting percentages of the control data and re-running the simulations to determine how predictability varies with data density. We also explore the best way of displaying such stochastic models to and suggest that displaying the data as probability maps rather than a single definitive answer better illustrates the uncertainties inherent in the input data. Finally we address whether is it possible truly to be able to predict lithology in such geological facies. The innovative Accessing Subsurface Knowledge (ASK) network was recently established in the Glasgow are by the British Geological Survey and Glasgow City Council to deliver and exchange subsurface data and knowledge. This provides an idea opportunity to communicate and test a range of models and to assess their usefulness and impact on a vibrant community of public and private sector partners and decision makers.

  6. Extraction and development of inset models in support of groundwater age calculations for glacial aquifers

    USGS Publications Warehouse

    Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.

    2018-06-22

    The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if treated statistically, may be capable of explaining much of the variance in the simulated age metrics. One example of a predictor that model results indicate strongly affects simulated age is the depth of the well open interval below the simulated water table. The strength of this example variable as an overall predictor of groundwater age and its relation to other predictors can be statistically tested through the metamodeling process. In this way the inset models are designed to serve as a training area for metamodels that estimate groundwater age in glacial wells, which in turn will contribute to ongoing studies, under the direction of the U.S. Geological Survey National Water Quality Assessment, of contaminant susceptibility of shallow groundwater across the glacial aquifer system.

  7. Efficient Geological Modelling of Large AEM Surveys

    NASA Astrophysics Data System (ADS)

    Bach, Torben; Martlev Pallesen, Tom; Jørgensen, Flemming; Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas

    2014-05-01

    Combining geological expert knowledge with geophysical observations into a final 3D geological model is, in most cases, not a straight forward process. It typically involves many types of data and requires both an understanding of the data and the geological target. When dealing with very large areas, such as modelling of large AEM surveys, the manual task for the geologist to correctly evaluate and properly utilise all the data available in the survey area, becomes overwhelming. In the ERGO project (Efficient High-Resolution Geological Modelling) we address these issues and propose a new modelling methodology enabling fast and consistent modelling of very large areas. The vision of the project is to build a user friendly expert system that enables the combination of very large amounts of geological and geophysical data with geological expert knowledge. This is done in an "auto-pilot" type functionality, named Smart Interpretation, designed to aid the geologist in the interpretation process. The core of the expert system is a statistical model that describes the relation between data and geological interpretation made by a geological expert. This facilitates fast and consistent modelling of very large areas. It will enable the construction of models with high resolution as the system will "learn" the geology of an area directly from interpretations made by a geological expert, and instantly apply it to all hard data in the survey area, ensuring the utilisation of all the data available in the geological model. Another feature is that the statistical model the system creates for one area can be used in another area with similar data and geology. This feature can be useful as an aid to an untrained geologist to build a geological model, guided by the experienced geologist way of interpretation, as quantified by the expert system in the core statistical model. In this project presentation we provide some examples of the problems we are aiming to address in the project, and show some preliminary results.

  8. Building and applying geographical boundary conditions to model the EOT and other climate transitions in the Cenozoic.

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; van Hinsbergen, Douwe; von der Heydt, Anna; Dijkstra, Henk; Sluijs, Appy; Abels, Hemmo; Bijl, Peter

    2016-04-01

    Studies on deep-time palaeoclimate using numerical model simulations are often considerably dependent on the implemented geographical boundary conditions. Because building the required palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, such model studies frequently use reconstructions in which the latest insights have not yet been incorporated. We here provide a new method to efficiently generate global topography and bathymetry reconstructions that are suitable for palaeoclimate modelling. The workflow facilitates the interaction between experts in geology and paleoclimate modelling, while keeping the boundary conditions up to date and improving the consistency between different studies. Using a plate-tectonic model, global masks are created that contain the distribution of land, continental shelves, shallow basins and the deep ocean. We then combine depth-age relationships for oceanic crust with adjusted present-day topography into a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where the available geological data indicates significant altimetry changes over time. Since the discussion regarding many of these regions of interest is still ongoing, we have made the incorporation of changes as easy as possible. As a result, complete reconstructions can be made with limited effort and are provided as a boundary condition for numerical models. Results will be presented of simulations with both POP and CESM, covering both a late Eocene (38Ma) and an early Oligocene (30Ma) reconstruction. Changing boundary conditions are used to assess the impact of geography changes during the Eocene-Oligocene transition. Both the geographical reconstructions and validation of the results using proxies are being done in close collaboration with the Department of Geosciences at Utrecht University.

