Science.gov

Sample records for geology wall-rock alteration

  1. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    USGS Publications Warehouse

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (< 1-5 km) deposits. Individual deposits are a composite of syngenetic massive sulphide and underlying epigenetic stockwork-vein mineralization. The massive sulphide occurs as concordant tabular

  2. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  3. Mount St. Augustine volcano fumarole wall rock alteration: mineralogy, zoning, composition and numerical models of its formation process

    NASA Astrophysics Data System (ADS)

    Getahun, Aberra; Reed, Mark H.; Symonds, Robert

    1996-05-01

    Intensely altered wall rock was collected from high-temperature (640 °C) and low-temperature (375 °C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl 3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375 °C; (b) cooling of the 1987 gas from 870 to 100 °C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100 °C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640 °C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375 °C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides

  4. Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process

    USGS Publications Warehouse

    Getahun, A.; Reed, M.H.; Symonds, R.

    1996-01-01

    Intensely altered wall rock was collected from high-temperature (640??C) and low-temperature (375??C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375??C; (b) cooling of the 1987 gas from 870 to 100??C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100??C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640??C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375??C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides (magnetite

  5. The significance of geological and zircon age data derived from the wall rocks of the Ailao Shan-Red River Shear Zone, NW Vietnam

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, Andrzej; Hòa, Trần Trọng; Larionov, Alexander N.

    2013-09-01

    This paper offers new evidence on whether the Ailao Shan-Red River Shear Zone of NW Vietnam is part of a suture zone between two continental blocks (the IndoChina Block and the South China Block) or whether it is itself of intracontinental origin, developed within the South China margin. To help clarify the role that the Ailao Shan-Red River Shear Zone plays in South China tectonic reconstructions, we gathered new whole-rock geochemistry, structural field data, and zircon U-Pb (SHRIMP) ages from granites, rhyodacites, and migmatites that occur within geological units adjacent to both the SW and NE sides of the Red River Fault Zone, a segment of the larger shear zone. The new zircon ages show that both walls of the Red River Fault Zone contain metamorphic and intraplate A-type granitoid rocks of Late Permian-Early Triassic age (263-240 Ma) and are of Indosinian origin. In the SW wall, the Fan Si Pan complex is a Neoproterozoic basement of metagranites and metasediments that was intruded by Late Permian (˜260 Ma), peralkaline, A-type granites and by subalkaline, A-type, biotite granite of Eocene age (˜35 Ma), containing xenoliths of gneissified Permian granitoids. The two intrusive episodes were separated by regional tectonic deformations occurring within a transpressional regime of a NW/W-vergent thrusting with a left-lateral oblique component, that was associated with greenschist to amphibolite facies metamorphism, presumably also of Eocene age (˜50-35 Ma), and that may have been related to the left-lateral movement on the Ailao Shan-Red River Shear Zone. In the NE wall, the Lo Gam complex is a Neoproterozoic basement (˜767 Ma) that was repeatedly subjected to tectonothermal activity throughout the Palaeozoic (at ˜450-420 Ma, ˜350 Ma, ˜265 Ma), ending in the Early Triassic (˜248 Ma). There was no thermal overprint during the Cenozoic. In this wall, a significant part of the Permo-Triassic thermotectonism was ductile shearing that was concentrated along

  6. Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks: intensive variables, mass transfers, and Au mineralization at Alleghany, California

    USGS Publications Warehouse

    Böhlke, J.K.

    1989-01-01

    The gold deposits at Alleghany, California, are typical of many epigenetic gold-bearing hydrothermal vein systems in metamorphic terranes worldwide. Detailed analyses of alteration halos in serpentinite, mafic amphibolite, and granite wall rocks at Alleghany indicate that widely contrasting deposit types, ranging from fuchsite-carbonate schists to pyrite-albitites, resulted when different wall rocks interacted with the same externally derived CO2-rich hydrothermal vein fluid. Patterns of element redistribution within halos and among lithologic units suggest a complex process involving fluid flow along vein fractures and diffusion (?? infiltration) normal to the veins. Wall rocks locally controlled both the directions and magnitudes of chemical fluxes across vein walls. -from Author

  7. [The application of spectral geological profile in the alteration mapping].

    PubMed

    Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin

    2012-07-01

    Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.

  8. A mechanism for high wall-rock velocities in rockbursts

    USGS Publications Warehouse

    McGarr, A.

    1997-01-01

    Considerable evidence has been reported for wall-rock velocities during rockbursts in deep gold mines that are substantially greater than ground velocities associated with the primary seismic events. Whereas varied evidence suggests that slip across a fault at the source of an event generates nearby particle velocities of, at most, several m/s, numerous observations, in nearby damaged tunnels, for instance, imply wall-rock velocities of the order of 10 m/s and greater. The common observation of slab buckling or breakouts in the sidewalls of damaged excavations suggests that slab flexure may be the mechanism for causing high rock ejection velocities. Following its formation, a sidewall slab buckles, causing the flexure to increase until the stress generated by flexure reaches the limit 5 that can be supported by the sidewall rock. I assume here that S is the uniaxial compressive strength. Once the flexural stress exceeds S, presumably due to the additional load imposed by a nearby seismic event, the slab fractures and unflexes violently. The peak wall-rock velocity v thereby generated is given by v=(3 + 1-??2/2)1 2 S/?????E for rock of density ??, Young's modulus E, and Poisson's ratio ??. Typical values of these rock properties for the deep gold mines of South Africa yield v= 26 m/s and for especially strong quartzites encountered in these same mines, v> 50m/s. Even though this slab buckling process leads to remarkably high ejection velocities and violent damage in excavations, the energy released during this failure is only a tiny fraction of that released in the primary seismic event, typically of magnitude 2 or greater.

  9. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  10. Foam flow through a transparent rough-walled rock fracture

    SciTech Connect

    Kovscek, A.; Tretheway, D.; Radke, C.

    1995-07-01

    This paper presents an experimental study of nitrogen, water, and aqueous foam flow through a transparent replica of a natural rough-walled rock fracture with a hydraulic aperture of roughly 30 {mu}m. It is established that single-phase flow of both nitrogen and water is well described by analogy to flow between parallel plates. Inertial effects caused by fracture roughness become important in single-phase flow as the Reynolds number approaches 1. Foam exhibits effective control of gas mobility. Foam flow resistances are approximately 10 to 20 times greater than those of nitrogen over foam qualities spanning from 0.60 to 0.99 indicating effective gas-mobility control. Because previous studies of foam flow have focused mainly upon unfractured porous media, little information is available about foam flow mechanisms in fractured media. The transparency of the fracture allowed flow visualization and demonstrated that foam rheology in fractured media depends upon bubble shape and size. Changes in flow behavior are directly tied to transitions in bubble morphology.

  11. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    NASA Astrophysics Data System (ADS)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding

  12. Sulfide solubilities in Alteration-controlled Systems

    USGS Publications Warehouse

    Hemley, J.J.; Meyer, C.; Hodgson, C.J.; Thatcher, A.B.

    1967-01-01

    Solubilities of sphalerite (ZnS) and galena (PbS) were determined at 300?? to 500??C and 1000 bars total pressure in a chemical environment buffered by silicate mineral equilibria. Chloride solutions and muscovite-bearing assemblages characteristic of hydrothermal wall-rock alteration were used; weak acidities at temperature were therefore involved. The metal concentrations encountered tended to be higher than those observed in high bisulfide-H2S systems at neutral to weakly basic pH used in most previous experimentation; the chemical conditions of the work, although not completely satisfactory, are geologically more realistic than previous experimentation done in the basic-pH region.

  13. Global geologic context for rock types and surface alteration on Mars

    USGS Publications Warehouse

    Wyatt, M.B.; McSween, H.Y.; Tanaka, K.L.; Head, J. W.

    2004-01-01

    Petrologic interpretations of thermal emission spectra from Mars orbiting spacecraft indicate the widespread occurrence of surfaces having basaltic and either andesitic or partly altered basalt compositions. Global concentration of ice-rich mantle deposits and near-surface ice at middle to high latitudes and their spatial correlation with andesitic or partly altered basalt materials favor the alteration hypothesis. We propose the formation of these units through limited chemical weathering from basalt interactions with icy mantles deposited during periods of high obliquity. Alteration of sediments in the northern lowlands depocenter may have been enhanced by temporary standing bodies of water and ice. ?? 2004 Geological Society of America.

  14. Layering in the wall rock of Valles Marineris: intrusive and extrusive magmatism

    NASA Astrophysics Data System (ADS)

    Williams, Jean-Pierre; Paige, David A.; Manning, Craig E.

    2003-06-01

    High-resolution images of the walls exposed in Valles Marineris reveal variations in appearance and degree of layering indicating various lithologies comprise the Tharsis plateau. The layered wall rock has been proposed to result from effusive flood basalt volcanism or interbedded sediments and volcanics. We present observations of unlayered rock that indicate layering extends to a greater depth in the western half of Valles Marineris and is confined to the Tharsis plateau, a region of thickened, uplifted crust resulting from prolonged intrusive activity. Consistent with this view, we propose that the observed layering may be a manifestation of intrusive rocks resulting from crystal fractionation of intruded basaltic magmas. Terrestrial layered plutons provide analogs for comparison such as those of the North Atlantic Igneous Province (NAIP) a large igneous province associated with crustal rifting and exposures of thick sequences of layered flood basalts and intruded layered cumulates.

  15. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  16. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  17. Magma dynamics and wall-rock composition control the environmental impact of magmatic events

    NASA Astrophysics Data System (ADS)

    Arndt, N.; Ganino, C.; Pêcher, A.; Chauvel, C.; Zhou, M.; Tornos, F.

    2010-12-01

    A key control on the destructive consequences of the emplacement of large igneous provinces such as Siberia and Deccan is the type of sedimentary rock in basins beneath the flood basalts. Contact metamorphism around intrusions in carbonates (dolostones or limestones), sulphates (evaporites), coal or organic-rich shale generates large quantities of greenhouse and toxic gases (CO2, CH4, SO2) which subsequently vent to the atmosphere and cause global warming and mass extinctions. Recently we demonstrated that the release of sediment-derived gases had a far greater impact on the environment than the emission of magmatic gases. Here we compare the effects of contact metamorphism of different types of carbonated sediments. We estimate that about 220 kg of CO2 were released per ton of metamorphosed dolomite in Sichuan basin around the plumbing system of Emeishan large igneous province in China. New structural studies show that during emplacement of the main intrusion, multiple generations of mafic dykes invaded the marbles of the lower metamorphic aureole. These dykes reacted extensively with the marble, and the magma actively assimilated wall-rock dolostone, a process that potentially released the entire CO2 budget of the assimilated carbonate, or 477 kg/ton. We compare this result with a second case, the Aguablanca intrusion in Spain, where mafic magma intruded limestones and shales. Contact metamorphism of pure limestone produced very little CO2 (less than 50 kg of CO2 per ton of pure limestone) whereas, in impure dolostones, the presence of silica or clay allowed the formation of calc-silicate minerals and strongly increased the CO2 yield, to140 kg CO2 per ton. In contrast, studies by Svensen and coworkers of sills in the Karoo province reveal lower rates of emission, mainly from decomposition of hydrocarbons around passively emplaced intrusions. Therefore, to understand the full impact on environment of the release of thermogenic gases during a major magmatic event

  18. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an

  19. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  20. Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Morgan, Sven; Stanik, Amy; Horsman, Eric; Tikoff, Basil; de Saint Blanquat, Michel; Habert, Guillaume

    2008-04-01

    A detailed structural and rock magnetic study of the Trachyte Mesa intrusion and deformed sedimentary wall rocks, Henry Mountains, Utah, indicates that the intrusion grew vertically and horizontally by the accumulation of multiple horizontal magma sheets. 2-3 cm thick shear zones recognized by intensely cataclasized plagioclase phenocrysts define the contact between sheets. Sheets have bulbous and / or steep frontal terminations and are flat on top. The foliation within the interior of the sheets, near the frontal termination, is subvertical. This steep foliation rotates into the subhorizontal shear zones near the top and bottom contacts and provides a magma flow direction indicator. Away from the frontal termination, the interior foliation rotates to become subhorizontal, similar to the fabric in recent analog experimental studies. Sheets are interpreted as being emplaced as plug flows. Both the field fabric and the rock magnetic data collected from 103 locations on the top of the intrusion and from 73 locations along a vertical cross section exposed in a stream gorge support a multi-stage model of intrusion growth. Emplacement begins as narrow magma channels and magma spreads radially outward from the channels to form sheets. Sheets are stacked upon one another and stop at the same lateral termination. The deformation of the sandstones at the margin of the intrusion, which are rotated upward from the margin to become the roof, is partitioned into layer parallel extension, shearing and layer-parallel shortening components. Bulk strain within the thickest sandstone layer indicates ˜20% thinning and microstructures indicate that the thinning was accommodated by grain-scale fracture-induced porosity collapse. Extension occurred as the layer was stretched over the margin of the rising intrusion. Shearing and layer-parallel shortening are a result of coupling with the underlying sheets as they advanced and accommodated through numerous faults parallel to bedding and

  1. The Geology, Geochemistry and Alteration of the Westwood Au-Zn-Cu Deposit, Abitibi Subprovince, Canada

    NASA Astrophysics Data System (ADS)

    Wright-Holfeld, A.; Mercier-Langevin, P.; Dubé, B.

    2009-05-01

    ore zones. There is relatively little change in Si, although an apparent enrichment may be present in some intervals. These major element trends reflect the abundances of alteration minerals such as garnet, biotite, chlorite, and sericite. The Westwood study contributes to better geological and geochemical exploration models for gold-rich VMS systems in Archean greenstone belts.

  2. Wall rock-magma interactions in Etna, Italy, studied by U-Th disequilibrium and rare earth element systematics

    SciTech Connect

    Villemant, B. CNRS URA 196, Paris ); Michaud, V.; Metrich, N. )

    1993-03-01

    [sup 230]Th/[sup 238]U disequilibria have been studied in xenoliths and associated lavas of the 1892 and 1989 eruptions of Etna. Most xenoliths are out of secular equilibrium within 1 [sigma] errors and have lower [sup 230]Th/[sup 232]Th ratios than their host magmas. Siliceous and peraluminous xenoliths display large ranges of Th/U ratios for similar [sup 230]Th/[sup 232]Th values, which are interpreted in terms of Th isotopic rehomogenization. The siliceous xenoliths have also suffered thorium and uranium enrichments, which are best explained by chemical diffusion between xenolith melts and differentiated magmas. Estimates of thorium self-diffusivities and [sup 230]Th-[sup 238]U disequilibria give age constraints on these events corresponding to the last major volcanic event of Etna at 14 ka (formation of the elliptic crater caldera). These results suggest that magma storage in superficial and long-lived magma chambers favors the thorium isotopic homogenization of wall rocks by a thermal effect. Chemical diffusion of uranium and thorium and isotopic homogenization between siliceous melts of wall rocks and differentiated magmas may significantly modify the initial thorium isotopic compositions. Such contamination processes could explain the large variations of the [sup 230]Th/[sup 232]Th initial ratios of Etna magmas. 33 refs., 7 figs., 1 tab.

  3. The stable isotope geochemistry of acid sulfate alteration

    USGS Publications Warehouse

    Rye, R.O.; Bethke, P.M.; Wasserman, M.D.

    1992-01-01

    Acid sulfate wall-rock alteration, characterized by the assemblage alunite + kaolinite + quartz ?? pyrite, results from base leaching by fluids concentrated in H2SO4. Requisite amounts of H2SO4 can be generated by different mechanisms in three principal geologic environments: 1) by atmospheric oxidation of sulfides in the supergene environment, 2) by atmospheric oxidation at the water table in the steam-heated environment of H2S released by deeper, boiling fluids, and 3) by the disproportionation of magmatic SO2 to H2S and H2SO4 during condensation of a magmatic vapor plume at intermediate depths in magmatic hydrothermal environments in silicic and andesitic volcanic terranes. In addition, coarse vein alunite may form in a magmatic steam environment. -from Authors

  4. Microbially Mediated Glass Alteration in the Geological Record: Textural clues for Microbial Functions.

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Furnes, H.; McLoughlin, N.; Banerjee, N.

    2007-12-01

    Fe and Mn oxidizing microbes interact with their environment through the microbially mediated formation of Fe/Mn oxides and through the corrosion textures they may leave behind in the solids they colonize and from which they extract nutrients. Understanding the geo-biology of Fe and Mn oxidation may focus on the study of the microbes themselves, the mineral products, its biocorrosion features and the relationships between these types of observations. We have reviewed our own data on glass bio-corrosion and in particular the wider literature on microbial mineral tunneling to develop a two stage biocorrosion model for volcanic glass that offers feedback for our understanding of the mechanisms and the dynamics of microbial dissolution. Traces of microbially mediated dissolution of volcanic glass are commonly observed in volcanic glass found in submarine volcanoes on the seafloor, and in uplifted submarine volcanoes of almost any geological age back to the origin of life. Two main bioalteration textures care observed, granular and tubular. Based on a comparison of these features in particular with tunneling by ectomycorrhizal fungi, we propose two distinct types of biocorrosion that affects glass: (1) Granular alteration textures, made up of colonies of microbe-sized, near spherical mineral - filled cavities that form irregular clusters ranging to a tens of micron thick bands at the glas surfaces. These granular textures are interpreted as the result of microbial colonization. accompanied by dissolution of the glass in their contact surface, deposition of authigenic minerals and the formation of a biofilm, that eventually seals the glass from easy access by seawater for hydration, or from microbes accessing Fe (II) in the glass. (2) The most spectacular bioalteration feature, repesented by the formation of tubes cannot be easily formed by the former mechanism because near spherical, individual microbes are likely not to produce the directionality that is required to

  5. Opportunity, Geologic and Structural Context of Aqueous Alteration in Noachian Outcrops, Marathon Valley and Rim and Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Arvidson, R. E.; Mittlefehldt, D. W.; Jolliff, B. L.; Farrand, W. H.; Fox, V.; Golombek, M. P.

    2016-01-01

    In its 12th year of exploration and 1600 sols since arrival at the rim of the 22 km-diameter Noachian Endeavour impact crater, Mars Exploration Rover Opportunity traversed from the summit of the western rim segment "Cape Tribulation" to "Marathon Valley", a shallow trough dissecting the rim and the site of strong orbital detection of smectites. In situ analysis of the exposures within Marathon Valley is establishing some of the geologic and geochemical controls on the aqueous alteration responsible for smectite detection known to occur in crater rims throughout Noachian terrains of Mars.

  6. Tail shortening with developing eddies in a rough-walled rock fracture

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Yeo, In Wook; Lee, Kang-Kun; Detwiler, Russell L.

    2015-08-01

    Understanding fluid flow and solute transport in rough-walled fractures is important in many problems such as geological storage of CO2 and siting of radioactive waste repositories. The first microscopic observation of fluid flow and solute transport through a rough-walled fracture was made to assess the evolution of eddies and their effect on non-Fickian tailing. A noteworthy phenomenon was observed that as the eddy grew, the particles were initially caught in and swirled around within eddies, and then cast back into main flow channel, which reduced tailing. This differs from the conventional conceptual model, which presumes a distinct separation between mobile and immobile zones. Fluid flow and solute transport modeling within the 3-D fracture confirmed tail shortening due to mass transfer by advective paths between the eddies and the main flow channel, as opposed to previous 2-D numerical studies that showed increased tailing with growing eddies.

  7. Opportunity In Situ Geologic Context of Aqueous Alteration Along Offsets in the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Arvidson, R. E.; Farrand, W. H.; Golombek, M. P.; Grant, J. A.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.

    2015-01-01

    Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops.

  8. Geology, alteration, and lithogeochemistry of the Hood volcanogenic massive sulfide (VMS) deposits, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Mills, Hannah K.; Piercey, Stephen J.; Toole, Trish

    2016-04-01

    The Hood volcanogenic massive sulfide (VMS) deposits are hosted by the ~2.68 Ga Amooga Booga volcanic belt (ABVB) in the northwestern Archaen Slave Craton and consist of three deposits (Hood 10, 41, and 41A) and three occurrences (46, 461, and 462). The mineralized zones consist of massive to semi-massive pyrrhotite, pyrite, chalcopyrite, sphalerite, and galena hosted predominantly by felsic volcanic flows within the predominantly mafic ABVB. The mineralized lenses occur at different stratigraphic levels and have textural, alteration, and stratigraphic features consistent with formation via subseafloor replacement. The felsic volcanic rocks in the Hood deposits can be subdivided into groups based on immobile trace element geochemistry. The main felsic types (A and B) are petrographically indistinguishable. Type A has higher high field strength element (HSFE) and rare earth element (REE) contents than type B, suggesting a higher temperature of formation. Type A rocks also have higher Nb/Ta values indicative of a greater mantle input in their genesis compared to type B rocks. Mineralization is more closely associated with type A than type B rocks. The two mafic volcanic rock types previously identified in the ABVB, type I and type II, both occur within the Hood deposits. The type II mafic group is interpreted to be the result of variable crustal contamination of type I magma. The volcanic rocks of the ABVB are interpreted to have formed in a continental margin arc/back-arc setting. The genesis of these magmatic suites involved magmatic underplating and emplacement through pre-existing sialic basement that resulted in crustal melting, mantle-crust mixing, and contamination leading to the aforementioned geochemical features in both mafic and felsic suites. This type of extensional tectonic environment was likely associated with high heat flow and is similar to global VMS environments proximal to extending continental margins (e.g., Sturgeon Lake, Bathurst, and

  9. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.

  10. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  11. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler ''sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light. A set of two-phase flow experiments has been performed which has proven the viability of the basic experimental design, while also suggesting further improvements in the apparatus. Preliminary measurements are presented for single-phase permeability to liquid, and for relative permeabilities in simultaneous flow of liquid and gas.

  12. Alteration and fluid flow around a sulfide-carbonate-quartz vein, Lucky Friday mine, Northern Idaho

    SciTech Connect

    Gitlin, E.C.

    1985-01-01

    Wall rocks at the Lucky Friday mine, Coeur d'Alene district, Idaho, contain a >500m wide zone about a steeply dipping Pb-Zn-Ag vein. This zone has experienced local conditions distinct from the regional metamorphism of the quartzite + argillite host rock. Within the district, the host rock (Precambrian Revett Formation) has undergone low grade metamorphism and contains varying proportions of quartz, phengitic muscovite, detrital alkali feldspar, magnetite, hematite, ilmenite, rutile, zircon, tourmaline, +/- calcite, +/- ankeritic dolomite. In contrast, the Lucky Friday wall rocks lack feldspar and Fe-bearing oxides, and contain Fe-poor muscovite and up to 40% carbonate: siderite, ankerite, and/or calcite. A comparison of district-wide Revett rocks with Lucky Friday wall rocks suggests that the wall rocks have undergone localized dephengitization with concomitant Fe-enrichment in the carbonates and Fe-depletion of the oxides. Pertinent metamorphic reactions consume CO/sub 2/ and liberate H/sub 2/O. Fluid inclusions from the vein and wall rock stringers have homogenization temperatures from approx. =200/sup 0/ to <375/sup 0/C, but they define no temperature gradient. With few exceptions, compositions of the carbonates are identical throughout the altered wall rock. These observations suggest that the carbonate subzone contacts are not isograds but isofluxes: the loci of equivalent fluid/reactant mineral ratio. The disposition of isofluxes around a dominant fluid channelway, i.e. the vein, affords an opportunity to interpret fluid flow pathways during low temperatures metamorphism.

  13. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Vein-related alteration consisting of quartz-sericite-pyrite, chloritic, argillic, and silicic halos was superimposed on broad zones of pervasive silicic, potassic, and argillic alteration that surrounds the rhyolite intrusive body. Quartz-sericite-pyrite alteration associated with the earliest stage of mineralization was followed by broad, pervasive, stratigraphically controlled potassic alteration. Subsequent mineralization was accompanied by quartz-sericitepyrite alteration and was followed by the main stage of mineralization that formed strong chloritic alteration halos. Development of broad zones and halos of argillic alteration also may have been related to the main stage of mineralization. Development of silicic halos was characteristic of the late stages of mineralization. Broad, pervasive propylitic alteration was then superimposed on all alteration types and represents cooling and inward encroachment of the hydrothermal system. All alteration, except the early silicic alteration is interpreted to have been related to circulating meteoric fluids heated by the rhyolite.

  14. Interior layered deposits within a perched basin, southern Coprates Chasma, Mars: Evidence for their formation, alteration, and erosion

    NASA Astrophysics Data System (ADS)

    Fueten, F.; Flahaut, J.; Le Deit, L.; Stesky, R.; Hauber, E.; Gwinner, K.

    2011-02-01

    A basin-like area containing three interior layer deposits (ILDs) on the southern margin of Coprates Chasma was studied. We interpret the area as an ancestral basin and demonstrate that ILD deposition postdates the formation of the current wall rock slopes. The geometry of the ILD and the wall rock spurs form a catchment area between each ILD and the plateau to the south. Erosional remnants of extensive ash or dust layers deposited on the plateau south of Valles Marineris also crop out on the southern plateau of Coprates Chasma. A mass balance calculation suggests that the volume of each ILD is compatible with the volume of the ash or dust that would have been deposited within each catchment area. We propose that the ILDs likely formed by episodically washing such aerially deposited material down from chasma walls. Rifting of the Ius-Melas-Coprates graben opened the enclosed basin and removed any standing water. Faults within the ILDs are compatible with this chasm opening. Sulfates are associated with the ILDs and light-toned material on the basin floor. We suggest that they result from water alteration of preexisting deposits, though the timing of that alteration may predate or postdate the breaching of the basin. Scours within one ILD are similar to terrestrial glacial scours. During a period of high obliquity ice would accumulate in this region; hence we argue the scours are Martian glacial scours. A late deposited layer marks the end of the active local geological history between 100 My and 1 Gy.

  15. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  16. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration

    USGS Publications Warehouse

    Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, D.J.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; Barnouin-Jha, O.; Murchie, S.L.

    2009-01-01

    diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments. Copyright 2009 by the American Geophysical Union.

  17. Altered volcanic ash partings in Wasatch Formation coal beds of the northern Powder River basin: composition and geologic applications

    USGS Publications Warehouse

    Bohor, Bruce Forbes; Phillips, Richard E.; Pollastro, Richard M.

    1979-01-01

    In contrast to the coal-bearing rocks of the Appalachian and Eastern Interior Basins, those of the northern Powder River Basin exhibit more complex stratigraphic and facies relationships, and regional correlations of coal beds are, therefore, more difficult to establish. Recently, however, several coal beds in the Powder River Basin, as well as coal beds in several other coal basins of the Rocky Mountain region, have been found to contain thin but persist·ent layers. of altered volcanic ash described as kaolinitic bentonites (Bohor, 1976, 1977, 1978, Bohor and others, 1976, 1978, Bohor and Pillmore, 1976). These layers serve as isochronous marker horizons which aid in correlating coal beds over broad areas.

  18. Geology, alteration, and magmatic-hydrothermal history of The Geysers felsite -- potential applications for exploration and development

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-01-01

    The [open quotes]felsite[close quotes] is a shallow, young, granitic intrusive body centrally located within and beneath. The Geysers steam field. The field and the felsite are coaxial, and hydrothermal alteration effected by hot-water dominated geothermal systems antedating the modern steam reservoir shows systematic vertical zonation with respect to the pluton. The research summarized in this communication was undertaken both to clarify the role of the pluton in reservoir evolution, and to characterize critical felsite-specific controls on the fields's deep porosity and permeability. The felsite comprises at least three major intrusive phases. Two are high-silica granites probably older than 1.3 Ma. The third is granodiorite (1 Ma), temporally and chemically equivalent to overlying extrusive dacites of the Clear Lake volcanic field. All three intrusive phases are too old to be heat sources for the modern steam field, but probably were the heat engines for the prior liquid-dominant systems. Younger, deeper magmatic heat sources are strongly implied for the current vapor-dominated regime. Porosity in the felsite is provided by: (1) Extensively mineralized fractures and breccias, probably of both tectonic and high-temperature hydrothermal origin; and (2) miarolitic cavities in the upper levels of the pluton. The latter could be analogous to calcite-dissolution cavities in overlying metagraywacke -- they could serve as storage sites for the fields's liquid water reserves. Porosity in these fractures, breccias, and vugs in partially occluded by hydrothermal vein minerals deposited in prior hotwater-dominated systems --tourmaline, ferroaxinite, quartz, potassium feldspar, epidote, actinolite, prehnite, and many others. Such secondary mineralization conceptually could serve as an excellent exploration guide to potentially productive portions of the felsite beyond the field's present boundaries.

  19. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: Evidence from geology, geochemistry and stable isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Hou-Min; Yang, Xiu-Qing; Li, Li-Xing; Zhang, Zhao-Chong; Liu, Ming-Jun; Yao, Tong; Chen, Jing

    2015-12-01

    The high-grade magnetite ores related to banded iron formations (BIFs) in the Anshan-Benxi area, Liaoning Province in China, have been widely interpreted as the product of replacement of protore by epigenetic hydrothermal fluids. The high-grade iron ore reserves in the mining area II (164 million tons) in the Gongchangling (G2) and Qidashan-Wangjiabuzi (QW) iron deposits (11.45 million tons) are the largest deposits in the Anshan-Benxi area. We present a detailed comparison of the geology, geochemical and stable isotopic compositions of the iron ores in the G2 with those in the QW to constrain the role of desilicification and iron activation-reprecipitation in converting the BIFs to high-grade magnetite ores. These two deposits show marked difference in wall-rock alteration, geochemical features, and oxygen and sulfur isotopic compositions. Wall-rock alteration in the G2 is characterized by garnetization, actinolitization, and chloritization, whereas the QW shows chloritization, biotitization and sericitization. The geochemistry of altered rocks in the G2 is characterized by slight REE fractionation, positive Eu and no significant Ce anomalies, whereas the QW is characterized by high ΣREE contents, strong REE fractionation, and the absence of significant Eu and Ce anomalies. High-grade iron ores in the G2 show similar δ18OV-SMOW values for magnetite, lower δ18OV-SMOW values for quartz and higher δ34SV-CDT values for pyrite when compared to the BIFs, whereas the QW shows lower δ18OV-SMOW values for magnetite, similar δ18OV-SMOW values for quartz and similar δ34SV-CDT values for pyrite. These features indicate that desilicification process by hypogene alkaline-rich hydrothermal fluids were possibly responsible for the formation of high-grade iron ores in the G2 whereas iron activation-reprecipitation process by migmatitic-hydrothermal fluids generated the high-grade iron orebodies in QW.