  9. Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA

    USGS Publications Warehouse

    Witter, Robert C.; Zhang, Yinglong J.; Wang, Kelin; Priest, George R.; Goldfinger, Chris; Stimely, Laura; English, John T.; Ferro, Paul A.

    2013-01-01

    Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model’s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with <5–15 m resolution in coastal areas. Tsunami simulations delineate the likelihood that Cascadia tsunamis will exceed mapped inundation lines. Maximum wave elevations at the shoreline varied from ∼4 m to 25 m for earthquakes with 9–44 m slip and Mw 8.7–9.2. Simulated tsunami inundation agrees with sparse deposits left by the A.D. 1700 and older tsunamis. Tsunami simulations for large (22–30 m slip) and medium (14–19 m slip) splay fault scenarios encompass 80%–95% of all inundation scenarios and provide reasonable guidelines for land-use planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (36–44 m slip) can help to guide development of local tsunami evacuation zones.

  10. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.

  11. Large ensemble and large-domain hydrologic modeling: Insights from SUMMA applications in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Ou, G.; Nijssen, B.; Nearing, G. S.; Newman, A. J.; Mizukami, N.; Clark, M. P.

    2016-12-01

    The Structure for Unifying Multiple Modeling Alternatives (SUMMA) provides a unifying modeling framework for process-based hydrologic modeling by defining a general set of conservation equations for mass and energy, with the capability to incorporate multiple choices for spatial discretizations and flux parameterizations. In this study, we provide a first demonstration of large-scale hydrologic simulations using SUMMA through an application to the Columbia River Basin (CRB) in the northwestern United States and Canada for a multi-decadal simulation period. The CRB is discretized into 11,723 hydrologic response units (HRUs) according to the United States Geologic Service Geospatial Fabric. The soil parameters are derived from the Natural Resources Conservation Service Soil Survey Geographic (SSURGO) Database. The land cover parameters are based on the National Land Cover Database from the year 2001 created by the Multi-Resolution Land Characteristics (MRLC) Consortium. The forcing data, including hourly air pressure, temperature, specific humidity, wind speed, precipitation, shortwave and longwave radiations, are based on Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and averaged for each HRU. The simulation results are compared to simulations with the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS). We are particularly interested in SUMMA's capability to mimic model behaviors of the other two models through the selection of appropriate model parameterizations in SUMMA.

  12. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of predicted leakage rates towards higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios. This implies that, neglecting uncertainty can be a strong simplification for modeling CO2 injection, and the consequences can be stronger than when neglecting several physical phenomena (e.g. phase transition, convective mixing, capillary forces etc.). The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart. Keywords: polynomial chaos; CO2 storage; multiphase flow; porous media; risk assessment; uncertainty; integrative response surfaces

  13. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties

    NASA Astrophysics Data System (ADS)

    Niri, Mohammad Emami; Lumley, David E.

    2017-10-01

    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  14. On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.

    2016-11-01

    This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.

  15. Karstification of an aquifer along the Birs River, Switzerland - from natural to anthropogenic dominated boundary conditions

    NASA Astrophysics Data System (ADS)

    Romanov, D.; Epting, J.; Huggenberger, P.; Kaufmann, G.

    2009-04-01

    Karst aquifers are very sensitive to environmental changes. Small variations of boundary conditions can trigger significant and fast changes of the basic properties of these geological formations. Furthermore, a large number of hydraulic structures have been built in Karst terrains and close to urban areas. Within such settings it is of primary importance to understand the basic processes governing the system and to predict the evolution of Karst aquifers in order to mitigate hazards. There has been great progress in numerical modeling of the evolution of Karst during the last decades. We are now able to model early karstification of locations with complicated geological and geochemical settings and our knowledge about basic processes governing Karst evolution has increased significantly. However, there are still not many modeling attempts with data from real Karst aquifers. A model describing the evolution of a gypsum Karst aquifer along the Birs River in Switzerland is presented in this study. The initial and boundary conditions for the simulations are taken from results of geophysical and geological field studies and a detailed 3D hydrogeological model of the area. Three time intervals of the aquifer's development are discussed in details. The first covers the natural karstification for a period between several hundreds up to a few thousands years. The results from this evolution period are used as initial conditions for the second interval, which covers the time between 1890 and 2007 AD. This period is characterized by anthropogenic alterations of the system through a man-made river dam, which considerably changes the evolution of the aquifer. In 2006 and 2007 AD - after serious subsidence of a nearby highway has been observed - technical measures have been conducted and thus the boundary conditions have changed once again. This is the beginning for the third modeled interval. A forecast for the following 100 years is developed. Our results correlate very well with the findings of the field studies of the area. Furthermore, predicted evolution timescales are reasonable from what is known about the past of the aquifer. The Karst evolution models allowed simulating the development of aquifer properties, which subsequently could be transferred to the 3D hydrogeological model, allowing a more realistic representation of subsurface heterogeneities. It could be demonstrated that the various investigative methods for Karst aquifer characterization are complementing each other and allow the interpretation of short-term impacts and long-term development on system-dynamics. The obtained results show that our models can be applied not only for theoretical research of simplified and idealized Karst aquifers, but also to places with complex geological and hydrological properties. Investigative methods for similar subsidence problems can be optimized, leading from general measurements and monitoring technologies to tools with predictive character.

  16. An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 2. Application to Owens Valley, California

    USGS Publications Warehouse

    Guymon, Gary L.; Yen, Chung-Cheng

    1990-01-01

    The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.

  17. An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 2. Application to Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Guymon, Gary L.; Yen, Chung-Cheng

    1990-07-01

    The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.

  18. A methodology for modeling barrier island storm-impact scenarios

    USGS Publications Warehouse

    Mickey, Rangley C.; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.; Dalyander, P. Soupy

    2017-02-16

    A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island morphology. These events were categorized on the basis of the threshold of total water level and duration to create a set of storm scenarios that were simulated, using a high-fidelity, process-based, morphologic evolution model, on an idealized digital elevation model of the Chandeleur Islands. The simulated morphological changes resulting from these scenarios provide a range of impacts that can help coastal managers determine resiliency of proposed or existing coastal structures and identify vulnerable areas within those structures.

  19. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  20. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  1. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    USGS Publications Warehouse

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water-balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.

  2. An innovative computationally efficient hydromechanical coupling approach for fault reactivation in geological subsurface utilization

    NASA Astrophysics Data System (ADS)

    Adams, M.; Kempka, T.; Chabab, E.; Ziegler, M.

    2018-02-01

    Estimating the efficiency and sustainability of geological subsurface utilization, i.e., Carbon Capture and Storage (CCS) requires an integrated risk assessment approach, considering the occurring coupled processes, beside others, the potential reactivation of existing faults. In this context, hydraulic and mechanical parameter uncertainties as well as different injection rates have to be considered and quantified to elaborate reliable environmental impact assessments. Consequently, the required sensitivity analyses consume significant computational time due to the high number of realizations that have to be carried out. Due to the high computational costs of two-way coupled simulations in large-scale 3D multiphase fluid flow systems, these are not applicable for the purpose of uncertainty and risk assessments. Hence, an innovative semi-analytical hydromechanical coupling approach for hydraulic fault reactivation will be introduced. This approach determines the void ratio evolution in representative fault elements using one preliminary base simulation, considering one model geometry and one set of hydromechanical parameters. The void ratio development is then approximated and related to one reference pressure at the base of the fault. The parametrization of the resulting functions is then directly implemented into a multiphase fluid flow simulator to carry out the semi-analytical coupling for the simulation of hydromechanical processes. Hereby, the iterative parameter exchange between the multiphase and mechanical simulators is omitted, since the update of porosity and permeability is controlled by one reference pore pressure at the fault base. The suggested procedure is capable to reduce the computational time required by coupled hydromechanical simulations of a multitude of injection rates by a factor of up to 15.

  3. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity model, we located a selected dataset of the 2010-2013 TABOO catalogue, which is composed of about 30,000 micro-earthquakes (see Valoroso et al., same session). Earthquake location was performed by applying the global-search earthquake location method NonLinLoc, which is able to manage strong velocity contrasts as that observed in the study area. The model volume is 65km x 55km x 20km and is parameterized by constant velocity, cubic cells of side 100 m. For comparison, we applied the same inversion code by using the best 1D model of the area obtained with earthquake data. The results show a significant quality improvement with the 3D model both in terms of location parameters and correlation between seismicity distribution and known geological structures.

  4. Documentation of a computer program to simulate transient leakage from confining units using the modular finite-difference, ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Leahy, P.P.; Navoy, A.S.

    1994-01-01

    Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.