  20. Host rocks and their alterations as related to uranium-bearing veins in the United States

    USGS Publications Warehouse

    Walker, George W.

    1956-01-01

    This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its

  1. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  2. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  3. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  4. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  5. Geologic Time.

    ERIC Educational Resources Information Center

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  6. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  7. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  8. Geology and origin of Ag-Pb-Zn deposits occurring in the Ulaan-Jiawula metallogenic province, northeast Asia

    NASA Astrophysics Data System (ADS)

    Nie, Feng-jun; Li, Qiang-feng; Liu, Chun-hua; Ding, Cheng-wu

    2015-01-01

    Located at the conjunction area of China, Mongolia and Russia in NE Asia, the Ulaan-Jiawula (also referred as UJ) region, with an area of 400,000 km2, is one of the most important Ag-Pb-Zn, U, Sn, W, Nb-Ta, and Au metallogenic provinces in Asia. At present, 2126 deposits and showings including 500 Ag-Pb-Zn deposits have been discovered, explored and mined since the late 1960s. These Ag-Pb-Zn occurrences can be subdivided into three types according to their geological setting, texture, alteration and mineral assemblages: (1) low sulfidation epithermal Ag-Pb-Zn deposits; (2) intermediate sulfidation epithermal Ag-Pb-Zn deposits; (3) mixed-type Ag-Pb-Zn deposit consisting of vein-like and tabular ore bodies. The Eren Tologoi and Tsagenbulagen deposits are representative of low-sulphidation type Ag-Pb-Zn mineralization in the UJ region, and are associated with intensive adularization and sericitization. Ore occurs as mineralized quartz veins, veinlet groups and altered-fracture zones within Mesozoic alkaline and high-K calc-alkaline volcanic rocks, Ore mineralogy includes native silver, electrum, pyrite, galena, sphalerite, arsenopyrite, pyrargyrite and chalcopyrite. The Tsav and Jiawula deposits are typical of intermediate sulfidation Ag-Pb-Zn mineralization. The δ34S value of sulfide (pyrite and galena) separates from groups 1 and 2 varies from 1.5‰ to 3.5‰ and 2.0‰ to 4.5‰, respectively. The δ34S values of the Mesozoic volcanic host rocks for groups 1 and 2 deposits also show the positive δ34S values of 1.5-4.8‰, while the δ34S value of pyrite separate from the pre-Jurassic schist range from -6‰ to -8‰ which are much lower than Mesozoic volcanic host rocks and their associated ore deposits. There is no difference between the δ34S value of sulfide (pyrite and galena) separates from vein-like ore bodies of the group 3 deposits and their wall rocks, having δ34S value of 1.0-5.0‰ and 1.2-4.5‰ which are similar to that of groups 1 and 2 deposits

  9. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  10. Practical Geology

    ERIC Educational Resources Information Center

    Sutton, Ian

    1975-01-01

    Geology is an ideal subject in which to introduce the "discovery" method of learning. Available from: National Institute of Adult Education (England and Wales), 35 Queen Anne St., London W1M OBL England. (BP)

  11. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  12. Destination: Geology?

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  13. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion

  14. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  15. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  16. City Geology.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    This article provides information on the evolution of the building material, concrete, and suggests hands-on activities that allow students to experience concrete's qualities, test the heat absorbency of various ground surface materials, discover how an area's geology changes, and search for city fossils. A reproducible activity sheet is included.…

  17. Geology of the Plumtree area, Spruce Pine district, North Carolina

    USGS Publications Warehouse

    Brobst, Donald Albert

    1953-01-01

    dikes of post-pegmatite age (Triassic?). The alaskite and pegmatite have similar bulk compositions, notably low in iron (0.3 percent). The major constituents in order of decreasing abundance are plagioclase, perthitic microcline, quartz, and muncovite. All of these minerals, as well as clay deposits derived from the weathering of alaskite under old terraces, have economic value. The zoned pegmatites contain fewer zones which are less complex mineralogically than those in the pegmatites of many other areas. These essentially unmetamorphosed bodies were intruded approximately at the peak of the regional metamorphism. Their emplacement was controlled by local structure and rock type. The source of this igneous material may have been the mobilized portions of the Cranberry gneiss which underlies the area. The dunite bodies were intruded early in the metamorphic cycle. The bodies are commonly zoned: from the wall rock inwards (1) talc-antrophyllite-serpentine fringe, (3) serpentinized dunite, (3) granular olivine core. Dunite, chromite, vermiculite, and anthophyllite are the major economic commodities. Extensive hydrothermal alteration of dunite bodies produced soapstone. The area is the northeast end of a southwest plunging synclinorium about 20 miles wide with the steeper limb on the northwest side. There are three structural zones: zone I on the northwest is characterized by the northeast-trending isoclinal folds with steep southeast dips; zone II on the southwest includes an area of rocks with low and variable dip; zone III is the complex central core. In the extreme northeast zones I and II have an indistinct boundary where they coalesce along the rim of the synclinorium. Six stratigraphic units are exposed totaling approximately 10,500 feet of metamorphic rocks. Small scale structural features include a foliation, and a lineation in the planes of the foliation. Minor folding reflects the trends of the major structures. There are randomly orient

  18. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J., III

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  19. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect

    Holt, R.M.; Powers, D.W. )

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  20. Infrared spectral identification of metasomatic alteration minerals and its implication to gold exploration in Shihu Gold Deposit, Hebei Province, P.R. China

    NASA Astrophysics Data System (ADS)

    Liu, Jiacheng; Yao, Yuzeng; Wang, Yingpeng; Yuan, Zhou

    2014-11-01

    Hydrothermal alteration is of great importance for mineral exploration, especially the blind ore-hunting due to its larger scale and special zonation compared to the ore bodies. Infrared spectral identification of metasomatic alteration minerals can be done with little or no sample preparation and quantitative result can be obtained. In this paper, 65 wall-rock samples of several horizontal and vertical profiles were selected from Shihu Gold deposit in Hebei Province to do reflectance spectrum measurements by means of rough surface, smooth section and powder with portable ASD FieldSpec®3 spectrometer. ViewspecPro software was used to preprocess the spectrum, and metasomatic alteration minerals were spectrally discriminated by SII (Spectral International Inc) Specmin software package with wavelength of 1100~2500nm. The results shows that: (1) among all the three spectral libraries embedded in SPECMIN software, i.e., ASD, USGS and JPL, ASD spectral library is more suitable for the spectral hydrothermal alteration minerals identification in Shihu Gold Deposit; (2) the observed mineral zonation from wall-rock gneiss to ore-body indicates obvious downtrend of amphibole, chlorite, sericite, carbonate and barite, which is consistent with the microscopic and XRD results; (3) spectral identification of metasomatic alteration minerals is theoretically feasible, which is economic and convenient, and most important of all, the result can be quantitative or semi-quantitative. The results are helpful and successfully applied to the further mineral exploration in Shihu Gold Deposit.

  1. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of

  2. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.

    PubMed

    Mazurek, Martin; Jakob, Andreas; Bossart, Paul

    2003-03-01

    (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours-days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption K(d)s are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.

  3. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this

  4. Geologic nozzles

    USGS Publications Warehouse

    Werner, Kieffer S.

    1989-01-01

    The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by the debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. -from Author

  5. Geology of the Göçükdibi Cu-Pb-Zn Mineralization, Gökçedoǧan, Çorum (Turkey): Preliminary Findings on Its Formation

    NASA Astrophysics Data System (ADS)

    Yalçin, Cihan; Hanilçi, Nurullah; Kumral, Mustafa; Abdelnasser, Amr

    2016-04-01

    Göçükdibi Cu-Pb-Zn mineralization is located 3 km north west of Gökçedoǧan village where is 30 km east of the Kargı, Çorum. The geology of the mineralization area is represented by Mesozoic and Upper Pliocene lithostratigraphic units in different origin. These units with respect to their structural locations have identified as autochthonous and allachtonous. The autochthonous units which are the basement of the region are represented by Bekirli Metamorphites (Triassic-Liassic) and Beşpınar formation (Upper Cretaceous-Lower Eocene) which overlies the Bekirli Metamorphites as angular discordance. The allachtonous units are represented by Saraycık formation belongs to Kargı Ophioltic Melange, and located on the autochthonous units as tectonically. These allocthonous units are the product of the Neotethyan Ocean. The autochthonous and allachtonous units are overlaid by Upper Pliocene Ilgaz Formation and Plio-Quaternary stream sediments. The Cu-Pb-Zn mineralization is located in northwest of the Gökçedoǧan village within the Bekirli Metamorphites. The ore zone has N80E direction, 5 m wide and 120 m in length. The mineralizations which follow NE-SW trending structural line occurred as alternation with quartz-chlorite schists of the Bekirli Metamorphites. The mineralization is generally concordant to the foliation of schist's and also occurred as disseminated in the wall rocks. The ore paragenesis comprises with pyrite, chalcopyrite, sphalerite and galenit as the main sulphide minerals, and the malachite, azurite and limonite as the production of the oxidation. Preliminary data such as relationship between the ore and host rock, inner-structure of the ore and indicate that the Gökçedoǧan Cu-Pb-Zn mineralization was likely to have originated syngenetic. In addition, the geochemical behaviour of rare earth elements (REE) of the altered and mineralized samples collected from the alteration zone show that light REE enrichment with fair depletion of heavy REE

  6. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.

    2012-04-01

    gravitational forces and seismic activity - an important geologic process on Vesta that significantly alters the morphology of geologic features and adds to the complexity of its geologic history. In general, Vesta's geology is more like the Moon and rocky planets than other asteroids.

  7. Geologic Map of the Estes Park 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.

    2009-01-01

    The rocks and landforms of the Estes Park 30 x 60 minute quadrangle display an exceptionally complete record of geologic history in the northern Front Range of Colorado. The Proterozoic basement rocks exposed in the core of the range preserve evidence of Paleoproterozoic marine sedimentation, volcanism, and regional soft-sediment deformation, followed by regional folding and gradational metamorphism. The metasedimentary rocks of the Estes Park quadrangle are distinct within northern Colorado for preserving the complete metamorphic zonation from low-grade chlorite-muscovite phyllites, through middle greenschist-grade rocks with sequential aluminous porphyroblasts, to partially melted gneisses that contain high-grade cordierite and garnet in the non-melted residues. Regional and textural evidence shows that the widespread metamorphism was essentially concurrent with intrusion of the Boulder Creek Granodiorite and related magmas and with the peak of deformation in the partially melted high-grade rocks. The metamorphic thermal pulse arrived later following the peak of deformation in the physically higher, cooler, low-grade terrane. Mesoproterozoic time was marked by intrusion of biotite granite in the Longs Peak-St Vrain batholith, a complex, irregular body that occupies nearly half of the core of the Front Range in this quadrangle. The magma was dry and viscous as it invaded the metamorphic rocks and caused wholesale plastic folding of the wall rock structure. Steep metamorphic foliation that resulted from the Paleoproterozoic deformations was bowed upward and re-oriented into flat-lying attitudes as the crystal-rich magma rose buoyantly and spread out in the middle crust. Magma invaded the schists and gneisses along weak foliation planes and produced a characteristic sill-upon-sill intrusive fabric, particularly in the higher parts of the batholith. Broad, open arches and swales that are defined by the flow-aligned feldspar foliation of the granite, as well as by

  8. Marine Geology

    NASA Astrophysics Data System (ADS)

    van Andel, Tjeerd H.

    Marine geology was blessed early, about 30 years ago, with two great textbooks, one by P.H. Kuenen, the other by Francis P. Shepard, but in more recent years, no one has dared synthesize a field that has become so diverse and is growing so rapidly. There are many texts written for the beginning undergraduate student, mostly by marine geologists, but none can be handed conveniently to a serious advanced student or given to a colleague interested in what the field has wrought. The reason for this regrettable state is obvious; only an active, major scholar could hope to write such a book well, but the years would pass, his students dwindle, his grants vanish. He himself might be out of date before his book was. Kennett has earned a large measure of gratitude for his attempt to undertake this task. His personal price must have been high but so are our rewards.

  9. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in

  10. Geologic investigations

    SciTech Connect

    Orkild, P.P.; Baldwin, M.J.; Townsend, D.R.

    1983-12-31

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  11. Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation

    USGS Publications Warehouse

    Nash, J. Thomas

    1977-01-01

    a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.

  12. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  13. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  14. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  15. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  16. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  17. History of Geology.

    ERIC Educational Resources Information Center

    Greene, Mott T.

    1985-01-01

    Discusses: (1) geologists and the history of geology; (2) American historians and the history of geology; (3) history of geology in the 1980s; (4) sources for the history of geology (bibliographies, dictionaries, encyclopedias, handbooks, periodicals, public/official histories, compilations, and books); (5) research opportunities; and (6) other…

  18. Practical petroleum geology

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the scope and content of the field of petroleum geology from the standpoint of the practicing petroleum geologist. Includes chapters on basic geological concepts, the sedimentation process, accumulation of hydrocarbons, exploration, economic examination, drilling of exploratory wells, recovering oil and gas (reservoir geology), and the relationship of geology to the petroleum industry as a whole.

  19. Lunar Field Geological Interpretations Assisted by LROC, Mini-RF and M3: Taurus-Littrow

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.; Petro, N. E.; Robinson, M. S.; Wells, R.; Weiss, B. P.; Mercer, C. M.

    2015-12-01

    Integration of Apollo 17 field observations and photographs, sample investigations, Lunar Reconnaissance Orbiter Camera images, Moon Mineralogical Mapper data, and Mini-RF images provides new insights into the geology of the valley of Taurus Littrow. Samples from the North Massif and the Sculptured Hills appear to represent a stratigraphic sequence of ejecta from the Cranium and Serenitatis basin-forming events. Published analyses of these samples provide the approximate ages for those events that appear consistent with this sequence; however, within current 2 sigma error limits, these ages overlap. Strong evidence exists that the Sculptured Hills physiographic unit consists of Imbrium ejecta made up of a layered, Mg-suite pluton. Rim boulders at Camelot Crater constitute wall rocks of the crater rather than ejecta and provide a potential opportunity for investigations of remnant magnetic field orientation at the time of the eruption of late mare basalt lavas in the valley. A second and older light mantle avalanche deposit has been identified, and the origin, potential fluidized flow mechanisms, and geology of the two avalanches from the South Massif have been clarified, including the probability of significant agitation heating during flow. The structure, potential effects, and timing of the Lee-Lincoln thrust fault, and of an ancillary fault revealed by radar, have been defined and raise doubts about the association of the light mantle avalanche with secondary impacts related to the Tycho event.

  20. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  1. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  2. History of Geology.

    ERIC Educational Resources Information Center

    Bork, Kennard B.

    1983-01-01

    Highlights geological history activities during 1982. These include formation of The History of Earth Sciences Societies, publication of a new journal ("Earth Sciences History: The Journal of the History of Earth Sciences Societies"), and presentation of the first history of geology award. Comments on geological history publications are also…

  3. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  4. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. )

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  5. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    SciTech Connect

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45{sup 0}E-75{sup 0}SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs.

  6. Interpreting Urban Geology.

    ERIC Educational Resources Information Center

    Hannibal, Joseph Timothy; Schmidt, Mark Thomas

    1991-01-01

    Describes field trips to urban locations for geological instruction. The program was developed by the Cleveland Museum of Natural History. Authors claim these field trips have been an effective and enjoyable way of conveying a wide variety of geological information to participants at all levels and backgrounds and have created favorable publicity.…

  7. People and Geology.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.…

  8. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  9. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  10. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  11. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  12. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  13. Geologic time scale bookmark

    USGS Publications Warehouse

    ,

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  14. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  15. Analysis of Geological Structures

    NASA Astrophysics Data System (ADS)

    Price, Neville J.; Cosgrove, John W.

    1990-08-01

    A knowledge of structural geology is fundamental to understanding the processes by which the earth's crust has evolved. It is a subject of fundamental importance to students of geology, experienced field geologists and academic researchers as well as to petroleum and mining engineers. In contrast to many structural textbooks which dwell upon geometrical descriptions of geological structures, this book emphasises mechanical principles and the way in which they can be used to understand how and why a wide range of geological structures develop. Structures on all scales are considered but the emphasis of the book is on those that can be seen on the scale of hand specimen or outcrop. Drawing on their considerable teaching experience the authors present a coherent and lucid analysis of geological structures which will be welcomed by a wide variety of earth scientists.

  16. Environmental geology of the Summitville mine, Colorado

    USGS Publications Warehouse

    Gray, John E.; Coolbaugh, Mark F.; Plumlee, Geoffrey S.; Atkinson, William W.

    1994-01-01

    Although altered and mineralized rocks at Summitville mine in Colorado contain minimal amount of sulfide minerals, acid mine problems existed primarily because of the pervasive alteration of the surrounding rocks, through hydrothermal process, to highly siliceous and argillized rocks that are incapable of buffering acidic waters during weathering. The problems are compounded by the continued exposure of altered and mineralized rocks in open pit, heap leach pad and waste piles to oxygenated waters. Inadequate subsurface structural control and underground mine workings also greatly affect water quality and the location of acid mine drainage output. It is expected that with these initial results, geological studies on constrained acid-generation from ore and altered rocks will be pursued.

  17. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect

    Gehring, A.U. |; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  18. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  19. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  20. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  1. Geology of caves

    USGS Publications Warehouse

    Morgan, I.M.

    1991-01-01

    A cave is a natural opening in the ground extending beyond the zone of light and large enough to permit the entry of man. Occurring in a wide variety of rock types and caused by widely differing geological processes, caves range in size from single small rooms to intercorinecting passages many miles long. The scientific study of caves is called speleology (from the Greek words spelaion for cave and logos for study). It is a composite science based on geology, hydrology, biology, and archaeology, and thus holds special interest for earth scientists of the U.S. Geological Survey.

  2. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  3. Economic Geology (Oil & Gas)

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  4. Geology of icy satellites

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1985-01-01

    The geology of the major icy satellites of Jupiter, Saturn, Uranus, and Neptune is discussed in terms of the four major processes that shape icy satellite surfaces: impact cratering, volcanism, tectonism, and interactions with planetary magnetospheres and solar radiation. The role of these processes in creating the differences that exist among the satellites, in particular the orderly progression of geological properties in the Jovian satellites, is emphasized. Important questions left open after the Voyager missions are summarized.

  5. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  6. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  7. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  8. The geology of Ganymede

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  9. Geology at Yucca Mountain

    SciTech Connect

    1993-05-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper.

  10. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  11. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.

    1989-01-01

    In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

  12. Global sedimentary geology program

    SciTech Connect

    Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.

    1986-07-01

    The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

  13. Alaskan North Slope Geology

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren

    The discovery well for the Prudhoe Bay field, the largest oil accumulatn yet found in the United States, was drilled on the Arctic coast of Alaska by ARCO and Exxon in 1968. A decade of exploratory geology and increasingly detailed geophysical surveys, mostly by Sinclair and British Petroleum in the early years, but then by a number of companies, preceded the discovery. Systematic U.S. Geological Survey (USGS) reconnaissance of the Brooks Range—the great mountain system of northern Alaska—had begun in the 1940s and was accelerated after the discovery, as was industry work. In the last decade, scientists from the Alaska Division of Geology and Geophysics and from various universities have become increasingly involved. This modestly priced two-volume work presents hitherto unavailable summaries of much of this modern work.

  14. Geological Corrections in Gravimetry

    NASA Astrophysics Data System (ADS)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  15. Experimentation in planetary geology

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.

    1987-01-01

    Laboratory simulations of geological processes on the terrestrial planets are described, summarizing results published during the period 1983-1986. Included are studies of wind-driven processes on Mars and Venus (using the special wind-tunnel facilities at NASA Ames); simulations of shock-induced loss of volatiles from solids; equation-of-state determinations; impact experiments simulating cratering, spallation, regolith formation, and disruption; fluid-flow simulations of channel formation on Mars; and dust studies. The use of the microgravity environment of the Space Station for planetary-geology experiments is briefly considered.

  16. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  17. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of additional…

  18. Life on Guam: Geology.

    ERIC Educational Resources Information Center

    Elkins, Gail

    This unit is part of a series of materials produced by a project to develop locally applicable class, lab, and field materials in ecology and social studies for Guam junior and senior high schools. While the materials were designed for Guam, they can be adapted to other localities. This unit is designed to acquaint the students with the geology of…

  19. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  20. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  1. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  2. Geology 12. Curriculum Guide.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    This publication, developed by the Ministry of Education, Province of British Columbia, Canada, is a teaching guide for the Geology 12 course. The course is intended to provide secondary school students with the background and desire to investigate their earth, its materials and its processes. The guide consists of the following four sections: (1)…

  3. Digital solar system geology

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Kozak, R. C.; Isbell, Nancy K.

    1991-01-01

    All available synoptic maps of the solid-surface bodies of the Solar System were digitized for presentation in the planned Atlas of the Solar System by Greeley and Batson. Since the last report (Batson et al., 1990), preliminary Uranian satellite maps were replaced with improved versions, Galilean satellite geology was simplified and digitized, structure was added to many maps, and the maps were converted to a standard format, with corresponding standing colors for the mapped units. Following these changes, the maps were re-reviewed by their authors and are now undergoing final editing before preparation for publication. In some cases (for Mercury, Venus, and Mars), more detailed maps were digitized and then simplified for the Atlas. Other detailed maps are planned to be digitized in the coming year for the Moon and the Galilean satellites. For most of the remaining bodies such as the Uranian satellites, the current digitized versions contain virtually all the detail that can be mapped given the available data; those versions will be unchanged for the Atlas. These digital geologic maps are archived at the digital scale of 1/16 degree/ pixel, in sinusoidal format. The availability of geology of the Solar System in a digital database will facilitate comparisons and integration with other data: digitized lunar geologic maps have already been used in a comparison with Galileo SSI observations of the Moon.

  4. Appendix E: Geology

    SciTech Connect

    Reidel, Steve; Chamness, Mickie A.

    2008-01-17

    This appendix provides a detailed description of geology under the Central Plateau of the Hanford Site, emphasizing the areas around tank farms. It is to be published by client CH2M HILL Hanford Group, Inc., as part of a larger, multi-contractor technical report.

  5. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  6. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  7. Geological Processes and Evolution

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Greeley, R.; Golombek, M. P.; Hartmann, W. K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L. E.; Carr, M. H.

    2001-04-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  8. Geological impacts on nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  9. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  10. Geological Field Trip Guidebooks

    ERIC Educational Resources Information Center

    Wallace, Harriet E.

    1978-01-01

    Geological field trip guidebooks, developed for use during a field trip or field conference, are considered ephemeral publications by their compilers and publishers. Too few copies are printed and little attention is paid to bibliographic format and information. These difficulties are discussed and recommendations are made to alleviate the…

  11. Public perceptions of geology

    NASA Astrophysics Data System (ADS)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  12. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  13. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  14. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  15. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  16. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  17. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  18. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (Inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  19. Principles of nuclear geology

    SciTech Connect

    Aswathanarayana, U.

    1985-01-01

    This book treats the basic principles of nuclear physics and the mineralogy, geochemistry, distribution and ore deposits of uranium and thorium. The application of nuclear methodology in radiogenic heat and thermal regime of the earth, radiometric prospecting, isotopic age dating, stable isotopes and cosmic-ray produced isotopes is covered. Geological processes, such as metamorphic chronology, petrogenesis, groundwater movement, and sedimentation rate are focussed on.

  20. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  1. Integrating geology and perforating

    SciTech Connect

    Araujo, P.F. de; Souza Padilha, S.T.C. de

    1997-02-01

    Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

  2. The Geology of Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  3. Interactive geologic modeling

    SciTech Connect

    Glaeser, J.D.; Krajewski, S.A.

    1984-04-01

    Improved success in finding hydrocarbons and minerals depends on developing geologic models from seismic, gravity, and magnetic data that most closely approximate real-world settings. Although data processing remains the chore of mainframe and minicomputers, interpretations and modeling of geologic and geophysical information now are best accomplished on personal computers because these computers afford the explorationist maximum freedom to shape and fine tune geophysical evaluations. Three case histories use the GEOSIM geophysical modeling systems to delineate exploration targets. The first example is Silurian Niagaran reef trends in the Michigan basin. Here, differences in seismic reef anomalies result from variations in carbonate-evaporite stratigraphy encasing the reefs, reef geometry, and reef reservoir parameters. These variations which influence real seismic-response differences can be successfully matched using appropriate geologic models in generating synthetic seismic reef anomalies. The second example applies gravity and magnetic data to seismic modeling of a Wyoming coal field. Detailed seismic stratigraphy helps locate those portions of the field having multiple seams, although it does not resolve individual economic zones. Gravity data do identify pinchout margins of multiseam zones and pinchouts between principal coals. Magnetic data are then used to delineate the burn (clinker) margin. Seismic modeling of subtle stratigraphic traps is the broader area of exploration interest contained in the first 2 examples. In the third, successfully modeled and tested examples of lateral changes in deltaic facies and of faulted, unconformity-bounded continent-margin sequences are shown to be successful guides to reinterpretation of seismic data.

  4. Sulfur and oxygen isotope study of the Vermont copper belt: evidence of seawater hydrothermal alteration and sulfate reduction in a high-grade metamorphic terrane

    SciTech Connect

    Shanks, W.C. III; Woodruff, L.G.; Slack, J.F.

    1985-01-01

    Massive sulfide deposits of the Orange County copper district, in east-central Vermont, consist of stratiform lenses of pyrrhotite, chalcopyrite, and minor sphalerite within amphibolite-facies rocks of Early Devonian (.) age. The deposits occur at several different stratigraphic levels. The two largest, Elizabeth and Ely, are in quartz-mica schists of the Gile Mountain Formation; the Pike Hill deposit occurs in calcareous quartz-mica schist of the underlying Waits River Formation. Two small deposits (Orange and Gove) are within the Standing Pond Volcanics, a thin tholeiitic amphibolite near the Gile Mountain-Waits River contact. The Elizabeth deposit in particularly distinctive, and contains a suite of unusual wall rocks rich in quartz, carbonate, muscovite, amphibole, phlogopite, tourmaline, spessartine, and sodic plagioclase. Sulfur isotope values at Elizabeth and Ely of 5.1 to 9.1 per thousands contrast with values for Gove (1.9 to 4.2) and Pike Hill (1.5 to 4.6). Disseminated sulfides in amphibolites of the Standing Pond Volcanics have sulfur isotope values in the range -0.1 to 1.7 per thousands, typical of MORB. These data require sulfur contributions to massive sulfide deposits both from basalt and from contemporaneous seawater sulfate sources. Whole-rock (carbonate free) oxygen isotope analyses of host lithologies range from 7.9 per thousands (Standing Pond Volcanics) to 19.9 per thousands (Waits River Formation). Detailed sampling of Elizabeth wall rocks (including those high in B, Na, Mg, Al, Si, Mn) yields a narrow range of oxygen isotope values (11.1 to 14.1); heavier values correlate with higher silica contents. Isotopically light wallrock lithologies are probably due to premetamorphic seawater hydrothermal alteration.

  5. Tsunami geology in paleoseismology

    USGS Publications Warehouse

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  6. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  7. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  8. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  9. Okinawa, Japan: Geologic Battleground

    NASA Astrophysics Data System (ADS)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  10. Geologic Mapping of Mars

    NASA Astrophysics Data System (ADS)

    Price, Katherine H.

    1998-05-01

    Planetary geologic mapping involves integrating a terrestrial-based understanding of surface and subsurface processes and mapping principles to investigate scientific questions. Mars mappers must keep in mind that physical processes, such as wind and flowing water on Mars, are or were different from terrestrial processes because the planetary atmospheres have changed differently over time. Geologic mapping of Mars has traditionally been done by hand using overlays on photomosaics of Viking Orbiter and Mariner images. Photoclinometry and shadow measurements have been used to determine elevations, and the distribution and size of craters have been used to determine the relative ages of surfaces- more densely cratered surfaces are older. Some mappers are now using computer software (ranging from Photoshop to ArcInfo) to facilitate mapping, though their applications must be carefully executed so that registration of the images remains true. Images and some mapping results are now available on the internet, and new data from recent missions to Mars (Pathfinder and Surveyor) will offer clarifying information to mapping efforts. This paper consists chiefly of pictures and diagrams.

  11. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  12. Thermal maturity patterns (conodont color alteration index and vitrinite reflectance) in Upper Ordovician and Devonian rocks of the Appalachian basin: a major revision of USGS Map I-917-E using new subsurface collections: Chapter F.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic

  13. Geologically current plate motions

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit-MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6-2.6mmyr-1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca-Antarctic and Nazca-Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also

  14. Geologic Map of the Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Gardner, J. N.; Reneau, S. L.; Kelley, S. A.; Kempter, K. A.; Lawrence, J. R.