  5. Simulation of earthquake ground motions in the eastern United States using deterministic physics‐based and site‐based stochastic approaches

    USGS Publications Warehouse

    Rezaeian, Sanaz; Hartzell, Stephen; Sun, Xiaodan; Mendoza, Carlos

    2017-01-01

    Earthquake ground‐motion recordings are scarce in the central and eastern United States (CEUS) for large‐magnitude events and at close distances. We use two different simulation approaches, a deterministic physics‐based method and a site‐based stochastic method, to simulate ground motions over a wide range of magnitudes. Drawing on previous results for the modeling of recordings from the 2011 Mw 5.8 Mineral, Virginia, earthquake and using the 2001 Mw 7.6 Bhuj, India, earthquake as a tectonic analog for a large magnitude CEUS event, we are able to calibrate the two simulation methods over this magnitude range. Both models show a good fit to the Mineral and Bhuj observations from 0.1 to 10 Hz. Model parameters are then adjusted to obtain simulations for Mw 6.5, 7.0, and 7.6 events in the CEUS. Our simulations are compared with the 2014 U.S. Geological Survey weighted combination of existing ground‐motion prediction equations in the CEUS. The physics‐based simulations show comparable response spectral amplitudes and a fairly similar attenuation with distance. The site‐based stochastic simulations suggest a slightly faster attenuation of the response spectral amplitudes with distance for larger magnitude events and, as a result, slightly lower amplitudes at distances greater than 200 km. Both models are plausible alternatives and, given the few available data points in the CEUS, can be used to represent the epistemic uncertainty in modeling of postulated CEUS large‐magnitude events.

  6. Hydrological modelling in sandstone rocks watershed

    NASA Astrophysics Data System (ADS)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.

  7. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  8. A Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Niu, Guo-Yue; Xia, Youlong; Cai, Xitian; Zhang, Yinsheng; Ma, Yaoming; Fang, Yuanhao

    2017-11-01

    Accurate simulation of energy, water, and carbon fluxes exchanging between the land surface and the atmosphere is beneficial for improving terrestrial ecohydrological and climate predictions. We systematically assessed the Noah land surface model (LSM) with mutiparameterization options (Noah-MP) in simulating these fluxes and associated variations in terrestrial water storage (TWS) and snow cover fraction (SCF) against various reference products over 18 United States Geological Survey two-digital hydrological unit code regions of the continental United States (CONUS). In general, Noah-MP captures better the observed seasonal and interregional variability of net radiation, SCF, and runoff than other variables. With a dynamic vegetation model, it overestimates gross primary productivity by 40% and evapotranspiration (ET) by 22% over the whole CONUS domain; however, with a prescribed climatology of leaf area index, it greatly improves ET simulation with relative bias dropping to 4%. It accurately simulates regional TWS dynamics in most regions except those with large lakes or severely affected by irrigation and/or impoundments. Incorporating the lake water storage variations into the modeled TWS variations largely reduces the TWS simulation bias more obviously over the Great Lakes with model efficiency increasing from 0.18 to 0.76. Noah-MP simulates runoff well in most regions except an obvious overestimation (underestimation) in the Rio Grande and Lower Colorado (New England). Compared with North American Land Data Assimilation System Phase 2 (NLDAS-2) LSMs, Noah-MP shows a better ability to simulate runoff and a comparable skill in simulating Rn but a worse skill in simulating ET over most regions. This study suggests that future model developments should focus on improving the representations of vegetation dynamics, lake water storage dynamics, and human activities including irrigation and impoundments.

  9. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Plan of study for the Northern Atlantic Coastal Plain Regional Aquifer System Analysis

    USGS Publications Warehouse

    Meisler, Harold

    1980-01-01

    Sediments of Cretaceous to Holocene age compose the Northern Atlantic Coastal Plain aquifer system in an area of 50,000 square miles in parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The aquifer system is a major source of water supply in the area. About 1.4 billion gallons is withdrawn from its aquifers each day. Increasing withdrawal of ground water has created or intensified several problems such as declining water levels, development of large cones of depression, saltwater intrusion, spreading of ground-water contamination, and land subsidence. The U.S. Geological Survey has begun a comprehensive study that will define the geology, hydrology, and geochemistry of the aquifer system. The effects of future utilization of the aquifer system will be determined and alternative plans for water withdrawal will be evaluated through computer simulation modeling. This report describes the objectives, organization, and work plans of the study, and describes the work to be accomplished in each U.S. Geological Survey District of the study area.

  11. Thermophysical Property Models for Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a set of models for a wide range of lunar regolith material properties. Data from the literature are t with regression models for the following regolith properties: composition, density, specific heat, thermal conductivity, electrical conductivity, optical absorption length, and latent heat of melting/fusion. These models contain both temperature and composition dependencies so that they can be tailored for a range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware. Furthermore, these models can be utilized to further inform lunar geological simulations. In addition to regression models for each material property, the raw data is also presented to allow for further interpretation and fitting as necessary.