    2011-12-01

    Valles caldera is famous as the type locality of large resurgent calderas (Smith and Bailey, 1968), the location of a classic 260-300 °C liquid-dominated geothermal system (Goff and Gardner, 1994), and the site of a long-lived late Pleistocene lake (Fawcett et al., 2011). We have published a detailed color geologic map of the Valles caldera and surrounding areas at 1:50,000 scale obtainable from New Mexico Bureau of Geology and Mineral Resources (geoinfo.nmt.edu/publications/maps/geologic/gm/79/). The new Valles map has been compiled from all or parts of nine 1:24,000 geologic maps completed between 2004 and 2008 (Bland, Cerro del Grant, Jarosa, Jemez Springs, Polvadera Peak, Redondo Peak, Seven Springs, Valle San Antonio, and Valle Toledo). Our map provides more detailed geology on the resurgent dome, caldera collapse breccias, post-caldera lava and tuff eruptions, intracaldera sedimentary and lacustrine deposits, and precaldera volcanic and sedimentary rocks than previous maps and incorporates recent stratigraphic revisions to the geology of the Jemez Mountains volcanic field. Three cross sections supported by surface geology, geophysical data and deep borehole logs (≤4500 m) show an updated view of the caldera interior, depict a modern interpretation of caldera collapse and resurgence, and provide caldera-wide subsurface isotherms (≤500 °C). A 30 page booklet included with the map contains extensive rock descriptions for 162 stratigraphic units and figures showing physiographic features, structural relations between Valles (1.25 Ma) and the earlier, comparably sized Toledo caldera (1.62 Ma), correlation charts of map units, and the distribution of pre- and post-caldera hydrothermal alteration styles, including recently documented zeolite-type alteration. Finally, the booklet includes a generalized model showing our interpretation of intracaldera structure and subjacent magma chambers, and relations of Valles to earlier Quaternary-Precambrian units.

  15. Geologic map of Io

    USGS Publications Warehouse

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis

  16. Practical aspects of geological prediction

    SciTech Connect

    Mallio, W.J.; Peck, J.H.

    1981-11-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs.

  17. Geologic Setting of the Hamme Tungsten District, North Carolina and Virginia

    USGS Publications Warehouse

    Parker, John Mason

    1963-01-01

    derived mainly from graywackes and volcanic flows, and subordinately from pyroclastic materials, whereas the rocks of the Virgilina district were interpreted by earlier workers as being mainly volcanic with much pyroclastic material but little sediment. Igneous, and perhaps pseudo igneous, rocks in the district include hornblende gabbro, albite granodiorite, aplite, and pegmatite--all of which are probably middle Paleozoic in age--and diabase and hypersthene tonalite of Late Triassic age. The gabbro forms three lenticular to subcircular bodies up to 2% miles in width in the western part of the area. Albite granodiorite forms a pluton with a maximum width of 7 miles which occupies the center of the area. At its northeastern end the pluton narrows abruptly to a point. Phyllite forms the wall rocks on all sides of the albite granodiorite. The contact is gradational and conformable in most places, but on the northwest side it cuts across wall structure for about 3 miles. Near its western edge the albite granodiorite includes a northeast-trending zone of schistose wall rock in and near which are localized the tungsten deposits. The origin of the albite granodiorite is uncertain, but it may have formed by the metasomatic replacement of the wallrocks, during which albite porphyroblasts developed first and were followed by microcline and quartz. Diabase and hypersthene tonalite occur as dikes and sills along four northward-trending belts. The dikes are a few feet to more than 300 feet thick, and several extend along strike for more than 10 miles. The Hamme district Is in the eastern part of the Carolina slate belt, and the Virg1l1na district lies along the western side of the belt. Rocks in the Hamme district dip mostly westward and in the Vifg1lina district dip mainly eastward into a syncline. This syncline, here named the Spewmarrow syncline, may be a structure of regional significance. Tungsten in the Hamme district occurs mainly

  18. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  19. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. )

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  20. Geology of National Parks

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  1. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  2. Geology and land use

    USGS Publications Warehouse

    Brown, R.D.

    1990-01-01

    The geologic limitations for building sites of some areas can be overcome, in part, by skilled engineering and expensive construction practices. But the costs can be prohibitively high, and the solutions are not always completely effective. In "earthquake country," history has shown that costs are highest and risk factors most uncertain in a few easily recognized settings: unstable hill sloped, land at the edge of rapidly eroding sea cliffs, lowlands underlain by saturated estuarine mud of ill, and areas near faults capable of producing magnitude 7 or greater earthquakes. Safety immediately after an earthquake is also a concern in these places, for extreme damage and ground distortion may impede or prevent timely access by emergency equipment. 

  3. Geology of Europa

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  4. Geologic processes influence the effects of mining on aquatic ecosystems

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stanley E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.

    2012-01-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.

  5. Geologic processes influence the effects of mining on aquatic ecosystems.

    PubMed

    Schmidt, Travis S; Clements, William H; Wanty, Richard B; Verplanck, Philip L; Church, Stanley E; San Juan, Carma A; Fey, David L; Rockwell, Barnaby W; DeWitt, Ed H; Klein, Terry L

    2012-04-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations. PMID:22645817

  6. Geologic Framework Model (GFM2000)

    SciTech Connect

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  7. Geology of the Wood and East Calhoun mines, Central City District, Gilpin County, Colorado

    USGS Publications Warehouse

    Drake, Avery Ala

    1955-01-01

    The Wood-East Calhoun mine area is underlain by complexly folded Precambrian gneiss and pegmatite. The major fold in the area is an anticline that trends about N. 60° E. The Precambrian rocks are intruded by bostonite porphyry dikes of Tertiary age. All the rocks are cut by east- to northeast - trending faults that have been filled by precious metal-sulfide veins which have been worked chiefly for gold. The Wood vein occurs in an east-trending fault; the Calhoun vein occurs in a northeast-trending fault. Much of the uranium production of the Central City district has come from the Wood vein on Quartz Hill. The veins consist chiefly of quartz; pyrite is the chief metallic mineral and chalcopyrite is next in abundance. Sphalerite, galena, tetrahedrite-tennantite, and pitchblende are locally present. Deposition began with alteration-stage quartz and pyrite followed in order by pitchblend, light-yellow pyrite, massive quartz, yellow pyrite, shalerite, comb quartz, chalcopyrite, tetrahedrite-tennantite, galena, chalcopyrite, pyrite, and gray to light-brown fine-grained quartz. The veins of the Central City district are zoned, with quartz-pyrite veins near the center and galena-sphalerite veins on the periphery. The known pitchblende bodies are in the transition between these, but paragenetically, the pitchblende is earlier than all other metallic minerals. A trace element study of the ore indicates an association of zirconium and molybdenum with uranium, of bismuth, antimony, and arsenic with copper, and of cadmium with zinc. The pitchblende and other ore minerals are concentrated in ore shoots. The shoots are in open spaces controlled by the competency of the wall rocks, the presence of a prevailing direction of weakness in the rocks, and changes in strike and dip of the vein. The pitchblende is thought to be a local constituent of the quartz-pyrite ores and to owe its origin to residual solutions from the quartz bostonite magma.

  8. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  9. Geologic mapping of Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Gorsline, Donn S.; Parker, Timothy J.

    1995-01-01

    This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.

  10. Creationism, Uniformitarianism, Geology and Science.

    ERIC Educational Resources Information Center

    Shea, James H.

    1983-01-01

    Points out that the most basic of creationist attacks of geology, their claim that uniformitarianism is an unreliable basis for interpreting the past, fail because the uniformitarianism they describe is no longer a part of geology. Indicates that modern uniformitarianism is merely the philosophical principle of simplicity. (Author/JN)

  11. Photomicrography in the Geological Sciences.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes the conversion of a standard biological brightfield microscope for examination of thin sections and characterize, in detail, the use of both black and white and color photomicrography in the geological sciences. Several illustrative examples on the use of transmitted and reflected polarized-light microscopy to solve geological problems…

  12. The Geophysical Revolution in Geology.

    ERIC Educational Resources Information Center

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  13. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed.

  14. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  15. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  16. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  17. Surficial geological tools in fluvial geomorphology

    USGS Publications Warehouse

    Jacobson, Robert B.; O'connor, James; Oguchi, Takashi

    2016-01-01

    Environmental scientists are increasingly asked how rivers and streams have been altered by past environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored and how they will respond to future environmental changes. These questions present substantive challenges to the discipline of fluvial geomorphology as they require a long-term understanding of river-system dynamics. Complex and non-linear responses of rivers to environmental stresses indicate that synoptic or short-term historical views of rivers will often give an incomplete understanding. Fluvial geomorphologists can address questions involving complex river behaviours by drawing from a tool box that includes the principles and methods of geology applied to the surficial geological record. A central concept in Earth Sciences holds that ‘the present is the key to the past’ (Hutton 1788, cited in Chorley et al. 1964), that is, understanding of current processes permits the interpretation of past deposits. Similarly, an understanding of the past can be key to predicting the future. A river’s depositional history can be indicative of trends or episodic behaviours that can be attributed to particular environmental stresses or forcings. Its history may indicate the role of low-frequency events such as floods or landslides in structuring a river and its floodplain or a river’s depositional history can provide an understanding of its natural characteristics to serve as a reference condition for assessments and restoration. However, the surficial geological record contained in river deposits is incomplete and biased and it presents numerous challenges of interpretation. The stratigraphic record in general has been characterized as ‘ … a lot of holes tied together with sediment’ (Ager 1993). Yet this record is critical in the development of integrated understanding of fluvial geomorphology because it provides information that is not available from other

  18. Geologic Sequestration Software Suite

    2013-11-04

    GS3 is the bundling of the Geological Sequestration Software Suite domain tools with the Velo wiki user interface, rich client interface, and data store. Velo is an application domain independent collaborative user environment for modeling and simulation. Velo has a web browser based wiki interface integrated with a sophisticated content management system supporting data and knowledge management required for large-scale scientific modeling projects. GS3 adds tools and capability specifically in the area of modeling subsurfacemore » reservoirs for the purpose of carbon sequestration. Velo is a core software framework to create scientific domain user environments. Velo is not tied to a specific domain although it provides novel capability needed by many application areas. A well-defined Velo integration layer allows custom applications such as GS3 to leverage the core Velo components to reduce development cost/time and ultimately provide a more capable software product. Compared with previous efforts like ECCE and SALSSA, Velo is a major advancement being a web browser based interface, having a more comprehensive data management architecture, and having intrinsic support for collaboration through the wiki. GS3 adds specific domain tools for looking at site data, developing conceptual and numerical models, building simulation input files, launching and monitoring the progress of those simulations and being able to look at and interpret simulation output.« less

  19. Geologic Sequestration Software Suite

    SciTech Connect

    Black, Gary; Bonneville, PNNL Alain; Sivaramakrishnan, PNNL Chandrika; Purohit, PNNL Sumit; White, PNNL Signe; Lansing, PNNL Carina; Gosink, PNNL Luke; Guillen, PNNL Zoe; Moeglein, PNNL William; Gorton, PNNL Ian; PNNL,

    2013-11-04

    GS3 is the bundling of the Geological Sequestration Software Suite domain tools with the Velo wiki user interface, rich client interface, and data store. Velo is an application domain independent collaborative user environment for modeling and simulation. Velo has a web browser based wiki interface integrated with a sophisticated content management system supporting data and knowledge management required for large-scale scientific modeling projects. GS3 adds tools and capability specifically in the area of modeling subsurface reservoirs for the purpose of carbon sequestration. Velo is a core software framework to create scientific domain user environments. Velo is not tied to a specific domain although it provides novel capability needed by many application areas. A well-defined Velo integration layer allows custom applications such as GS3 to leverage the core Velo components to reduce development cost/time and ultimately provide a more capable software product. Compared with previous efforts like ECCE and SALSSA, Velo is a major advancement being a web browser based interface, having a more comprehensive data management architecture, and having intrinsic support for collaboration through the wiki. GS3 adds specific domain tools for looking at site data, developing conceptual and numerical models, building simulation input files, launching and monitoring the progress of those simulations and being able to look at and interpret simulation output.

  20. Multiwell experiment: Geology

    SciTech Connect

    Lorenz, J.C.

    1987-01-01

    The general objective of the Multiwell Experiment geology study is the detailed characterization of the low-permeability gas reservoirs of the Mesaverde Formation at the MWX site. The ultimate objective of the study is the understanding of how the detailed characteristics affect completion, stimulation, and production of these reservoirs, and the successful extrapolation of this knowledge to other low-permeability reservoirs. Low-permeability sandstone reservoirs contain significant reserves of natural gas in the US, but these reserves are difficult to exploit. Much of this difficulty is attributable to an insufficient data base on the sedimentological and fracture characteristics of the reservoirs. These characteristics strongly control not only reservoir porosity and permeability, but they also control total reservoir volume, internal reservoir heterogeneity, and susceptibility of the reservoir to damage by different drilling and stimulation techniques. The recognition alone by operators that these are indeed controlling factors is a significant step in the utilization of the low-permeability reserves, and this is one of the important results of this study. However, the implementation of techniques that have been derived using the data base assembled from this study is the next step of the program. 15 refs.

  1. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    inches to 3 feet wide and extending along their strike and dip for several tens to hundreds of feet. In addition to quartz, the only other vein gangue mineral is ankerite. It occurs in small amounts along the borders of the quartz veins. Metallic vein minerals, in addition to native gold, are, in order of decreasing abundance, pyrrhotite, galena, sphalerite, and arsenopyrite. In the aggregate the metallic minerals comprise only 1 to 2 percent of the total amount of vein material. The wall rock, particularly the meta-gabbro, was profoundly altered by the vein-forming processes. The principal effects on the meta-gabbro were the addition of large amounts of soda, potash, titanium, carbon dioxide, and phosphorous, and the removal of considerable quantities of iron, magnesia, lime, and combined water. Silica also may have been decreased. The mineralogical changes involved in the alteration were the development of biotite and ankerite at the expense of original hornblende and feldspar, resulting in a brown-colored biotite- and ankerite-rich rock. The slates are relatively unaffected by the vein-forming processes. Because of their small size, relatively low grade, and discontinuity, no attempt has been made to mine any individual vein. The prevailing practice has been to mine large blocks of ground by a system of modified block-caving, followed by hand sorting to remove the barren country rock from the gold-bearing quartz prior to milling.

  2. Multi- and hyperspectral geologic remote sensing: A review

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  3. Geology of the Spirit landing site in Gusev crater

    NASA Astrophysics Data System (ADS)

    Golombek, M.; Athena Science Team

    impacting sand in saltation. Most rocks appear coated with dust and some lighter toned (``white'') rocks may have a thick rind of dust or soil. The chemistry and mineralogy of the rocks described elsewhere (and the pits as vesicles) appear to be consistent with olivine basalts and the soil appears similar to soil elsewhere on Mars. No clear evidence of fluvial or lacustrine activity has been identified and observations made during the first 6 weeks by Spirit argue the surface is dominated by impact and eolian processes. At the time of writing (sol 50), the rover is traversing northeast to a 200 m diameter crater to sample the ejecta and inspect interior deposits and wall rocks for a better understanding of the geologic history.

  4. Thermal-infrared spectral observations of geologic materials in emission

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Luth, Sharon J.

    1987-01-01

    The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition.

  5. The Geology of Gaspra

    USGS Publications Warehouse

    Carr, M.H.; Kirk, R.L.; McEwen, A.; Veverka, J.; Thomas, P.; Head, J.W.; Murchie, S.

    1994-01-01

    The surface of Gaspra can be divided into several facets separated by ridges. Superimposed on the facets and ridges are two populations of craters. Type 1 craters are crisply defined and constitute a production function of impact origin. Type 2 craters are mostly irregular shallow depressions and probably of various origins. Some of the type 2 craters may have formed by impact and be remnants of a crater population that predates the type 1 population. The number of type 1 craters suggests that they started to accumulate 2 ?? 107 to 3 ?? 108 years ago. The freshest craters have a depth/diameter ratio of 1:7, as compared with 1:5 typically observed on other bodies. The craters appear to have become shallower with age at a rate of 10-6 to 10-7 m/year. The shallow depth of newly formed craters and the progressive degradation with age are ascribed to downslope movement of poorly coherent surface materials, the movement being aided by seismic shaking as a result of impact. The surface shows subtle color differences. The most prominent differences are observed around craters on ridges, where the surface has a stronger 1-??m absorption than elsewhere. The contrast is not observed around craters on the facets. The color differences are attributed to alteration of the materials brought to the surface. The unaltered material is estimated to be located at least 50 m below the surface on the facets. Only on the ridges is unaltered material at a shallow enough depth to be excavated by the observed craters. The rate of degradation of craters, the rounded form of the ridges, the depth of altered material on the facets, and the presence of old degraded craters all suggest that Gaspra is covered with a regolith a few tens to several tens of meters thick. ?? 1994 Academic Press. All rights reserved.

  6. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  7. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  8. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  9. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  10. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Geologic information shall include, at a minimum the following: (1) A description of the geology of the... adversely impacted by mining. The description shall include the areal and structural geology of the...

  11. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Y.; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  12. Global Geologic Mapping of Io: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.; Rathbun, J. A.

    2008-01-01

    A new global geologic map of Jupiter's volcanic moon, Io is being prepared, with the focus being on completion of a draft map by July 2008. Here initial results of the mapping are reported: a preliminary distribution of material units in terms of areas and a visual representation. Additionally, the mapping hopes to address some of the problems in Io geology. Thus far it has been discovered that Io's surface is dominated by plains material, thought to consist of Io's silicate crust covered by pyroclastic deposits and lava flows of silicate and sulfur-bearing composition. Many plains areas contain flow fields that cannot be mapped separately due to a lack of resolution or modification by alteration processes. Discrete lava flows and flow fields are the next most abundant unit, with bright (sulfur?) flows in greater abundance than dark (silicate?) flows. The source of most of Io's heat flow, the paterae, are the least abundant unit in terms of areal extent.Upon completion of the draft map for peer review, it will be used to investigate several specific questions about the geological evolution of Io that previously could not be well addressed, including: comparison of the areas versus the heights of Ionian mountains to assess their stability and evolution; correlation and comparison of Galileo Near-Infrared Mapping Spectrometer and Photopolarimeter-Radiometer hot spot locations with the mapped location of dark versus bright lava flows and patera floors to assess any variations in the types of sources for Io's active volcanism; and the creation of a global inventory of the areal coverage of dark and bright laval flows to assess the relative importance of sulfur versus silicate volcanism in resurfacing Io, and to assess whether there are regional concentrations of either style of volcanism that may have implications on interior processes.

  13. Proceedings of the international symposium on remote sensing of environment. Third thematic conference:Remote sensing for exploration geology

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on the remote sensing of petroleum and natural gas deposits. Topics considered at the conference included Landsat imagery, tectonics, a geologic database for petroleum exploration, lithology, hydrothermal alteration mapping, artificial intelligence, geothermal exploration, petroleum geology, geobotany, infrared spectral studies, carbonate rocks, radar, microcomputer-based digital image processing, and terrain mapping for exploration surveys.

  14. Geologic Mapping of the Meridiani Region, Mars

    NASA Technical Reports Server (NTRS)

    Hynek, B. M.

    2008-01-01

    The light toned bedrock that has been observed at the Mars Exploration Rover Opportunity landing site is an upper layer in a sequence >600 m thick in places. These outcrops contain mineral and textural signatures that require interaction of, and possibly formation from, water. Many distinct layers are visible in the remote sensing data (e.g. Figure 1) and no work has ever characterized the full set of these materials that cover an area >3 105 km2 spanning 20 of longitude. Thus, whatever water-related process( es?) altered, and possibly formed, the rocks at the Opportunity landing site extended over a vast region of Mars. Yet many questions remain to be answered, such as: (1) in what capacity did water form and alter the deposits?, (2) what are the temporal and spatial relations with other major events known from ancient Mars?, and (3) would this type of environment have been conducive to the development of life? To address these questions we are completing a detailed geologic, stratigraphic, and thermophysical properties study of this widespread terrain. Specifically, we are drafting a 1:2M-scale geological map covering the full extent of these water-related deposits. In tandem with the mapping, Hynek and Phillips [1] have conducted a preliminary stratigraphic analysis of the stack of materials. After mapping is complete, we will study the thermophysical properties of the varied layers to derive possible compositional information of the materials. These tasks serve several purposes including gaining an understanding of the complex nature of these materials, their potential source region(s), and their timing of emplacement. All of these efforts are necessary to place the observations by the Opportunity Rover in a broader context and prepare for potential future landed missions to the region. Understanding the large-scale paleohydrology of Mars is central to NASA s goals and vital for determining if life ever arose on the planet.

  15. Numerical Modelling of Geological Heterogeneity - Implications for CO2 Geological Storage

    NASA Astrophysics Data System (ADS)

    Hermanson, J. L.; Kirste, D. M.

    2012-12-01

    different rock types are varied within reasonable ranges and grid spacing is refined to determine the sensitivity of the models to grid size. Variations between simulations are used to determine the differences in the partitioning of CO2 between its various storage mechanisms, and whether the differences are reflective of heterogeneities in the real system or attributed to numerical error. Initial results indicate that variations in certain parameters are more significant than others in terms of the movement and partitioning of CO2 into its various storage mechanisms. Variations in horizontal to vertical permeability contrasts, and residual liquid and gas saturation have significant impacts on the flow path of CO2 through the system, and therefore the amount of CO2 that becomes trapped residually within the pore spaces or dissolves into the formation brine. Gradual changes in heterogeneity do not seem to alter the results significantly in comparison to discrete changes, indicating that modelling heterogeneities as discrete bodies is an adequate assumption. Results imply that certain geological heterogeneities and associated parameters require more accurate representation then others when considering how CO2 will be stored within the subsurface. Although finer grid sizes increases the numerical accuracy of simulations, acute grid refinement may not be required for all purposes.

  16. Osmotic generation of 'anomalous' fluid pressures in geological environments

    USGS Publications Warehouse

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  17. Northeastern Regional geologic characterization report. Volume 1. Final report

    SciTech Connect

    Not Available

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crusal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented on the relationship between the US Department of Energy (DOE) Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process.

  18. North Central Regional geologic characterization report. Volume 1. Final report

    SciTech Connect

    Not Available

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major groundwater discharge zones, groundwater resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline rock bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented of the relationship between the US Department of Energy Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process. 43 figs., 15 tabs.

  19. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  20. Perspectives in geology. Circular 525

    SciTech Connect

    Not Available

    1982-01-01

    The papers in this symposium present diverse perspectives in geology, mineral resources, paleontology, and environmental concerns. Papers within the scope of EDB have been entered individually into the data base. (ACR)

  1. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  2. Terrestrial and Lunar Geological Terminology

    NASA Technical Reports Server (NTRS)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  3. Q&A: Geological historian

    NASA Astrophysics Data System (ADS)

    Witze, Alexandra

    2015-04-01

    The first geological map of a nation was made 200 years ago by British surveyor William Smith; the rediscovery of a first-edition copy in the archives of the Geological Society of London was announced last month (see go.nature.com/oogpht). As researchers gather for a conference to celebrate the anniversary of the 1815 chart of England and Wales, John Henry, chair of the society's history group, talks about the map and its pioneering creator.

  4. An overview of Venus geology

    NASA Astrophysics Data System (ADS)

    Saunders, R. S.; Arvidson, R. E.; Head, J. W.; Schaber, G. G.; Stofan, E. R.; Solomon, S. C.

    1991-04-01

    The Magellan spacecraft is producing comprehensive image and altimetry data for the planet Venus. Initial geologic mapping of the planet reveals a surface dominated by volcanic plains and characterized by extensive volcanism and tectonic deformation. Geologic and geomorphologic units include plains terrains, tectonic terrains, and surficial material units. Understanding the origin of these units and the relation between them is an ongoing task of the Magellan team.

  5. Bedrock geologic map of Vermont

    USGS Publications Warehouse

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  6. Titan's global geologic processes

    NASA Astrophysics Data System (ADS)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540–558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130–161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299–321. [5] Lopes et al. JGR: Planets, 118, 1–20. [6] Janssen et al., (2009) Icarus, 200, 222–239. [7

  7. Geological myths and reality

    NASA Astrophysics Data System (ADS)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating

  8. Global Geologic Map of Europa

    NASA Technical Reports Server (NTRS)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  9. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  10. Health benefits of geologic materials and geologic processes.

    PubMed

    Finkelman, Robert B

    2006-12-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. PMID:17159275

  11. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is

  12. Hydrothermal alterations in the Echassières granitic cupola (Massif central, france)

    NASA Astrophysics Data System (ADS)

    Merceron, Thierry; Vieillard, Philippe; Fouillac, Anne-Marie; Meunier, Alain

    1992-11-01

    Detailed petrographic and mineralogic investigations of an albite-lepidolite granite at Echassières (Massif Central, France; scientific deep drill program) shows the existence of hydrothermal stages which are closely related to the magmatic and structural history. According to fluid inclusion data, K-Ar datations and 18O/16O-D/H compositions of secondary minerals, two successive hydrothermal periods have been recognized. The early one (273 268 million years) produced a series of aluminous phyllosilicates: muscovite, pyrophyllite, donbassite, tosudite, kaolinite which are observed as vein deposits (<10 mm wide) and alteration products of primary minerals in wall-rocks. The vein system was sealed by monomineralic assemblages during a cooling period (400 150°C). This early hydrothermal alteration stage was controlled by interactions of rock with low salinity (1 10 wt% NaCl equivalent) fluids expelled from the granitic body during the cooling processes. The chemical properties of these fluids were the following: low pH, very low Mg and Fe and high Li, Na and K contents. Thermodynamic calculations show that the sequence pyrophyllite, Li-bearing donbassite, tosudite is mostly temperature dependent. From the chemical composition of secondary minerals and isotopic data it can be deduced that these fluids, which have a meteoric origin, have been expelled from the granite body during its cooling period and after interaction with it at high temperature. The late hydrothermal stage corresponds to deposits of fluorite and Fe-Mg rich illite (151 million years) in subvertical fractures. Temperature conditions did not exceed 250° C and fluids came through the surrounding metamorphic rocks into the granitic body. IIlite/smectite mixed-layer minerals have been identified in subvertical fractures which were opened during Tertiary periods. In the host micaschists, successive hydrothermal alterations took place during the cooling of the Beauvoir granite. Early magmatic fluids

  13. Geology of the Jabal Riah area, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Wells, J.D.

    1982-01-01

    silver are most abundant in calcium-rich rocks and veins; silver was not detected in igneous rocks. Altered wall-rock zones are mineralized as much as 10 m away from the veins. Away from the Jabal Mahanid vein-system, silver was detected in the jasper. Gold and silver were detected in minor brecciated and sheared structures and in metasedimentary rocks. Gold was detected in sericitized margins of the leucocratic quartz porphyry, in unaltered rhyolite, and in aplite dikes. The presence of unusual amounts of gold and silver over a wide area is indicated by the ancient gold mines along veins at or near the hornblende schist-serpentinite contact in the map area and to the south in the Hajrah-Hamdah area and by the widespread evidence of precious metals in igneous rocks and other vein structures. A domed-shaped area, approximately 30 km in diameter, is outlined by the hornblende schist-serpentinite contact and has leucocratic quartz prophyry in the middle. Additional study of this area might reveal economic concentrations of gold and silver.

  14. The Necessity of Geologic Disposal

    SciTech Connect

    R. Linden

    2004-07-01

    Nuclear wastes are the radioactive byproducts of nuclear power generation, nuclear weapons production, and other uses of nuclear material. Experts from around the world agree that deep geologic disposal of nuclear waste in a mined repository is the most environmentally sound means of removing these potential sources of radiation from interaction with the biosphere. Of the 360 millirem of background radiation received annually by the average American, from both natural and man-made sources, less than 1 millirem results from the nuclear fuel cycle. Spent nuclear fuel and high-level radioactive waste, destined for geologic disposal, are located at 126 sites in 39 states. The proposed repository site at Yucca Mountain, Nevada, is far more isolated from the general population than any sites where these radioactive materials are presently located. Only solid forms of high-level wastes will be transported for disposal in a geologic repository. For more than 50 years, nuclear materials have been safely transported in North America, Europe, and Asia, without a single significant radiation release. Since the 1950s, select panels from the National Academy of Sciences-National Research Council and interagency advisory groups, and international experts selected by the OECD/Nuclear Energy Agency, have examined the environmental, ethical, and intergenerational aspects of nuclear waste disposal, plus alternatives to geologic disposal. All have concluded that deep geologic disposal in a mined repository is clearly the preferred option. The concept of deep geologic disposal is based on the analogy to ore deposits, which are formed deep within the Earth's crust, commonly remain isolated from the biosphere for millions to billions of years, and are, generally, extremely difficult to detect. Before selecting the unsaturated tuffs at Yucca Mountain, DOE evaluated salt formations, basalts, and both crystalline and sedimentary rocks. Other nations generating nuclear power also plan to use

  15. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  16. Geology Field Trips as Performance Evaluations

    ERIC Educational Resources Information Center

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  17. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  18. Recent geologic activity on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; Strom, R. G.; Blewett, D. T.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Chabot, N. L.; Banks, M. E.; Chapman, C. R.