  12. Estimate of the Reliability in Geological Forecasts for Tunnels: Toward a Structured Approach

    NASA Astrophysics Data System (ADS)

    Perello, Paolo

    2011-11-01

    In tunnelling, a reliable geological model often allows providing an effective design and facing the construction phase without unpleasant surprises. A geological model can be considered reliable when it is a valid support to correctly foresee the rock mass behaviour, therefore preventing unexpected events during the excavation. The higher the model reliability, the lower the probability of unforeseen rock mass behaviour. Unfortunately, owing to different reasons, geological models are affected by uncertainties and a fully reliable knowledge of the rock mass is, in most cases, impossible. Therefore, estimating to which degree a geological model is reliable, becomes a primary requirement in order to save time and money and to adopt the appropriate construction strategy. The definition of the geological model reliability is often achieved by engineering geologists through an unstructured analytical process and variable criteria. This paper focusses on geological models for projects of linear underground structures and represents an effort to analyse and include in a conceptual framework the factors influencing such models. An empirical parametric procedure is then developed with the aim of obtaining an index called "geological model rating (GMR)", which can be used to provide a more standardised definition of a geological model reliability.

  13. Evaluation of Hydrologic Simulations Developed Using Multi-Model Synthesis and Remotely-Sensed Data within a Portfolio of Calibration Strategies

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Markstrom, S. L.

    2016-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.

  14. Summary of the San Juan structural basin regional aquifer-system analysis, New Mexico, Colorado, Arizona, and Utah

    USGS Publications Warehouse

    Levings, G.W.; Kernodle, J.M.; Thorn, C.R.

    1996-01-01

    Ground-water resources are the only source of water in most of the San Juan structural basin and are mainly used for municipal, industrial, domestic, and stock purposes. Industrial use increased dramatically during the late 1970's and early 1980's because of increased exploration and development of uranium and coal resources. The San Juan structural basin is a northwest-trending, asymmetric structural depression at the eastern edge of the Colorado Plateau. The basin contains as much as 14,000 feet of sedimentary rocks overlying a Precambrian basement complex. The sedimentary rocks dip basinward from the basin margins toward the troughlike structural center, or deepest part of the basin. Rocks of Triassic age were selected as the lower boundary for the study. The basin is well defined by structural boundaries in many places with structural relief of as much as 20,000 feet reported. Faulting is prevalent in parts of the basin with displacement of several thousand feet along major faults. The regional aquifers in the basin generally are coincident with the geologic units that have been mapped. Data on the hydrologic properties of the regional aquifers are minimal. Most data were collected on those aquifers associated with uranium and coal resource production. These data are summarized in table format in the report. The regional flow system throughout most of the basin has been affected by the production of oil or gas and subsequent disposal of produced brine. To date more than 26,000 oil- or gas- test holes have been drilled in the basin, the majority penetrating no deeper than the bottom of the Cretaceous rocks. The general water chemistry of the regional aquifers is based on available data. The depositional environments are the major factor controlling the quality of water in the units. The dominant ions are generally sodium, bicarbonate, and sulfate. A detailed geochemical study of three sandstone aquifers--Morrison, Dakota, and Gallup--was undertaken in the northwestern part of the study area. Results of this study indicate that water chemistry changed in individual wells over short periods of time, not expected in a regional flow system. The chemistry of the water is affected by mixing of recharge, ion filtrate, or very dilute ancient water, and by leakage of saline water. The entire system of ground-water flow and its controlling factors has been defined as the conceptual model. A steady-state, three-dimensional ground-water flow model was constructed to simulate modern predevelopment flow in the post-Jurassic rocks of the regional flow system. In the ground-water flow model, 14 geologic units or combinations of geologic units were considered to be regional aquifers, and 5 geologic units or combinations of geologic units were considered to be regional confining units. The model simulated flow in 12 layers (hydrostratigraphic units) and used harmonic-mean vertical leakance to indirectly simulate aquifer connection across 3 other hydrostratigraphic confining units in addition to coupling the 12 units.

  15. Model methodology for estimating pesticide concentration extremes based on sparse monitoring data

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2018-03-22

    This report describes a new methodology for using sparse (weekly or less frequent observations) and potentially highly censored pesticide monitoring data to simulate daily pesticide concentrations and associated quantities used for acute and chronic exposure assessments, such as the annual maximum daily concentration. The new methodology is based on a statistical model that expresses log-transformed daily pesticide concentration in terms of a seasonal wave, flow-related variability, long-term trend, and serially correlated errors. Methods are described for estimating the model parameters, generating conditional simulations of daily pesticide concentration given sparse (weekly or less frequent) and potentially highly censored observations, and estimating concentration extremes based on the conditional simulations. The model can be applied to datasets with as few as 3 years of record, as few as 30 total observations, and as few as 10 uncensored observations. The model was applied to atrazine, carbaryl, chlorpyrifos, and fipronil data for U.S. Geological Survey pesticide sampling sites with sufficient data for applying the model. A total of 112 sites were analyzed for atrazine, 38 for carbaryl, 34 for chlorpyrifos, and 33 for fipronil. The results are summarized in this report; and, R functions, described in this report and provided in an accompanying model archive, can be used to fit the model parameters and generate conditional simulations of daily concentrations for use in investigations involving pesticide exposure risk and uncertainty.

  16. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    PubMed

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  17. Planned updates and refinements to the central valley hydrologic model, with an emphasis on improving the simulation of land subsidence in the San Joaquin Valley

    USGS Publications Warehouse

    Faunt, C.C.; Hanson, R.T.; Martin, P.; Schmid, W.

    2011-01-01

    California's Central Valley has been one of the most productive agricultural regions in the world for more than 50 years. To better understand the groundwater availability in the valley, the U.S. Geological Survey (USGS) developed the Central Valley hydrologic model (CVHM). Because of recent water-level declines and renewed subsidence, the CVHM is being updated to better simulate the geohydrologic system. The CVHM updates and refinements can be grouped into two general categories: (1) model code changes and (2) data updates. The CVHM updates and refinements will require that the model be recalibrated. The updated CVHM will provide a detailed transient analysis of changes in groundwater availability and flow paths in relation to climatic variability, urbanization, stream flow, and changes in irrigated agricultural practices and crops. The updated CVHM is particularly focused on more accurately simulating the locations and magnitudes of land subsidence. The intent of the updated CVHM is to help scientists better understand the availability and sustainability of water resources and the interaction of groundwater levels with land subsidence. ?? 2011 ASCE.

  18. Planned updates and refinements to the Central Valley hydrologic model with an emphasis on improving the simulation of land subsidence in the San Joaquin Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Martin, Peter; Schmid, Wolfgang

    2011-01-01

    California's Central Valley has been one of the most productive agricultural regions in the world for more than 50 years. To better understand the groundwater availability in the valley, the U.S. Geological Survey (USGS) developed the Central Valley hydrologic model (CVHM). Because of recent water-level declines and renewed subsidence, the CVHM is being updated to better simulate the geohydrologic system. The CVHM updates and refinements can be grouped into two general categories: (1) model code changes and (2) data updates. The CVHM updates and refinements will require that the model be recalibrated. The updated CVHM will provide a detailed transient analysis of changes in groundwater availability and flow paths in relation to climatic variability, urbanization, stream flow, and changes in irrigated agricultural practices and crops. The updated CVHM is particularly focused on more accurately simulating the locations and magnitudes of land subsidence. The intent of the updated CVHM is to help scientists better understand the availability and sustainability of water resources and the interaction of groundwater levels with land subsidence.

  19. MODFLOW-2000, the U.S. Geological Survey modular ground-water model : user guide to the LMT6 package, the linkage with MT3DMS for multi-species mass transport modeling

    USGS Publications Warehouse

    Zheng, Chunmiao; Hill, Mary Catherine; Hsieh, Paul A.

    2001-01-01

    MODFLOW-2000, the newest version of MODFLOW, is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium using a finite-difference method. MT3DMS, the successor to MT3D, is a computer program for modeling multi-species solute transport in three-dimensional ground-water systems using multiple solution techniques, including the finite-difference method, the method of characteristics (MOC), and the total-variation-diminishing (TVD) method. This report documents a new version of the Link-MT3DMS Package, which enables MODFLOW-2000 to produce the information needed by MT3DMS, and also discusses new visualization software for MT3DMS. Unlike the Link-MT3D Packages that coordinated previous versions of MODFLOW and MT3D, the new Link-MT3DMS Package requires an input file that, among other things, provides enhanced support for additional MODFLOW sink/source packages and allows list-directed (free) format for the flow model produced flow-transport link file. The report contains four parts: (a) documentation of the Link-MT3DMS Package Version 6 for MODFLOW-2000; (b) discussion of several issues related to simulation setup and input data preparation for running MT3DMS with MODFLOW-2000; (c) description of two test example problems, with comparison to results obtained using another MODFLOW-based transport program; and (d) overview of post-simulation visualization and animation using the U.S. Geological Survey?s Model Viewer.

  20. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M.: "Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment.", Energy Procedia, 97, 2016 p. 494-501.

  1. Variable thickness transient ground-water flow model. Volume 3. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less

  2. GWM-2005 - A Groundwater-Management Process for MODFLOW-2005 with Local Grid Refinement (LGR) Capability

    USGS Publications Warehouse

    Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.