    2011-12-01

    Since the MESSENGER spacecraft was inserted into orbit about Mercury in March 2011, global and targeted high-resolution image data sets have been acquired. These images support the conclusion that internal geological activity on Mercury did not end early in planetary history, as had generally been previously thought, but continued to geologically recent times. Three lines of evidence point to recent geological activity on Mercury. (1) There are smooth plains with surface areas up to 1.5×105 km2 that postdate young (morphological class 1) craters, indicating probable Kuiperian-aged volcanism. No volcanic vents, fissures, or flow fronts have been identified on these plains, suggesting that they are products of low-viscosity lavas, consistent with komatiite-like compositions of large areas on Mercury indicated by MESSENGER X-Ray Spectrometer observations. (2) Young lobate scarps transect class 1 craters as large as 30 km in diameter, indicating comparably recent crustal contraction. (3) A number of fresh-appearing, high-reflectance, irregularly shaped and rimless shallow depressions interpreted as pyroclastic vents have few superposed craters, suggesting that they have been recently active. Growing evidence from geological and geochemical observations indicates that Mercury's interior contains a higher abundance of volatile materials than was previously appreciated. Together these findings support the inference that Mercury experienced relatively recent volcanism and tectonic deformation, and the possibility that the planet is geologically active today cannot be discounted.

  19. Geologic information from satellite images

    NASA Technical Reports Server (NTRS)

    Lee, K.; Knepper, D. H.; Sawatzky, D. L.

    1974-01-01

    Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.

  20. Coordinated CRISM and Opportunity Observations to Characterize the Mineralogy and Geologic History of Meridiani Planum Outcrops

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2011-12-01

    The Opportunity Mars Exploration Rover has traversed over 30 km across Meridiani Planum since January 2004, acquiring numerous remote sensing and in-situ measurements of rocks and soils at dozens of locations. Over the past year Mars Reconnaissance Orbiter CRISM (0.362 to 3.92 micrometer imaging spectrometer) observations have been used to directly support planning of Opportunity traverses and locations for detailed remote sensing and in-situ measurements. As part of these coordinated observations CRISM's gimbaled optics have been used to spatially oversample acquisition of image data in the along-track direction (ATO or along track oversampled observations). This new acquisition mode allows sharpening the spatial detail from the normal ~18 m/pixel observations to values as small as ~6 m/pixel, with due formal consideration of the decrease in S/N with decreasing pixel sizes for retrieval of the 544 band spectra for each pixel. CRISM ATO observations show that mono-hydrated sulfates, most likely kieserite, outcrop on the walls of Victoria crater and the southeastern rim of Santa Maria crater. Unfortunately, the Victoria identifications are on the opposite side of the crater relative to where Opportunity made measurements of Victoria wall rocks. On the other hand, Opportunity was directed to Santa Maria's southeastern rim based on CRISM spectral reflectance data, spending the last solar conjunction period acquiring long-duration in-situ measurements of outcrop that likely carries the mono-hydrated sulfate signature. Additional ATO data collected over the relatively fresh, 2.3 km wide Ada crater located in southeastern Meridiani Planum show a similar mono-hydrated sulfate signature, implying that these deposits are widespread. Further, ATO observations allow detailed mapping of extensive hydrated sulfates in Botany Bay immediately to the south of Cape York, a rim segment of the largely buried, Noachian age Endeavour crater. Opportunity will cross these hydrated

  1. Sketch-based geologic modeling

    NASA Astrophysics Data System (ADS)

    Rood, M. P.; Jackson, M.; Hampson, G.; Brazil, E. V.; de Carvalho, F.; Coda, C.; Sousa, M. C.; Zhang, Z.; Geiger, S.

    2015-12-01

    Two-dimensional (2D) maps and cross-sections, and 3D conceptual models, are fundamental tools for understanding, communicating and modeling geology. Yet geologists lack dedicated and intuitive tools that allow rapid creation of such figures and models. Standard drawing packages produce only 2D figures that are not suitable for quantitative analysis. Geologic modeling packages can produce 3D models and are widely used in the groundwater and petroleum communities, but are often slow and non-intuitive to use, requiring the creation of a grid early in the modeling workflow and the use of geostatistical methods to populate the grid blocks with geologic information. We present an alternative approach to rapidly create figures and models using sketch-based interface and modelling (SBIM). We leverage methods widely adopted in other industries to prototype complex geometries and designs. The SBIM tool contains built-in geologic rules that constrain how sketched lines and surfaces interact. These rules are based on the logic of superposition and cross-cutting relationships that follow from rock-forming processes, including deposition, deformation, intrusion and modification by diagenesis or metamorphism. The approach allows rapid creation of multiple, geologically realistic, figures and models in 2D and 3D using a simple, intuitive interface. The user can sketch in plan- or cross-section view. Geologic rules are used to extrapolate sketched lines in real time to create 3D surfaces. Quantitative analysis can be carried our directly on the models. Alternatively, they can be output as simple figures or imported directly into other modeling tools. The software runs on a tablet PC and can be used in a variety of settings including the office, classroom and field. The speed and ease of use of SBIM enables multiple interpretations to be developed from limited data, uncertainty to be readily appraised, and figures and models to be rapidly updated to incorporate new data or concepts.

  2. Geology of the American Southwest

    NASA Astrophysics Data System (ADS)

    Baldridge, W. Scott

    2004-06-01

    Scott Baldridge presents a concise guide to the geology of the Southwestern U.S. Two billion years of Earth history are represented in the rocks and landscape of the Southwest U.S., creating natural wonders such as the Grand Canyon, Monument Valley, and Death Valley. This region is considered a geologist's "dream", attracting a large number of undergraduate field classes and amateur geologists. The volume will prove invaluable to students and will also appeal to anyone interested in the geology and landscape of the region's National Parks.

  3. Mineral-chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district, Sweden

    NASA Astrophysics Data System (ADS)

    Hannington, Mark D.; Kjarsgaard, Ingrid M.; Galley, Alan G.; Taylor, Bruce

    2003-06-01

    is developed locally in the chlorite-rich pipe at Kristineberg in response to regional thermal metamorphism of highly aluminous alteration in the immediate foot-wall rocks. Spectacular, andalusite-bearing quartz-muscovite schists and quartz-biotite-cordierite schists also occur where the altered felsic volcanic rocks are intruded by the late Revsund granite. However, similar metamorphic mineral growth is not observed where the volcanic rocks at the contact are less altered. Deposits near the top of the felsic volcanic succession are characterized by magnesium-rich chlorite alteration in the foot wall and proximal calc-silicate assemblages (dolomite, calcite, tremolite, ±garnet, ±margarite) where the host sedimentary rocks are carbonate-rich. In general, the calc-silicate alteration is restricted to the immediate hanging wall and zones lateral to the deposits and does not represent a regionally extensive exploration target. The two main ore horizons in the Kristineberg area are not linked by any obvious discordant structures or alteration zones. However, mineral-chemical studies highlight several possible fluid flow pathways leading from the Kristineberg deposit to the Ravliden ore horizon, more than 2 km upsection. Overprinting regional metamorphic minerals have inherited the hydrothermal signature of the ore-related alteration. Electronic Supplementary Material is available at http://dx.doi.org/10.1007/s00126-002-0299-y. On that page (frame on the left side), a link takes you directly to the supplementary material.

  4. Southeastern Regional geologic characterization report. Volume 1. Final report

    SciTech Connect

    Not Available

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geological disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geological factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on the age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies.

  5. Mapping the Surficial Geology of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Jakobsson, M.; Gebhardt, C.; Mayer, L. A.

    2014-12-01

    Surficial geologic mapping of the Arctic Ocean was undertaken to provide a basis for understanding different geologic environments in this polar setting. Mapping was based on data acquired from numerous icebreaker and submarine missions to the polar region. The intent was to create a geologic layer overlying the International Bathymetric Chart of the Arctic Ocean. Analysis of subbottom profiler and multibeam bathymetric data in conjunction with sediment cores and the regional morphology rendered from the IBCAO data were used to map different surficial geologic units. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of margin and basin types reflecting both the complex tectonic origins of the basin and its diverse sedimentation history. Broad and narrow shelves were subjected to a complex ice-margin history in the Quaternary, and bear the sediment types and morphological features as a result. Some shelfal areas are heavily influenced by rivers. Extensive deep water ridges and plateaus are isolated from coastal input and have a long history of hemipelagic deposition. An active spreading ridge and regions of recent volcanism have volcani-clastic and heavily altered sediments. Some regions of the Arctic Ocean are proposed to have been influenced by bolide impact. The flanks of the basins demonstrate complex sedimentation patterns resulting from mass failures and ice-margin outflow. The deep basins of the Arctic Ocean are filled with turbidites resulting from these mass-flows and are interbedded with hemiplegic deposits.

  6. Progressive Diagenetic Alteration of Macro- and Micro-Scopic Biosignatures in Ancient Springs and Spring-Fed Lacustrine Environments

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Williams, J.; Phillips-Landers, C.; O'Connell, L.

    2016-05-01

    Microscopic and macroscopic biosignatures in modern spring deposits are compared with the Quaternary and Jurassic examples to show how these features are progressively altered and preserved on geologic time scales.

  7. Geological rhythms and cometary impacts

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Strothers, R. B.

    1984-01-01

    Time series analysis reveals two dominant, long-term periodicities approximately equal to 32 and 260 million years in the known series of geological and biological upheavals during the Phanerozoic Eon. The cycles of these episodes agree in period and phase with the cycles of impact cratering on Earth, suggesting that periodic comet impacts strongly influence Earth processes.

  8. Classroom Strategies for Introductory Geology.

    ERIC Educational Resources Information Center

    Clemons, Joan

    1991-01-01

    The author describes her use of writing assignments, small-group discussions, note-taking strategies (learning logs), and professional simulations in an introductory geology course. The learning log process consists of note taking on one side of a divided page. After taking notes, students review the notes and record their questions, reactions,…

  9. A Nontraditional Geology Field Trip.

    ERIC Educational Resources Information Center

    Locke, William Willard

    1989-01-01

    Describes the design and logistics of a one-month, 1600 km bicycle tour field trip in which the travel, not the stops, is the major teaching tool. Provides a map and a summarized itinerary of the geology experience of southern California and Nevada. (RT)

  10. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  11. Briefing on geological sequestration (Tulsa)

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  12. Infrared Analysis of Geological Materials.

    ERIC Educational Resources Information Center

    Brown, Alan; Clark, E. Roy

    1980-01-01

    Describes the infrared analysis of geological specimens which can form the basis of a laboratory exercise, allowing some minerals to be identified by "fingerprint" technique. Students can gain insight into the concept of symmetry and environment around an atom. (Author/SA)

  13. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano

    USGS Publications Warehouse

    Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.

    2001-01-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  14. Basic petroleum geology, 2nd ed. , revised

    SciTech Connect

    Link.

    1990-01-01

    This book contains revised and updated material, including approximately 200 additional illustrations and an extensive glossary of terms. A valuable reference for geology students and petroleum professionals, the text presents fundamental concepts of geology in terms of sedimentary deposition, petroleum occurrence, exploration, and recovery. This book contains information on geologic time, historical geology and stratigraphy; Minerals and rocks; Weathering erosion, and deposition; Marine erosion and deposition; Depositional basins; Lacustrine, desert and glacial environments; Subsurface water and diagenesis; Structural geology; petroleum traps; Petroleum and reservoirs; Geological considerations and engineering practices; Rocks, reservoirs, and recovery techniques; Exploration techniques for petroleum; Bibliography Glossary; Index.

  15. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be

  16. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  17. The Challenges of Standardized Planetary Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Skinner, J. A.

    2015-06-01

    The process and product of creating standardized geologic maps of planetary bodies has been met with particular challenges. Addressing these challenges helps ensure that benchmark contextual geologic map products remain a reliable community resource.

  18. Teaching Geology in a Penitentiary Setting.

    ERIC Educational Resources Information Center

    Orr, William N.

    1986-01-01

    Describes geology teaching in a penal institution, considering class offerings, teaching structure, teaching schedule, security, cheating, student characteristics, women prisoners in geology classes, and outside field trips. Sample laboratory schedule is included. (JN)

  19. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. PMID:26966228

  20. SHARAD Penetrates Only the Youngest Geological Units on Mars

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Grimm, R. E.

    2009-12-01

    The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter was intended to receive echoes from up to 1 km deep in the rocky martian subsurface. Such deep penetration only occurs in the icy polar caps and in certain ice-rich units. In fact, over the majority of the rocky units of Mars, only surface echoes are detected. Therefore, rocky units are more attenuating than expected. To gain insight into the cause of this attenuation, we correlated SHARAD subsurface reflectors with a geologic map of the northern plains of Mars [Tanaka et al., 2005]. Our survey was restricted to this area due to general smoother topography and hence less potential influence of surface scattering (clutter). All released SHARAD data (approximately 1,500 radargrams) overlying the geologic map were individually interpreted. Geologic units were categorized by their map description into ice-rich, pristine volcanic, and water-altered units. The last category comprises units interpreted to be fluvial, lacustrine, or periglacial in origin, as well as volcanic and other units that were subsequently altered by water or ice. Radar reflections in each unit were further categorized as abundant, occasional, or none. We found that abundant reflections are only detected in geologic units that are Amazonian in age, and ice-rich or pristine volcanic. No reflections are seen in water altered units. Occasional reflections are detected in Hesperian-aged pristine volcanic units. We propose two endmember hypotheses for this attenuation behavior, scattering and absorption, but they could act jointly. The young pristine volcanic units that SHARAD penetrates consist of thick (about 50 m) flood basalts or tuff. These units are expected to have cooling joints in them, but little if any other heterogeneity; therefore their scattering loss should be small. With increasing age and thermoelastic stress due to global cooling and contraction, these previously homogeneous volcanics could become increasingly

  1. The spectral analysis and information extraction for small geological target detection using hyperion image

    NASA Astrophysics Data System (ADS)

    Li, Qingting; Wei, Xinxin; Zhang, Bing; Yan, Shouxun; Liu, Xiang

    2008-12-01

    Imaging spectroscopic technique has been used for the mineral and rock geological mapping and alteration information extraction successfully with many reasonable results, but it is mainly used in arid and semi-arid land with low vegetation covering. In the case of the high vegetation covering, the outcrop of the altered rocks is small and distributes sparsely, the altered rocks is difficult to be identified directly. The target detection technique using imaging spectroscopic data should be introduced to the extraction of small geological targets under high vegetation covering area. In the paper, we take Ding-Ma gold deposit as the study area which located in Zhenan country, Shanxi province, the spectral features of the targets and the backgrounds are studied and analyzed using the field reflectance spectra, in addition to the study of the principle of the algorithms, some target detection algorithms which is appropriate to the small geological target detection are introduced. At last, the small altered rock targets under the covering of vegetation in forest are detected and discriminated in imaging spectroscopy data with the methods of spectral angle mapper (SAM), Constrained Energy Minimization (CEM) and Adaptive Cosine Estimator (ACE). The detection results are reasonable and indicate the ability of target detection algorithms in geological target detection in the forest area.

  2. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  3. Geology of the reading prong

    SciTech Connect

    Schutz, D.

    1987-03-01

    For over a billion years the geological terrain now called New Jersey has been the site of unusually high uranium concentrations. Although the highest of these concentrations occurs in the Reading Prong, the area is itself only part of a larger geologic province extending to the northeast and southwest. The rocks in the Reading Prong are not uniformly radioactive. High uranium concentrations tend to be associated with magnetite deposits - metamorphic equivalents of iron-rich formations - and with pegmatites - rocks formed by precipitation from mineralizing solutions in the late phases of granite emplacement. Because of the way they were formed, the uranium-bearing magnetite and pegmatite bodies tend to be long and narrow, and the resulting patterns of radon occurrence can be expected to be the same. This may explain why, in some places, adjacent houses have very different radon concentrations.

  4. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  5. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta

  6. U.S. Geological Survey

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Hydrologic Instrumentation Facility (HIF) at Stennis Space Center is a unique high-tech facility that provides hydrologic instrumentation support to the U. S. Geological Survey and other federal agencies worldwide. The HIF has the responsibility for warehousing, testing, evaluating, designing, repairing, and calibrating numerous pieces of hydrologic instrumentation, which is used in studying water on the surface, in the soil, and in the atmosphere of the Earth.

  7. Geological exploration from orbital altitudes

    USGS Publications Warehouse

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  8. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  9. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  10. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  11. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  12. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  13. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and…

  14. Learning Geologic Time in the Field.

    ERIC Educational Resources Information Center

    Thomas, Robert C.

    2001-01-01

    Describes a method used to teach the concept of geologic time to introductory geology students using an inquiry-based approach. Students work in teams to obtain rock samples that are used to interpret the geologic history of a region. (SAH)

  15. Dione's spectral and geological properties

    USGS Publications Warehouse

    Stephan, K.; Jaumann, R.; Wagner, R.; Clark, R.N.; Cruikshank, D.P.; Hibbitts, C.A.; Roatsch, T.; Hoffmann, H.; Brown, R.H.; Filiacchione, G.; Buratti, B.J.; Hansen, G.B.; McCord, T.B.; Nicholson, P.D.; Baines, K.H.

    2010-01-01

    We present a detailed analysis of the variations in spectral properties across the surface of Saturn's satellite Dione using Cassini/VIMS data and their relationships to geological and/or morphological characteristics as seen in the Cassini/ISS images. This analysis focuses on a local region on Dione's anti-saturnian hemisphere that was observed by VIMS with high spatial resolution during orbit 16 in October 2005. The results are incorporated into a global context provided by VIMS data acquired within Cassini's first 50 orbits. Our results show that Dione's surface is dominated by at least one global process. Bombardment by magnetospheric particles is consistent with the concentration of dark material and enhanced CO2 absorption on the trailing hemisphere of Dione independent of the geology. Local regions within this terrain indicate a special kind of resurfacing that probably is related to large-scale impact process. In contrast, the enhanced ice signature on the leading side is associated with the extended ejecta of the fresh impact crater Creusa (???49??N/76??W). Although no geologically active regions could be identified, Dione's tectonized regions observed with high spatial resolution partly show some clean H2O ice implying that tectonic processes could have continued into more recent times. ?? 2009 Elsevier Inc. All rights reserved.

  16. Pennsylvania's contribution to petroleum geology

    SciTech Connect

    Dickey, P.A.

    1989-09-01

    John F. Carll of the Second Geological Survey of Pennsylvania laid the foundations of both petroleum geology and reservoir engineering. J. P. Lesley, director of the Second Survey, had introduced structure contours when he was working in the anthracite fields. He pointed out that the great oil fields of Pennsylvania were in the only part of the state where there were no anticlines. I. C. White, another geologist with the Second Survey, emphasized the anticlinal theory adopted as a method of prospecting until the discovery of the Cushing field in Oklahoma in 1912. George Ashley, state geologist of Pennsylvanian in the 1930s and 1940s, said that after the gas companies had drilled all the anticlines there would still be the synclines. David White in 1915 noticed the relation between the metamorphosis (rank) of coal and the occurrence of oil and gas. This method (vitrinite reflectance) is now widely applied in the evaluation of basins. In the late 1930s, the resurvey of the Pennsylvania oil regions showed that the reservoirs were shoreline sands, probably barrier islands. In the 1950s the AAPG recommended a study of the recent sediments of the Mississippi delta by Scripps Institute of Oceanography. The ability to recognize depositional environments has caused a revolution in petroleum geology, and recently has been recognized by petroleum engineers as the key to reservoir characterization.

  17. Geological education of the future

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2008-01-01

    Several developments cause that field practice of students becomes minimized in most countries. The most important reasons are, direct or indirect, financial short-sightedness, an ever increasing population pressure, vandalism, and counterproductive legislature. The diminishing field experience forms a threat for the capability of future generations of earth scientists to optimize exploration of all kinds of natural resources, thus also threatening society. As it is unlikely that the present-day tendency of diminishing availability of excursion points and areas for field work will come to an end, measures should be taken timely to preserve sites that are of educational (or scientific) value. National measures and international cooperation aimed at preserving our geological heritage, like realized already in, for instance, the US by the National Park Service and in Europe by ProGeo, form a step in the good direction. Dependency on such preserves will, however, change the education of earth scientists fundamentally. However unfortunate such a development may be, it is better than a future where geological education becomes impossible because essential parts of our geological heritage have been lost forever.

  18. Global geologic map of Ganymede

    USGS Publications Warehouse

    Collins, Geoffrey C.; Patterson, G. Wesley; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Johnathan P.

    2014-01-01

    Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic, and possibly cryovolcanic processes. The history of Ganymede can be divided into three distinct phases: an early phase dominated by impact cratering and mixing of non-ice materials in the icy crust, a phase in the middle of its history marked by great tectonic upheaval, and a late quiescent phase characterized by a gradual drop in heat flow and further impact cratering. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo Mission in orbit around Jupiter (1995–2003). This map represents a synthesis of our understanding of Ganymede geology after the conclusion of the Galileo Mission. We summarize the properties of the imaging dataset used to construct the map, previously published maps of Ganymede, our own mapping rationale, and the geologic history of Ganymede. Additional details on these topics, along with detailed descriptions of the type localities for the material units, may be found in the companion paper to this map (Patterson and others, 2010).

  19. Planetary Geology and Geophysics Program

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2004-01-01

    Geological mapping and topical studies, primarily in the southern Acidalia Planitia/Cydonia Mensae region of Mars is presented. The overall objective was to understand geologic processes and crustal history in the northern lowland in order to assess the probability that an ocean once existed in this region. The major deliverable is a block of 6 1:500,000 scale geologic maps that will be published in 2004 as a single map at 1:1,000,000 scale along with extensive descriptive and interpretive text. A major issue addressed by the mapping was the relative ages of the extensive plains of Acidalia Planitia and the knobs and mesas of Cydonia Mensae. The mapping results clearly favor a younger age for the plains. Topical studies included a preliminary analysis of the very abundant small domes and cones to assess the possibility that their origins could be determined by detailed mapping and remote-sensing analysis. We also tested the validity of putative shorelines by using GIs to co-register full-resolution MOLA altimetry data and Viking images with these shorelines plotted on them. Of the 3 proposed shorelines in this area, one is probably valid, one is definitely not valid, and the third is apparently 2 shorelines closely spaced in elevation. Publications supported entirely or in part by this grant are included.

  20. Geology

    NASA Technical Reports Server (NTRS)

    Arvidson, R.

    1984-01-01

    Three objectives were outlined: (1) global distribution, geometry and composition of continental rock units; (2) morphology and structure of the continental crust; and (3) monitoring selected surface processes. Mapping soil, sediment and rock characteristics for land surfaces requires the use of visible, reflected, thermal and radio parts of the spectrum. Digital topographic data (elevation, slope angle, slope magnitude) are needed to correct reflectance, emission, and radar data. In addition, images of the topographic data provide fundamental information on the morphology and structure of the land.

  1. Immunization alters body odor.

    PubMed

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. PMID:24524972

  2. How Misinformation Alters Memories.

    ERIC Educational Resources Information Center

    Wright, Daniel B.; Loftus, Elizabeth F.

    1998-01-01

    Notes that a multitude of studies have demonstrated that misleading postevent information affects people's memories. Contents that the fuzzy-trace theory is a positive step toward understanding the malleability of memory. Discusses fuzzy-trace theory in terms of three primary areas of study: altered response format, maximized misinformation…

  3. Underground mining and deep geologic disposal - Two compatible and complementary activities

    SciTech Connect

    Rempe, N.T.

    1995-12-31

    Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

  4. Geologic Map of Loudoun County, Virginia

    USGS Publications Warehouse

    Southworth, Scott; Burton, William C.; Schindler, J. Stephen; Froelich, Albert J.

    2006-01-01

    Introduction The geology of Loudoun County, Va., was mapped from 1988 through 1991 under a cooperative agreement between the U.S. Geological Survey (USGS) and the Loudoun County Office of Mapping and Geographic Information. This geologic map was compiled in 1993 from a series of detailed published and unpublished field investigations at scales of 1:12,000 and 1:24,000. Some of these same data were compiled as a digital geologic map at 1:100,000 scale (Burton and others, 1992a) and were the basis for a cost-benefit analysis of the societal value of geologic maps (Bernknopf and others, 1993).

  5. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  6. Geology of the Ar Rahail ancient gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    White, Willis H.; Samater, Rashid M.; Doebrich, Jeff L.

    1987-01-01

    Pre-existing northwest-trending faults, possibly re-opened by stock emplacement, were invaded by later fluids that precipitated barren quartz veins and, in the adjacent faulted wall rocks, anomalous gold and arsenic. Gold, however, is restricted to the narrow structures, and, although values as much as 4.2 g/t are present, the tonnages are inadequate for profitable mining. No further work is recommended, because the hoped for dissemination of gold between faults does not exist.

  7. Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Scanlon, K.M.; Koenig, C.C.; Coleman, F.C.; Miller, M.

    2003-01-01

    Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions. ?? Copyright by the American Fisheries Society 2003.

  8. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  9. Timescales and conditions for the aqueous alteration of chondrites

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.

    It has become well-recognized that water played a critical role in the early geological evolution of materials through observation of hydrated phases in chondritic meteorites. However, details about the mechanism, timing, and conditions of aqueous alteration are poorly constrained. This dissertation investigates water-driven processes in Renazzo-like (CR) carbonaceous chondrites, with some comparison to the heavily altered and Mighei-like (CM) chondrites. CR chondrites were chosen as the focus of this study, as they are the only chondrite group to range from practically anhydrous to completely hydrated, providing petrographic context for the aqueous alteration process. The central goal of the thesis is to elucidate the complete mechanism of aqueous alteration, from primary anhydrous components to secondary minerals. This research uses a variety of micro-analytical techniques to address three main objectives: 1) to detail the petrographic context, 2) to quantify the onset and duration of alteration using radiometric dating, and 3) to constrain the fluid chemistry and conditions for aqueous alteration. On a microscopic scale, fine-grained matrices and glassy mesostases were the first phases to become altered, allowing for elemental transport over short distances (< 100 microns). As alteration progressed, the iron-metal was oxidized, and silicate phenocrysts were pseudomorphically replaced. 53Mn-53 Cr radiometric dating of secondary carbonates in CR chondrites show that aqueous alteration began quickly after accretion of the parent body, ~4 Myr after the beginning of the Solar System. This is contemporaneous with dolomite formation in the CM chondrite Sutter's Mill and with carbonate formation in other CM chondrites. However, the calcite age from a heavily hydrated CR lithology indicates that late-stage alteration occurred ~12 Myr after the beginning of the Solar System. The oxygen isotopic compositions of magnetite and carbonate minerals reveal that altering fluid

  10. Geologic Applications of Seismic Scattering

    NASA Astrophysics Data System (ADS)

    Revenaugh, Justin

    Once disregarded as noise, scattered seismic waves are finding increasing application in subsurface imaging. This sea change is driven by the increasing density and quality of seismic recordings and advances in waveform modeling which, together, are allowing seismologists to exploit their unique properties. In addition to extensive application in the energy exploration industry, seismic scattering is now used to characterize heterogeneity in the lower continental crust and subcrustal lithosphere, to examine the relationship between crustal structure and seismogenesis, and to probe the plumbing of active volcanoes. In each application, the study of seismic scattering brings wavelength-scale structure into sharper focus and characterizes the short scale-length fabric of geology.

  11. Chapter 4: Geological Carbon Sequestration

    SciTech Connect

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or reduce the

  12. Geological rhythms and cometary impacts.

    PubMed

    Rampino, M R; Stothers, R B

    1984-12-21

    Time-series analysis reveals two dominant, stable long-term periodicities approximately equal to 33 +/- 3 and 260 +/- 25 million years in the known series of geological and biological upheavals during the Phanerozoic Eon. Because the cycles of these episodes agree in period and phase with the cycles of impact cratering on Earth, these results suggest that periodic comet impacts strongly influence global tectonism and biological evolution. These two periodicities could arise from interactions of the solar system with interstellar clouds as the solar system moves cyclically through the Galaxy.

  13. Applications of ISES for geology

    NASA Technical Reports Server (NTRS)

    Bowker, David E.

    1990-01-01

    The principal applications for onboard data processing and real-time data transmission in the geological sciences are the detection of early warning signs of potential catastrophic events and the rapid assessment of impact and damage following major events. Also, the opportunity for quick look and supporting data during field investigations should not be disregarded. The Eos platforms are ideal for these applications because of the variety of earth sensing instruments and their differing modes of operation. Further study is required to define the role for each instrument and to assess how they can aid each other in establishing an improved output product.

  14. Measuring student understanding of geological time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-09-01

    There have been few discoveries in geology more important than deep time - the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and evolutionary biology. Thus, any student that wants to master these subjects must have a good understanding of geological time. Despite its critical importance, there has been very little attention given to geological time by science education researchers. Of the work that has been done, much of it ignores the cognitive basis for students' understanding of geological time. This work addresses this gap by presenting a validation study for a new instrument - the GeoTAT (Geological Time Aptitude Test). Consisting of a series of open puzzles, the GeoTAT tested the subjects' ability to reconstruct and represent the transformation in time of a series of geological structures. Montagnero (1992, 1996) terms this ability diachronic thinking. This instrument was distributed to a population of 285 junior and senior high school students with no background in geology, as well as 58 high school students majoring in geology. A comparison of the high school (grades 11-12) geology and non-geology majors indicated that the former group held a significant advantage over the latter in solving problems involving diachronic thinking. This relationship was especially strengthened by the second year of geological study (grade 12), with the key factor in this improvement being exposure to fieldwork. Fieldwork both improved the subjects' ability in understanding the 3-D factors influencing temporal organization, as well as providing them with experience in learning about the types of evidence that are critical in reconstructing a transformational sequence.

  15. Geology of central Lake Michigan

    SciTech Connect

    Wold, R.J.; Paull, R.A.; Wolosin, C.A.; Friedel, R.J.

    1981-09-01

    The geology beneath Lake Michigan between 43/sup 0/00' and 44/sup 0/00'N and between 86/sup 0/30' and 87/sup 0/40' W is interpreted from a synthesis of 1,700 km of continuous seismic reflection profile data, bathymetry, grab samples, and onshore surface and subsurface information. The continuous seismic reflection profiles and bathymetry provided information for maps of unconsolidated sediment thickness and Paleozoic bedrock topography. Two structural-stratigraphic cross sections of the study area were constructed by utilizing a composite subsurface-surface section for eastern Wisconsin and two control wells in western Michigan. The cross sections, grab samples previously described in the literature, the bedrock topographic map, and published maps were used to construct a Paleozoic geologic map for central Lake Michigan. Rocks from Middle Silurian through Early Mississippian age form subcrops beneath the study area, whereas rocks of Early Silurian, Ordovician, and Late Cambrian age are present at greater depth. The Upper Cambrian rocks unconformably overlie Precambrian igneous and metamorphic rocks. The structural-stratigraphic cross sections also allow speculation about the petroleum potential beneath Lake Michigan. The possibility of oil occurrences within the Silurian is enhanced by major east-west facies changes, and other horizons with promise are present in Devonian and Ordovician rocks. Although Michigan and Wisconsin laws currently prohibit petroleum exploration in Lake Michigan, it is an area with future potential.

  16. Geology of the Hawaiian islands

    USGS Publications Warehouse

    Stearns, Harold T.

    1946-01-01

    A brief summary of the geography, climate, and geomorphology is given. Streams develop slowly after the extinction of a volcano because of the high permeability of the rock. Once established they cut rapidly because of the steep slopes and fractured condition of the rock. Stream erosion varies enormously on different slopes of the same mountain due to the great differences in rainfall and to other causes. Six reasons are given for the development of amphitheater-headed valleys. Marine erosion has formed cliffs as much as 1,000 feet high on the leeward side and 3,000 feet high on the windward side of some of the domes. The islands have undergone a complex series of emergences and submergences leaving marine fossiliferous limestone up to 1,070 feet above sea level and valleys drowned more than 1,200 feet. Twelve terrace levels are recognized. Some are definitely eustatic.A synopsis is given of the present knowledge of the geology of each volcanic mountain, as well as a table of the rock units, and geologic maps of all major islands. The volcanoes pass through four major phases between birth and extinction and are built around one minor and two major rift zones. The volcanoes began their history above sea level in the Tertiary. Most of them became dormant either before or during the early Quaternary. Activity was renewed in the late Quaternary. Mauna Kea was glaciated in the late Pleistocene. The character of each islet in the archipelago is tabulated.

  17. Elements of Australian petroleum geology

    SciTech Connect

    Masters, C.D.; Scott, E.W.

    1986-05-01

    The petroleum geology of Australia reflects the existence of a large cratonic block broken away from India and Antarctica in the early Mesozoic and early Tertiary that has resulted in a rifted passive-margin character on the northwestern, western, and southern boundaries of the continent. Pre-breakup paleozoic sediments are widely distributed but commonly not deeply buried nor particularly thick, and hence contribute minimally to petroleum resource occurrence. Like their Asian neighbors, much of Australian petroleum geology is nonmarine and associated with marginal rift basins. The small Gippsland basin on the southeastern coast, which is responsible for more than 90% of oil and 28% of the gas discovered in Australia, derives its petroleum from nonmarine Eocene to Cretaceous graben-fill sediments, sealed and buried by Oligocene marine shales. The most active play in Australia is in the Eromanga depression of the Great Artesian basin, where nonmarine oil is trapped stratigraphically in small fields in Jurassic and Cretaceous sandstones. These Mesozoic sediments are sag-fill deposits above the Permian-Triassic Cooper basin, and are responsible for some 12% of the gas reserves in Australia. Offshore of the western coast, graben basins filled with late Paleozoic to Mesozoic sediments are prolific and gas-prone - 55% of reserves - owing to coaly source rocks. North Sea-type, Upper Jurassic grabens off the northwestern coast of Australia contain Kimmeridgian hot shales, but developmental drilling, following the initial Jabiru discovery, has yet to demonstrate large reserves.

  18. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  19. Geology and tectonics of Japanese islands: A review - The key to understanding the geology of Asia

    NASA Astrophysics Data System (ADS)

    Wakita, Koji

    2013-08-01

    complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous-Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1-2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc-arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc-arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.

  20. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  1. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  2. Europa: Divining Water from Surface Geology

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.

    2001-12-01

    Europa's surface geology as viewed by Galileo imaging suggests a thin brittle lithosphere above a warm (potentially salt-rich) ice layer that is at least in part convecting, in turn situated above a liquid water ocean. This configuration is consistent with thermal and geochemical modeling, and with Galileo magnetometer and NIMS results, which suggest that Europa may have a salty global-scale subsurface ocean at relatively shallow depths (~20-30 km). Dynamical modeling and visible crater density suggests a surface age of ~50 million years, implying that Europa is probably still geologically active today. Large shallow craters and even larger multi-ringed structures imply impact into low-viscosity (warm) subsurface material. The satellite's bright plains are criss-crossed by narrow troughs and enigmatic double ridges (paired ridges separated by a medial trough); a morphological sequence (and implied evolutionary sequence) exists from isolated troughs to doublet ridges to wider and more complex ridge morphologies. Troughs are inferred as widened fractures formed though tensile and shear failure in response to global stressing of the ice shell above liquid water. Several models exist to explain ridges, but the most likely is one in which localized shear heating triggers upwelling of warm ice along fracture zones. Triple bands are ridges with diffuse ruddy margins that may have formed through thermal alteration and/or partial melting of briny ice. Wider pull-apart bands represent complete separation and spreading of the icy lithosphere, in a manner broadly analogous to terrestrial sea-floor spreading. Europa's global lineament pattern implies that nonsynchronous rotation and orbital flexing ("diurnal" stressing) have worked in tandem to deform the surface. Diurnal stressing can explain Europa's extremely enigmatic cycloid ridge and fracture patterns, and may drive rapid strike-slip faulting along ridges. Because significant tidal amplitude is necessary to produce

  3. GeoSciML version 3: A GML application for geologic information

    NASA Astrophysics Data System (ADS)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

  4. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  5. Geology of interior cratonic sag basins

    SciTech Connect

    Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. )

    1990-05-01

    Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

  6. Geologic Mapping in Southern Margaritifer Terra

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2010-01-01

    Margaritifer Terra records a complex geologic history [1-5], and the area from Holden crater through Ladon Valles, Ladon basin, and up to Morava Valles is no exception [e.g., 6-13]. The 1:500,000 geologic map of MTM quadrangles -15027, -20027, -25027, and -25032 (Figs. 1 and 2 [14]) identifies a range of units that delineate the history of water-related activity and regional geologic context.

  7. County digital geologic mapping. Final report

    SciTech Connect

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  8. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  9. Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Afifi, A.M.

    1990-01-01

    Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.

  10. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  11. DIGITAL GEOLOGIC MAP OF THE UNITED STATES.

    USGS Publications Warehouse

    Fulton, Patricia

    1983-01-01

    The geologic map of the United States was published in 1974 by the U. S. Geological Survey. This major publication contains an enormous amount of information on the surficial geology of the United States. Many geologists have used this map as a research tool. Most have needed information from only specific parts of the map, and have manually extracted data from these areas. These data have then been combined with other geological information, much of which - especially that concerning minerals and energy - either is already in machine-readable computer files or is rapidly being converted to that form.

  12. Geologic review. Better regulation through interagency cooperation

    USGS Publications Warehouse

    Johnston, John E.; Rives, James D.; Soileau, David M.

    1989-01-01

    The Geologic Review procedure was developed by the Louisiana Geological Survey (LGS) in 1982 for the Louisiana Coastal Management Division. It consists of a thorough review of oil and gas well applications involving impact to environmentally sensitive areas such as wetlands. The applicant attends a meeting with a geologist and a petroleum engineer from the LGS who review the relevant geologic, engineering and economic data and make a recommendation as to the technical and economic feasibility of reducing or avoiding environmental impact by either moving the well to a geologically equivalent location, directionally drilling the well, or accessing the proposed location by a different access route or methodology than that proposed.

  13. Provincial geology and the Industrial Revolution.

    PubMed

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.

  14. Ganges Chasma Landing Site: Access to Sand Sheets, Wall Rock and Layered Mesa Material

    NASA Astrophysics Data System (ADS)

    Rice, James W., Jr.

    1999-06-01

    The floor of Ganges Chasma offers an ideal landing site for the MSP 2001 lander. This site is exquisite both in terms of engineering constraints and science objectives. The floor of Ganges Chasma is mantled with an extensive sand sheet. Sand sheets develop in conditions which are unfavorable for dune formation. These may include a high water table, periodic flooding, surface cementation, and coarse grained sands. The most extensive sand sheets on Earth are located in the eastern Sahara. These sheets have a relief of less than 1 m over wide areas and total thickness ranges from a few cm to 10 m. The surfaces of sand sheets are composed of granule to pebbly lag deposits. Sand sheets provide an extremely safe landing site and have very low relief. The safety concerns regarding slopes, rocks, and dust would be alleviated by the sand sheet. Furthermore, this vast sand sheet would allow the Marie Curie Rover to cover great distances. Rover navigability would be very easily compared to the tedious rock avoidance maneuvers that Sojourner had to accomplish. This exercise would be an important precursor test for the more capable Athena Rover which will execute longer traverses. Moreover, the Rover has already been "field tested" on sand at the JPL Mars sandbox. Dust should not be a problem: Thermal inertia is 7.7 to 8.9 cgs units. This site satisfies all engineering constraints.

  15. Geology of the Bighorn Mountains

    USGS Publications Warehouse

    Darton, N.H.

    1906-01-01

    There are extensive, forests in the mountains, which are now included in a Government forest reserve, but their timber is not of great value. Much of the area below timber line contains an abundance of luxuriant grasses and other plants, which afford excellent pasturage for stock, and large herds of sheep and cattle are ranged in the region during the short summer season. Game is moderately abundant, and most of the streams contain large numbers of trout. The region is one of great interest geologically on account of its variety of sedimentary rocks, interesting structure, and remarkably instructive glacial features. The central area, with its high peaks, presents alpine scenery of notable character. Doubtless in the future the region will be extensively visited by tourists, hunters, and geologists.

  16. 9th Caribbean Geological Conference

    NASA Astrophysics Data System (ADS)

    Draper, Gren

    The ninth in a series of Caribbean Geological Conferences, which are held every 3 or 4 years, took place in Santo Domingo, capital of the Dominican Republic, from the 15th to 26th of August 1980. The conference, which was sponsored by the government of the Dominican Republic and the Universidad Catolica Madre y Maestra, was preceded by 2 days of field trips and was opened by President Antonio Guzman on the evening of the 17th of August. Generous support was provided by Alcoa Exploration Co., Falconbridge Dominicana, and Rosario Dominicana.Geologists and geophysicists from 25 countries presented about 130 papers on a wide variety of topics ranging from geophysics to paleontology. While the whole Caribbean area was discussed, there was special emphasis on the northern Caribbean and Hispaniola, as befitted the site of the conference. The contribution of workers from the Dirección General de Mineriá was particularly notable.

  17. Geologic research at The Geysers

    SciTech Connect

    Hulen, J.B.; Moore, J.N.; Nielson, D.L.

    1996-04-10

    Geologic research at The Geysers vapor-dominated geothermal field during the past year has yielded new information on the nature of steam-reservoir porosity and permeability; the origin of the caprock; mechanisms of lateral sealing; the evolution of The Geysers hydrothermal system; and specific reservoir controls in and immediately above {open_quotes}the felsite{close_quotes}, an hypabyssal, batholith-sized pluton largely responsible for The Geysers` existence. Our research has shown that (1) fluid conduits above the felsite may be dominantly vuggy, high-angle hydrothermal veins; (2) latest-stage hydrothermal calcite in such veins may seal them at the margins of the steam reservoir; mixed-layer clays are probably the corresponding seals in the caprock; (3) steam entries in the felsite are concentrated along the top of the youngest intrusive phase in the pluton - a 1 m.y.-old granodiorite; (4) steam entries in the felsite show a negative correlation with massive borosilicate enrichments.

  18. Report on geologic exploration activities

    SciTech Connect

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is reponsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. Th ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed.

  19. CASP: Geological exploration and research

    SciTech Connect

    Macdonald, D.I.M.; Scott, R.A.

    1995-08-01

    The Cambridge Arctic Shelf Programme (CASP) is an independent, non-profit-making geological research organization based in the University of Cambridge. It originated in 1948 as Cambridge Spitsbergen Expeditions, and was incorporated as CASP in 1975. Initially, support came from companies with an interest in Svalbard and the Barents Shelf. Since then, CASP has greatly increased its scope, diversifying to new areas of research outside the Arctic and to new methods of data presentation. CASP now offers a unique programme of research, specialising in field- and literature-based studies of remote areas. Projects are currently being undertaken in the Arctic, Russia, China, East Greenland and Eastern Europe; all projects involve fieldwork and ail involve collaboration with research groups in other institutions. Most projects are oriented towards sedimentology, stratigraphy, tectonics, basin analysis and regional geology. CASP has a unique status: it shares elements in common with universities (undertaking long-term research programmes for eventual publication), consultancies (carrying out applied projects oriented towards hydrocarbon exploration and production) and national surveys (compiling and managing large datasets). Individual projects are funded by annual subscription from interested companies, with research material being supplied on a non-exclusive basis. Input and feedback from subscribers is welcomed, and an annual consortium meeting is organised for each project. As a non-profit-making Organization with low overheads, all additional income raised for a project is used to develop the research programme. CASP projects are supported by an outstanding library/information centre and linguistic expertise (Russian and Chinese), and these facilities are available to subscribing companies.

  20. Geology and religion in Portugal

    PubMed Central

    Carneiro, Ana; Simoes, Ana; Diogo, Maria Paula; Mota, Teresa Salomé

    2013-01-01

    This paper addresses the relationship between geology and religion in Portugal by focusing on three case studies of naturalists who produced original research and lived in different historical periods, from the eighteenth to the twentieth century. Whereas in non-peripheral European countries religious themes and even controversies between science and religion were dealt with by scientists and discussed in scientific communities, in Portugal the absence of a debate between science and religion within scientific and intellectual circles is particularly striking. From the historiographic point of view, in a country such as Portugal, where Roman Catholicism is part of the religious and cultural tradition, the influence of religion in all aspects of life has been either taken for granted by those less familiar with the national context or dismissed by local intellectuals, who do not see it as relevant to science. The situation is more complex than these dichotomies, rendering the study of this question particularly appealing from the historiographic point of view, geology being by its very nature a well-suited point from which to approach the theme. We argue that there is a long tradition of independence between science and religion, agnosticism and even atheism among local elites. Especially from the eighteenth century onwards, they are usually portrayed as enlightened minds who struggled against religious and political obscurantism. Religion—or, to be more precise, the Roman Catholic Church and its institutions—was usually identified with backwardness, whereas science was seen as the path to progress; consequently men of science usually dissociated their scientific production from religious belief.

  1. Homo Sapiens as Geological Agents

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Bedsworth, L. W.; Caldeira, K.; Rosenzweig, C.; Kelley, G.; Rosenzweig, C.; Caldeira, K.; Bedsworth, L. W.; Holloway, T.; Purdy, J. S.; Vince, G.; Syvitski, J. A.; Bondre, N. R.; Kelly, J.; Vince, G.; Seto, K. C.; Steffen, W.; Oreskes, N.

    2015-12-01

    In the 18th and 19th centuries, earth scientists came to understand the magnitude and power of geological and geophysical processes. In comparison, the activities of humans seemed paltry if not insignificant. With the development of radiometric dating in the 20th century, scientists realized that human history was but a miniscule part of Earth history. Metaphors to this effect abounded, and filled textbooks: If Earth history were a 24-hour day, human history would not occupy even the final second. If Earth history were a yardstick, the human portion would not even be visible to the naked eye. Generations of scientists were taught that one of the principal contributions of geology, qua science, was the demonstration of our insignificance. The Anthropocene concept disrupts this. To affirms its existence is to insist that human activities compete in scale and significance with other Earth processes, and may threaten to overwhelm them. It also inverts our relation to normative claims. For more than a century earth scientists and evolutionary biologists insisted that their theories were descriptive and not normative—that there was no moral conclusion to be drawn from either planetary or human evolution. Now, we confront the suggestion that there is a moral component to our new paradigm: we can scarcely claim that humans are disrupting the climate, destroying biodiversity, and acidifying the oceans without implying that there is something troubling about these developments. Thus, the Anthropocene concept suggests both a radical redefinition of the scope of Earth science, and a radical reconsideration of the place of normative judgments in scientific work.

  2. Proterozoic geology and ore deposits of Arizona

    USGS Publications Warehouse

    Karlstrom, Karl E.

    1991-01-01

    Proterozoic rocks in Arizona have been the focus of interest for geologists since the late 1800's. Early investigations, led by the U.S. Geological Survey, focused on the extensive ore deposits hosted by Proterozoic rocks. By the 1960's, these studies, combined with theses from academic institutions and the efforts of the Arizona Geological Survey, had produced a rich data base of geologic maps, primarily of the central part of the Transition Zone. The chronological significance of these maps became much better known with the application of U-Pb geochronology by L.Y. Silver and his students starting in the 1960's. The 1970's and early 1980's were marked by numerous contributions from Masters and Ph.D students at a variety of academic institutions, and continued work by the U.S. Geological Survey. Interest in ore deposits persisted and there was an increasing interest in interpretation of the tectonic history of Proterozoic rocks in terms of plate tectonic models, as summarized in papers by Phillip Anderson, Ed DeWitt, Clay Conway, Paul Lindberg, and J.L Anderson in the 1989 Arizona Geological Society Digest 17: "Geologic Evolution of Arizona". The present volume: "Proterozoic Geology and Ore deposits of Arizona" builds upon A.G.S. Digest 17, and presents the results of geologic investigations from the latter part of the 1980's. A number of the papers are condensed versions of MS theses done by students at Northern Arizona University. These papers are based upon 1:10,000 mapping and structural analysis of several areas in Arizona. The geologic maps from each of these studies are available separately as part of the Arizona Geological Survey Contributed Map Series. These detailed maps, plus the continuing mapping efforts of the U.S.G.S. and students at other academic institutions, form an ever improving data base for continuing attempts to understand the Proterozoic geology and ore deposits of Arizona

  3. Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of Landsat digital data. [mapping of hydrothermally altered volcanic rocks

    NASA Technical Reports Server (NTRS)

    Ballew, G.

    1977-01-01

    The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.

  4. Terrain Models in Field Geology Courses.

    ERIC Educational Resources Information Center

    Whittecar, G. Richard

    1984-01-01

    Describes a terrain model for geologic mapping which, when combined with exercises in rock description, Brunton compass manipulation, orienteering, and geologic report writing, allows students to refine skills needed for summer field camp. Advantages and limitations of the model and its use in a field course are also discussed. (BC)

  5. Geology highlights for Ride the Rockies 2010

    USGS Publications Warehouse

    Slate, J.L.; Hess, Amber; Van Sistine, D.R.

    2010-01-01

    The author provides a brief description of the geology along the route for each day of the ride, from June 13 through June 19, 2010. Ride the Rockies begins in Grand Junction, with stops in Delta, Ouray, Durango, Pagosa Springs, Alamosa, and ends in Salida, Colorado. A small, generalized geologic map also is shown.

  6. Nonparametric Methods Instruction in Quantitative Geology.

    ERIC Educational Resources Information Center

    Kemmerly, Phillip Randall

    1990-01-01

    Presented is an approach to introducing upper division, undergraduate geology students to nonparametric statistics and their application to geologic data. Discussed are the use of the Mann-Whitney U and the Kolmogorov-Smirnov tests and a class assignment which illustrates their use. (CW)

  7. Reports of Planetary Geology Program, 1982

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1982-01-01

    Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.

  8. Advances in planetary geology, volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.

  9. Integration of geologic interpretation into geostatistical simulation

    SciTech Connect

    Carle, S.F.

    1997-06-01

    Embedded Markov chain analysis has been used to quantify geologic interpretation of juxtapositional tendencies of geologic facies. Such interpretations can also be translated into continuous-lag Markov chain models of spatial variability for use in geostatistical simulation of facies architecture.

  10. Geology Highlights for Ride the Rockies 2009

    USGS Publications Warehouse

    Slate, Janet

    2009-01-01

    The author provides a brief description of the geology along the route for each day of the ride, from June 14 through June 19, 2009. Ride the Rockies begins and ends in Glenwood Springs, with stops in Hotchkiss, Gunnison, Salida, Leadville, Aspen, and back to Glenwood Springs, Colorado. A small, generalized geologic map also is shown.

  11. Geology of the Phase II System

    SciTech Connect

    Laney, R.; Laughlin, A. William

    1980-11-19

    This is a report on the analysis of EE-2 cuttings and thin sections, geologic characterization of the Phase II system, comparison with Phase 1, and geologic speculations and recommendations concerning Phase II. The EE-2 litholog has been included in the pocket.

  12. Advances in planetary geology, volume 2

    SciTech Connect

    Not Available

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.

  13. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  14. Wyoming Geology and Geography, Unit I.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…

  15. Digital geologic and geophysical data of Bangladesh

    USGS Publications Warehouse

    Persits, Feliks M.; Wandrey, C.J.; Milici, R.C.; Manwar, Abdullah

    1997-01-01

    The data set for these maps includes arcs, polygons, and labels that outline and describe the general geologic age and geophysical fields of Bangladesh. Political boundaries are provided to show the general location of administrative regions and state boundaries. Major base topographic data like cities, rivers, etc. were derived from the same paper map source as the geology.

  16. Geology highlights, Ride the Rockies 2011

    USGS Publications Warehouse

    Slate, Janet L.

    2011-01-01

    The author provides a brief description of the geology along the route for each day of the ride, from June 12 through June 17, 2011. Ride the Rockies begins in Crested Butte, Colorado, with stops in Buena Vista, Edwards, Steamboat Springs, Granby, and Georgetown. A small, generalized geologic map also is shown.

  17. Abstracts for the Planetary Geology Field Conference

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D.

    1977-01-01

    The conference was to foster a better understanding of the volcanic history of the planets through the presentation of papers and through field trips to areas on the basalt plains of Idaho that appear to be analogous to some planetary surfaces. Papers include discussions of the volcanic geology of the Snake River Plain, general volcanic geology, and aspects of volcanism on the terrestrial planets.

  18. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  19. American Geological Education in the Eighteenth Century.

    ERIC Educational Resources Information Center

    Corgan, James X.

    1987-01-01

    Traces the development of the study of geology and geological education in the United States during the 1700's. Addresses the influences of world travel, agriculture, and medicine on the inclusion of earth science into college curricula and self-instruction "civility books." (TW)

  20. Geology in Tennessee Colleges 1826 - 1850.

    ERIC Educational Resources Information Center

    Corgan, James X.

    1981-01-01

    Describes the establishment of geology in the curricula of Tennessee colleges during the years from 1826 to 1850. The growth of a museum, the growth of learned societies, and the appearance of college courses in geology seem to be closely related. (Author/WB)

  1. The topology of geology 1: Topological analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  2. Geologic Map of the Umiat Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2004-01-01

    This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.

  3. North Dakota geology school receives major gift

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    Petroleum geology and related areas of study at the University of North Dakota (UND) received a huge financial boost with the announcement on 24 September of $14 million in private and public partnership funding. The university announced the naming of the Harold Hamm School of Geology and Geological Engineering, formerly a department within the College of Engineering and Mines, in recognition of $10 million provided as a gift by oilman Harold Hamm and Continental Resources, Inc. Hamm is the chair and chief executive officer of Continental, the largest leaseholder in the Bakken Play oil formation in North Dakota and Montana, and he is also an energy policy advisor to Republican presidential candidate Mitt Romney. UND also received $4 million from the Oil and Gas Research Program of the North Dakota Industrial Commission to support geology and geological engineering education and research.

  4. Mapping Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Yingst, R.; Williams, D. A.; Schenk, P.; Neukum, G.; Mottola, S.; Buczkowski, D.; O'Brien, D. P.; Garry, W. B.; Blewett, D. T.; Denevi, B. W.; Roatsch, T.; Preusker, F.; Nathues, A.; Sierks, H.; Sykes, M. V.; De sanctis, M.; McSween, H. Y.; Keller, H. U.; Marchi, S.

    2011-12-01

    Observations from the Dawn (Russell et al., 2007) spacecraft enabled deriva-tion of 4Vesta's shape, facilitated mapping of the surface geology and pro-vided the first evidence for Vesta's geological evolution. The Dawn mission is equipped with a framing camera (FC), a visible and infrared mapping spectrometer (VIR) and a gamma-ray and neutron detector (GRaND). So far science data are collected during the approach to the asteroid and protoplanet Vesta, a circular polar orbit at an altitude of 2700 km providing ~ 230 m/pix camera resolution and a lower orbit, at 700 km altitude with a camera resolu-tion of ~ 65 m/pixel. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, regolith and prob-able volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting possible buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest candi-date crater, a ~460 km depression at the south pole, has been shown to con-tain an incomplete inward facing cuspate scarp, and a large central mound surrounded by unusual complex arcuate ridge and groove patterns. Although asymmetric in general form, these characteristics do not contradict an impact origin but may also allow endogenic processes like convective downwelling or hybrid modification of an impact. Rapid rotation of Vesta during impact may explain some anomalous features (Jutzi and Asphaug, 2010). A set of large equatorial troughs may be related to the formation process of the south polar structure or due to stress caused by changes of the rotational axis. The crater size frequency and the chronology function is derived from the lunar chronology, scaled to impact frequencies modeled for Vesta according to (Bottke et al., 1994) and (O'Brien and Sykes, 2011). The northern hemi-sphere is heavily cratered by a large variety of ancient

  5. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils developed on relict hydrothermally altered soils throughout the Western United States present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally ...

  6. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.

  7. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  8. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  9. Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2011-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sh. 1; sh. 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, detailed unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text explaining those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet. The map area covers 74,000 km2, an area slightly larger than West Virginia or Ireland.

  10. Preliminary bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2010-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sheet 1; sheet 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text about those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet.

  11. Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Africano, F.; Bernard, A.

    2000-04-01

    The last eruptive activity of Usu volcano in 1977-78 involved the development of high temperature (550-710°C) fumaroles. The gases emitted were H 2O-rich (95-99 mol%) with Cl/S=0.05-0.9, F/Cl=0.3-0.2 and with RH=-2.5 close to the rock buffer (FeO/FeO 1.5). Cooling and oxidation of the high temperature gases resulted in the formation of acidic condensates (pH=1.6) that interacted with the wall rock. Complete leaching of the cations (Ca, Na, Mg, Al and Fe) from the primary minerals and matrix glass occurred leaving in place only silica. These mobilized cations precipitated as secondary minerals from acidic fluids that circulated in microcracks. SEM study shows mineral associations reflecting increasing fluid oxidation: (a) Al fluorides such as ralstonite (NaMgAlF 6·H 2O), pyrite, and anhydrite/gypsum; (b) an Al hydroxide, hematite, gypsum and amorphous silica or cristobalite; (c) Al sulfates such as hydronium alunite [(H 3O)Al 3(SO 4) 2(OH) 6], alunite [KAl 3(SO 4) 2(OH) 6], amorphous silica, cristobalite, hematite and anhydrite/gypsum; (d) Al sulfates, Al fluorides, amorphous silica, cristobalite, pyrite and anhydrite/gypsum. A Ti oxide, a Fe-Mg sulfate and barite are present in minor amounts. Clay minerals are absent from the observed assemblages. Primary phenocrysts and matrix glass undergo a complete transformation to silica enriched in fluorine (1-7 wt%). This fluorine enrichment in the silicified parts of silicates and in silica incrustations suggests that F may play a role in silica mobilization. Modeling of the cooling of the high-temperature gases was performed with the program GASWORKS. The calculations suggest that 66% of the total sulfur from the gases may be lost by deposition as native sulfur at temperatures below 160°C. Thermochemical modeling of condensate-rock interaction using CHILLER indicates that the cooling of gases was the source of the altering solutions. Oxidation, by atmospheric O 2, of the sulfur-reduced species in the volcanic gas

  12. Selection of colors and patterns for geologic maps of the U.S. Geological Survey

    USGS Publications Warehouse

    ,

    2005-01-01

    U.S. Geological Survey (USGS) color and pattern standards and conventions for geologic maps have evolved since the USGS published its first set of standards in 1881. Since that time, USGS personnel have continuously updated and revised the standards in response to the need to show increasingly complex geologic map data and in response to changing technology. The color and pattern standards and conventions contained in this book enable geologists, cartographers, and editors to produce geologic maps that have consistent geologic-age color schemes and patterns. Such consistency enables geologists and other users of geologic maps to obtain a wealth of geologic information at a glance and to produce maps that can easily be used and compared to other published maps that follow the color and pattern standards and conventions.

  13. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    . The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and

  14. Global Warming in Geologic Time

    ScienceCinema

    David Archer

    2016-07-12

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  15. Global Warming in Geologic Time

    SciTech Connect

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  16. Global Warming in Geologic Time

    SciTech Connect

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  17. Minnesota Geological Survey may close

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The future of the Minnesota Geological Survey is up in the air until January 1992, when the state legislature reconvenes. On June 4, Governor Arne H. Carlson vetoed a line-item of the 2-year University of Minnesota budget that contains funding for the MGS. If funds are not restored by special legislative appropriation and approved by the governor during the spring of 1992, MGS will be abolished effective July 1992.The possibility of closing the survey reflects a financial decision, according to Robert A. Schroeder, assistant to the governor. It is not based on the usefulness of the survey's work. “The governor's objective with his line-item vetoes was to control overall spending, not to target specific programs,” he said. Since MGS is university-affiliated, it is funded under Minnesota's Higher Education bill, rather than as a state agency. Because of overspending in 1991, the state has had to cut back funds, and the university is one area hit by budget cuts. The university may still choose to fund the program and has the flexibility to reallocate funds within the system.