    2009-01-01

    This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.

  3. Application of the US Geological Survey's precipitation-runoff modeling system to Williams Draw and Bush Draw basins, Jackson County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    The U.S. Geological Survey 's precipitation-runoff modeling system was calibrated for this study by using daily streamflow data for April through September, 1980 and 1981, from the Williams Draw basin in Jackson County, Colorado. The calibrated model then was verified by using daily streamflow data for April through September, 1982 and 1983. Transferability of the model was tested by application to adjoining Bush Draw basin by using daily streamflow data for April through September, 1981 through 1983. Four model parameters were optimized in the calibration: (1) BST, base air temperature used to determine the form of precipitation (rain, snow, or a mixture); (2) SMAX, maximum available water-holding capacity of the soil zone; (3) TRNCF, transmission coefficient for the vegetation canopy over the snowpack; and (4) DSCOR, daily precipitation correction factor for snow. For calibration and verification, volume and timing of simulated streamflow were reasonably close to recorded streamflow; differences were least during years that had considerable snowpack accumulation and were most during years that had minimal or no snowpack accumulation. Calibration and optimization of parameters were facilitated by snowpack water-equivalent data. Application of the model to Bush Draw basin to test for transferability indicated inaccurate results in simulation of streamflow volume. Weighted values of SMAX, TRNCF, and DSCOR from the calibration basin were used for Bush Draw. The inadequate results obtained by use of weighted parameters indicate that snowpack water-equivalent data are needed for successful application of the precipitation-runoff modeling system in this area, because frequent windy conditions cause variations in snowpack accumulation. (USGS)

  4. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of themore » technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.« less

  5. Three-dimensional mapping of equiprobable hydrostratigraphic units at the Frenchman Flat Corrective Action Unit, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, C.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    Geological and geophysical data are used with the sequential indicator simulation algorithm of Gomez-Hernandez and Srivastava to produce multiple, equiprobable, three-dimensional maps of informal hydrostratigraphic units at the Frenchman Flat Corrective Action Unit, Nevada Test Site. The upper 50 percent of the Tertiary volcanic lithostratigraphic column comprises the study volume. Semivariograms are modeled from indicator-transformed geophysical tool signals. Each equiprobable study volume is subdivided into discrete classes using the ISIM3D implementation of the sequential indicator simulation algorithm. Hydraulic conductivity is assigned within each class using the sequential Gaussian simulation method of Deutsch and Journel. The resulting maps show the contiguitymore » of high and low hydraulic conductivity regions.« less

  6. Initial inclusion of thermodynamic considerations in Kayenta.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, Rebecca Moss; Bishop, Joseph E.; Fuller, Timothy J.

    A persistent challenge in simulating damage of natural geological materials, as well as rock-like engineered materials, is the development of efficient and accurate constitutive models. The common feature for these brittle and quasi-brittle materials are the presence of flaws such as porosity and network of microcracks. The desired models need to be able to predict the material responses over a wide range of porosities and strain rate. Kayenta (formerly called the Sandia GeoModel) is a unified general-purpose constitutive model that strikes a balance between first-principles micromechanics and phenomenological or semi-empirical modeling strategies. However, despite its sophistication and ability to reducemore » to several classical plasticity theories, Kayenta is incapable of modeling deformation of ductile materials in which deformation is dominated by dislocation generation and movement which can lead to significant heating. This stems from Kayenta's roots as a geological model, where heating due to inelastic deformation is often neglected or presumed to be incorporated implicitly through the elastic moduli. The sophistication of Kayenta and its large set of extensive features, however, make Kayenta an attractive candidate model to which thermal effects can be added. This report outlines the initial work in doing just that, extending the capabilities of Kayenta to include deformation of ductile materials, for which thermal effects cannot be neglected. Thermal effects are included based on an assumption of adiabatic loading by computing the bulk and thermal responses of the material with the Kerley Mie-Grueneisen equation of state and adjusting the yield surface according to the updated thermal state. This new version of Kayenta, referred to as Thermo-Kayenta throughout this report, is capable of reducing to classical Johnson-Cook plasticity in special case single element simulations and has been used to obtain reasonable results in more complicated Taylor impact simulations in LS-Dyna. Despite these successes, however, Thermo-Kayenta requires additional refinement for it to be consistent in the thermodynamic sense and for it to be considered superior to other, more mature thermoplastic models. The initial thermal development, results, and required refinements are all detailed in the following report.« less

  7. Development and Calibration of Two-Dimensional Hydrodynamic Model of the Tanana River near Tok, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Moran, Edward H.

    2004-01-01

    Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.

  8. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China

    NASA Astrophysics Data System (ADS)

    Wang, Shiqin; Shao, Jingli; Song, Xianfang; Zhang, Yongbo; Huo, Zhibin; Zhou, Xiaoyuan

    2008-10-01

    MODFLOW is a groundwater modeling program. It can be compiled and remedied according to the practical applications. Because of its structure and fixed data format, MODFLOW can be integrated with Geographic Information Systems (GIS) technology for water resource management. The North China Plain (NCP), which is the politic, economic and cultural center of China, is facing with water resources shortage and water pollution. Groundwater is the main water resource for industrial, agricultural and domestic usage. It is necessary to evaluate the groundwater resources of the NCP as an entire aquifer system. With the development of computer and internet information technology it is also necessary to integrate the groundwater model with the GIS technology. Because the geological and hydrogeological data in the NCP was mainly in MAPGIS format, the powerful function of GIS of disposing of and analyzing spatial data and computer languages such as Visual C and Visual Basic were used to define the relationship between the original data and model data. After analyzing the geological and hydrogeological conditions of the NCP, the groundwater flow numerical simulation modeling was constructed with MODFLOW. On the basis of GIS, a dynamic evaluation system for groundwater resources under the internet circumstance was completed. During the process of constructing the groundwater model, a water budget was analyzed, which showed a negative budget in the NCP. The simulation period was from 1 January 2002 to 31 December 2003. During this period, the total recharge of the groundwater system was 49,374 × 106 m3 and the total discharge was 56,530 × 106 m3 the budget deficit was -7,156 × 106 m3. In this integrated system, the original data including graphs and attribution data could be stored in the database. When the process of evaluating and predicting groundwater flow was started, these data were transformed into files that the core program of MODFLOW could read. The calculated water level and drawdown could be displayed and reviewed online.

  9. Modelling the Effects of Sea-level, Climate Change, Geology, and Tectonism on the Morphology of the Amazon River Valley and its Floodplain

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Cremon, E.; Dunne, T.

    2017-12-01

    How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions, comparing highly detailed model outcomes against field-documented reality.

  10. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    NASA Astrophysics Data System (ADS)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from Hessian Ried, an important groundwater resource for the densely populated Rhine-Main region in Germany.

  11. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  12. Radar studies related to the earth resources program. [remote sensing programs

    NASA Technical Reports Server (NTRS)

    Holtzman, J.

    1972-01-01

    The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.

  13. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  14. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Fred J. Molz; Ronald W. Falta

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variabilitymore » and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop this new concept.« less

  15. Simulation of saltwater movement in the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area, predevelopment-2004, and projected movement for 2000 pumping conditions

    USGS Publications Warehouse

    Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.

    2006-01-01

    A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'

  16. Documentation of a heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    USGS Publications Warehouse

    Emerson, Douglas G.

    1991-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The transfer of heat 1s based on an equation developed from Fourier's equation for heat flux. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The transfer of water within the soil profile is based on the concept of capillary forces. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal and snow cover was continuous throughout the winter. The winter of 1986-87 was wanner than normal and snow accumulated for only short periods of several days.Runoff, snowmelt, and frost depths were used as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibratlon simulations for plots 1 and 3 using the 1985-86 data Indicated small improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  17. Studies of Fault Interactions and Regional Seismicity Using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Yikilmaz, Mehmet Burak

    Numerical simulations are routinely used for weather and climate forecasting. It is desirable to simulate regional seismicity for seismic hazard analysis. One such simulation tool is the Virtual California earthquake simulator. We have used Virtual California (VC) to study various aspects of fault interaction and analyzed the statistics of earthquake recurrence times and magnitudes generated synthetically. The first chapter of this dissertation investigates the behavior of seismology simulations using three relatively simple models involving a straight strike-slip fault. We show that a series of historical earthquakes observed along the Nankai Trough in Japan exhibit similar patterns to those obtained in our model II. In the second chapter we utilize Virtual California to study regional seismicity in northern California. We generate synthetic catalogs of seismicity using a composite simulation. We use these catalogs to analyze frequency-magnitude and recurrence interval statistics on both a regional and fault specific level and compare our modeled rates of seismicity and spatial variability with observations. The final chapter explores the jump distance for a propagating rupture over a stepping strike-slip fault. Our study indicates that between 2.5 and 5.5 km of the separation distance, the percentage of events that jump from one fault to the next decreases significantly. We find that these step-over distance values are in good agreement with geologically observed values.

  18. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  19. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  20. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    PubMed Central

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

Top