  18. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  19. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  20. Global Geological Map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  1. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  2. Geological and geothermal investigations for HCMM-derived data. [hydrothermally altered areas in Yerington, Nevada

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Prelat, A. E.; Kirk, R. (Principal Investigator)

    1981-01-01

    An attempt was made to match HCMM- and U2HCMR-derived temperature data over two test sites of very local size to similar data collected in the field at nearly the same times. Results indicate that HCMM investigations using resolutions cells of 500 m or so are best conducted with areally-extensive sites, rather than point observations. The excellent quality day-VIS imagery is particularly useful for lineament studies, as is the DELTA-T imagery. Attempts to register the ground observed temperatures (even for 0.5 sq mile targets) were unsuccessful due to excessive pixel-to-pixel noise on the HCMM data. Several computer models were explored and related to thermal parameter value changes with observed data. Unless quite complex models, with many parameters which can be observed (perhaps not even measured (perhaps not even measured) only under remote sensing conditions (e.g., roughness, wind shear, etc) are used, the model outputs do not match the observed data. Empirical relationship may be most readily studied.

  3. Parasites alter community structure.

    PubMed

    Wood, Chelsea L; Byers, James E; Cottingham, Kathryn L; Altman, Irit; Donahue, Megan J; Blakeslee, April M H

    2007-05-29

    Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua infection would alter the grazing rate of L. littorea and, consequently, macroalgal communities would develop differently in the presence of infected versus uninfected snails. Our results show that uninfected snails consumed 40% more ephemeral macroalgal biomass than infected snails in the laboratory, probably because the digestive system of infected snails is compromised by C. lingua infection. In the field, this weaker grazing by infected snails resulted in significantly greater expansion of ephemeral macroalgal cover relative to grazing by uninfected snails. By decreasing the per-capita grazing rate of the dominant herbivore, C. lingua indirectly affects the composition of the macroalgal community and may in turn affect other species that depend on macroalgae for resources or habitat structure. In light of the abundance of parasites across systems, we suggest that, through trait-mediated indirect effects, parasites may be a common determinant of structure in ecological communities. PMID:17517667

  4. Geologic and structural map of eastern Asia

    SciTech Connect

    Letouzey, J.; Sage, L.

    1986-07-01

    A synthesis of the onshore and offshore geologic data of eastern Asia, prepared by the Institut Francais du Petrole (IFP), has allowed the construction of geologic and structural maps for this region. These maps include three color sheets (scale = 1:2.5 million) and three plates of geologic and structural cross sections. Located between lat. 4/sup 0/ and 35/sup 0/N, and long. 106/sup 0/ and 132/sup 0/E, the maps cover the following geographic areas: East and South China Sea, Sulu Sea, West Philippine basin and onshore neighboring terrains, Kyushu and Ryukyu Islands, the China margin, Taiwan Island, Vietnam, North West Borneo, and the Philippines. The maps synthesize seismic interpretations, oil well data, geologic work in south Japan, Taiwan, Borneo, and the Philippines, and recent data published between 1976 and 1985. Twenty-four geologic cross sections (scale = 1:1.25 million, vertical exaggeration x 6) intersect ocean margins, important basins, and the different structural domains. They are based on seismic profiles, well data, and available onshore and offshore geologic data. These cross sections show basement composition and structures, different tectonic and sedimentary domains, and the structure and thickness of different sedimentary deposits (such as age, unconformities, and geologic structures). Maps and cross sections will be published in early 1987.

  5. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 2

    SciTech Connect

    Not Available

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, US and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  6. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  7. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  8. Geology Before Pluto: Pre-Encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  9. The Mekong at climatic crossroads: Lessons from the geological past.

    PubMed

    Penny, Dan

    2008-05-01

    The wetlands of the lower Mekong River Basin are ecologically and socioeconomically significant, but they are threatened by predicted climatic change. The likely response of wetland ecosystems to altered flooding regimes and surface-water chemistry is unknown in detail and difficult to model. One way of exploring the impact of climate change on wetland ecosystems is to utilize proxy environmental data that reveal patterns of change over geological time. In recent years, the coverage and resolution of proxy climatic data have improved markedly in the region. Recent evidence of the South China Sea transgression into southern and central Cambodia and paleobotanical evidence from the Tonle Sap ("Great Lake") and elsewhere allow us to explore how periods of higher-than-present sea level and increased monsoon rainfall in the past have impacted the wetland ecology of the lower Mekong River Basin. PMID:18595270

  10. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  11. Proposed geologic model based on geophysical well logs

    SciTech Connect

    Diaz C, S.; Puente C, I.; de la Pena L, A.

    1981-01-01

    An investigation of the subsurface based on a qualitative interpretation of well logs was carried out at Cerro Prieto to obtain information on the distribution of the different lithofacies that make up a deltaic depositional system. The sedimentological interpretation derived from the resistivity and spontaneous potential are shown in several cross-sections of the field. In addition to the sedimentological interpretation, a map of the structural geology of the region based on well logs and available geophysical information was prepared, including the results of gravity and seismic refraction surveys. The depth to the zone of hydrothermal alteration described by Elders (1980) was found by means of temperature, electrical, and radioactive logs. Two maps showing the configuration of the top of this anomaly show a clear correlation with the gravity anomalies found in the area.

  12. The Mekong at climatic crossroads: Lessons from the geological past.

    PubMed

    Penny, Dan

    2008-05-01

    The wetlands of the lower Mekong River Basin are ecologically and socioeconomically significant, but they are threatened by predicted climatic change. The likely response of wetland ecosystems to altered flooding regimes and surface-water chemistry is unknown in detail and difficult to model. One way of exploring the impact of climate change on wetland ecosystems is to utilize proxy environmental data that reveal patterns of change over geological time. In recent years, the coverage and resolution of proxy climatic data have improved markedly in the region. Recent evidence of the South China Sea transgression into southern and central Cambodia and paleobotanical evidence from the Tonle Sap ("Great Lake") and elsewhere allow us to explore how periods of higher-than-present sea level and increased monsoon rainfall in the past have impacted the wetland ecology of the lower Mekong River Basin.

  13. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  14. The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications

    NASA Astrophysics Data System (ADS)

    Huston, David L.; Maas, Roland; Cross, Andrew; Hussey, Kelvin J.; Mernagh, Terrence P.; Fraser, Geoff; Champion, David C.

    2016-08-01

    Nolans Bore is a rare-earth element (REE)-U-P fluorapatite vein deposit hosted mostly by the ~1805 Ma Boothby Orthogneiss in the Aileron Province, Northern Territory, Australia. The fluorapatite veins are complex, with two stages: (1) massive to granular fluorapatite with inclusions of REE silicates, phosphates and (fluoro)carbonates, and (2) calcite-allanite with accessory REE-bearing phosphate and (fluoro)carbonate minerals that vein and brecciate the earlier stage. The veins are locally accompanied by narrow skarn-like (garnet-diopside-amphibole) wall rock alteration zones. SHRIMP Th-Pb analyses of allanite yielded an age of 1525 ± 18 Ma, interpreted as the minimum age of mineralisation. The maximum age is provided by a ~1550 Ma SHRIMP U-Pb age for a pegmatite that predates the fluorapatite veins. Other isotopic systems yielded ages from ~1443 to ~345 Ma, implying significant post-depositional isotopic disturbance. Calculation of initial ɛNd and 87Sr/86Sr at 1525 Ma and stable isotope data are consistent with an enriched mantle or lower crust source, although post-depositional disturbance is likely. Processes leading to formation of Nolans Bore began with north-dipping subduction along the south margin of the Aileron Province at 1820-1750 Ma, producing a metasomatised, volatile-rich, lithospheric mantle wedge. About 200 million years later, near the end of the Chewings Orogeny, this reservoir and/or the lower crust sourced alkaline low-degree partial melts which passed into the mid- and upper-crust. Fluids derived from these melts, which may have included phosphatic melts, eventually deposited the Nolans Bore fluorapatite veins due to fluid-rock interaction, cooling, depressurisation and/or fluid mixing. Owing to its size and high concentration of Th (2500 ppm), in situ radiogenic heating caused significant recrystallisation and isotopic resetting. The system finally cooled below 300 °C at ~370 Ma, possibly in response to unroofing during the Alice Springs

  15. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    . The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and

  16. Developing Medical Geology in Uruguay: A Review

    PubMed Central

    Mañay, Nelly

    2010-01-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented. PMID:20623004

  17. Geology of Massachusetts and Rhode Island

    USGS Publications Warehouse

    Emerson, Benjamin Kendall

    1917-01-01

    In preparing the present treatise and the accompanying geologic map of Massachusetts and Rhode Island (PI. X, in pocket) I have endeavored to use all the material available. The matter has been greatly condensed, for the detailed geology of a considerable part of the area will be described in a number of forthcoming folios of the Geologic Atlas of the United States. The Holyoke folio, published in 1898, covered the major part of the Triassic rocks in Massachusetts, but as those rocks have since been more thoroughly studied they are here treated in greater detail to bring their discussion up to date.

  18. Developing medical geology in Uruguay: a review.

    PubMed

    Mañay, Nelly

    2010-05-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  19. Geology of the Henry Mountains

    USGS Publications Warehouse

    Gilbert, G.K.

    1877-01-01

    If these pages fail to give a correct account of the structure of the Henry Mountains the fault is mine and I have no excuse. In all the earlier exploration of the Rocky Mountain Region, as well as in much of the more recent survey, the geologist has merely accompanied the geographer and has had no voice in the determination of either the route or the rate of travel. When the structure of a mountain was in doubt he was rarely able to visit the points which should resolve the doubt, but was compelled to turn regretfully away. Not so in the survey of the Henry Mountains. Geological exploration had shown that they were well disposed for examination, and that they promised to give the key to a type of structure which was at best obscurely known; and I was sent by Professor Powell to make a study of them, without restriction as to my order or method. I was limited only in time, the snow stopping my work two months after it was begun. Two months would be far too short a period in which to survey a thousand square miles in Pennsylvania or Illinois, but among the Colorado Plateaus it proved sufficient. A few comprehensive views from mountain tops gave the general distribution of the formations, and the remainder of the time was spent in the examination of the localities which best displayed the peculiar features of the structure. So thorough was the display and so satisfactory the examination, that in preparing my report I have felt less than ever before the desire to revisit the field and prove my conclusions by more extended observation.

  20. Geologic exploration of solar system

    SciTech Connect

    Wood, C.A.

    1987-11-01

    The processes that must have operated on the early Earth have been deduced from evidence from ancient surfaces of the Moon and planets. In particular, such comparative studies have demonstrated that only two geologic processes have been widespread throughout the history of the solar system: impact cratering and volcanism. Impact craters have formed throughout solar system history, indeed the planets themselves were formed by the accumulation of millions of smaller planetesimals, each of which formed an impact crater. Earth could not have escaped the intense bombardment that churned the surfaces of Mars, Mercury, and the Moon. The impact cratering rate dramatically declined about 3.9 billion years ago, but craters 10 km across still form on the Earth on the average of one every 140,000 years, and the 1.5-km wide Meteor Crater in Arizona formed only about 25,000 years ago. Volcanic flows and cones have been observed on nearly all planets and moons in the solar system; the variety and duration of volcanism are directly related to planet mass. Thus, a relatively large planet like the Earth has a wide range of volcanic morphologies and compositions, with activity continuing throughout Earth history. In contrast, the smaller Moon produced a narrow compositional range of basaltic lava flows, with most of the lavas having erupted about 3 billion years ago. Water and sulfur volcanism have also been discovered on the cold satellites of the outer solar system, thus expanding their terrestrial concept of volcanism. Many other processes and materials exist in the solar system, but the Earth remains unique in its richness of resources to support humans. Discovery and exploitation of extraterrestrial resources are beginning and must be greatly increased to prepare for their future as a space-faring race.

  1. Revised draft: North Central Regional geologic characterization report. Volume 1

    SciTech Connect

    Not Available

    1984-11-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the disqualifying factor and the screening variables to be used in region-to-area screening. These factors and variables include hydrologically significant natural resources, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major groundwater discharge zones, water resources, groundwater salinity, and state of stress. Information is presented on age, areal extent, shape, thickness of overburden, composition, texture, degree and type of alteration, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline rock bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the subject rock bodies. A discussion of the relationship between the DOE Siting Guidelines and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process is also presented.

  2. Revised draft: Southeastern Regional geologic characterization report. Volume 1

    SciTech Connect

    Not Available

    1984-11-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Georgia, Maryland, North Carolina, South Carolina, and Virginia. For each of the states within the southeastern region, information is provided on the disqualifying factor and the screening variables to be used in region-to-area screening. These factors and variables include hydrologically significant natural resources, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, water resources, ground-water salinity, and state of stress. Information is presented on the age, areal extent, shape, thickness of overburden, composition, texture, degree and type of alteration, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the subject rock bodies. A discussion of the relationship between the DOE Siting Guidelines and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process is also presented.

  3. Mars exploration rover geologic traverse by the spirit rover in the plains of Gusev crater, Mars

    USGS Publications Warehouse

    Crumpler, L.S.; Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; DesMarais, D.J.; Farmer, J.D.; Fergason, R.; Golombek, M.P.; Grant, F.D.; Grant, J. A.; Greeley, R.; Hahn, B.; Herkenhoff, K. E.; Hurowitz, J.A.; Knudson, A.T.; Landis, G.A.; Li, R.; Maki, J.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Payne, M.C.; Rice, J.W.; Richter, L.; Ruff, S.W.; Sims, M.; Thompson, S.D.; Tosca, N.; Wang, A.; Whelley, P.; Wright, S.P.; Wyatt, M.B.

    2005-01-01

    The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts. ?? 2005 Geological Society of America.

  4. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  5. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon

  6. OneGeology: Making the World’s Geological Map Data Accessible Online

    NASA Astrophysics Data System (ADS)

    Broome, H.; Jackson, I.; Robida, F.; Thorleifson, H.

    2009-12-01

    OneGeology (http://onegeology.org) is a successful international initiative of the geological surveys of the world and the flagship project of the ‘International Year of Planet Earth’. Its aim is to provide dynamic web access to geological map data covering the world, creating a focus for accessing geological information for everyone. Thanks to the enthusiasm and support of participating nations the initiative has progressed rapidly and geological surveys and the many users of their data are excited about this ground-breaking project. Currently 10 international geoscience organizations have endorsed the initiative and more than 109 countries have agreed to participate. OneGeology works with whatever digital format is available in each country. The target scale is 1:1 million, but the project is pragmatic and accepts a range of scales and the best available data. The initiative recognizes that different nations have differing abilities to participate and transfer of know-how to those who need it is a key aspect of the approach. A key contributor to the success of OneGeology has been its utilization of the latest new web technology and an emerging data exchange standard for geological map data called GeoSciML. GeoSciML (GeoScience Markup Language) is a schema written in GML (Geography Markup Language) for geological data. GeoSciML has the ability to represent both the geography (geometries e.g. polygons, lines and points) and geological attribution in a clear and structured format. OneGeology was launched March 2007 at the inaugural workshop in Brighton England. At that workshop the 43 participating nations developed a declaration of a common objective and principles called the “Brighton Accord” (http://onegeology.org/what_is/accord.html) . Work was initiated immediately and the resulting OneGeology Portal was launched at the International Geological Congress in Oslo in August 2008 by Simon Winchester, author of “The Map that Changed the World”. Since the

  7. Remote-sensing applications to geology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of two day workshop on applications of remote sensing to geology are summarized in report. Topics discussed are environmental analysis, crop classification, plant epidemics and diseases, irrigation reform, and soil surveys.

  8. A new algorithm for coding geological terminology

    NASA Astrophysics Data System (ADS)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  9. Reports of planetary geology program, 1980. [Bibliography

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Kosters, E. C. (Compiler)

    1980-01-01

    This is a compilation of abstracts of reports which summarize work conducted in the Planetary Geology Program. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  10. Geomorphology in North American Geology Departments, 1971

    ERIC Educational Resources Information Center

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  11. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  12. Significant achievements in the planetary geology program

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1984-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes active on other planetary bodies, to techniques and instrument development for exploration.

  13. Etymology of Some Common Geologic Terms

    ERIC Educational Resources Information Center

    Lutz, Alan

    1978-01-01

    A knowledge of Latin, Greek, and modern foreign language prefixes and suffixes often enables one to define a word without using a dictionary. A list of certain common geologic terms and their etymologies is provided. (Author/MA)

  14. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  15. The Geologic Story of Colorado National Monument

    USGS Publications Warehouse

    Lohman, Stanley William

    1981-01-01

    From 1946 until about 1956 I carried out fieldwork intermittently on the geology and artesian water supply of the Grand Junction area, Colorado, the results of which have been published. The area mapped geologically contains about 332 square miles in the west-central part of Mesa County and includes all of Colorado National Monument. During the field work several successive custodians or superintendents and several park naturalists urged that upon completion of my professional paper I prepare a brief account of the geology of the Monument in terms understandable by laymen, and which could be sold at the Visitor Center. This I was happy to do and there resulted 'The geologic story of Colorado National Monument', published by the Colorado and Black Canyon Natural History Association in cooperation with the National Park Service. This report contained colored sketches by John R. Stacy and a colored cover, but the photographs and many of the drawings were reproduced in black and white.

  16. The geology and geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.

    1976-01-01

    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  17. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  18. Simulation of penetration into porous geologic media

    SciTech Connect

    Vorobiev, O Y; Liu, B T; Lomov, I N; Antoun, T

    2005-05-31

    We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is non-linear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media.

  19. Use of Ontology for Field Geological Data in Geological Sheet Maps at 1:50,000: "Outcrop Information Vocabulary" Prototype

    NASA Astrophysics Data System (ADS)

    Nishioka, Y.; Fusejima, Y.; Takarada, S.; Iwaya, T.; Igawa, T.; Masaka, Y. A.

    2010-12-01

    Geological Survey of Japan has published series of geological map at 1:50,000. The study attempts to acquire, distribute, and utilize the outcrop information as digital information. We aim at construction of an open system which is available in a various position, and then establishment of standard technology for the realization of the system. The purpose of this paper is to consider and carry out manufacture of “Outcrop Information Vocabulary(OIV)” as the first stage of the study. Since outcrop information is basic primary information, the semantic web technology is employed to associate with various other systems on the Web; for instance, OIV is designed with use of ontology and described by Web Ontology Language(OWL). The OIV includes 14 classes including “FieldObservation” class to describe field observation. Moreover, we create test system which field researchers use to test the effectiveness of OIV. The result lead to the conclusion that files created by use of OIV are easy of mutual alteration and association function with other XML-base format, therefore, OIV has high affinity with existing technology. ULM Class Diagram for "Outcop Informaion Vocabulary"

  20. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    SciTech Connect

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining units

  1. Geologic investigations of outer planets satellites

    NASA Technical Reports Server (NTRS)

    Strom, R. G.

    1984-01-01

    Four tests are examined: (1) investigation of volcanism on Io; Interim results of thermal and structural modeling of volcanism on Io are presented, (2) a study of the ancient heavily cratered regions on Ganymede, (3) a geologic comparison of the cratering record on Ganymede and Callisto, and (4) a geological and chemical investigation of internal resurfacing processes on the Saturnian satellites. Tasks 2, 3, and 4 utilize Voyager imaging data.

  2. Impact cratering at geologic stage boundaries

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known Cenozoic impact craters with the most accurately measured ages are found to correlate very closely with geologic stage boundaries. The level of confidence in this result is 98-99 percent even under the most pessimistic assumptions concerning dating errors. One or more large impacts may have led, in at least some cases, to the extinctions and first appearances of biotic species that mark many of the geologic stage boundaries.

  3. Volcanic geology of Tyrrhena Patera, Mars

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Crown, D. A.

    1990-05-01

    Consideration is given to the geology of Tyrrhena Patera, a large low-relief volcano in the southern cratered highlands of Mars. The general geology of Tyrrhena Patera is outlined and models for the formation of the volcano are described. Models derived from studies of terrestrial pyroclastic flows are applied to deposits at Tyrrhena Patera, showing that the characteristics of the deposits are consistent with an origin by the emplacement of gravity-driven ash flows generated by hydromagmatic or magmatic explosive eruptions.

  4. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized

  5. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    SciTech Connect

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  6. Metamorphic geology: Why should we care?

    NASA Astrophysics Data System (ADS)

    Tajcmanova, Lucie; Moulas, Evangelos; Vrijmoed, Johannes

    2016-04-01

    Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data then often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. Obtaining high-quality analytical data from metamorphic rocks has become a standard part of geology studies. The numerical tools for geodynamic reconstructions have evolved to a great extend as well. Furthermore, the increasing demand on using the Earth's interior for sustainable energy or nuclear waste disposal requires a better understanding of the physical processes involved in fluid-rock interaction. However, nowadays, metamorphic data have apparently lost their importance in the "bigger picture" of the Earth sciences. Interestingly, the suppression of the metamorphic geology discipline limits the potential for understanding the aforementioned physical processes that could have been exploited. In fact, those phenomena must be considered in the development of new generations of fully coupled numerical codes that involve reacting materials with changing porosity while obeying conservation of mass, momentum and energy. In our contribution, we would like to discuss the current role of metamorphic geology. We will bring food for thoughts and specifically touch upon the following questions: How can we revitalize metamorphic geology? How can we increase the importance of it? How can metamorphic geology contribute to societal issues?

  7. Geology of the Huntsville quadrangle, Alabama

    USGS Publications Warehouse

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  8. Geologic reconnaissance in western Liberia

    USGS Publications Warehouse

    Leo, G.W.; White, R.W.

    1967-01-01

    Irazu volcano, a large composite cone, consists of interbedded lava flows, lahars, and ash beds. This rock sequence, named the Irazu Group, has been divided into four formations; from the base: Reventado Formation, Sapper Formation, Birris Formation, and Cervantes Formation. Only the Reventado and Sapper Formations crop out in the Reventado watershed. The Reventado Formation consists of at least four widespread medium-gray finely porphyritic lava flows and interbedded lahar and some ash. Where not excessively jointed, lava flows within the formation are structurally sound and generally fresh. The Sapper Formation also consists of interbedded lava, lahar, and ash; lavas are black dense and coarsely porphyritic and in the middle part of the watershed are structurally sound if not excessively jointed. In the upper part of the watershed Sapper lavas are deeply altered, pyritic and structurally unsound. At least three major inactive and six major active landslides have been recognized In the Reventado watershed, all apparently in the Sapper Formation. Mudflows in the Reventado watershed have been supplied with debris from the caving of oversteepened stream banks and to a lesser extent from the active landslides.

  9. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  10. Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Kelley, Karen D.; Gough, Larry P.

    2000-01-01

    This annual compilation of geologically related papers, all dealing with studies in Alaska, contains 16 reports divided among four topics: geologic framework, environment and climate, resources, and bibliographies. These topics reflect the scope and objectives of some currently active U.S. Geological Survey programs and projects from all parts of the State of Alaska. Studies include results from the natural, chemical, and physical Earth sciences and are of interest to academia, government, industry, and the general public.

  11. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    USGS Publications Warehouse

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    filling of fractures that developed in previously lithified rock. Uniformly low Ca and Mg and uniformly negative Ce anomalies in highly siliceous Red Dog wall rocks reflect hydrothermal decarbonation reactions and pervasive silicification owing to conductive cooling of oxidized metalliferous fluids. Similar Ca and Mg depletions are evident at Anarraaq but generally lack associated silicification, possibly because temperatures of the hydrothermal fluids were too low (<180??C) or because the thermal contrast between the fluids and wall rocks was smaller owing to the greater depth of alteration and mineralization there, compared with Red Dog. Chalcophile element anomalies (Fe, Zn, Pb, Tl, As, Sb) in wall rocks at both Red Dog and Anarraq are attributed to sulfidation reactions, coeval with subsurface Zn-Pb-Ag mineralization, during the mixing of oxidized metalliferous fluids with H2S-rich fluids derived locally within the Kuna Formation. Sedimentary wall rocks in the Red Dog district are characterized by a distinctive suite of geochemical anomalies, especially for Zn, Pb, Tl, As, Sb, Ge, and Eu/Eu*. At the Aqqaluk deposit, wall rocks without visible sphalerite or galena (<300 ppm Zn + Pb) have anomalous Eu/Eu*, Tl, Sb, and As for up to ???100 m stratigraphically below Zn-rich silica rock. At Anarraaq, the Tl anomaly is most extensively developed, and enrichment relative to unaltered black shale of the Kuna Formation is present up to 62 m above the highest Zn-Pb sulfide zones. The magnitude of the enrichment and systematic behavior of Tl in the district make Tl a promising geochemical exploration guide for Red Dog-type Zn-Pb-Ag deposits elsewhere. ?? 2004 by Economic Geology.

  12. OneGeology-Europe Plus Initiative

    NASA Astrophysics Data System (ADS)

    Capova, Dana; Kondrova, Lucie

    2014-05-01

    The Geological Surveys of the European countries hold valuable resources of geological data but, to discover, understand and use this data efficiently, a good level of standardization is essential. The OneGeology-Europe project had the aim of making geological maps at a scale 1:1M from Europe discoverable and accessible, available under a common data license and described by multilingual metainformation. A harmonized specification for basic geological map data was developed so that significant progress towards harmonizing the datasets was achieved. Responsibility for the management of the OneGeology-Europe portal has been taken by EuroGeoSurveys and provided by CGS and BRGM. Of the 34 members of EuroGeoSurveys (EGS), only 20 participated in the OneGeology-Europe project (Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Sweden, Spain, United Kingdom), so the European area was not completely covered. At the 33rd General Meeting and Directors Workshop in 2012 it was therefore decided to establish a successor initiative OneGeology Europe Plus (1G-E+) with the purpose of extending the coverage by geological maps at a scale of 1:1 M to all the EGS member countries (including Albania, Austria, Bulgaria, Croatia, Cyprus, Greece, Iceland, Lithuania, Malta, Romania, Russia, Switzerland, Turkey, Ukraine) and also, if possible, to the other European countries (Belorussia, Bosnia and Herzegovina, Faeroe Islands, Kosovo, Latvia, Macedonia, Moldavia, Montenegro, Serbia). In order to achieve the desired result, it has been necessary for the new GSOs who intend to supply the additional 1G-E standardized services to carry out the work using their own staff and resources. The technical guidance and other support have been provided by the 1G-E+ Technical Support Team, funded from the internal budgets of their respective surveys. The team is coordinated by the Czech

  13. 3-DIMENSIONAL Geological Mapping and Modeling Activities at the Geological Survey of Norway

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Bang-Kittilsen, A.; Haase, C.; Henderson, I. H. C.; Høgaas, F.; Iversen, S.; Seither, A.

    2015-10-01

    Geology and all geological structures are three-dimensional in space. Geology can be easily shown as four-dimensional when time is considered. Therefore GIS, databases, and 3D visualization software are common tools used by geoscientists to view, analyse, create models, interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. The interest in 3D mapping and modelling has been reflected by the increase of number of groups and researches dealing with 3D in geology within NGU. This paper highlights 3D geological modelling techniques and the usage of these tools in bedrock, geophysics, urban and groundwater studies at NGU, same as visualisation of 3D online. The examples show use of a wide range of data, methods, software and an increased focus on interpretation and communication of geology in 3D. The goal is to gradually expand the geospatial data infrastructure to include 3D data at the same level as 2D.

  14. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    NASA Astrophysics Data System (ADS)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  15. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  16. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and

  17. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  18. Role of geology in diamond project development

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav

    2004-09-01

    For a mining operation to be successful, it is important to bring fundamental and applied science together. The mining engineer needs to understand the importance of geology, mineralogy and petrography, and how projects can benefit from the data collected during the exploration and pre-exploration stage. Geological scientists also need to understand the process of project development from the exploration stage through mine design and operation to mine closure. Kimberlite pipe or dyke emplacement, geology and petrology/mineralogy are three areas that illustrate how information obtained from the geological studies could directly influence the mining method selection and the project strategy and design. Kimberlite emplacement is one of the fundamental processes that rely on knowledge of the kimberlite body geology. Although the importance of the emplacement model is commonly recognized in the resource geology, mining engineers do not always appreciate its importance to the mine design. The knowledge of the orebody geometry, character of the contact zones, internal structures and distribution of inclusions could directly influence pit wall stability (thus strip ratio), underground mining method selection, dilution, treatability, and the dewatering strategy. Understanding the internal kimberlite geology mainly includes the geometry and character of individual phases, and the orientation and character of internal structures that transect the rock mass. For any mining method it is important to know "where the less and where the more competent rocks are located" to achieve stability. On the other hand, the detailed facies studies may not be important for the resource and mine design if the rock types have similar physical properties and diamond content. A good understanding of the kimberlite petrology and mineralogy could be crucial not only to the treatability (namely diamond damage and liberation), but also to the pit wall and underground excavation stability, support

  19. Systematics of hydrothermal alteration at the volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) deposit - implications for ore genesis, structure and exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Jansson, Nils J.; Stephens, Michael B.; Majka, Jarosław

    2016-04-01

    strongly subordinate. Pre-metamorphic alteration in the proximal hydrothermally altered zone is characterized by general depletion in Na and Ca, and a strong enrichment in Mg and Fe. Pre-metamorphic alteration assemblages of Mg- or Fe-chlorite, sericite and talc can account for the observed mineral associations in the altered rocks. During metamorphism, strongly Mg-enriched altered rocks yielded Mg-rich biotite and cordierite porphyroblasts, whereas Fe-enriched altered rocks typically have Fe-rich biotite and garnet porphyroblasts dominated by the cations Fe and Mn. The less aluminous quartz-anthophyllite rocks could have formed from rocks enriched in talc. The nature of the precursor, style of hydrothermal alteration and mineralogy at Falun are characteristic of a metamorphosed volcanogenic massive sulphide (VMS) deposit. The zone of intense chlorite-style alteration of rhyolitic precursor rocks envelops the formerly mined sulphide ore bodies on all sides of the deposit. These spatial relationships are consistent with a previously suggested structural model, wherein the mineralization is hosted by a steeply plunging, D2 sheath fold with no preserved stratigraphic hanging wall in the core of the structure. The parts of other sulphide deposits in the 1.9 Ga ore district lacking good stratigraphic control and previously considered as barren hanging-wall rocks may have a higher exploration potential for base metals than previously thought.

  20. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  1. Teaching about time by understanding Geologic Time Scales: The Geological Society of America Geologic Time Scale and its history

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Walker, J. D.

    2012-12-01

    Geologic time scales, of one form or another, are used in most undergraduate geosciences courses, even including introductory physical geology or equivalent. However, satisfactory discussions of how geologic time scales originated, and how they have evolved to modern versions, are far too often conveniently or inconveniently left out of classroom discussions. Yet it is these kinds of discussions that have the potential of solidifying student appreciation of deep time and rates of geologic processes. We use the history and development of the Geological Society of America Geologic Time Scale, which reflects major developments in the fields of stratigraphy, geochronology, magnetic polarity stratigraphy, astrochronology, and chemostratigraphy, as a focus of how specific details of time scales can be used to teach about time. Advances in all of these fields have allowed many parts of the time scale to be calibrated to precisions approaching less than 0.05 %. Notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events, in both marine and terrestrial environments, include the Triassic-Jurassic, Permo-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). Many of the details, but certainly not all, can be incorporated in discussions of how we know about geologic time in the classroom. For example, we presently understand that both the end-Permian ecological crisis and the biostratigraphic Permian-Triassic boundary, as calibrated by conodonts, lie within a ca. 700 ka long normal polarity chron. The reverse to normal polarity transition at the beginning of this chron is ca. 100 ka earlier than the ecological crisis and thus slightly older than the current estimate, based on high precision U-Pb zircon age determinations, of ca. 252.4 Ma for the Permian-Triassic boundary. This polarity transition occurred during the early part of

  2. Brain Injury Alters Volatile Metabolome.

    PubMed

    Kimball, Bruce A; Cohen, Akiva S; Gordon, Amy R; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N; Beauchamp, Gary K

    2016-06-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function-which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  3. Geology and geochemistry of telluride-bearing Au deposits in the Pingyi area, Western Shandong, China

    NASA Astrophysics Data System (ADS)

    Hu, H.-B.; Mao, J.-W.; Niu, S.-Y.; Li, Y.-F.; Li, M.-W.

    2006-07-01

    Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E-W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U-Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor-liquid NaCl-H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting

  4. Oregon geology - parent of the soil, foundation for the vine

    USGS Publications Warehouse

    Wells, Ray

    2006-01-01

    This presentation describes USGS geologic mapping in western Oregon, geologic map products, a thumbnail sketch of geologic history, a discussion of new mapping in progress in northwest Oregon, a tour of northwest Oregon geologic units, their relation to new American Viticultural Areas, and online sources of information.

  5. The United States Geological Survey in Alaska; accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  6. Geologic and Mineral Resource Map of Afghanistan

    USGS Publications Warehouse

    Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.

    2006-01-01

    Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in

  7. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey

    2014-05-01

    Jeffrey M. Moore (NASA Ames) and the New Horizons Science Team Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the

  8. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    USGS Publications Warehouse

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  9. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  10. Remote geologic structural analysis of Yucca Flat

    NASA Astrophysics Data System (ADS)

    Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.

  11. Getting Geology Students Into the Field

    NASA Astrophysics Data System (ADS)

    Nocerino, J.

    2011-12-01

    The importance of field schools to practicing geologists is unquestionable; yet, the opportunities to experience field geology are dwindling. The Geological Society of America (GSA), in cooperation with ExxonMobil, are currently offering three programs to support and encourage field geology. The GSA/ExxonMobil Bighorn Basin Field award is a field seminar in the Bighorn Basin of north-central Wyoming emphasizing multi-disciplinary integrated basin analysis. The GSA/ExxonMobil Field Camp Scholar Award provides undergraduate students 2,000 each to attend the field camp of their choice based on diversity, economic/financial need, and merit. Finally, the GSA/ExxonMobil Field Camp Excellence Award provides one geologic field camp leader an award of 10,000 to assist with their summer field camp season based on safety awareness, diversity, and technical excellence. This non-profit/industry collaboration has proven very successful and in 2011 over 300 geology students and professors have applied for these awards.

  12. Impact, and its implications for geology

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.

  13. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. )

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  14. Answering geological questions from slimhole coring exploration

    SciTech Connect

    Jantzen, R.E.; Syrstad, S.O.; Stockden, I.; Taylor, M. )

    1993-02-01

    Slimhole exploration wells have been proposed as a cost-efficient method of exploring inaccessible and remote areas. Such areas often have limited geological control, and the use of wire-line-retrieved, continuous coring methods adapted from the solid minerals industry can greatly improve the geological knowledge of a prospect or basin. However, there are geological concerns which may hinder the spread of slimhole exploration. The availability of core from long continuous sections of the well required a rethink of geological knowledge acquisition at the wellsite. Market analysis among explorationists confirmed the critical answers required from the core before it leaves the wellsite. These include the presence or absence of hydrocarbons, reservoirs, seals, source rock and maturity, lithologies and depositional environments. To provide answers, a conceptual core screening operation was developed around key variables which answer these geological questions. Throughput analyses, followed by time and motion studies, were performed to ensure wellsite suitability. A series of analysis systems have been built and assembled into a fit-for-purpose, heli-transportable wellsite core logging facility which has successfully completed a four well field trial in Africa. The purpose of this facility is to digitally preserve these key variables from the core through the use of a fully integrated data set encompassing mud, core and wireline logs, together with high-resolution digital images of the core. Data transmission from the wellsite to the project explorationists will ensure rapid answers from a cost-effective novel exploration method.

  15. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  16. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. ); Rynes, N.J. ); Thiessen, R.L.; Alfaro, J.L. )

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  17. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A.; Rynes, N.J.; Thiessen, R.L.; Alfaro, J.L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  18. The Geologic History of Seawater

    NASA Astrophysics Data System (ADS)

    Holland, H. D.

    2003-12-01

    following account of his unsuccessful attempt to do so (Birch, 1756 and Black, 1966):Mr. Winthrop's letter written from Boston to Mr. Oldenburg was read, giving an account of the trials made by him at sea with the instrument for sounding of depths without a line, and with the vessel for drawing water from the bottom of the sea; both which proved successless, the former by reason of too much wind at the time of making soundings; the latter, on account of the leaking of the vessel. Capt. Taylor being to go soon to Virginia, and offering himself to make the same experiments, the society recommended to him the trying of the one in calm weather, and of the other with a stanch vessel.Mr. Hooke mentioning, that a better way might be suggested to make the experiment above-mentioned, was desired to think farther upon it, and to bring in an account thereof at the next meeting.A little more than one hundred years later, in the 1780s, John Walker (1966) lectured at Edinburgh on the saltness of the oceans. He marshaled all of the available data and concluded that "these reasons seem all to point to this, that the water of the ocean in respect to saltness is pretty much what it ever has been."In this opinion he disagreed with Halley (1715), who suggested that the salinity of the oceans has increased with time, and that the ratio of the total salt content of the oceans to the rate at which rivers deliver salt to the sea could be used to ascertain the age of the Earth. The first really serious attempt to measure geologic time by this method was made by Joly (1899). His calculations were refined by Clarke (1911), who inferred that the age of the ocean, since the Earth assumed its present form, is somewhat less than 100 Ma. He concluded, however, that "the problem cannot be regarded as definitely solved until all available methods of estimation shall have converged on one common conclusion." There was little appreciation in his approach for the magnitude of: (i) the outputs of salt from the

  19. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet s surface, and it is the first order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics or remote sensing. These allied sciences, as important as they are, derive the basis of their understanding from the knowledge of the geology of a given location. When we go back to the Moon, and on to Mars, the surface systems we deploy will need to support the conduct of field geology if these endeavors are to be scientifically useful. This lecture will consider what field geology is about - why it s important, how we do it, how the conduct of field geology informs many other sciences, and how it will affect the design of surface systems and implementation of operations in the future.

  20. The Mars Orbital Catalog of Hydrated Alteration Signatures (MOCHAS): keeping track of ancient Mars's blanketing aqueous alteration

    NASA Astrophysics Data System (ADS)

    Carter, John

    2016-04-01

    The orbital and in-situ analysis of aqueous minerals on Mars is a recent research field which has given new momentum to the search for past life on Mars. These minerals, if found in preserved geologic contexts, also have the potential to decipher the past climatic conditions of Early Mars and probe its geological evolution. Despite terabytes of data and refined observations accumulated for over a decade, progress in those fields has been tedious. The highly degraded morphologic context, intrinsic limitations of orbital spectroscopy and highly localized nature of in-situ missions are major issues. Many highly detailed geological studies have been carried out at tens of locations on Mars, which have somewhat refined the global paradigm proposed in [Bibring et al., 2006], but no consensus exists as to the timing for the bulk of alteration (Pre/Noachian to LN/EH) nor the state of the water (meteoritic, climate mediated; or dominantly closed-system). In practice, the paucity of clear trends noticeable from the large datasets of near-infrared instruments (OMEGA, CRISM) has hampered efforts to test specific, global-scale alteration hypotheses. Other major fields of Mars research have tackled this issue by providing comprehensive databases with controlled biases, such as for channel networks, open-basin paleo-lakes or anhydrous chloride salts. Here we propose to apply the same approach to the OMEGA and CRISM datasets by providing a global and detailed compositional map of aqueous minerals on Mars. This catalog (MOCHAS) has several goals: i) provide for the first time a statistically viable approach to aqueous mineral detections on Mars, ii) provide regional context to help interpret and broaden the implications of numerous local-scale studies, iii) identify previously un-observed deposits of minerals of interest coupled to a well-preserved geologic context, iv) identify new candidate landing sites for future rovers and foster complementary/higher-resolution observations

  1. Acidic Alteration Environments on Mars and Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Flahaut, J.; Weitz, C. M.; Gross, C.; Parente, M.; Horgan, B. H. N.

    2014-12-01

    Unique surface materials have been discovered recently at Valles Marineris (Roach et al., 2010; Weitz et al., 2014; Flahaut et al., 2014), Noctis Labyrinthus (Weitz et al., 2011), Mawrth Vallis (Bishop et al., 2013), and elsewhere that have CRISM features distinct from those of any known minerals. Typically these unusual sites are found in light-toned outcrops or interior layered deposits associated with phyllosilicates, sulfates or both. Frequently these units are called "doublet" materials because they exhibit a doublet absorption in CRISM spectra between 2.2 and 2.3 µm. We are investigating the spectral signatures of these martian materials compared to our library of minerals and alteration materials. We are also evaluating the stratigraphy of these unique alteration phases compared with neighboring phyllosilicate and sulfate units. A similar 2.2-2.3 µm doublet has been observed in spectra taken of acid altered clays produced in the laboratory (Madejova et al., 2009; Tosca et al., 2009). The band centers and relative intensities of these martian doublet features vary greatly suggesting that a process such as acid weathering could be acting on OH-bearing minerals to produce altered phases that differ depending on the type of substrate, water/rock ratio, solution chemistry, and duration of aqueous processes. Because these unique materials occur in many regions across a range of times on Mars, acidic alteration may have been a key process at local and regional scales throughout martian geologic history. Constraining the types of acidic alteration that have taken place on Mars will assist in defining the aqueous geochemistry at these sites and whether habitable conditions were possible. References: Bishop et al. (2013) PSS, 86, 130-149. Flahaut et al. (2014) EPSC, #211. Madejová et al. (2009) Vibrational Spectroscopy, 49, 211-218. Roach et al. (2010) Icarus, 206, 253-268. Tosca & Knoll (2009) 40th LPSC, #1538. Weitz et al. (2011) Geology, 39, 899-902. Weitz et al

  2. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  3. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  4. The marine geological record of industrialization

    NASA Astrophysics Data System (ADS)

    Ridgwell, A.

    2007-12-01

    In the far distant future, what traces of our industrialized civilization could a hypothetical alien visitor to the Earth identify our ever having existed by? Popular perception is of landfills being excavated and species extinctions identified. However, localized terrestrial deposits and loss of only a relatively small proportion of species would be fickle candidates for reliable preservation in the geological record. Rather, the imprint of our current civilization will be seen in a global-scale dissolution-preservation event of carbonate in marine sediments, coupled to a pronounced negative carbon isotopic excursion. This is the geological fingerprint of massive carbon release to the oceans and atmosphere in injunction with the rock weathering consequences of a global warming transient. In this contribution I explore the characteristics of the future marine geological record of industrialization and draw parallels with observations recorded in sediments spanning the Paleocene-Eocene Thermal Maximum.

  5. Geologic time: The age of the Earth

    USGS Publications Warehouse

    Newman, William L.

    1977-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists and believed by some to reach back to the birth of the Solar System, is difficult if not impossible to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and man's centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  6. Cassini's geological and compositional view of Tethys

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Wagner, Roland; Jaumann, Ralf; Clark, Roger N.; Cruikshank, Dale P.; Brown, Robert H.; Giese, Bernd; Roatsch, Thomas; Filacchione, Gianrico; Matson, Dennis; Ore, Cristina Dalle; Capaccioni, Fabrizio; Baines, Kevin H.; Rodriguez, Sebastien; Krupp, Norbert; Buratti, Bonnie J.; Nicholson, Phil D.

    2016-08-01

    The Saturnian satellite Tethys exhibits geological and spectral properties, whose appearance, nature and spatial distribution partly mirror those identified on the neighboring satellites Dione and Rhea or fit to the picture how spectral surface properties are expected to change from one satellite to the other within the inner Saturnian system. However, we also identified spectral variations that are unique in the Saturnian system. Whereas geologically young surface features are characterized by pure H2O-ice composition with relatively large particles, which match the particle sizes measured for fresh surface features also on Dione and Rhea, geologically old weathered regions are dominated by submicron-sized ice particles. Our investigations confirm that the Odysseus impact event did not cause the formation of Tethys' extended graben system Ithaca Chasma. On the contrary, Odysseus might be responsible for the N-S trending 'icy' bands that mark Tethys' surface in the center of its leading and trailing hemisphere.

  7. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  8. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  9. A Geology Sampling System for Small Bodies

    NASA Technical Reports Server (NTRS)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  10. A Geology Sampling System for Microgravity Bodies

    NASA Technical Reports Server (NTRS)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  11. A Geology Sampling System for Small Bodies

    NASA Technical Reports Server (NTRS)

    Hood, A. D.; Naids, A. J.; Graff, T.; Abell, P.

    2015-01-01

    Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration.

  12. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  13. The First Global Geological Map of Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  14. Geological Mapping Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Harvey, A. S.; Fotopoulos, G.

    2016-06-01

    Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.

  15. Preliminary geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington

    USGS Publications Warehouse

    Wells, Ray E.; Sawlan, Michael G.

    2014-01-01

    This digital map database and the PDF derived from the database were created from the analog geologic map: Wells, R.E. (1981), “Geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington.” The geodatabase replicates the geologic mapping of the 1981 report with minor exceptions along water boundaries and also along the north and south map boundaries. Slight adjustments to contacts along water boundaries were made to correct differences between the topographic base map used in the 1981 compilation (analog USGS 15-minute series quadrangle maps at 1:62,500 scale) and the base map used for this digital compilation (scanned USGS 7.5-minute series quadrangle maps at 1:24,000 scale). These minor adjustments, however, did not materially alter the geologic map. No new field mapping was performed to create this digital map database, and no attempt was made to fit geologic contacts to the new 1:24,000 topographic base, except as noted above. We corrected typographical errors, formatting errors, and attribution errors (for example, the name change of Goble Volcanics to Grays River Volcanics following current State of Washington usage; Walsh and others, 1987). We also updated selected references, substituted published papers for abstracts, and cited published radiometric ages for the volcanic and plutonic rocks. The reader is referred to Magill and others (1982), Wells and Coe (1985), Walsh and others (1987), Moothart (1993), Payne (1998), Kleibacker (2001), McCutcheon (2003), Wells and others (2009), Chan and others (2012), and Wells and others (in press) for subsequent interpretations of the Willapa Hills geology.

  16. Geological Data Preservation Program Receives Bipartisan Support

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    More than 22 million vertical feet of geologic cores and cuttings fill the Kentucky Geological Survey's Well Sample and Core Library in Lexington. The materials are from at least 22,000 sites within Kentucky—including collections from oil and gas exploration operations, coal and other mining companies, highway construction projects, environmental studies, and federal facilities such as Fort Knox—and they are straining the 15-year-old facility to the point where there is no room to keep everything, according to geologist Patrick Gooding, the library manager.

  17. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct

  18. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  19. Impact process: an important geological phenomenon.

    PubMed

    Skala, R

    1996-01-01

    The impact process was for a long period of time, even after a wider acceptance among the geological community, considered to be a marginal phenomenon in the Earth sciences. The first decade or two have showed an importance of the process itself and consequent events only too clearly. The present paper is a review describing the history and development of the impact hypothesis, structure and origin of impact craters, influence of huge impacts on the living environment and other aspects of the impact process from the point of view of geology s.l.

  20. Automated geologic mapping using rock reflectances.

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Rowan, L. C.

    1971-01-01

    Investigation of the feasibility of preparing geologic maps automatically through computer processing of calibrated narrow-band visible and near IR reflectivity data collected with a 12-channel scanner. Five procedures were followed in the computer analysis of the radiances recorded as voltages on analog magnetic tape. Three recognition maps have been generated iteratively using a progressively more complex classification scheme. The overall accuracy of the first recognition map was 80%, but the discrimination of the limestone and dolomite was only 50-60%. All three maps are very accurate outcrop maps. The results demonstrate the feasibility of automated geologic mapping in this relatively simple setting.

  1. Geological Survey Research 1966, Chapter A

    USGS Publications Warehouse

    ,

    1966-01-01

    'Geological Survey Research 1966' is the seventh annual review of the econamic and scientific work of the U.S. Geological Survey. As in previous years the purpose of the volume is to make available promptly to the public the highlights of Survey investigations. This year the volume consists of 4 chapters (A through D) of Professional Paper 550. Chapter A contains a summary of significant results, and the remaining chapters are made up of collections of short technical papers. Many of the results summarized in chapter A are discussed in greater detail in the short papers or in reports listed in 'Publications in Fiscal Year 1966,' beginning on page A265. The tables of contents for chapters B through D are listed on pages A259-A264. Numerous Federal, State, county, and municipal agencies listed on pages A211-A215 cooperated financially with the Geological Survey during fiscal 1966 and have contributed significantly to the results reported here. They are identified where appropriate in the short technical papers that have appeared in Geological Survey Research and in papers published cooperatively, but generally are not identified in the brief statements in chapter A. Many individuals on the staff of the Geological Survey have contributed to 'Geological Survey Research 1966.' Reference is made to only a few. Frank W. Trainer, Water Resources Division, was responsible for organizing and assembling chapter A and for critical review of papers in chapters B-D, assisted by Louis Pavlides, Geologic Division. Marston S. Chase, Publications Division, was in charge of production aspects of the series, assisted by Jesse R. Upperco in technical editing, and William H. Elliott and James R. Hamilton in planning and preparing illustrations. The volume for next year, 'Geological Survey Research 1967,' will be published as chapters af Professional Paper 5715. Previous volumes are listed below, with their series designations. Gealagical Survey Research 1960-Prof. Paper 400 Gealagical

  2. A geologic study of the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Peterson, R. E.

    1982-05-01

    The Michigan Basin contains sediments from Cambrian through Pennsylvanian age. The geologic basin is of greatest depth in Central Michigan with approximately 15,000 ft of strata. To assess efficiently which formations have suitable reservoir characteristics to be included in the Gas Research Institute tight gas sands program, a catalog of the lower-permeability formations and their characteristics was required. The lack of geologic units that were considered to have sufficient extent reservoir characteristics or gas reserves to be of interest as blanket-like gas sands precluded a more detailed inventory and characterization. An overview of all gas productive formations in the Michigan Basin is given.

  3. Reports of Planetary Geology Program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1981-01-01

    Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.

  4. Lunar Geologic Mapping Program: 2008 Update

    NASA Technical Reports Server (NTRS)

    Gaddis, L.; Tanaka, K.; Skinner, J.; Hawke, B. R.

    2008-01-01

    The NASA Lunar Geologic Mapping Program is underway and a mappers handbook is in preparation. This program for systematic, global lunar geologic mapping at 1:2.5M scale incorporates digital, multi-scale data from a wide variety of sources. Many of these datasets have been tied to the new Unified Lunar Control Network 2005 [1] and are available online. This presentation summarizes the current status of this mapping program, the datasets now available, and how they might be used for mapping on the Moon.

  5. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  6. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  7. Arabian plate hydrocarbon geology and potential

    SciTech Connect

    Beydoun, Z.R.

    1991-01-01

    This book provides a thought-provoking, succinct presentation of the geologic evolution and hydrocarbon potential of the world's most prolific petroleum province. The fascinating subjects discussed and documented include: What are the unique geologic factors that make the Middle East such a prolific province Where are the future Mesozoic and Tertiary plays What is the virtually untapped potential of the Paleozoic section What are the play potentials for underexplored areas such as Jordan, Syria, Yemen How are deeper drilling results shaping and modifying concepts of the Arabian plate history and pointing the way to future hydrocarbon targets

  8. A megastructural end to Geologic Time

    NASA Astrophysics Data System (ADS)

    Cathcart, R. B.

    1983-07-01

    Futuristic nuclear waste disposal projects may have profound implications for the development of Anthropogeomorphology; namely, institution of an Anthropic Rock Cycle within the earth. Some time prior to 12,000 A.D., by construction of a preliminary Dyson heliosphere in the Solar System, Geologic Time could be artificially terminated and the geologic record eventually erased. Here, a new mechanical means of planetary disassembly is theoretically suggested (using nuclear explosives and rotational speedup in combination); the historical implications of such a project are herewith presented.

  9. Geologic Mapping of Ascraeus Mons, Mars

    NASA Technical Reports Server (NTRS)

    Mohr, K. J.; Williams, D. A.; Garry, W. B.

    2016-01-01

    Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. We are funded by NASA's Mars Data Analysis Program to complete a digital geologic map based on the mapping style. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objectives for which this mapping is based is to show the different lava flow morphologies across AM to better understand the evolution and geologic history.

  10. Economic geology of lunar Helium-3

    NASA Technical Reports Server (NTRS)

    Schmitt, Harrison H.

    1988-01-01

    Economic geology evaluation of lunar He-3 should answer the question: Can lunar He-3 be sold on Earth with sufficient profit margins and low enough risk to attract capital investment in the enterprise. Concepts that relate to economic geology of recovering He-3 from the lunar maria are not new to human experience. A parametric cost and technology evaluation scheme, based on existing and future data, is required to qualitatively and quantitatively assess the comprehensive economic feasibility and return on investment of He-3 recovery from the lunar maria. There are also many political issues which must be considered as a result of nuclear fusion and lunar mining.

  11. Method of fracturing a geological formation

    DOEpatents

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  12. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    NASA Astrophysics Data System (ADS)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  13. Radiation damage-controlled localization of alteration haloes in albite: implications for alteration types and patterns vis-à-vis mineralization and element mobilization

    NASA Astrophysics Data System (ADS)

    Pal, D. C.; Chaudhuri, T.

    2016-07-01

    Uraninite, besides occurring in other modes, occurs as inclusions in albite in feldspathic schist in the Bagjata uranium deposits, Singhbhum shear zone, India. The feldspathic schist, considered the product of Na-metasomatism, witnessed multiple hydrothermal events, the signatures of which are preserved in the alteration halo in albite surrounding uraninite. Here we report radiation damage-controlled localization of alteration halo in albite and its various geological implications. Microscopic observation and SRIM/TRIM simulations reveal that the dimension of the alteration halo is dependent collectively on the zone of maximum cumulative α dose that albite was subjected to and by the extent of dissolution of uraninite during alteration. In well-preserved alteration haloes, from uraninite to the unaltered part of albite, the alteration minerals are systematically distributed in different zones; zone-1: K-feldspar; zone-2: chlorite; zone-3: LREE-phase/pyrite/U-Y-silicate. Based on textures of alteration minerals in the alteration microdomain, we propose a generalized Na+➔K+➔H+ alteration sequence, which is in agreement with the regional-scale alteration pattern. Integrating distribution of ore and alteration minerals in the alteration zone and their geochemistry, we further propose multiple events of U, REE, and sulfide mineralization/mobilization in the Bagjata deposit. The alteration process also involved interaction of the hydrothermal fluid with uraninite inclusions resulting in resorption of uraninite, redistribution of elements, including U and Pb, and resetting of isotopic clock. Thus, our study demonstrates that alteration halo is a miniature scale-model of the regional hydrothermal alteration types and patterns vis-à-vis mineralization/mobilization. This study further demonstrates that albite is vulnerable to radiation damage and damage-controlled fluid-assisted alteration, which may redistribute metals, including actinides, from radioactive minerals

  14. Magellan stereo images and Venusian geology

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Saunders, R. S.; Plaut, Jeffrey J.; Parker, T. J.

    1992-01-01

    Areas of Venus imaged by Magellan radar with multiple viewing conditions provide unique data that will contribute to the solution of venusian geologic problems and provide a basis for quantitative comparison of venusian landforms with those on other planetary bodies. Three sets of images with different viewing conditions have been acquired: (1) left-looking with variable incidence angles (cycle 1 profile), (2) right-looking with nearly constant incidence angles (cycle 2 profile), and (3) left-looking with variable incidence angles that are almost always smaller than those in (1) (cycle 3 profiles). The unique data provided by paired images of the same scene with different incidence angles arises from image displacements caused by the relief of individual landforms at scales comparable to the ground-range and azimuth resolutions of the images. There are two aspects of the data: (1) Stereopsis achieved by simultaneous viewing of paired left-looking images of the same scene permits three-dimensional perception and interpretation of the morphologies of landforms at resolutions much finer than the altimetry footprints. (2) Measurements of differences of image displacements (parallax) on paired images with known imaging geometries provide quantitative estimates of the relief and shapes of landforms. The potential scientific contributions of the data can be grouped into two interrelated classes: (A) geologic mapping, analysis, and interpretation and (B) topical studies that involve topographic measurements. Stereopsis, without quantitative measurements, enhances geologic mapping, analysis, and interpretation of the rock units of Venus to a degree that cannot be overestimated. In geologic mapping, assemblages of landforms, assessments of backscatter and variations in backscatter, and fine-scale topography are used to define and characterize geologic map units that represent laterally continuous deposits or rock units. Stereopsis adds the important dimension of local relief

  15. A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Carranza, Emmanuel John M.; Wu, Chonglong; van der Meer, Freek D.; Liu, Gang

    2011-10-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.

  16. Geological monitoring of Surtsey, Iceland, 1967-1998

    USGS Publications Warehouse

    Jakobsson, Sveinn P.; Gudmundsson, Gudmundur; Moore, James G.

    2000-01-01

    Aspects of the geological monitoring of the volcanic island of Surtsey 1967-1998, are described. A hydrothermal system was developed within the tephra craters in late 1966 to early 1967. Temperatures in a drill hole, situated at the eastern border of the hydrothermal area, indicate that the hydrothermal system at that site has been cooling at an average rate of ≤ 1°C per year since 1980. The tephra was altered rapidly within the hydrothermal area, producing the first visible palagonite tuff in 1969. A substantial part of the tephra pile above sea level was probably converted to tuff by 1972. The visible area of tuff has gradually increased since then, primarily due to erosion of tephra at the surface. By 1998 52% of the exposed tephra area had been converted to palagonite tuff. By volume, however, some 80-85% of the tephra pile above sea level has been converted to tuff in 1998. The area of Surtsey has shrunk from its original 2.65 km2 (1967) to 1.47 km2 (1998) due to marine abrasion. The geological formations on Surtsey have, however, responded quite variably to erosion. The tephra pile was easily eroded, but marine abrasion. The central core of palagonite tuff is estimated to be ≤0.39 km2. Statistical estimation of models of the decreases of Surtsey indicate that it will last for a long time. The numerical experiments indicate that it will take over 100 years until only the palagonite tuff core is left. It is postulated that the final remnany of Surtsey before complete destruction will be a palagonite tuff crag, comparable to those of the other islands in the Vestmannaeyjar archipelago.

  17. Precision In Situ Field Geologic Contact Mapping by MERA, Columbia Hills, Mars

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.

    2006-12-01

    The positions of identified lithologic contacts, outcrops, traverse landforms, and data derived from in situ measurements of outcrop materials by the Athena instrument suite have been determined by stereo-ranging and rover tracking along the traverse by MERA (Spirit) within the Columbia Hills. High precision geologic maps of several sites and moderate precision transect maps between sites have been constructed fro these data showing the geology of Spirit's path through the Columbia Hills. The overall accuracy of contact locations with respect to global position reflects the overall accuracy of knowledge about the rover location. But measurements of contacts from multiple (as many as five) positions agree remarkably well and are well within the standards and limitations acceptable within terrestrial field geologic contact mapping precision. Orthographic maps of the results along the traverse also agree well with features in narrow angle MOC images crossed during the traverse. Some site-to-site variations in lithology and chemistry within the Columbia Hills reflect possible variations in surficial materials. But other differences between outcrops could be a result of variations in alteration of a limited range of protoliths draped as either distal crater ejecta or volcanic air fall materials over a Columbia Hills substrate. Large scale changes in lithology along the traverse, and particularly abrupt discontinuities coincident with through-going linear trends are evidence for possible structural (faulting) control on exposures that expose fundamental differences in basement or substrate materials. The geological complexity of the Columbia Hills appears comparable to that of some ancient continental basement terrains.

  18. Geology and recognition criteria for uraniferous humate deposits, Grants Uranium Region, New Mexico. Final report

    SciTech Connect

    Adams, S.S.; Saucier, A.E.

    1981-01-01

    The geology of the uraniferous humate uranium deposits of the Grants Uranium Region, northwestern New Mexico, is summarized. The most important conclusions of this study are enumerated. Although the geologic characteristics of the uraniferous humate deposits of the Grants Uranium Region are obviously not common in the world, neither are they bizarre or coincidental. The source of the uranium in the deposits of the Grants Uranium Region is not known with certainty. The depositional environment of the host sediments was apparently the mid and distal portions of a wet alluvial fan system. The influence of structural control on the location and accumulation of the host sediments is now supported by considerable data. The host sediments possess numerous important characteristics which influenced the formation of uraniferous humate deposits. Ilmenite-magnetite distribution within potential host sandstones is believed to be the simplest and most useful regional alteration pattern related to this type of uranium deposit. A method is presented for organizing geologic observations into what is referred to as recognition criteria. The potential of the United States for new districts similar to the Grants Uranium Region is judged to be low based upon presently available geologic information. Continuing studies on uraniferous humate deposits are desirable in three particular areas.

  19. Estimating the social value of geologic map information: A regulatory application

    USGS Publications Warehouse

    Bernknopf, R.L.; Brookshire, D.S.; McKee, M.; Soller, D.R.

    1997-01-01

    People frequently regard the landscape as part of a static system. The mountains and rivers that cross the landscape, and the bedrock that supports the surface, change little during the course of a lifetime. Society can alter the geologic history of an area and, in so doing, affect the occurrence and impact of environmental hazards. For example, changes in land use can induce changes in erosion, sedimentation, and ground-water supply. As the environmental system is changed by both natural processes and human activities, the system's capacity to respond to additional stresses also changes. Information such as geologic maps describes the physical world and is critical for identifying solutions to land use and environmental issues. In this paper, a method is developed for estimating the economic value of applying geologic map information to siting a waste disposal facility. An improvement in geologic map information is shown to have a net positive value to society. Such maps enable planners to make superior land management decisions.

  20. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  1. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    NASA Astrophysics Data System (ADS)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  2. Iapetus: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  3. The topology of geology 2: Topological uncertainty

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Uncertainty is ubiquitous in geology, and efforts to characterise and communicate it are becoming increasingly important. Recent studies have quantified differences between perturbed geological models to gain insight into uncertainty. We build on this approach by quantifying differences in topology, a property that describes geological relationships in a model, introducing the concept of topological uncertainty. Data defining implicit geological models were perturbed to simulate data uncertainties, and the amount of topological variation in the resulting model suite measured to provide probabilistic assessments of specific topological hypotheses, sources of topological uncertainty and the classification of possible model realisations based on their topology. Overall, topology was found to be highly sensitive to small variations in model construction parameters in realistic models, with almost all of the several thousand realisations defining distinct topologies. In particular, uncertainty related to faults and unconformities was found to have profound topological implications. Finally, possible uses of topology as a geodiversity metric and validation filter are discussed, and methods of incorporating topological uncertainty into physical models are suggested.

  4. The Geology of Delaware Coastal Environments.

    ERIC Educational Resources Information Center

    Lewis, Robert E.

    This teachers' manual provides model classroom lessons in earth science. It is specially designed to be used with John C. Kraft's A GUIDE TO THE GEOLOGY OF DELAWARE'S COASTAL ENVIRONMENT. The lessons suggest an approach for using the guide in the science classroom and in field studies. The manual can be used as a complete unit, or individual…

  5. Geologic Mapping of Arsia and Pavonis Montes

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Garry, W. B.; Bleacher, J. E.; Shean, D.; Greeley, R.

    2012-01-01

    We are funded by the NASA Mars Data Analysis Program (MDAP) to produce 1:1,000,000 scale geologic maps of Arsia Mons and Pavonis Mons, as well as conduct mapping of surrounding regions. In this abstract we discuss progress made during years 1 and 2 of the 4-year project.

  6. Geological Education and the Senior Citizen.

    ERIC Educational Resources Information Center

    Larkin, Robert P.

    1982-01-01

    Although most educational programs for senior citizens emphasize arts and crafts, model science programs designed specifically for seniors, emphasizing geological science, have been developed at the University of Colorado (Colorado Springs). The programs have been well received and can be useful in integrating or mainstreaming seniors into the…

  7. The emerging Medical and Geological Association.

    USGS Publications Warehouse

    Finkelman, R.B.; Centeno, J.A.; Selinus, O.

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.

  8. Geology of magma systems: background and review

    SciTech Connect

    Peterfreund, A.R.

    1981-03-01

    A review of basic concepts and current models of igneous geology is presented. Emphasis is centered on studies of magma generation, ascent, emplacement, evolution, and surface or near-surface activity. An indexed reference list is also provided to facilitate future investigations.

  9. Geology Field Trip Studies to New England

    ERIC Educational Resources Information Center

    Wood, John H.

    1976-01-01

    A two week, 3,000 mile, geology field trip for secondary school earth science students through New England is discussed. Student expenses, preparation details, accommodations, meals, transportation, course credit, and fieldwork are considered. A detailed trip itinerary is included. (BT)

  10. Teaching Introductory College Geology by Television.

    ERIC Educational Resources Information Center

    Bowen, John E.; And Others

    This document supports the use of instructional television particularly as an alternative to the large lecture hall classes. The geology program at the University of Arizona consisting of television presentations from 1962 to 1970 is reviewed, including the history of the program, course description, attendance, course organization, TV facilities,…

  11. Status of Geological Education in Iranian Universities

    ERIC Educational Resources Information Center

    Shomali, Bahman Saghatchian; Hungerford, Harold R.

    1974-01-01

    A statistical survey revealed that education in three Iranian universities is primarily based on memorizing and recalling theoretical knowledge rather than on applying knowledge and skills in solving geological problems, and also that the curricula ignore the fact that the study of the earth is an interdisciplinary science. (MLH)

  12. US Geological Survey customers speak out

    USGS Publications Warehouse

    Gillespie, S.; Snyder, G.

    1995-01-01

    Provides results of a customer survey carried out in 1994 by the US Geological Survey. Uses of cartographic products are classified, as are application areas, accuracy satisfaction, media, Digital Line Graph requirements in update, and frequency of product use. USGS responses and plans for the future are noted. -M.Blakemore

  13. Geologic characterization of tight gas reservoirs

    SciTech Connect

    Law, B.E.

    1990-12-01

    The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

  14. Geologic investigations for Ohio SSC proposal

    SciTech Connect

    Pavey, R.R.

    1987-09-01

    The proposed Superconducting Super Collider (SSC) will be the world's largest and most powerful particle accelerator for high-energy particle physics research. The primary feature of this scientific instrument is a 10-ft diameter tunnel, 53 mi in circumference. The geologic setting for such a tunneling effort is of paramount importance for selection of the SSC site. The SSC study area comprises portions of 16 quadrangles within Marion, Union, Delaware, and Morrow Counties, Ohio. Very little modern geologic information was available for this area. However, the Ohio Division of Geological Survey's existing mapping and drilling programs were ideally suited to produce the geologic framework needed to determine an optimum SSC site. Thus, the Survey's commitment to the state of Ohio's SSC proposal has been substantial. Project results include a comprehensive series of maps, including glacial materials to 50 ft, bedrock topography, drift thickness, bedrock unit subcrop, and structure maps for several bedrock units. Also added to the knowledge base of this area are numerous field sections and cores, several gravity profiles, and an improved understanding of the area's glacial and bedrock stratigraphy.

  15. A geologic atlas of TIMS data

    NASA Technical Reports Server (NTRS)

    Abbott, Elsa

    1986-01-01

    In the three years since the first data were taken, it was well demonstrated that the Thermal Infrared Multispectral Scanner (TIMS), properly used, can be a most valuable tool for the geologist. Compilation of the TIMS data into a geological atlas was felt to be useful. Several data sets were extensively studied to establish TIMS as a geologic tool and to explore the optimum enhancement techniques. It was found that a decorrelation stretch of bands 1, 3, and 5 enhance the data to a form that is very useful and this enhancement will be used in the geologic atlas along with an accompanying geologic map and description. Many data sets are well published and familiar to TIMS users, but there are some sets that, for lack of time and funds, were not thoroughly studied or published. A short description of these least studied sets of data is presented. The images presented along with the many previously studied and published TIMS images constitute an enormously useful set of information for the geologist in the 8 to 10 micron range.

  16. Life on Guam: Geology. 1977 Edition.

    ERIC Educational Resources Information Center

    Elkins, Gail; And Others

    As part of an updated series of activity oriented educational materials dealing with aspects of the Guam environment, this publication focuses on the physical environment of Guam through an introduction to the geology of Guam. Contents include the formation of Guam, weathering and erosion, earthquakes, soil, and water. Activities investigate…

  17. Marine geology: A planet earth perspective

    SciTech Connect

    Anderson, R.N.

    1986-01-01

    This text provides coverage of the basic geology of the marine development. It starts with the formation of the oceans using plate tectonics, continues with discussions of the mid-ocean ridges, and concludes with coverage of the formation and deformation of the continents.

  18. The United States Geological Survey Library System

    USGS Publications Warehouse

    ,

    1994-01-01

    The U.S. Geological Survey Library, established in 1882, is one of the largest earth science libraries in the world. The Library System consists of the headquarters library in Reston, Virginia, and three branch libraries in Denver, Colorado; Flagstaff, Arizona; and Menlo Park, California

  19. The Geology of Comet 19/P Borrelly

    NASA Technical Reports Server (NTRS)

    Britt, D. T.; Boice, D. C; Buratti, B. J.; Hicks, M. D.; Nelson, R. M.; Oberst, J.; Sandel, B. R.; Soderblom, L. A.; Stern, S. A.; Thomas, N.

    2002-01-01

    The Deep Space One spacecraft flew by Comet 19P/Borrelly on September 22, 2001 and returned a rich array of imagery with resolutions of up to 48 m/pixel. These images provide a window into the surface structure, processes, and geological history of a comet. Additional information is contained in the original extended abstract.

  20. Lunar Crustal Magnetism: Correlations with Geology

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A. B.

    2001-01-01

    With Lunar Prospector reflectometry data we now have sufficient surface coverage to allow detailed comparisons between crustal magnetism and geology. We find substantial evidence that lunar magnetism is dominated by the effects of impact processes. Additional information is contained in the original extended abstract.

  1. Geological terrains and crater frequencies on Ariel

    USGS Publications Warehouse

    Plescia, J.B.

    1987-01-01

    The southern hemisphere of Ariel, a satellite of Uranus, can be divided into several terrain types. Data on the size-frequency distribution of craters for those different terrain types indicate that these terrains formed over a relatively short period of time. Much information on Ariel's geological history can be gained from these data. ?? 1987 Nature Publishing Group.

  2. The Emerging Medical and Geological Association

    PubMed Central

    Finkelman, Robert B; Centeno, Jose A; Selinus, Olle

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612

  3. The Geology of the Florida Keys.

    ERIC Educational Resources Information Center

    Shinn, Eugene A.

    1988-01-01

    Describes some of the ancient geologic history of the Florida Keys from Key Largo to Key West including the effects of glaciers, sea level rise, reef distribution, spurs and grooves, backstepping and ecological zonation, growth rates and erosion. Predicts future changes in this area. (CW)

  4. Teaching Geology at San Quentin State Prison

    NASA Astrophysics Data System (ADS)

    D'Alessio, M. A.; Pehl, J.; Ferrier, K. L.; Pehl, C. W.

    2004-12-01

    The students enrolled in our Geology 215 class are about as on-traditional as it gets. They range in age from about 20 - 50 years old, they are all male, all from under-represented ethnic groups, and they are all serving time in one of the country's most notorious prisons. We teach in a degree-granting community college program inside California's San Quentin State Prison. The program is run entirely by volunteers, and students who participate in educational programs like ours are about 5 times less likely to return to prison than the general inmate population in California. The prison population of California is ethnically diverse, though minorities are present in higher proportion than in the general population. Last semester, our geology class happened to be composed entirely of minorities even though the college program serves the full spectrum of the prison population. While some trends in geoscience education encourage the use of technology in the classroom, security restrictions prevent us from using even some of the simplest visual aids. Faced with these challenges, we have developed an inquiry-based syllabus for an introductory Geology class at the community college level. We find that kinaesthetic learning activities such as urban geologic mapping and acting out plate tectonic motions from ridge to trench (complete with magnetic pole polarity shifts) are not only possible in restricted learning environments, but they promote student learning in unexpected ways.

  5. Applications of geohydrologic concepts in geology

    USGS Publications Warehouse

    Maxey, G.B.; Hackett, J.E.

    1963-01-01

    Subsurface water, an active agent in many geologic proceses, must be considered in interpreting geologic phenomena. Principles of the occurrence, distribution, and movement of subsurface waters are well established and readily applicable. In many interpretations in geologic literature, geohydrologic principles have been employed realistically, but in many others these principles have been either ignored or violated. Explanations of genesis of underclays and associated deposits afford some examples wherein principles of movement and activity of vadose and ground water have been ignored and others in which they have been used advantageously. Postulates stating that waters percolate downward from swamp areas do not allow for the usual movement of subsurface water in such environments. The idea that sediments were leached by vadose water after uplift satisfies the geohydrologic requirements. Weathering and solution form porous and permeable zones subjacent to unconformities in dense rocks such as carbonates and granites; this illustrates the geohydrologic and economic significance of unconformities. Examples are Mohawkian carbonate aquifers of northern Illinois and oil-bearing limestones of Mississippian age of eastern Montana. The flushing effects of meteoric water and other hydrodynamic factors active during erosion periods are important elements in the genesis and concentration of brines. Explanation of the origin and occurrence of brines must include consideration of the geohydrologic environments throughout their geologic history. ?? 1963.

  6. Environmental geology in loess areas of China

    SciTech Connect

    Sun Jianzhong )

    1988-08-01

    There are several unfavorable geological hazards in the loess area of China. The major purposes of environmental geology studies in this region are to expound the causes of these hazards and to determine treatments. Geological hazards include endemic diseases, depletion of groundwater, land subsidence, ground fissures, soil erosion, and collapsibility of loess. This article is a summary of studies regarding these hazards. Keshan disease and Kaschin-Beck disease, for example, can be prevented and cured by adding selenates to table salt. Ponds can be constructed on the loess plateau and dikes around farmlands to collect rainfall to recharge groundwater resources. Excess extraction of groundwater is the major cause of land subsidence. Ground fissures in Xi'an are primarily caused by tectonics, but over-extraction of ground water strengthens its activity. Observation stations should be established in order to forecast and prevent landslides. Planting trees in a regional shelterbelt is the primary measure necessary to prevent soil erosion. As a result of these geological studies, valuable experience in preventing collapse of loess in China has been gained.

  7. Antarctica: Geology of the Ellsworth Mountains.

    PubMed

    Anderson, J J; Bastien, T W; Schmidt, P G; Splettstoesser, J F; Craddock, C

    1962-11-16

    Geologic reconnaissance indicates that the Ellsworth Mountains consist mainly of thousands of feet of folded, slightly metamorphosed, clastic sedimentary rocks of unknown age. Three major stratigraphic units are recognized, but only fragmentary fossils have been found. The folding is asymmetric, overturned, or recumbent; fold axes strike north, 10 degrees to 20 degrees west. Basic igneous sills occur in the northern Heritage Range.

  8. Antarctica: Geology of the Ellsworth Mountains.

    PubMed

    Anderson, J J; Bastien, T W; Schmidt, P G; Splettstoesser, J F; Craddock, C

    1962-11-16

    Geologic reconnaissance indicates that the Ellsworth Mountains consist mainly of thousands of feet of folded, slightly metamorphosed, clastic sedimentary rocks of unknown age. Three major stratigraphic units are recognized, but only fragmentary fossils have been found. The folding is asymmetric, overturned, or recumbent; fold axes strike north, 10 degrees to 20 degrees west. Basic igneous sills occur in the northern Heritage Range. PMID:17821000

  9. Lithologic discrimination and alteration mapping from AVIRIS Data, Socorro, New Mexico

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Delillo, N.; Jacobson, A.; Blom, R.; Chapin, C. E.

    1993-01-01

    Geologic maps are, by their very nature, interpretive documents. In contrasts, images prepared from AVIRIS data can be used as uninterpreted, and thus unbiased, geologic maps. We are having significant success applying AVIRIS data in this non-quantitative manner to geologic problems. Much of our success has come from the power of the Linked Windows Interactive Data System. LinkWinds is a visual data analysis and exploration system under development at JPL which is designed to rapidly and interactively investigate large multivariate data sets. In this paper, we present information on the analysis technique, and preliminary results from research on potassium metasomatism, a distinctive and structurally significant type of alteration associated with crustal extension.

  10. Environmental geology: Our professional public responsibility

    USGS Publications Warehouse

    Gerhard, L.C.; Brady, L.L.

    1999-01-01

    Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. One cannot vary from the objective view or you will quickly be criticized. Criticism can still occur from one side of a natural resource issue as your data might counter their views. However, the final decisions are almost always made in some legislators, or regulators, area of responsibility. The responsibility of the state geological survey is to provide the important data that will assist in making correct decisions. Should one party in the conflict become extreme in their demands, a potential compromise that is beneficial to both sides can be lost. In Kansas, the classical natural resource problem of resource/recreation in a populated area is presented as a case study. The state geological survey presented data on sand resources in the Kansas River and its valley in northeast Kansas. That information was important to both recreation and dredging interests where the political problem is a conflict of sand use as a construction material resource versus use of the alluvial river as an important recreation area, especially for canoeing. However, when a reasonable compromise was near completion in the Kansas Legislature one side, in a bold move to develop an advantage, ruined that potential for compromise.Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. In Kansas, the classical natural resource problem of resource/recreation in a

  11. Goethe's Italian Journey and the geological landscape

    NASA Astrophysics Data System (ADS)

    Coratza, Paola; Panizza, Mario

    2015-04-01

    Over 220 years ago Johann Wolfgang von Goethe undertook a nearly two-years long and fascinating journey to Italy, a destination dreamed for a long time by the great German writer. During his journey from Alps to Sicily Goethe reflects on landscape, geology, morphology of "Il Bel Paese", sometimes providing detailed descriptions and acute observations concerning the great and enduring laws by which the earth and all within it are governed. He was an observer, with the eye of the geologist and landscape painter, as he himself stated, and therefore he had a 360 degree focus on all parts of the territory. From the Brenner Pass to Sicily, Goethe reflects on landscape, contrasting morphologies, the genesis of territories, providing detailed descriptions useful for reconstructing the conditions of the territory and crops of the late 18th century. His diary is a description of the impressions he received from the country and its people, mingled with reflections upon art, science and literature. Goethe studied mineralogical and geological phenomena and drew up notes on the life of the people, the climate and the plants. On various scientific occasions and, in particular, within the framework of the Italian Association "Geologia & Turismo", of the Working Group "Geomorphosites" of the International Association of Geomorphologists and the International Year of Planet Earth, the opportunity to re-examine Goethe's travels in Italy from a geological viewpoint was recognised. In the present paper an attempt was made to reproduce the geotourism itinerary ante litteram of the writer to Italy, one of the most important tourist destination worldwide, thanks to its rich cultural and natural heritage and the outstanding aesthetic qualities of the complex natural landscape. This project was essentially conceived with a twofold purpose. First of all, an attempt was made to reproduce the journey of a great writer, as an example of description of landscape perceived and described as

  12. The Geologic History of Mars: An Astrobiology Perspective

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; Westall, Frances; McKay, David S.; Thomas-Keprta, Kathie; Socki, Richard A.

    2000-01-01

    Fourteen SNC meteorites contain information which must be incorporated with recent spaceflight data for developing Mars' geologic history. SNCs have crystallization ages of 4500 to 160 m.y. Tle oldest meteorite ALH84001 contains information on the Noachian period of Mars' history. There are no meteorites from the Hesperian period and the remaining 13 meteorites fall into two age groups within the Amazonian: The nakhlites around 1300 m.y. and the shergottites between 800-160 m.y. Oxygen isotopic analysis of Martian samples shows two distinct O2 reservoirs throughout Martian history indicating late additions of volatiles and a lack of plate tectonics prior to 3.9 Gy. Evidence for percolation of aqueous brines through impact-produced fractures in the rocky surface is contained in the 3.9 Gy-old ALH84001 carbonate deposits. These carbonates precipitated at approx. 100 C. At this time life had already evolved on Earth. Early Mars could have hosted life similar to the bacteria that inhabited early Earth. Potential microorganisms could have been transported into fractures by carbonate-bearing waters and their remains could have become incorporated into the precipitated carbonate. Since Mars had a weak magnetic field at this time, it can be hypothesized that some of the Martian microorganisms may have been similar to terrestrial magnetotactic bacteria. Over geologic time episodic cratering, and tectonic events have occurred on Mars along with the periodic release of subsurface waters which may have produced clays within SNC meteorites. The geochemical data contained within SNC meteorites complements previous observational data and the recent Mars Global Surveyor data to provide a geological and environmental history which spans almost the entire lifespan on Mars. One of the outstanding features of this model is the possible creation of an early (about 4 Gy) volatile reservoir distinct from the outgassed Mars volatiles, and the persistence of this reservoir throughout most

  13. The Geologic History of the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Sundquist, E. T.; Visser, K.

    2003-12-01

    Geologists, like other scientists, tend to view the global carbon cycle through the lens of their particular training and experience. The study of Earth's history requires a view both humbled by the knowledge of past global transformations and emboldened by the imagination of details not seen in the fragments of the rock record. In studying the past behavior of the carbon cycle, geologists are both amazed by unexpected discoveries and reassured by the extent to which "the present is the key to the past." Understanding the present-day carbon cycle has become a matter of societal urgency because of concerns about the effects of human activities on atmospheric chemistry and global climate. This public limelight has had far-reaching consequences for research on the geologic history of the carbon cycle as well as for studies of its present and future. The burgeoning new "interdiscipline" of biogeochemistry claims among its adherents many geologists as well as biologists, chemists, and other scientists. The pace of discovery demands that studies of the geologic history of the carbon cycle cannot be isolated from the context of present and future events.This chapter describes the behavior of the carbon cycle prior to human influence. It describes events and processes that extend back through geologic time and include the exchange of carbon between the Earth's surface and the long-term reservoirs in the lithosphere. Chapter 8.10 emphasizes carbon exchanges that are important over years to decades, with a focus on relatively recent human influences and prospects for change during the coming century. Chapter 4.03 presents an overview of the biogeochemistry of methane, again with emphasis on relatively recent events. In these chapters as well as in the present chapter, relationships between the carbon cycle and global climate are a central concern. Together, these chapters provide an overview of how our knowledge of the present-day carbon cycle can be applied both to

  14. Analysis of the U.S. geological survey streamgaging network

    USGS Publications Warehouse

    Scott, A.G.

    1987-01-01

    This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the

  15. Superfund GIS - 1:250,000 Geology of Tennessee

    USGS Publications Warehouse

    Greene, D.C.; Wolfe, W.J.

    2000-01-01

    This data set is a digital representation of the printed 1:250,000 geologic maps from the Tennessee Department of Environment and Conservation, Division of Geology. The coverage was designed primarily to provide a more detailed geologic base than the 1:2,500,000 King and Beikman (1974). 1:24,000 scale coverage of the state is available for about 40 percent of the state. Formation names and geologic unit codes used in the coverage are from the Tennessee Division of Geology published maps and may not conform to USGS nomenclature. The Tennessee Division of Geology can be contacted at (615) 532-1500

  16. The use of high resolution ground and airborne magnetic surveys to evaluate the geometry of hydrothermal alteration zones over volcanic provinces (Invited)

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2013-12-01

    Geophysical methods can provide critical constraints on the distribution and volume of hydrothermal alteration, important parameters in understanding the evolution of geothermal systems. Because hydrothermal alteration modifies the magnetic properties of the volcanic substratum, magnetic surveys can be used to provide constraints on the distribution of hydrothermal alteration at depth. Using Yellowstone caldera as an example, we show that both ground and airborne magnetic surveys can be used to map and assess the volume of hydrothermal alteration. Ground magnetic surveys over unaltered volcanic terranes display high-amplitude, short-wavelength anomalies, in contrast to smooth, subdued magnetic anomalies over volcanic substrata demagnetized by hydrothermal alteration. We use this contrast to map areas of hydrothermal alteration in detail. Inverse methods applied to high-resolution airborne and ground magnetic data can be used to create three-dimensional models of the distribution of magnetization and thus illuminate the geometry of hydrothermal alteration. Because of the non-uniqueness of potential fields, the construction of inverse models requires simplifying assumptions on the distribution of magnetization, knowledge of induced and remanent magnetization of fresh and altered geological units, and detailed geological and geophysical data. Within the three hydrothermal sites that we investigated in Yellowstone National Park, subdued short-wavelength signal indicates pervasive demagnetization (alteration) of the shallow substratum that extends over larger areas than initially mapped by geology. These data also reveal that the largest degree of demagnetization (alteration) and maximum thicknesses of demagnetized (altered) substratum, reaching a few hundred meters, are associated with hydrothermal vents and with superficial hydrothermal alteration. Our three dimensional models of magnetization provide estimates of the volume of buried hydrothermal alteration ranging

  17. California and Saudi Arabia: geologic contrasts

    SciTech Connect

    Alexander, R.G. Jr.

    1984-09-01

    Assessing hydrocarbon futures in unexplored basins involves geology by analogy. Through 1978, approximately 265 fields were discovered in California containing 22 billion bbl of oil, 53% being in the 10 largest fields, ranging in size from 0.6 to 2.4 billion bbl. Through 1978, about 50 fields were found in Saudi Arabia containing 206 billion bbl of oil, 78% in the 10 largest fields, ranging in size from 7 to 83 billion bbl. The contrasts in field size distribution and in the total amount of oil present are explained by the dramatically different geology and geologic histories. California's surface geology is characterized by rare Precambrian, isolated Paleozoic, and widespread Mesozoic accreted terranes and intrusions, and by highly uplifted and depressed Tertiary sedimentary prisms bounded by widespread high-angle thrusting and strike-slip and normal faulting. Numerous families of medium to small anticlines and fault traps, commonly involving moderately dipping to overturned beds, have resulted from Tertiary tectonism, which segmented California dramatically. Saudi Arabia is characterized by a broad Precambrian shield area, flanked on the east by very long, gently dipping cuestas of Paleozoic and Mesozoic sediments, with an upper thin veneer of nearly flat Tertiary strata. Most structures involving the Mesozoic and Cenozoic are large, but gentle and unfaulted, representing a passive reaction of the sediments to underlying mild basement distortion and/or movement of Cambrian salt, all occurring while the arabian plate continued to subside and tip to the northeast. The contrasts between California and Saudi Arabia oil field and geology result from contrasting plate-tectonic settings and history.

  18. Charles Lyell and scientific thinking in geology

    NASA Astrophysics Data System (ADS)

    Virgili, Carmina

    2007-07-01

    Charles Lyell (1797-1875) was born at Kinnordy, Scotland. His father, an amateur botanist, and his grandfather, a navigator, gave him very soon a taste for the observation of the Nature. He went to the Oxford University to study classical literature, but he also followed the geological course of William Buckland. After having been employed as jurist for some years, in 1827 he decided on a career of geologist and held the chair of geology of the King's College of London, from 1831 on. He was a contemporary of Cuvier, Darwin, von Humboldt, Hutton, Lavoisier, and was elected 'membre correspondant' of the 'Académie des sciences, France', in January 1862. Charles Lyell is one of the eminent geologists who initiated the scientific thinking in geology, in which his famous volumes of the Principles of Geology were taken as the authority. These reference volumes are based on multiple observations and field works collected during numerous fieldtrips in western Europe (principally Spain, France, and Italy) and North America. To his name are attached, among others: ( i) the concept of uniformitarism (or actualism), which was opposed to the famous catastrophism, in vogue at that time, and which may be summarized by the expression "The present is the key to the past"; ( ii) the division of the Tertiary in three series denominated Eocene, Miocene, and Pliocene, due to the study of the age of strata by fossil faunas; ( iii) the theory according to which the orogenesis of a mountain chain, as the Pyrenees, results from different pulsations on very long time scales and was not induced by a unique pulsation during a short and intense period. The uniformity of the laws of Nature is undeniably a principle Charles Lyell was the first to state clearly and to apply to the study of the whole Earth's crust, which opened a new era in geology.

  19. The Geologic Story of Yellowstone National Park

    USGS Publications Warehouse

    Keefer, William Richard

    1971-01-01

    In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.

  20. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, D. W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.